JP7224443B2 - Clad steel plate and manufacturing method thereof - Google Patents

Clad steel plate and manufacturing method thereof Download PDF

Info

Publication number
JP7224443B2
JP7224443B2 JP2021512094A JP2021512094A JP7224443B2 JP 7224443 B2 JP7224443 B2 JP 7224443B2 JP 2021512094 A JP2021512094 A JP 2021512094A JP 2021512094 A JP2021512094 A JP 2021512094A JP 7224443 B2 JP7224443 B2 JP 7224443B2
Authority
JP
Japan
Prior art keywords
steel plate
formula
clad steel
steel
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021512094A
Other languages
Japanese (ja)
Other versions
JPWO2020203938A1 (en
Inventor
信二 柘植
修幸 岡田
真知 川
雄介 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Publication of JPWO2020203938A1 publication Critical patent/JPWO2020203938A1/ja
Application granted granted Critical
Publication of JP7224443B2 publication Critical patent/JP7224443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/383Cladded or coated products
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material

Description

本発明は、クラッド鋼板およびその製造方法に関する。特に、Mo含有量が0.5~2.5%の化学組成を有する二相ステンレス鋼を合わせ材としたクラッド鋼板に関する。 TECHNICAL FIELD The present invention relates to a clad steel sheet and a method for manufacturing the same. In particular, it relates to a clad steel plate having a laminate of duplex stainless steel having a chemical composition containing 0.5 to 2.5% of Mo.

二相ステンレス鋼はCr、Mo、Ni、Nを多量に含有し、金属間化合物、窒化物が析出しやすいため、1000℃以上の固溶化熱処理を行い、析出物を固溶させ、熱間圧延鋼材として製造されていた。このため、二相ステンレス鋼を合わせ材としたクラッド鋼板は、製造する際に1000℃以上の高温熱処理をしても機械特性を確保することができるように化学組成を工夫した炭素鋼を母材とすることが提案されている(特許文献1)。また、熱間圧延条件を制御することにより熱処理を省略して二相ステンレスクラッド鋼板を製造する技術も提案されている(特許文献2)。さらに、熱間圧延中に再加熱して合わせ材中の析出を押さえる技術も提案されている(特許文献3)。 Duplex stainless steel contains a large amount of Cr, Mo, Ni, and N, and intermetallic compounds and nitrides are likely to precipitate. It was made from steel. For this reason, the clad steel plate with duplex stainless steel as the cladding material is made of carbon steel with a devised chemical composition so that the mechanical properties can be secured even if it is heat-treated at a high temperature of 1000 ° C or higher during manufacturing. is proposed (Patent Document 1). A technology has also been proposed for producing a duplex stainless steel clad steel sheet by controlling the hot rolling conditions to omit the heat treatment (Patent Document 2). Furthermore, a technique of reheating during hot rolling to suppress precipitation in the laminated material has also been proposed (Patent Document 3).

一方、Ni、Mo等を節減した合金元素節減型二相ステンレス鋼のクラッド鋼板も提案されている(特許文献4)。さらに、鋼中のCaSが孔食の起点となって鋼の耐食性を損なうという問題に対し、CaとAlの添加量を制御して耐食性に対するCaSの無害化を図った二相ステンレス鋼を用いたクラッド鋼板も提案されている(特許文献5)。合金元素節減型二相ステンレス鋼において、主に影響する析出物はクロム窒化物である。 On the other hand, a clad steel plate of reduced alloy element type duplex stainless steel in which Ni, Mo and the like are reduced has also been proposed (Patent Document 4). Furthermore, in order to solve the problem that CaS in steel becomes the starting point of pitting corrosion and impairs the corrosion resistance of steel, a duplex stainless steel was used in which the amount of Ca and Al added was controlled to render CaS harmless against corrosion resistance. A clad steel plate has also been proposed (Patent Document 5). In alloying element-reduced duplex stainless steels, the main influencing precipitates are chromium nitrides.

