JP7224829B2 - Medical image processing apparatus and method - Google Patents
Medical image processing apparatus and method Download PDFInfo
- Publication number
- JP7224829B2 JP7224829B2 JP2018183308A JP2018183308A JP7224829B2 JP 7224829 B2 JP7224829 B2 JP 7224829B2 JP 2018183308 A JP2018183308 A JP 2018183308A JP 2018183308 A JP2018183308 A JP 2018183308A JP 7224829 B2 JP7224829 B2 JP 7224829B2
- Authority
- JP
- Japan
- Prior art keywords
- medical data
- data
- medical
- scattered radiation
- ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims description 99
- 238000000034 method Methods 0.000 title description 25
- 230000005855 radiation Effects 0.000 claims description 68
- 238000012937 correction Methods 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 6
- 238000003672 processing method Methods 0.000 claims 4
- 238000002591 computed tomography Methods 0.000 description 63
- 230000006870 function Effects 0.000 description 62
- 230000015654 memory Effects 0.000 description 21
- 238000001514 detection method Methods 0.000 description 15
- 238000003860 storage Methods 0.000 description 15
- 238000004891 communication Methods 0.000 description 12
- 238000013500 data storage Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000007781 pre-processing Methods 0.000 description 9
- 238000010801 machine learning Methods 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000013170 computed tomography imaging Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000013403 standard screening design Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
Description
本発明の実施形態は、医用画像処理装置および方法に関する。 Embodiments of the present invention relate to medical image processing apparatus and methods.
X線CT(Computed Tomography)装置では、コントラストを改善させるため散乱X線の除去が行われる。散乱X線除去の手法としては、コリメータ板を検出器の前面に配置することにより散乱X線を除去するといったハードウェアを用いた手法がある。また、画像処理により散乱X線の影響を除去するといったソフトウェアを用いた手法もある。
ハードウェアにより散乱X線の除去を行う場合、散乱X線の除去能力が高い2次元コリメータを適用したり、コリメータの高さを高くしたりする方法があるが、コストの増加につながる。
一方、ソフトウェアにより散乱X線の補正処理を行う場合、散乱X線の除去能力を高めようとすると計算時間が長くなる。計算時間を短縮するために高性能な演算処理装置を導入しようとすると、結局コストの増加につながる。
An X-ray CT (Computed Tomography) apparatus removes scattered X-rays to improve contrast. As a technique for removing scattered X-rays, there is a technique using hardware such as placing a collimator plate in front of a detector to remove scattered X-rays. There is also a method using software to remove the influence of scattered X-rays by image processing.
When hardware is used to remove scattered X-rays, there are methods such as applying a two-dimensional collimator having a high ability to remove scattered X-rays or increasing the height of the collimator, but this leads to an increase in cost.
On the other hand, when the scattered X-ray correction process is performed by software, the calculation time becomes longer if the scattered X-ray removal capability is to be enhanced. Attempting to introduce a high-performance arithmetic processing unit in order to shorten the calculation time will eventually lead to an increase in cost.
本発明が解決しようとする課題は、コストを抑えつつ高画質な画像を得ることである。 A problem to be solved by the present invention is to obtain a high-quality image while suppressing costs.
本実施形態に係る医用画像処理装置は、取得部と、処理部とを含む。取得部は、第1の散乱線除去能を有するハードウェアに基づいた、処理対象の第1の医用データを取得する。処理部は、第1の医用データが入力され前記第1の散乱線除去能よりも高い第2の散乱線除去能に基づく第2の医用データを出力する学習済みモデルに従い、前記処理対象の第1の医用データから第2の医用データを生成する。 A medical image processing apparatus according to this embodiment includes an acquisition unit and a processing unit. The acquisition unit acquires first medical data to be processed based on hardware having a first ability to remove scattered radiation. The processing unit follows a trained model that receives first medical data and outputs second medical data based on a second scattered radiation removal ability higher than the first scattered radiation removal ability. Second medical data is generated from one medical data.
以下、図面を参照しながら本実施形態に係わる医用画像処理装置および方法について説明する。以下の実施形態では、同一の参照符号を付した部分は同様の動作をおこなうものとして、重複する説明を適宜省略する。以下、一実施形態について図面を用いて説明する。 A medical image processing apparatus and method according to the present embodiment will be described below with reference to the drawings. In the following embodiments, it is assumed that parts denoted by the same reference numerals perform the same operations, and overlapping descriptions will be omitted as appropriate. An embodiment will be described below with reference to the drawings.
(第1の実施形態)
以下、本実施形態に係る医用画像処理装置を含むX線CT(Computed Tomography)装置について図1のブロック図を参照して説明する。図1に示すX線CT装置1は、架台装置10と、寝台装置30と、医用画像処理装置の処理を実現するコンソール装置40とを有する。図1では説明の都合上、架台装置10を複数描画している。
(First embodiment)
An X-ray CT (Computed Tomography) apparatus including a medical image processing apparatus according to this embodiment will be described below with reference to the block diagram of FIG. The X-ray CT apparatus 1 shown in FIG. 1 has a
なお、本実施形態では、非チルト状態での回転フレーム13の回転軸又は寝台装置30の天板33の長手方向をZ軸方向、Z軸方向に直交し、床面に対し水平である軸方向をX軸方向、Z軸方向に直交し、床面に対し垂直である軸方向をY軸方向とそれぞれ定義するものとする。
In this embodiment, the rotation axis of the
例えば、架台装置10及び寝台装置30はCT検査室に設置され、コンソール装置40はCT検査室に隣接する制御室に設置される。なお、コンソール装置40は、必ずしも制御室に設置されなくてもよい。例えば、コンソール装置40は、架台装置10及び寝台装置30とともに同一の部屋に設置されてもよい。いずれにしても架台装置10と、寝台装置30と、コンソール装置40とは互いに通信可能に有線または無線で接続されている。
For example, the
架台装置10は、被検体PをX線CT撮影するための構成を有するスキャン装置である。架台装置10は、X線管11と、X線検出器12と、回転フレーム13と、X線高電圧装置14と、制御装置15と、ウェッジ16と、コリメータ17と、データ収集装置18(以下、DAS(Data Acquisition System)18ともいう)とを含む。
The
X線管11は、X線高電圧装置14からの高電圧の印加及びフィラメント電流の供給により、陰極(フィラメント)から陽極(ターゲット)に向けて熱電子を照射することでX線を発生する真空管である。具体的には、熱電子がターゲットに衝突することによりX線が発生される。例えば、X線管11には回転する陽極に熱電子を照射することでX線を発生させる回転陽極型のX線管がある。X線管11で発生したX線は、例えばコリメータ17を介してコーンビーム形に成形され、被検体Pに照射される。
The X-ray tube 11 is a vacuum tube that generates X-rays by irradiating thermal electrons from a cathode (filament) to an anode (target) by applying a high voltage and supplying a filament current from an X-ray
X線検出器12は、X線管11から照射され、被検体Pを通過したX線を検出し、当該X線量に対応した電気信号をDAS18へと出力する。X線検出器12は、例えば、X線管11の焦点を中心として1つの円弧に沿ってチャネル方向に複数のX線検出素子が配列された複数のX線検出素子列を有する。X線検出器12は、例えば、チャネル方向に複数のX線検出素子が配列されたX線検出素子列がスライス方向(列方向、row方向)に複数配列された列構造を有する。
The
X線検出器12は、具体的には、例えば、グリッドと、シンチレータアレイと、光センサアレイとを有する間接変換型の検出器である。X線検出器12は、検出部の一例である。
Specifically, the
シンチレータアレイは、複数のシンチレータを有する。シンチレータは、入射X線は、当該入射X線の強度に応じた個数の光子に変換する。
グリッドは、シンチレータアレイのX線入射側の面に配置され、散乱X線を吸収する機能を有するX線遮蔽板を有する。なお、グリッドはコリメータと呼ばれる場合もある。
The scintillator array has a plurality of scintillators. The scintillator converts incident X-rays into the number of photons corresponding to the intensity of the incident X-rays.