特開平7-292445号公報JP-A-7-292445 特公平4-22677号公報Japanese Patent Publication No. 4-22677 特公平6-36993号公報Japanese Patent Publication No. 6-36993 特開2012-180567号公報JP 2012-180567 A 特開2018-028146号公報JP 2018-028146 A

ISIJ Vol.58(2018)、p1181-1183ISIJ Vol. 58 (2018), p1181-1183

クラッド鋼板は、合わせ材として用いられるステンレス鋼に耐食性を、母材に強度・靱性と溶接性を持たせることにより、複合的な特性を得ることができる鋼材である。クラッド鋼板は、合わせ材としてのステンレス鋼と母材とが構造的に接合される部位に用いられ、一般に板厚が厚く、特に強度や靭性が求められる用途に使用されている。例えば、海水淡水化機器、輸送船のタンク類等が挙げられる。これらの用途には、従来オーステナイト系ステンレス鋼が主に用いられてきたが、最近は、安価な二相ステンレス鋼を適用する事案も増えてきている。
そこで、合わせ材を二相ステンレス鋼としたクラッド鋼板が強く要望されている。クラッド鋼板が適用される場合は、強度や靭性の機能を母材が受け持ち、耐食性を合わせ材が受け持つことになる。特に、汽水域におけるダムや水門の鋼製部材には戸当たりやレールといった摺動部材もあり、摺動性と耐食性の両方が要求されることがある。
A clad steel plate is a steel material that can obtain multiple properties by giving corrosion resistance to the stainless steel used as a cladding material and giving strength, toughness, and weldability to the base material. A clad steel plate is used in a portion where a stainless steel as a cladding material and a base material are structurally joined, and is generally used in applications where the plate thickness is large and strength and toughness are particularly required. Examples include seawater desalination equipment, tanks for transport ships, and the like. Conventionally, austenitic stainless steel has been mainly used for these applications, but recently, the number of cases where inexpensive duplex stainless steel is applied is increasing.
Therefore, there is a strong demand for a clad steel plate in which the cladding material is duplex stainless steel. When a clad steel plate is applied, the base material takes charge of the functions of strength and toughness, and the cladding material takes charge of corrosion resistance. In particular, steel members for dams and water gates in brackish water areas include sliding members such as doorstops and rails, and both slidability and corrosion resistance are sometimes required.

ところで、本発明者らは、Mo含有量が0.5~2.5%の化学組成を有する二相ステンレス鋼を合わせ材としたクラッド鋼板の耐食性はシグマ(σ)相に代表される金属間化合物の析出物が主に影響することを見出した。
シグマ相はCr含有量の高い金属間化合物である。二相ステンレス鋼の熱間圧延中にシグマ相が析出すると、その周囲にクロム欠乏層が生成して鋼の耐食性が低下する。同様にクロム窒化物が析出しても、その周囲にクロム欠乏層が生成し、鋼の耐食性が低下する。従来技術(特許文献4および5)には、析出物の形態や析出量およびその他の鋼の金属組織の状態と鋼の耐食性との関係については触れられていない。
By the way, the inventors of the present invention have found that the corrosion resistance of a clad steel plate made of a duplex stainless steel having a chemical composition with a Mo content of 0.5 to 2.5% is a sigma (σ) phase. It was found that the precipitation of the compound mainly affected.
The sigma phase is an intermetallic compound with a high Cr content. When the sigma phase precipitates during hot rolling of duplex stainless steel, a chromium-deficient layer is formed around it and the corrosion resistance of the steel is lowered. Similarly, even if chromium nitride precipitates, a chromium-deficient layer is formed around it, which reduces the corrosion resistance of steel. The prior art (Patent Documents 4 and 5) does not mention the relationship between the morphology of precipitates, the amount of precipitates, and other states of the metallic structure of steel and the corrosion resistance of steel.

また、従来の二相ステンレス熱延鋼板やクラッド鋼板の製造では、固溶化熱処理が欠かせないものとなっている。前述したように二相ステンレス鋼において耐食性を低下させる金属間化合物や窒化物を解消させるためである。特にクラッド鋼板の合わせ材に用いられる二相ステンレス鋼は熱間加工温度域で金属間化合物や窒化物が析出しやすい性質を持っている。そのため、熱間圧延を終了した状態でこれらの析出物が鋼材中に分散するため耐食性が低下する。固溶化熱処理により、合わせ材中の析出物を消失させることも可能である。しかし、1000℃以上の固溶化熱処理を施すと母材の靱性が低下してしまうため、クラッド鋼板の用途から考えて、それは好ましくない処理である。
さらに、コスト低減への要求や、近年の使用エネルギー削減への要求からも、固溶化処理を省略してクラッド鋼板製造コストや製造に要するエネルギーを低減することが望まれている。
Further, in the production of conventional duplex stainless steel hot-rolled steel sheets and clad steel sheets, solution heat treatment is indispensable. This is to eliminate intermetallic compounds and nitrides that reduce the corrosion resistance of the duplex stainless steel, as described above. In particular, duplex stainless steel, which is used as a cladding material for clad steel sheets, has the property that intermetallic compounds and nitrides tend to precipitate in the hot working temperature range. As a result, these precipitates are dispersed in the steel after hot rolling, resulting in deterioration of corrosion resistance. It is also possible to eliminate precipitates in the laminate by solution heat treatment. However, since solution heat treatment at 1000° C. or higher lowers the toughness of the base material, it is not preferable from the standpoint of the use of the clad steel sheet.
Furthermore, due to the demand for cost reduction and the demand for energy consumption reduction in recent years, it is desired to omit the solution treatment to reduce the clad steel plate manufacturing cost and the energy required for manufacturing.