The grid has an X-ray shielding plate arranged on the surface of the scintillator array on the X-ray incident side and having a function of absorbing scattered X-rays. Note that the grid may also be called a collimator.
光センサアレイは、シンチレータからの受けた光を増幅して電気信号に変換する機能を有し、例えば、光電子増倍管(フォトマルチプライヤー:PMT)等の光センサを有する。
なお、X線検出器12は、入射したX線を電気信号に変換する半導体素子を有する直接変換型の検出器であっても構わない。
The photosensor array has a function of amplifying the light received from the scintillator and converting it into an electric signal, and has photosensors such as photomultiplier tubes (PMTs), for example.
The
回転フレーム13は、X線発生部とX線検出器12とを回転軸回りに回転可能に支持する。具体的には、回転フレーム13は、X線管11とX線検出器12とを対向支持し、後述する制御装置15によってX線管11とX線検出器12とを回転させる円環状のフレームである。回転フレーム13は、アルミニウム等の金属により形成された固定フレーム(図示せず)に回転可能に支持される。詳しくは、回転フレーム13は、ベアリングを介して固定フレームの縁部に接続されている。回転フレーム13は、制御装置15の駆動機構からの動力を受けて回転軸Z回りに一定の角速度で回転する。
The rotating
なお、回転フレーム13は、X線管11とX線検出器12に加えて、X線高電圧装置14やDAS18を更に備えて支持する。このような回転フレーム13は、撮影空間をなす開口(ボア)19が形成された略円筒形状の筐体に収容されている。開口はFOVに略一致する。開口の中心軸は、回転フレーム13の回転軸Zに一致する。なお、DAS18が生成した検出データは、例えば発光ダイオード(LED)を有する送信機から光通信によって架台装置の非回転部分(例えば固定フレーム。図1での図示は省略する。)に設けられた、フォトダイオードを有する受信機(図示せず)に送信され、コンソール装置40へと転送される。なお、回転フレームから架台装置の非回転部分への検出データの送信方法は、前述の光通信に限らず、非接触型のデータ伝送であれば如何なる方式を採用しても構わない。
In addition to the X-ray tube 11 and the
X線高電圧装置14は、変圧器(トランス)及び整流器等の電気回路を有し、X線管11に印加する高電圧及びX線管11に供給するフィラメント電流を発生する機能を有する高電圧発生装置と、X線管11が照射するX線に応じた出力電圧の制御を行うX線制御装置とを有する。高電圧発生装置は、変圧器方式であってもよいし、インバータ方式であっても構わない。なお、X線高電圧装置14は、後述する回転フレーム13に設けられてもよいし、架台装置10の固定フレーム(図示しない)側に設けられても構わない。
The X-ray
制御装置15は、CPU(Central Processing Unit)等を有する処理回路と、モータ及びアクチュエータ等の駆動機構とを有する。処理回路は、ハードウェア資源として、CPUやMPU(Micro Processing Unit)等のプロセッサとROM(Read Only Memory)やRAM(Random Access Memory)等のメモリとを有する。また、制御装置15は、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)やフィールド・プログラマブル・ゲート・アレイ(Field Programmable Gate Array:FPGA)、他の複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)により実現されてもよい。制御装置15は、コンソール装置40からの指令に従い、X線高電圧装置14及びDAS18等を制御する。前記プロセッサは、前記メモリに保存されたプログラムを読み出して実現することで上記制御を実現する。
The
また、制御装置15は、コンソール装置40若しくは架台装置10に取り付けられた、後述する入力インターフェース43からの入力信号を受けて、架台装置10及び寝台装置30の動作制御を行う機能を有する。例えば、制御装置15は、入力信号を受けて回転フレーム13を回転させる制御や、架台装置10をチルトさせる制御、及び寝台装置30及び天板33を動作させる制御を行う。なお、架台装置10をチルトさせる制御は、架台装置10に取り付けられた入力インターフェース43によって入力される傾斜角度(チルト角度)情報により、制御装置15がX軸方向に平行な軸を中心に回転フレーム13を回転させることによって実現される。また、制御装置15は架台装置10に設けられてもよいし、コンソール装置40に設けられても構わない。なお、制御装置15は、前記メモリにプログラムを保存する代わりに、前記プロセッサの回路内にプログラムを直接組み込むように構成しても構わない。この場合、前記プロセッサは、前記回路内に組み込まれたプログラムを読み出して実行することで上記制御を実現する。
The
ウェッジ16は、X線管11から照射されたX線量を調節するためのフィルタである。具体的には、ウェッジ16は、X線管11から被検体Pへ照射されるX線が、予め定められた分布になるように、X線管11から照射されたX線を透過して減衰するフィルタである。例えば、ウェッジ16(ウェッジフィルタ(wedge filter)、ボウタイフィルタ(bow-tie filter))は、所定のターゲット角度や所定の厚みとなるようにアルミニウムを加工したフィルタである。
コリメータ17は、ウェッジ16を透過したX線の照射範囲を絞り込むための鉛板等であり、複数の鉛板等の組み合わせによってスリットを形成する。なお、コリメータ17は、X線絞りと呼ばれる場合もある。
The
DAS18は、X線検出器12から電気信号を読み出し、読み出した電気信号に基づいて、X線検出器12により検出されたX線の線量に関するデジタルデータ(以下、検出データともいう)を生成する。検出データは、生成元のX線検出素子のチャンネル番号、列番号、収集されたビュー(投影角度ともいう)を示すビュー番号、及び検出されたX線の線量の積分値を示すデータのセットである。DAS18は、例えば、検出データを生成可能な回路素子を搭載したASIC(Application Specific Integrated Circuit)により実現される。検出データは、コンソール装置40へと転送される。
The
例えば、DAS18は、検出器画素各々について前置増幅器、可変増幅器、積分回路及びA/D変換器を含む。前置増幅器は、接続元のX線検出素子からの電気信号を所定のゲインで増幅する。可変増幅器は、前置増幅器からの電気信号を可変のゲインで増幅する。積分回路は、前置増幅器からの電気信号を、1ビュー期間に亘り積分して積分信号を生成する。積分信号の波高値は、1ビュー期間に亘り接続元のX線検出素子により検出されたX線の線量値に対応する。A/D変換器は、積分回路からの積分信号をアナログデジタル変換して検出データを生成する。
For example,
寝台装置30は、スキャン対象の被検体Pを載置、移動させる装置であり、基台31と、寝台駆動装置32と、天板33と、支持フレーム34とを備えている。
The
基台31は、支持フレーム34を鉛直方向に移動可能に支持する筐体である。
寝台駆動装置32は、被検体Pが載置された天板33を天板33の長軸方向に移動するモータあるいはアクチュエータである。寝台駆動装置32は、コンソール装置40による制御、または制御装置15による制御に従い、天板33を移動する。例えば、寝台駆動装置32は、天板33に載置された被検体Pの体軸が回転フレーム13の開口の中心軸に一致するよう、天板33を被検体Pに対して直交方向に移動する。また、寝台駆動装置32は、架台装置10を用いて実行されるX線CT撮影に応じて、天板33を被検体Pの体軸方向に沿って移動してもよい。寝台駆動装置32は、制御装置15からの駆動信号のデューティ比等に応じた回転速度で駆動することにより動力を発生する。寝台駆動装置32は、例えば、ダイレクトドライブモータやサーボモータ等のモータにより実現される。
The
The
支持フレーム34の上面に設けられた天板33は、被検体Pが載置される板である。なお、寝台駆動装置32は、天板33に加え、支持フレーム34を天板33の長軸方向に移動してもよい。
A