本発明は、Mo含有量が0.5~2.5%の化学組成を有する二相ステンレス鋼を用いつつ、固溶化熱処理を省略して母材となる鋼板の特性(靭性や強度)を活かし、良好な耐食性を併せ持つクラッド鋼板およびその製造方法を提供することを目的とする。 The present invention uses a duplex stainless steel having a chemical composition with a Mo content of 0.5 to 2.5%, omits the solution heat treatment, and takes advantage of the properties (toughness and strength) of the steel plate that serves as the base material. An object of the present invention is to provide a clad steel sheet having good corrosion resistance and a method for manufacturing the same.

本発明者らは上記課題を解決するためには、クラッド鋼板製造過程の母材と合わせ材とを熱間圧延で接合する工程において、合わせ材である二相ステンレス鋼中に金属間化合物と窒化物が析出しなければ、後工程である固溶化熱処理を省略しても耐食性が損なわれないと考えた。そこで、クラッド鋼板の合わせ材に熱間圧延温度を低下させても高い耐食性を維持できる二相ステンレス鋼を用いることで解決策を見出すことを考えた。このような二相ステンレス鋼を得るには、固溶化熱処理を省略した熱延鋼材の化学組成、熱間加工条件とシグマ相やクロム窒化物等の析出量、フェライト相とオーステナイト相の回復・再結晶等を含む金属組織の状態、さらに鋼材の衝撃特性、耐食性の関係などについての知見を得た。特に、シグマ相がフェライト相中に析出し易いものであることから、フェライト相中のミクロひずみεαがTσとの特定の関係を満たすように熱間圧延の温度を制御することにより上記課題を解決し得ることを知見した。
これらの知見を基に、Mo含有量が0.5~2.5%の化学組成を有するステンレス鋼を合わせ材として用いても固溶化熱処理を省略できるクラッド鋼板についての本発明の完成に至った。
In order to solve the above-mentioned problems, the present inventors found that in the process of hot rolling the base material and the cladding material in the clad steel plate manufacturing process, an intermetallic compound and a nitriding compound are added to the duplex stainless steel as the cladding material. We thought that if no substances precipitated, the corrosion resistance would not be impaired even if the subsequent solution heat treatment was omitted. Therefore, we thought of finding a solution by using duplex stainless steel, which can maintain high corrosion resistance even when the hot rolling temperature is lowered, as the cladding material of the clad steel plate. In order to obtain such a duplex stainless steel, the chemical composition of the hot-rolled steel material without solution heat treatment, the hot working conditions and the amount of precipitates such as sigma phase and chromium nitride, and the recovery and regeneration of ferrite and austenite phases are required. We have obtained knowledge about the state of the metallographic structure including crystals, as well as the relationship between impact properties and corrosion resistance of steel materials. In particular, since the sigma phase tends to precipitate in the ferrite phase, the above problem is solved by controlling the hot rolling temperature so that the micro strain εα in the ferrite phase satisfies a specific relationship with Tσ. I found a solution.
Based on these findings, the inventors have completed the present invention regarding a clad steel sheet that can omit the solution heat treatment even when stainless steel having a chemical composition with a Mo content of 0.5 to 2.5% is used as a cladding material. .