コンソール装置40は、メモリ41と、ディスプレイ42と、入力インターフェース43と、処理回路44とを有する。メモリ41と、ディスプレイ42と、入力インターフェース43と、処理回路44との間のデータ通信は、バス(BUS)を介して行われる。なお、コンソール装置40は架台装置10とは別体として説明するが、架台装置10にコンソール装置40またはコンソール装置40の各構成要素の一部が含まれてもよい。
The
メモリ41は、種々の情報を記憶するHDD(Hard Disk Drive)やSSD(Solid State Drive)、集積回路記憶装置等の記憶装置である。メモリ41は、例えば、投影データや再構成画像データを記憶する。メモリ41は、HDDやSSD等以外にも、CD(Compact Disc)、DVD(Digital Versatile Disc)、フラッシュメモリ等の可搬性記憶媒体や、RAM(Random Access Memory)等の半導体メモリ素子等との間で種々の情報を読み書きする駆動装置であってもよい。また、メモリ41の保存領域は、X線CT装置1内にあってもよいし、ネットワークで接続された外部記憶装置内にあってもよい。例えば、メモリ41は、CT画像や表示画像のデータを記憶する。また、メモリ41は、本実施形態に係る制御プログラムを記憶する。
The
ディスプレイ42は、各種の情報を表示する。例えば、ディスプレイ42は、処理回路44によって生成された医用画像(CT画像)や、操作者からの各種操作を受け付けるためのGUI(Graphical User Interface)等を出力する。例えば、ディスプレイ42としては、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)、CRT(Cathode Ray Tube)ディスプレイ、有機ELディスプレイ(OELD:Organic Electro Luminescence Display)、プラズマディスプレイ又は他の任意のディスプレイが、適宜、使用可能となっている。また、ディスプレイ42は、架台装置10に設けられてもよい。また、ディスプレイ42は、デスクトップ型でもよいし、コンソール装置40本体と無線通信可能なタブレット端末などで構成されることにしても構わない。
The
入力インターフェース43は、操作者からの各種の入力操作を受け付け、受け付けた入力操作を電気信号に変換して処理回路44に出力する。例えば、入力インターフェース43は、投影データを収集する際の収集条件や、CT画像を再構成する際の再構成条件、CT画像から後処理画像を生成する際の画像処理条件等を操作者から受け付ける。入力インターフェース43としては、例えば、マウス、キーボード、トラックボール、スイッチ、ボタン、ジョイスティック、タッチパッド及びタッチパネルディスプレイ等が適宜、使用可能となっている。なお、本実施形態において、入力インターフェース43は、マウス、キーボード、トラックボール、スイッチ、ボタン、ジョイスティック、タッチパッド及びタッチパネルディスプレイ等の物理的な操作部品を備えるものに限られない。例えば、装置とは別体に設けられた外部の入力機器から入力操作に対応する電気信号を受け取り、この電気信号を処理回路44へ出力する電気信号の処理回路も入力インターフェース43の例に含まれる。入力インターフェース43は、架台装置10に設けられてもよい。又、入力インターフェース43は、コンソール装置40本体と無線通信可能なタブレット端末などで構成されることにしても構わない。
The input interface 43 receives various input operations from the operator, converts the received input operations into electrical signals, and outputs the electrical signals to the
処理回路44は、入力インターフェース43から出力される入力操作の電気信号に応じてX線CT装置1全体の動作を制御する。例えば、処理回路44は、ハードウェア資源として、CPUやMPU、GPU(Graphics Processing Unit)等のプロセッサとROMやRAM等のメモリとを有する。処理回路44は、メモリに展開されたプログラムを実行するプロセッサにより、システム制御機能441、前処理機能442、再構成処理機能443、取得機能444、補正処理機能445及び表示制御機能446を実行する。なお、各機能(システム制御機能441、前処理機能442、再構成処理機能443、取得機能444、補正処理機能445および表示制御機能446)は単一の処理回路で実現される場合に限らない。複数の独立したプロセッサを組み合わせて処理回路を構成し、各プロセッサがプログラムを実行することにより各機能を実現するものとしても構わない。
The
システム制御機能441は、入力インターフェース43を介して操作者から受け付けた入力操作に基づいて、処理回路44の各機能を制御する。具体的には、システム制御機能441は、メモリ41に記憶されている制御プログラムを読み出して処理回路44内のメモリ上に展開し、展開された制御プログラムに従ってX線CT装置1の各部を制御する。例えば、処理回路44は、入力インターフェース43を介して操作者から受け付けた入力操作に基づいて、処理回路44の各機能を制御する。例えば、システム制御機能441は、スキャン範囲、撮影条件等を決定するための被検体Pの2次元の位置決め画像を取得する。なお、位置決め画像は、スキャノ画像またはスカウト画像とも呼ばれる。システム制御機能441は、システム制御部の一例である。
The
前処理機能442は、DAS18から出力された検出データに対して、対数変換処理やオフセット補正処理、チャネル間の感度補正処理、ビームハードニング補正等の前処理を施したデータを生成する。なお、前処理前のデータ(検出データ)及び前処理後のデータを総称して投影データと称する場合もある。
A
再構成処理機能443は、前処理機能442にて生成された投影データに対して、フィルタ補正逆投影法(FBP法:Filtered Back Projection)や逐次近似再構成法等を用いた再構成処理を行ってCT画像データを生成する。
A
取得機能444は、医用データを取得する。医用データは、例えば、X線CT装置1で撮影したCT画像データまたは投影データである。取得機能444は、取得部の一例である。
補正処理機能445は、取得機能444で取得した医用データに対し、散乱線補正処理を実行し、散乱線成分が除去された医用データを生成する。補正処理機能445は、処理部の一例である。
The
表示制御機能446は、処理回路44の各機能または処理における処理途中又は処理結果の情報を表示するようにディスプレイ42を制御する処理である。
The
なお、処理回路44は、スキャン制御処理および画像処理も行う。
スキャン制御処理は、X線高電圧装置14に高電圧を供給させて、X線管11にX線を照射させるなど、X線スキャンに関する各種動作を制御する処理である。
画像処理は、入力インターフェース43を介して操作者から受け付けた入力操作に基づいて、再構成処理機能443によって生成されたCT画像データを公知の方法により、任意断面の断層画像データや3次元画像データに変換する処理である。なお、3次元画像データの生成は、再構成処理機能443が直接行なっても構わない。
The
The scan control process is a process of controlling various operations related to X-ray scanning, such as causing the X-ray high-
In the image processing, the CT image data generated by the
処理回路44は、コンソール装置40に含まれる場合に限らず、複数の医用画像診断装置にて取得されたデータに対する処理を一括して行う統合サーバに含まれてもよい。
なお、コンソール装置40は、単一のコンソールにて複数の機能を実行するものとして説明したが、複数の機能を別々のコンソールが実行することにしても構わない。例えば、前処理機能442、再構成処理機能443等の処理回路44の機能を分散して有しても構わない。
The
Although the
次に、第1の実施形態に係るX線CT装置1の動作例について図2のフローチャートを参照して説明する。
ステップS201では、被検体Pの位置決め撮影(位置決めスキャン)が実行される。
ステップS202では、被検体の本撮影(本スキャン)が実行される。なお、ステップS201およびステップS202については、一般的なスキャンを実行すればよいため詳細な説明は省略する。
Next, an operation example of the X-ray CT apparatus 1 according to the first embodiment will be described with reference to the flowchart of FIG.
In step S201, positioning imaging (positioning scanning) of the subject P is performed.
In step S202, the main imaging (main scan) of the subject is performed. As for steps S201 and S202, a general scan may be executed, so a detailed description thereof will be omitted.
ステップS203では、取得機能444により処理回路44が、本スキャンにより得られる処理対象の第1の医用データを取得する。ここで、第1の医用データは、第1の散乱線除去能を有するハードウェアに基づいて撮影された医用データである。第n(nは整数)の散乱線除去能を有するハードウェアに基づいて撮影された医用データは、具体的には、第nの散乱線除去能を有する散乱線除去グリッドが設けられたX線検出器により検出された投影データ(又はサイノグラムデータ)や当該投影データに基づいて再構成されたCT画像データ、当該CT画像データに順変換等を施して生成された計算上の投影データを含む。
In step S203, the
ステップS204では、補正処理機能445により処理回路44が、後述する学習済みモデルに従い、処理対象の第1の医用データから、第1の散乱線除去能よりも高い第2の散乱線除去能に基づく第2の医用データを生成する。言い換えれば、処理対象の第1の医用データよりも高精度な散乱線補正が施された(散乱線除去率が高い)第2の医用データを生成する。以上でX線CT装置1の動作例を終了する。
In step S204, the
次に、散乱線除去能を定める基準となる散乱線除去グリッドの構成について図3を参照して説明する。
図3では、Z軸方向からみた散乱線除去グリッド301と、散乱線除去グリッド301の後段に配置されるシンチレータアレイ302とを示す。なお、散乱線除去グリッド301はX線検出器12に設けられ、X線検出器12と共にZ軸回りに回転する。図3は、X線検出器12がZ軸回りの最下方(180度)の位置に配置されているときの散乱線除去グリッド301を示している。
Next, the configuration of the scattered radiation removal grid, which serves as a reference for determining the scattered radiation removal performance, will be described with reference to FIG.
FIG. 3 shows the
散乱線除去グリッド301では、散乱線を吸収するグリッド板3011が所定の間隔で配置される。当該間隔、つまり2つのグリッド板3011の間に設けられる空間3012に、被検体Pを透過したいわゆる1次X線がX線検出器12に入射する。なお、当該空間3012は、単に空気で形成されてもよいし、ファイバ、アルミニウムなどのX線を透過する中間物質が配置されることで形成されてもよい。
In the scattered
散乱線除去グリッド301の散乱線除去能は、グリッドの分割度合いによって変わる。例えば、1次元の散乱線除去グリッドよりも2次元の散乱線除去グリッドのほうが、より細かいグリッドであるため散乱線除去能が高くなる。
The ability of the
また、次元数を変えることに限らず、散乱線除去グリッド301の散乱線除去能は、グリッド板の高さH、グリッド板3011の幅W、およびグリッド板3011の間隔(ピッチ)Pi(言い換えれば、中間物質5012のX軸方向の長さ)を基準(パラメータ)として規定することができる。例えば、グリッド板3011の高さHが高いほど、散乱線をより多く遮蔽することができるので、散乱線除去能が高くなる。グリッド板3011の幅Wが大きいほど、より多くの散乱線を吸収できるため、散乱線除去能が高くなる。また、グリッド板3011のピッチPiが狭いほど、空間3012に入射する1次X線の割合が高くなるため、散乱線除去能が高くなる。
In addition, without being limited to changing the number of dimensions, the scattered radiation removing ability of the
さらに、グリッド板3011を放射線(X線)の遮蔽能力の高い材料で形成するほど、散乱線除去能は高くなる。例えば、銅やニッケルと比較して原子量が大きいタングステン、モリブデン、鉛などがX線の遮蔽能力が高い材料といえる。
また、上記の基準を組み合わせて散乱線除去能を考慮してもよく、例えば、ピッチPiに対する高さHの比であるグリッド比(アスペクト比ともいう)が大きいほど、散乱線除去能が高くなる。
Furthermore, the more the
In addition, the above criteria may be combined to consider the ability to remove scattered radiation. For example, the larger the grid ratio (also referred to as the aspect ratio), which is the ratio of the height H to the pitch Pi, the higher the ability to remove scattered radiation. .