すなわち、本発明の要旨とするところは以下の通りである。
[1]
母材となる鋼板の片面または両面に合わせ材をクラッドしたクラッド鋼板であって、
前記合わせ材の化学組成が質量%で、
C:0.030%以下、
Si:0.05~1.00%、
Mn:0.10~3.00%、
P:0.050%以下、
S:0.0050%以下、
Cr:22.0~27.0%、
Ni:4.00~7.00%、
Mo:0.50~2.50%、
W:0~1.50%、
N:0.100~0.250%、
酸素:0.001~0.006%、
Co:0~1.00%、
Cu:0~3.00%、
V:0~1.00%、
Nb:0~0.200%、
Ta:0~0.200%、
Ti:0~0.030%、
Zr:0~0.050%、
Hf:0~0.100%、
B:0~0.0050%、
Al:0~0.050%、
Ca:0~0.0050%、
Mg:0~0.0050%、
REM:0~0.100%、
Sn:0~0.100%を含有し、
残部がFeおよび不純物であり、
式5で求められるPREWが24以上35以下であり、
式2で求められるσ相析出温度Tσ(℃)が800℃以上950℃以下であり、
合わせ材の表面硬度が固溶化熱処理状態の1.3倍以下の値であり、
そのフェライト相のミクロ歪εαが式1で求められるεmax以下であることを特徴とするクラッド鋼板。
ε max =0.0035-Tσ×2.63×10-6 (式1)
Tσ=4Cr+25Ni+71(Mo+W)-11.4(Mo-1.3)×(Mo-1.3)+5Si-6Mn-30N+569(℃) (式2)
PREW=Cr+3.3(Mo+0.5W)+16N (式5)
ただし、式1、式2、式5における各元素記号は、前記合わせ材における当該元素の含有量(質量%)を示し、含有しない場合は0を代入する。
[2]
前記合わせ材の化学組成において、質量%で、
Co:0.03~1.00%、
Cu:0.30~3.00%、
V:0.03~1.00%、
Nb:0.010~0.200%、
Ta:0.010~0.200%、
Ti:0.003~0.030%、
Zr:0.005~0.050%、
Hf:0.010~0.100%、
B:0.0005~0.0050%、
Al:0.003~0.050%、
Ca:0.0005~0.0050%、
Mg:0.0005~0.0050%、
REM:0.010~0.100%、
Sn:0.010~0.100%の1種または2種以上を含有する
[1]に記載のクラッド鋼板。
[3]
[1]または[2]に記載の合わせ材を母材となる鋼板の片面に貼り合わせたスラブ2体を、合わせ材が内側に配置するように重ね合わせて体のスラブにして熱間圧延を施すサンドイッチ組み立てによるクラッド鋼板の製造方法であって、
式3を満足する仕上温度TFになるよう熱間圧延を施し、その後TFから600℃まで平均冷却速度を0.6℃/以上で冷却することを特徴とする[1]または[2]に記載のクラッド鋼板の製造方法。
TF≧Tσ-50 (℃) (式3)
Tσ=4Cr+25Ni+71(Mo+W)-11.4(Mo-1.3)×(Mo-1.3)+5Si-6Mn-30N+569(℃) (式2)
ただし、式2における各元素記号は、前記合わせ材における当該元素の含有量(質量%)を示し、含有しない場合は0を代入する。
[4]
[1]または[2]に記載の合わせ材を母材となる鋼板の片面または両面に貼り合わせたスラブに熱間圧延を施すオープンサンド組み立てによるクラッド鋼板の製造方法であって、式4を満足する仕上温度TFになるよう熱間圧延を施し、その後TFから600℃までの平均冷却速度を0.6℃/以上で冷却することを特徴とする[1]または[2]に記載のクラッド鋼板の製造方法。
TF≧Tσ+30 (℃) (式4)
Tσ=4Cr+25Ni+71(Mo+W)-11.4(Mo-1.3)×(Mo-1.3)+5Si-6Mn-30N+569(℃) (式2)
ただし、式2における各元素記号は、前記合わせ材における当該元素の含有量(質量%)を示し、含有しない場合は0を代入する。
That is, the gist of the present invention is as follows.
[1]
A clad steel plate in which one or both sides of a steel plate serving as a base material are clad with a cladding material,
The chemical composition of the laminated material is % by mass,
C: 0.030% or less,
Si: 0.05 to 1.00%,
Mn: 0.10-3.00%,
P: 0.050% or less,
S: 0.0050% or less,
Cr: 22.0 to 27.0%,
Ni: 4.00 to 7.00%,
Mo: 0.50-2.50%,
W: 0 to 1.50%,
N: 0.100 to 0.250%,
Oxygen: 0.001-0.006%,
Co: 0 to 1.00%,
Cu: 0 to 3.00%,
V: 0 to 1.00%,
Nb: 0 to 0.200%,
Ta: 0 to 0.200%,
Ti: 0 to 0.030%,
Zr: 0 to 0.050%,
Hf: 0 to 0.100%,
B: 0 to 0.0050%,
Al: 0 to 0.050%,
Ca: 0 to 0.0050%,
Mg: 0-0.0050%,
REM: 0-0.100%,
Sn: contains 0 to 0.100%,
the balance being Fe and impurities,
PREW obtained by Equation 5 is 24 or more and 35 or less,
The σ phase precipitation temperature Tσ (° C.) obtained by Equation 2 is 800° C. or higher and 950° C. or lower,
The surface hardness of the laminated material is 1.3 times or less that of the solution heat treated state,
A clad steel sheet, wherein the micro strain ε α of the ferrite phase is equal to or less than ε max obtained by Equation (1).
ε max =0.0035−Tσ × 2.63 × 10 −6 (Formula 1)
Tσ = 4Cr + 25Ni + 71 (Mo + W) - 11.4 (Mo - 1.3) × (Mo - 1.3) + 5Si - 6Mn - 30N + 569 (°C) (Formula 2)
PREW=Cr+3.3(Mo+0.5W)+16N (Formula 5)
However, each element symbol in Formulas 1, 2, and 5 indicates the content (% by mass) of the element in the cladding material, and 0 is substituted when the element is not contained.
[2]
In the chemical composition of the laminated material, in mass%,
Co: 0.03 to 1.00%,
Cu: 0.30 to 3.00%,
V: 0.03 to 1.00%,
Nb: 0.010 to 0.200%,
Ta: 0.010 to 0.200%,
Ti: 0.003 to 0.030%,
Zr: 0.005 to 0.050%,
Hf: 0.010 to 0.100%,
B: 0.0005 to 0.0050%,
Al: 0.003 to 0.050%,
Ca: 0.0005 to 0.0050%,
Mg: 0.0005-0.0050%,
REM: 0.010 to 0.100%,
Sn: The clad steel sheet according to [1] containing one or more of 0.010 to 0.100%.
[3]
Two slabs in which the laminated material described in [1] or [2] is laminated on one side of a steel plate as a base material are superimposed so that the laminated material is arranged on the inside to form a single slab and hot rolled. A method for manufacturing a clad steel plate by sandwich assembly,
[1] or [2] characterized in that hot rolling is performed to a finishing temperature TF that satisfies Equation 3, and then cooling from TF to 600 ° C. at an average cooling rate of 0.6 ° C./s or more The method for producing the clad steel plate according to 1 .
TF≧Tσ−50 (° C.) (Formula 3)
Tσ = 4Cr + 25Ni + 71 (Mo + W) - 11.4 (Mo - 1.3) × (Mo - 1.3) + 5Si - 6Mn - 30N + 569 (°C) (Formula 2)
However, each element symbol in Formula 2 represents the content (% by mass) of the element in the cladding material, and 0 is substituted when the element is not contained.
[4]
A method for manufacturing a clad steel plate by open-sand assembly in which a slab obtained by laminating the laminated material according to [1] or [2] to one or both sides of a steel plate as a base material is hot-rolled, wherein the clad steel plate satisfies formula 4. The clad according to [1] or [2], wherein hot rolling is performed so that the finishing temperature TF is reached, and then the average cooling rate from TF to 600 ° C is cooled at 0.6 ° C / s or more. A method of manufacturing a steel plate.
TF≧Tσ+30 (°C) (Formula 4)
Tσ = 4Cr + 25Ni + 71 (Mo + W) - 11.4 (Mo - 1.3) × (Mo - 1.3) + 5Si - 6Mn - 30N + 569 (°C) (Formula 2)
However, each element symbol in Formula 2 represents the content (% by mass) of the element in the cladding material, and 0 is substituted when the element is not contained.