次に、補正処理機能445が利用する学習済みモデルの生成方法について図4を参照して説明する。
図4は、学習済みモデルを生成する医用情報処理システムの一例を示すブロック図である。図4に示される医用情報処理システムは、X線CT装置1と、学習データ保管装置50と、モデル学習装置52とを含む。
Next, a method of generating a trained model used by the
FIG. 4 is a block diagram showing an example of a medical information processing system that generates trained models. The medical information processing system shown in FIG. 4 includes an X-ray CT apparatus 1 , a learning
学習データ保管装置50は、複数の学習サンプルを含む学習用データを記憶する。例えば、学習データ保管装置50は、大容量記憶装置が内蔵されたコンピュータである。また、学習データ保管装置50は、コンピュータにケーブルや通信ネットワークを介して通信可能に接続された大容量記憶装置であってもよい。当該記憶装置としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、集積回路記憶装置等が適宜利用可能である。
The learning
モデル学習装置52は、学習データ保管装置50に記憶された学習用データに基づいて、モデル学習プログラムに従いモデルに機械学習を行わせることで、学習済みモデル411を生成する。本実施形態において、機械学習のアルゴリズムとしては、ニューラルネットワーク、ディープラーニング、Random Forest、またはカーネル回帰等を想定するが、これに限らず他の機械学習のアルゴリズムであってもよい。モデル学習装置52は、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit)等のプロセッサを有するワークステーション等のコンピュータである。
The
モデル学習装置52と学習データ保管装置50とはケーブル、又は通信ネットワークを介して通信可能に接続されてもよい。また、学習データ保管装置50がモデル学習装置52に搭載されてもよい。これらの場合、学習データ保管装置50からモデル学習装置52へ学習用データが供給される。なお、モデル学習装置52と学習データ保管装置50とは通信可能に接続されてなくてもよい。この場合、学習用データが記憶された可搬性記憶媒体を介して、学習データ保管装置50からモデル学習装置52へ学習用データが供給される。
The
X線CT装置1とモデル学習装置52とはケーブル、又は通信ネットワークを介して通信可能に接続されてもよい。モデル学習装置52で生成された学習済みモデル411がX線CT装置1へ供給され、学習済みモデル411がメモリ41に記憶される。なお、X線CT装置1とモデル学習装置52とは、必ずしも通信可能に接続されてなくてもよい。この場合、学習済みモデル411が記憶された可搬型記憶媒体等を介して、モデル学習装置52からX線CT装置1へ学習済みモデル411が供給される。
The X-ray CT apparatus 1 and the
学習済みモデル411は、複数の関数が合成されたパラメータ付き合成関数である。パラメータ付き合成関数は、複数の調整可能な関数及びパラメータの組合せにより定義される。学習済みモデル411は、上記の要請を満たす如何なるパラメータ付き合成関数であってもよい。
A trained
なお、第1の実施形態に係る学習済みモデル411は、機械学習前の多層化ネットワーク(単にモデルともいう)をディープニューラルネットワーク(DNN)に代表されるニューラルネットワークで機械学習させることで生成される。なお、ニューラルネットワークに限らず、学習済みモデル411は、上述した機械学習のアルゴリズムによりモデルを学習させることで生成されてもよい。また、学習済みモデル411は、パラメータ付き合成関数ではなく、ルックアップテーブル(LUT)により実現してもよい。
Note that the trained
次に、モデル学習装置52によるモデルの学習時の概念について図5を参照して説明する。
モデル学習装置52は、学習用データを用いて学習用プログラムである多層化ネットワーク410を機械学習させればよい。学習済みモデル411は、X線CT装置1のコンソール装置40にインストールされる。また、X線CT装置1の修理時やソフトウェアのアップデート時において学習済みモデル411をアップデートできるようにしてもよい。
Next, the concept of model learning by the
The
学習済みモデル411のモデル学習時には、例えば工場出荷時などにおいて、散乱線除去能が低いハードウェアを実装した装置により実際に被検体Pを撮影した医用データを入力データとし、散乱線除去能が高いハードウェアを実装した装置により実際に被検体Pを撮影した医用データを正解データ(出力データ)とした学習用データが用いられる。このとき、患者や健常者等の他、ファントムや亡くなった患者、生きている動物又は死んでいる動物が被検体Pとして用いられてもよい。入力データと正解データとは、実測のデータだけでなく、シミュレーションにより生成されたデータでもよいし、実測のデータを加工して生成されたデータでもよい。
散乱線除去能が高いハードウェアは、製造コスト及び材料の耐久性の観点から、汎用機器として流通させるのが難しい場合がある。よって、散乱線除去能が高いハードウェアを実装した装置を製造し、当該装置に基づいて取得した医用データを正解データして学習済みモデルを生成することで、散乱線除去能が高いハードウェアのデータに基づく知見を、散乱線除去能が低いが耐久性があるハードウェアを実装した汎用機器にも適用することができる。
At the time of model learning of the trained
It may be difficult to distribute hardware with high scattered radiation removal ability as a general-purpose device from the viewpoint of manufacturing cost and material durability. Therefore, by manufacturing a device that implements hardware with high scattered ray removal performance, and by generating a trained model using medical data acquired based on the device as correct data, hardware with high scatter removal performance can be manufactured. Data-driven insights can also be applied to general-purpose instruments with low anti-scatter but durable hardware implementations.
ここで、散乱線除去能の高低の関係は、入力データと正解データとを比較し、正解データのほうが入力データよりも高い散乱線除去能に基づくデータとなる関係であればよい。
具体的には、学習用データとして、1次元の散乱線除去グリッドを用いて撮影された医用データを入力データとし、2次元の散乱線除去グリッドを用いて撮影された医用データを正解データとすればよい。
Here, the relationship between the high and low scattered ray removal ability may be such that the input data and the correct data are compared, and the correct data has a higher scattered ray removal ability than the input data.
Specifically, as learning data, medical data captured using a one-dimensional anti-scatter grid is used as input data, and medical data captured using a two-dimensional anti-scatter grid is used as correct data. Just do it.
また、入力データよりも正解データのほうが散乱線除去グリッドの次元数が高い場合は勿論、入力データと正解データとが同じ次元の散乱線除去グリッドにより撮影される場合でも、図3に示すような散乱線除去グリッドのパラメータを変更すれば、学習用データを生成できる。 Moreover, when the dimensionality of the anti-scattering grid for the correct data is higher than that for the input data, of course, even when the input data and the correct data are photographed by the anti-scattering grid of the same dimension, as shown in FIG. Training data can be generated by changing the parameters of the anti-scatter grid.
例えば、入力データを撮影する際に用いた散乱線除去グリッドよりも、グリッドの高さ(グリッド板の高さ)が高い散乱線除去グリッドを用いて撮影された医用データを、正解データとして用いればよい。または、入力データを撮影する際に用いた散乱線除去グリッドよりも、グリッド板の厚みが厚い散乱線除去グリッドを用いて撮影された医用データを、正解データとして用いればよい。または、入力データを撮影する際に用いた散乱線除去グリッドよりも、グリッド比が大きい散乱線除去グリッドを用いて撮影された医用データを、正解データとして用いればよい。または、入力データを撮影する際に用いた散乱線除去グリッドよりも、放射線(X線)の遮蔽能力が高い材料を用いて生成された散乱線除去グリッドを用いて撮影された医用データを、正解データとして用いればよい。 For example, if medical data captured using an anti-scatter grid with a higher grid height (grid plate height) than the anti-scatter grid used to capture the input data is used as correct data, good. Alternatively, medical data captured using an anti-scatter grid having a thicker grid plate than the anti-scatter grid used to capture the input data may be used as the correct data. Alternatively, medical data captured using an anti-scatter grid having a larger grid ratio than the grid used to capture the input data may be used as the correct data. Alternatively, correct medical data captured using an anti-scatter grid generated using a material with a higher radiation (X-ray) shielding capability than the anti-scatter grid used to capture the input data. It can be used as data.