本発明により、固溶化熱処理を省略して母材となる鋼板の特性(靭性や強度)を活かしつつ、良好な耐食性を併せ持つクラッド鋼板を得ることができる。その結果、産業面、環境面に寄与するところは極めて大である。 According to the present invention, it is possible to obtain a clad steel sheet having good corrosion resistance while omitting the solution heat treatment and taking advantage of the properties (toughness and strength) of the steel sheet serving as the base material. As a result, the contribution to industry and the environment is extremely large.

図1は、合わせ材表層部のフェライト相のミクロ歪とσ相析出温度:Tσ(℃)の関係を説明する図である。FIG. 1 is a diagram for explaining the relationship between the micro strain of the ferrite phase in the surface layer of the cladding material and the σ phase precipitation temperature: Tσ (° C.).

以下、本発明の一実施形態について説明する。特に断りのない限り、成分に関する「%」は鋼中の質量%を示す。 An embodiment of the present invention will be described below. Unless otherwise specified, "%" regarding components indicates mass % in steel.

前述したように、本発明者らは、上記課題を解決するためには、クラッド鋼板製造過程の、母材と合わせ材とを熱間圧延で接合する工程において、合わせ材である二相ステンレス鋼中に金属間化合物と窒化物が析出しなければ、後工程である固溶化熱処理を省略しても耐食性が損なわれないと考えた。そこで、クラッド鋼板の合わせ材に熱間圧延温度を低下させても高い耐食性を維持できる二相ステンレス鋼を用いることを考えた。このような二相ステンレス鋼を得るには、固溶化熱処理を省略した熱延鋼材の化学組成、熱間加工条件とシグマ相やクロム窒化物等の析出量、フェライト相とオーステナイト相の回復・再結晶等を含む金属組織の状態、さらに鋼材の耐食性の関係などについて以下の実験を行い調査した。 As described above, in order to solve the above-mentioned problems, the present inventors have found that in the process of hot rolling the base material and the cladding material in the process of manufacturing the clad steel plate, the duplex stainless steel as the cladding material is used. If intermetallic compounds and nitrides do not precipitate in the steel, the corrosion resistance will not be impaired even if the subsequent solution heat treatment is omitted. Therefore, we considered using duplex stainless steel, which can maintain high corrosion resistance even when the hot-rolling temperature is lowered, as the cladding material of the clad steel plate. In order to obtain such a duplex stainless steel, the chemical composition of the hot-rolled steel material without solution heat treatment, the hot working conditions and the amount of precipitates such as sigma phase and chromium nitride, and the recovery and regeneration of ferrite and austenite phases are required. The following experiments were carried out to investigate the state of the metallographic structure including crystals, etc., and the relationship between the corrosion resistance of steel materials.

シグマ相の析出に関する指標として、シグマ相析出温度Tσを導入し、このシグマ相析出温度Tσが異なる二相ステンレス鋼を用いて、熱間圧延の加熱温度を1150~1250℃、熱間圧延の最終仕上げパスの入側温度TFを700~1000℃、熱間圧延終了後の加速冷却開始温度TCを950℃以下にし、板厚10mmから35mmの熱延鋼材を得た。得られた熱延鋼材およびそれに固溶化熱処理を施した鋼材について強度、衝撃特性を、表層部および板厚中央部の金属組織と耐食性を評価した。 A sigma phase precipitation temperature Tσ was introduced as an index for the precipitation of the sigma phase. A hot-rolled steel material with a plate thickness of 10 mm to 35 mm was obtained by setting the entry-side temperature TF of the finishing pass to 700 to 1000° C. and setting the accelerated cooling start temperature TC after the completion of hot rolling to 950° C. or less. The strength and impact properties of the obtained hot-rolled steel and the steel subjected to solution heat treatment were evaluated, and the metallographic structure and corrosion resistance of the surface layer and central portion of the plate thickness were evaluated.

次に上記の実験で得た二相ステンレス鋼の知見を基に、二相ステンレス鋼の耐食性が良好である圧延条件においても高強度が得られる鋼成分や製造条件を得ることを試みた。即ち、普通鋼の成分調整によって再結晶温度を高くするとともに、σ相析出温度域以下の冷却を制御する必要があると考え、以下の実験を行った。種々の成分を含有する鋼の表面に合わせ材として二相ステンレス鋼を張り付けたスラブを作成し、そのスラブ2本を、合わせ材を内側に配置したサンドイッチ方式のクラッド素材を、電子ビーム溶接法を用いて組み立てた。このクラッド素材を熱間圧延し、合わせ材の厚さが3mm、全厚さを20mmから50mmとしたクラッド鋼板を得て、強度、衝撃特性、金属組織、耐食性を評価した。
以上の実験を通じて、二相ステンレス鋼を合わせ材として用いて固溶化熱処理を省略できるクラッド鋼板についての本発明の完成に至った。
Next, based on the findings of the duplex stainless steel obtained from the above experiments, an attempt was made to obtain steel compositions and manufacturing conditions that would allow high strength to be obtained even under rolling conditions in which the duplex stainless steel has good corrosion resistance. In other words, the following experiment was carried out considering that it is necessary to increase the recrystallization temperature by adjusting the chemical composition of ordinary steel and to control the cooling below the σ phase precipitation temperature range. A slab is created by attaching duplex stainless steel as a cladding material to the surface of steel containing various components. Assembled using This clad material was hot-rolled to obtain a clad steel plate with a laminate thickness of 3 mm and a total thickness of 20 mm to 50 mm, and the strength, impact properties, metallographic structure, and corrosion resistance were evaluated.
Through the above experiments, the inventors have completed the present invention regarding a clad steel sheet that uses a duplex stainless steel as a cladding material and can omit the solution heat treatment.

まず、合わせ材の化学組成について説明する。 First, the chemical composition of the cladding material will be described.

Cは、ステンレス鋼の耐食性を確保するために、0.030%以下の含有量に制限する。0.030%を越えて含有させると熱間圧延時にCr炭化物が生成して、耐食性、靱性が劣化する。 The content of C is limited to 0.030% or less in order to ensure the corrosion resistance of stainless steel. If the Cr content exceeds 0.030%, Cr carbide is formed during hot rolling, degrading corrosion resistance and toughness.

Siは、脱酸のため0.05%以上含有する。好ましくは0.20%以上含有するとよい。しかしながら、1.00%を超えて含有すると靱性が劣化する。そのため、上限を1.00%に限定する。好ましくは0.70%以下含有するとよい。 Si is contained by 0.05% or more for deoxidation. Preferably, it should be contained in an amount of 0.20% or more. However, if the content exceeds 1.00%, the toughness deteriorates. Therefore, the upper limit is limited to 1.00%. Preferably, it should be contained in an amount of 0.70% or less.

Mnはオーステナイト相を増加させ靭性を改善する効果を有し、母材および溶接部の靱性を確保するためと、また窒化物析出温度TNを低下させる効果を有するため0.10%以上含有する。好ましくは、0.20%以上含有するとよい。しかしながら、3.00%を超えて含有すると耐食性が劣化する。そのため、上限を3.00%に限定する。好ましくは2.50%以下、さらに好ましくは2.00%以下含有するとよい。 Mn has the effect of increasing the austenite phase and improving the toughness, ensuring the toughness of the base metal and the weld zone, and also having the effect of lowering the nitride precipitation temperature TN. Preferably, it should be contained in an amount of 0.20% or more. However, if the content exceeds 3.00%, the corrosion resistance deteriorates. Therefore, the upper limit is limited to 3.00%. The content is preferably 2.50% or less, more preferably 2.00% or less.

Pは原料から不可避に混入する元素であり、熱間加工性および靱性を劣化させるため、少ない方がよいので0.050%以下に限定する。好ましくは、0.030%以下含有するとよい。 P is an element that is unavoidably mixed from the raw material, and deteriorates the hot workability and toughness. Preferably, it should be contained in an amount of 0.030% or less.

Sも原料から不可避に混入する元素であり、熱間加工性、靱性および耐食性をも劣化させるため、少ない方がよく0.0050%以下に限定する。好ましくは、0.0030%以下である。 S is also an element that is unavoidably mixed from raw materials, and deteriorates hot workability, toughness and corrosion resistance. Preferably, it is 0.0030% or less.

Crは、基本的な耐食性を確保するため22.0%以上含有させる。好ましくは23.0%以上含有させるとよい。一方27.0%を超えて含有させるとフェライト相分率が増加し靭性および溶接部の耐食性を阻害する。このためCrの含有量を27.0%以下とした。好ましくは26.0%以下含有するとよい。 Cr is contained in an amount of 22.0% or more to ensure basic corrosion resistance. Preferably, it should be contained in an amount of 23.0% or more. On the other hand, if the content exceeds 27.0%, the ferrite phase fraction increases, impairing the toughness and corrosion resistance of the weld zone. Therefore, the Cr content is set to 27.0% or less. Preferably, it should be contained in an amount of 26.0% or less.

Niは、オーステナイト組織を安定にし、各種酸に対する耐食性、さらに靭性を改善するため4.00%以上含有させる。Ni含有量を増加することにより窒化物析出温度を低下させることが可能になる。好ましくは4.50%以上含有するとよい。一方、Niは高価な合金であり、コストの観点より7.00%以下の含有量にする。好ましくは6.50%以下含有するとよい。 4.00% or more of Ni is contained in order to stabilize the austenite structure and improve corrosion resistance to various acids and toughness. By increasing the Ni content, it becomes possible to lower the nitride precipitation temperature. Preferably, it should be contained in an amount of 4.50% or more. On the other hand, Ni is an expensive alloy, and its content is set to 7.00% or less from the viewpoint of cost. Preferably, it should be contained in an amount of 6.50% or less.