上述の例は、入力データ及び正解データ共に、散乱線除去グリッドの散乱線除去能の違い、すなわちハードウェアの性能の違いを学習させる例であるが、正解データとして、ハードウェアの性能の違いに加え、ソフトウェアによる散乱線補正を行った医用データを正解データとして用いてもよい。具体的には、例えば、学習用データとして、1次元の散乱線除去グリッドを用いて撮影された医用データを入力データとし、2次元の散乱線除去グリッドを用いて撮影された医用データに対し、さらにソフトウェアによる散乱線補正処理を行った医用データを正解データとすればよい。 In the above example, both the input data and the correct data are different in the anti-scattering ability of the anti-scattering grid, that is, the difference in hardware performance is learned. In addition, medical data subjected to scattered radiation correction by software may be used as the correct data. Specifically, for example, as learning data, medical data captured using a one-dimensional anti-scatter grid is used as input data, and for medical data captured using a two-dimensional anti-scatter grid, Furthermore, medical data that has undergone scattered radiation correction processing using software may be used as correct data.
これにより、後述する学習済みモデル411の利用時に、学習済みモデル411から出力される医用データに対して、別途ソフトウェアによる散乱線補正処理を行わなくてよいため、ソフトウェアによる散乱線補正に係る計算時間を省略し、処理に係る全体の計算時間を短くすることができる。結果、処理の効率化を図ることができる。
As a result, when using the trained
一方、正解データから入力データを生成してもよい。例えば、2次元の散乱線除去グリッドを用いて撮影した医用データを、1次元の散乱線除去グリッドを用いて撮影した医用データの散乱線除去能と同程度となるようにシミュレーションで医用データの品質を低下させる。つまり、医用データに含まれる散乱線成分を増加させる。具体的には、シミュレーションにより、1次元の散乱線除去グリッドによる散乱線除去能と2次元の散乱線除去グリッドによる散乱線除去との散乱線成分の差分を算出し、当該散乱線成分の差分と正解データとを合成する。こうすることで、散乱線の影響が増加した医用データを生成することができる。このように、高い散乱線除去能を有する2次元の散乱線除去グリッドに基づく医用データから、低い散乱線除去能に基づく医用データを入力データとして生成することで、正解データを得るだけで学習用データを容易に生成することができる。 On the other hand, input data may be generated from correct data. For example, the quality of medical data captured using a two-dimensional anti-scatter grid is simulated so that it has the same level of anti-scatter ability as that of medical data captured using a one-dimensional anti-scatter grid. lower the In other words, the scattered radiation component included in the medical data is increased. Specifically, a simulation is performed to calculate the difference in the scattered radiation components between the ability to remove scattered radiation by a one-dimensional grid for removing scattered radiation and the elimination of scattered radiation by a two-dimensional grid for eliminating scattered radiation. Synthesize with the correct data. By doing so, it is possible to generate medical data with increased influence of scattered radiation. In this way, by generating medical data based on a low anti-scattering power as input data from medical data based on a two-dimensional anti-scattering grid with a high anti-scattering power, learning can be performed simply by obtaining correct data. Data can be easily generated.
次に、図5で機械学習させた学習済みモデル411の利用時の概念について図6を参照して説明する。
学習済みモデル411の利用時には、X線CT装置1を用いて撮影した処理対象の医用データが学習済みモデル411に入力される。学習済みモデル411は、入力された処理対象の医用データよりも散乱線成分が除去された医用データを出力する。具体的には、例えば、1次元の散乱線除去グリッドを有するX線CT装置1により撮影された第1の医用データが学習済みモデル411に入力され、第1の医用データから、2次元の散乱線除去グリッドに基づいて取得されるような第2の医用データが生成される。
Next, the concept of using the trained
When using the trained
なお、医用データは、上述したようにCT画像データでもよいし、投影データであってもよい。医用データがCT画像データであれば、学習済みモデル411に対してCT画像データが入力され、入力されたCT画像データよりも散乱線成分が除去されたCT画像データが出力される。医用データが投影データであれば、学習済みモデル411に対して投影データが入力され、投影データの散乱線除去能よりも高い散乱線除去能に基づいて得られるCT画像データが出力される。
The medical data may be CT image data as described above, or may be projection data. If the medical data is CT image data, the CT image data is input to the trained
なお、学習済みモデル411の出力として、投影データを出力してもよい。つまり、入力された投影データよりも散乱線成分が除去された投影データが出力される。当該学習済みモデル411の出力である投影データは、例えば再構成処理機能443により再構成処理されるなど、既存の再構成処理を適用することできる。よって、例えば、病院などに既に配備されているX線CT装置のコンソール装置に本実施形態に係る医用画像処理装置を実装すれば、配備されているX線CT装置が有する散乱線除去能よりも高い散乱線除去能に基づいて得られるCT画像を生成することができる。
Projection data may be output as the output of the trained
以上に示した第1の実施形態によれば、学習時には、散乱線除去能に関し高品質かつ高性能なハードウェアを実装した正解データ作成用のX線CT装置により生成した正解データを用いて、学習済みモデルを生成する。当該正解データ作成用のX線CT装置よりも散乱線除去能が低いX線CT装置で当該学習済みモデルを利用すれば、散乱線除去能が低いX線CT装置でも高精度の散乱線補正が施された医用データを出力することができる。つまり、正解データ作成用の装置よりも散乱線除去能が劣るX線CT装置でも、正解データ作成用のX線CT装置並みの散乱線除去能により散乱線補正処理が施された医用データを生成することができる。
すなわち、本実施形態に係るX線CT装置によれば、学習済みモデルを用いることで、実際のX線CT装置の構成よりも高い散乱線除去能に基づいた、コントラストがより改善されたCT画像を生成することができる。よって、コストを抑えつつ高画質な画像を得ることができる。
According to the first embodiment described above, at the time of learning, correct data generated by an X-ray CT apparatus for correct data creation, which implements high-quality and high-performance hardware regarding the ability to remove scattered radiation, Generate a trained model. If the trained model is used with an X-ray CT apparatus having a lower ability to remove scattered radiation than the X-ray CT apparatus for creating the correct data, highly accurate correction of scattered radiation can be performed even with an X-ray CT apparatus having a lower ability to remove scattered radiation. The applied medical data can be output. In other words, even an X-ray CT apparatus whose scattered ray removal ability is inferior to that of the apparatus for correct data preparation generates medical data subjected to scattered ray correction processing with a scattered ray removal ability equivalent to that of the X-ray CT apparatus for correct answer data preparation. can do.
That is, according to the X-ray CT apparatus according to the present embodiment, by using a trained model, a CT image with more improved contrast based on a higher scattered radiation removal ability than the configuration of an actual X-ray CT apparatus can be generated. Therefore, it is possible to obtain a high-quality image while suppressing costs.
(第2の実施形態)
上述の実施形態に係る散乱線補正処理は、X線CT装置1のコンソール装置40で行われることに限らず、例えば、ワークステーションに含まれるような医用画像処理装置において実行されてもよい。
(Second embodiment)
The scattered radiation correction process according to the above-described embodiments is not limited to being performed in the
第2の実施形態に係る、散乱線補正処理を実行する医用画像処理装置を図7のブロック図を参照して説明する。
医用画像処理装置700は、処理回路720と、ストレージ740と、通信インターフェース760とを含む。また、信号のやりとりは、バス780を介して行われる。
A medical image processing apparatus that executes scattered radiation correction processing according to the second embodiment will be described with reference to the block diagram of FIG.