Moは、ステンレス鋼の耐食性を高める非常に有効な元素であり、0.50%以上含有させる。好ましくは1.00%以上含有するとよい。耐食性改善のためには多く含有させることが良いが、シグマ相の析出を促進させる元素であるため2.50%以下含有するとよい。好ましくは2.30%以下、さらには2.00%以下含有するとよい。 Mo is a very effective element that enhances the corrosion resistance of stainless steel, and is contained in an amount of 0.50% or more. Preferably, it should be contained in an amount of 1.00% or more. In order to improve corrosion resistance, it is preferable to contain a large amount of N, but since it is an element that promotes the precipitation of the sigma phase, it is preferable to contain 2.50% or less. The content is preferably 2.30% or less, more preferably 2.00% or less.

N(窒素)は、オーステナイト相に固溶して強度、耐食性を高める有効な元素である。このために0.100%以上含有させる。好ましくは0.150%以上含有するとよい。固溶限度はCr含有量に応じて高くなるが、0.250%を越えて含有させると窒化物析出温度TNが高くなって熱間圧延中にCr窒化物を析出して靭性および耐食性を阻害するようになるため含有量の上限を0.250%とした。好ましくは、0.220%以下含有するとよい。 N (nitrogen) is an effective element that forms a solid solution in the austenite phase and increases strength and corrosion resistance. For this reason, the content is 0.100% or more. Preferably, it should be contained in an amount of 0.150% or more. The solid solubility limit increases according to the Cr content, but if the Cr content exceeds 0.250%, the nitride precipitation temperature TN rises and Cr nitride precipitates during hot rolling, impairing toughness and corrosion resistance. The upper limit of the content is set to 0.250%. Preferably, it should be contained in an amount of 0.220% or less.

O(酸素)は、不可避的な不純物であり、非金属介在物の代表である酸化物を構成する重要な元素であり、過剰な含有は靭性を阻害する。また粗大なクラスター状酸化物が生成すると表面疵の原因となる。このためその上限を0.006%とした。一方で過剰な脱酸はコストがかさむためその下限を0.001%とした。 O (oxygen) is an unavoidable impurity and an important element that constitutes oxides, which are typical non-metallic inclusions, and an excessive content impairs toughness. Also, the formation of coarse cluster-like oxides causes surface flaws. Therefore, the upper limit is set to 0.006%. On the other hand, excessive deoxidation increases the cost, so the lower limit was made 0.001%.

残部はFeおよび不純物である。不純物とは、鋼の製造過程において混入し、除去しきれずに残存する成分等である。
さらに、Feに代えて以下の元素(W、Co、Cu、V、Nb、Ta、Ti、Zr、Hf、B、Al、Ca、Mg、REM、Sn)のうち1種または2種以上を含有してもよい。これらの元素は含有しなくてもよいので、含有量の範囲は0%も含む。
The balance is Fe and impurities. Impurities are components that are mixed in during the manufacturing process of steel and remain unremoved.
Furthermore, instead of Fe, one or more of the following elements (W, Co, Cu, V, Nb, Ta, Ti, Zr, Hf, B, Al, Ca, Mg, REM, Sn) You may Since these elements do not have to be contained, the content range includes 0%.

Wは、Moと同様にステンレス鋼の耐食性を向上させる元素であり、含有してもよい。一方で高価な元素であるので、1.50%以下含有するとよい。好ましくは1.00%以下にするとよい。含有する場合の好ましい含有量は0.05%以上にするとよい。 W, like Mo, is an element that improves the corrosion resistance of stainless steel and may be contained. On the other hand, since it is an expensive element, it should be contained in an amount of 1.50% or less. Preferably, it should be 1.00% or less. When it is contained, the preferred content is 0.05% or more.

Coは、鋼の靭性と耐食性を高めるために有効な元素であり、選択的に含有される。1.00%を越えて含有させると高価な元素であるためにコストに見合った効果が発揮されないようになるため上限を1.00%と定めた。含有する場合の好ましい含有量は、下限が0.03%に、上限が0.50%である。 Co is an element effective for increasing the toughness and corrosion resistance of steel and is selectively contained. If the content exceeds 1.00%, the element is an expensive element and the effect commensurate with the cost cannot be exhibited, so the upper limit was set to 1.00%. When it is contained, the preferable lower limit is 0.03% and the upper limit is 0.50%.

Cuは、ステンレス鋼の酸に対する耐食性を付加的に高める元素であり、かつ靭性を改善する作用を有するため含有させることができる。3.00%を越えて含有させると熱間圧延時に固溶度を超えてεCuが析出し脆化を発生するので上限を3.00%とした。Cuを含有させる場合