Medical
処理回路720は、取得機能722と、補正処理機能724とを含む。取得機能722は、通信インターフェース760を介して、X線CT装置1から医用データとして投影データまたはCT画像データを取得する。補正処理機能724は、上述した実施形態と同様の処理を行うため、ここでの詳細な説明は省略する。
ストレージ740は、例えばメモリであり、学習済みモデル411などを記憶する。
通信インターフェース760は、X線CT装置1とデータのやりとりを行う。
The
A
以上に示した第2の実施形態によれば、医用画像処理装置が第1の実施形態に示す散乱線補正処理を実行することで、ユーザがX線CT装置1のコンソール画面を見ながら操作する代わりに、X線CT装置1と別室で散乱線補正処理を行うこともできる。 According to the second embodiment described above, the medical image processing apparatus executes the scattered radiation correction process shown in the first embodiment, so that the user can operate the X-ray CT apparatus 1 while viewing the console screen. Alternatively, the scattered radiation correction process can be performed in a separate room from the X-ray CT apparatus 1 .
以上説明した少なくとも1つの実施形態によれば、コストを抑えつつ高画質な画像を得ることができる。 According to at least one embodiment described above, it is possible to obtain a high-quality image while suppressing costs.
なお、X線CT装置には、X線管と検出器とが一体として被検体Pの周囲を回転するRotate/Rotate-Type(第3世代CT)、リング状にアレイされた多数のX線検出素子が固定され、X線管のみが被検体Pの周囲を回転するStationary/Rotate-Type(第4世代CT)等様々なタイプがあり、いずれのタイプでも本実施形態へ適用可能である。 The X-ray CT apparatus includes a Rotate/Rotate-Type (3rd generation CT) in which the X-ray tube and detector are rotated around the subject P as a unit, and a large number of X-ray detectors arrayed in a ring. There are various types such as Stationary/Rotate-Type (4th generation CT) in which the element is fixed and only the X-ray tube rotates around the subject P, and any type can be applied to this embodiment.
なお、X線を発生させるハードウェアはX線管11に限られない。例えば、X線管11に替えて、電子銃から発生した電子ビームを集束させるフォーカスコイルと、電磁偏向させる偏向コイルと、被検体Pの半周を囲い偏向した電子ビームが衝突することによってX線を発生させるターゲットリングとを含む第5世代方式を用いてX線を発生させることにしても構わない。 Note that hardware for generating X-rays is not limited to the X-ray tube 11 . For example, in place of the X-ray tube 11, a focus coil for converging the electron beam generated from the electron gun, a deflection coil for electromagnetic deflection, and the deflected electron beam surrounding the half circumference of the subject P collide with each other to emit X-rays. X-rays may be generated using a fifth generation system including a target ring to be generated.
さらに、本実施形態においては、一管球型のX線CT装置にも、X線管と検出器との複数のペアを回転リングに搭載した、いわゆる多管球型のX線CT装置にも適用可能である。 Furthermore, in the present embodiment, both a single-tube type X-ray CT apparatus and a so-called multi-tube type X-ray CT apparatus in which a plurality of pairs of X-ray tubes and detectors are mounted on a rotating ring can be used. Applicable.
加えて、実施形態に係る各機能は、前記処理を実行するプログラムをワークステーション等のコンピュータにインストールし、これらをメモリ上で展開することによっても実現することができる。このとき、コンピュータに前記手法を実行させることのできるプログラムは、磁気ディスク(ハードディスクなど)、光ディスク(CD-ROM、DVDなど)、半導体メモリなどの記憶媒体に格納して頒布することも可能である。 In addition, each function according to the embodiment can also be realized by installing a program for executing the above processing in a computer such as a workstation and deploying them on the memory. At this time, the program that allows the computer to execute the above method can be distributed by being stored in a storage medium such as a magnetic disk (hard disk, etc.), optical disk (CD-ROM, DVD, etc.), semiconductor memory, or the like. .
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.
1 X線CT装置
10 架台装置
11 X線管
12 X線検出器
13 回転フレーム
14 X線高電圧装置
15 制御装置
16 ウェッジ
17 コリメータ
18 データ収集装置(DAS)
19 開口(ボア)
30 寝台装置
31 基台
32 寝台駆動装置
33 天板
34 支持フレーム
40 コンソール装置
41 メモリ
42 ディスプレイ
43 入力インターフェース
44,720 処理回路
50 学習データ保管装置
52 モデル学習装置
301 散乱線除去グリッド
302 シンチレータアレイ
410 多層化ネットワーク
411 学習済みモデル
441 システム制御機能
442 前処理機能
443 再構成処理機能
444,722 取得機能
445,724 補正処理機能
446 表示制御機能
700 医用画像処理装置
740 ストレージ
760 通信インターフェース
780 バス
3011 グリッド板
3012 空間
Reference Signs List 1
19 aperture (bore)
30
Claims (9)
第1の医用データが入力され前記第1の散乱線除去能よりも高い第2の散乱線除去能に基づく第2の医用データを出力する学習済みモデルに従い、前記処理対象の第1の医用データから第2の医用データを生成する処理部と、
を備え、
前記第1の医用データは、1次元の散乱線除去グリッドに基づいて取得された医用データであり、
前記第2の医用データは、2次元の散乱線除去グリッドに基づいて取得された医用データである、
医用画像処理装置。 an acquisition unit that acquires first medical data to be processed based on hardware having a first ability to remove scattered radiation;
The first medical data to be processed according to a trained model that receives first medical data and outputs second medical data based on a second scattered radiation removal power higher than the first scattered radiation removal power. a processing unit that generates second medical data from
with
The first medical data is medical data acquired based on a one-dimensional anti-scatter grid,
wherein the second medical data is medical data acquired based on a two-dimensional anti-scatter grid;
Medical image processing equipment.
第1の医用データが入力され前記第1の散乱線除去能よりも高い第2の散乱線除去能に基づく第2の医用データを出力する学習済みモデルに従い、前記処理対象の第1の医用データから第2の医用データを生成する処理部と、
を備え、
前記第1の医用データは、1次元又は2次元の散乱線除去グリッドに基づいて取得された医用データであり、
前記第2の医用データは、2次元の散乱線除去グリッドに基づいて取得された医用データに対し、ソフトウェアによる散乱線補正処理が行われた医用データである、
医用画像処理装置。 an acquisition unit that acquires first medical data to be processed based on hardware having a first ability to remove scattered radiation;
The first medical data to be processed according to a trained model that receives first medical data and outputs second medical data based on a second scattered radiation removal power higher than the first scattered radiation removal power. a processing unit that generates second medical data from
with
The first medical data is medical data acquired based on a one-dimensional or two-dimensional anti-scatter grid,
The second medical data is medical data acquired based on a two-dimensional anti-scatter grid and subjected to scattered radiation correction processing by software.
Medical image processing equipment.
請求項1又は2に記載の医用画像処理装置。 wherein the first medical data is medical data obtained by increasing the scattered radiation component contained in the second medical data ;
The medical image processing apparatus according to claim 1 or 2 .
請求項1から請求項3のいずれか1項に記載の医用画像処理装置。 The second medical data is medical data acquired based on an anti-scatter grid having a higher grid height than the anti-scatter grid used to acquire the first medical data.
The medical image processing apparatus according to any one of claims 1 to 3 .
請求項1から請求項4のいずれか1項に記載の医用画像処理装置。 The second medical data is medical data acquired based on an anti-scatter grid having a thicker grid plate than the anti-scatter grid used to acquire the first medical data.
The medical image processing apparatus according to any one of claims 1 to 4 .
請求項1から請求項5のいずれか1項に記載の医用画像処理装置。 The second medical data is medical data acquired based on an anti-scatter grid having a larger grid ratio than the anti-scatter grid used to acquire the first medical data.
The medical image processing apparatus according to any one of claims 1 to 5 .
請求項1から請求項6のいずれか1項に記載の医用画像処理装置。 The second medical data is acquired based on an anti-scatter grid generated using a material having a higher radiation shielding ability than the anti-scatter grid used to acquire the first medical data. is the data,
The medical image processing apparatus according to any one of claims 1 to 6 .
第1の医用データが入力され前記第1の散乱線除去能よりも高い第2の散乱線除去能に基づく第2の医用データを出力する学習済みモデルに従い、前記処理対象の第1の医用データから第2の医用データを生成する医用画像処理方法であって、
前記第1の医用データは、1次元の散乱線除去グリッドに基づいて取得された医用データであり、
前記第2の医用データは、2次元の散乱線除去グリッドに基づいて取得された医用データである、
医用画像処理方法。 obtaining first medical data to be processed based on hardware having a first anti-scatter capability;
The first medical data to be processed according to a trained model that receives first medical data and outputs second medical data based on a second scattered radiation removal power higher than the first scattered radiation removal power. A medical image processing method for generating second medical data from
The first medical data is medical data acquired based on a one-dimensional anti-scatter grid,
wherein the second medical data is medical data acquired based on a two-dimensional anti-scatter grid;
Medical image processing method .
第1の医用データが入力され前記第1の散乱線除去能よりも高い第2の散乱線除去能に基づく第2の医用データを出力する学習済みモデルに従い、前記処理対象の第1の医用データから第2の医用データを生成する医用画像処理方法であって、 The first medical data to be processed according to a trained model that receives first medical data and outputs second medical data based on a second scattered radiation removal power higher than the first scattered radiation removal power. A medical image processing method for generating second medical data from
前記第1の医用データは、1次元又は2次元の散乱線除去グリッドに基づいて取得された医用データであり、 The first medical data is medical data acquired based on a one-dimensional or two-dimensional anti-scatter grid,
前記第2の医用データは、2次元の散乱線除去グリッドに基づいて取得された医用データに対し、ソフトウェアによる散乱線補正処理が行われた医用データである、 The second medical data is medical data acquired based on a two-dimensional anti-scatter grid and subjected to scattered radiation correction processing by software.
医用画像処理方法。 Medical image processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018183308A JP7224829B2 (en) | 2018-09-28 | 2018-09-28 | Medical image processing apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018183308A JP7224829B2 (en) | 2018-09-28 | 2018-09-28 | Medical image processing apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020049059A JP2020049059A (en) | 2020-04-02 |
JP7224829B2 true JP7224829B2 (en) | 2023-02-20 |
Family
ID=69994747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018183308A Active JP7224829B2 (en) | 2018-09-28 | 2018-09-28 | Medical image processing apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7224829B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11662321B2 (en) * | 2020-10-09 | 2023-05-30 | Baker Hughes Oilfield Operations Llc | Scatter correction for computed tomography imaging |
US11698349B2 (en) * | 2020-10-09 | 2023-07-11 | Baker Hughes Oilfield Operations Llc | Scatter correction for computed tomography imaging |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001508171A (en) | 1996-10-27 | 2001-06-19 | ジーイー メディカル システムズ イスラエル リミテッド | Gamma camera with two sequential correction maps |
WO2007139115A1 (en) | 2006-05-31 | 2007-12-06 | Shimadzu Corporation | Radiation image pick-up device |
CN107595312A (en) | 2017-08-31 | 2018-01-19 | 上海联影医疗科技有限公司 | Model generating method, image processing method and medical imaging devices |
US20180146935A1 (en) | 2016-11-25 | 2018-05-31 | Samsung Electronics Co., Ltd. | X-ray apparatus and method of acquiring medical image thereof |
-
2018
- 2018-09-28 JP JP2018183308A patent/JP7224829B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001508171A (en) | 1996-10-27 | 2001-06-19 | ジーイー メディカル システムズ イスラエル リミテッド | Gamma camera with two sequential correction maps |
WO2007139115A1 (en) | 2006-05-31 | 2007-12-06 | Shimadzu Corporation | Radiation image pick-up device |
US20180146935A1 (en) | 2016-11-25 | 2018-05-31 | Samsung Electronics Co., Ltd. | X-ray apparatus and method of acquiring medical image thereof |
CN107595312A (en) | 2017-08-31 | 2018-01-19 | 上海联影医疗科技有限公司 | Model generating method, image processing method and medical imaging devices |
Also Published As
Publication number | Publication date |
---|---|
JP2020049059A (en) | 2020-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11244480B2 (en) | Medical information processing apparatus | |
JP7242288B2 (en) | Medical image diagnosis device and model learning device | |
JP7224829B2 (en) | Medical image processing apparatus and method | |
JP7516074B2 (en) | Medical Processing Equipment | |
JP7461102B2 (en) | Medical image processing equipment and X-ray CT equipment | |
JP7175639B2 (en) | X-ray imaging device and medical image processing device | |
JP7242410B2 (en) | MEDICAL IMAGE PROCESSING APPARATUS, X-RAY CT APPARATUS, AND LEARNING DATA GENERATION METHOD | |
JP2021090495A (en) | Medical image processing device, medical image diagnostic device and medical image processing program | |
JP7334088B2 (en) | Medical information processing apparatus, medical information processing program, and X-ray CT apparatus | |
JP2018175866A (en) | X-ray ct apparatus | |
JP7055709B2 (en) | X-ray CT device and imaging planning device | |
JP2023035485A (en) | X-ray ct apparatus | |
JP7242255B2 (en) | X-ray CT device and detector unit | |
JP7240842B2 (en) | Radiation diagnostic device, radiation detector, and collimator | |
JP7224880B2 (en) | X-ray equipment | |
JP7258473B2 (en) | X-ray CT device and imaging condition management device | |
JP7140566B2 (en) | X-ray CT device and imaging planning device | |
JP7114381B2 (en) | X-ray CT device and X-ray tube device | |
JP7362270B2 (en) | Radiation detector and radiation diagnostic equipment | |
US10722196B2 (en) | Radiographic diagnosis apparatus, radiation detector and collimator | |
JP7062514B2 (en) | X-ray CT device and X-ray tube control device | |
JP2020089594A (en) | Medical image processing system, medical image processing device, and medical image processing method | |
JP2022178846A (en) | Medical information processing method, medical information processing device, and medical image processing device | |
JP2022011724A (en) | X-ray ct apparatus | |
JP2024030533A (en) | Photon counting-type x-ray image diagnostic apparatus and generation method of calibration data for pile-up correction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210729 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220930 |
|
TRDD | Decision of grant or rejection written | ||
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20230106 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7224829 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |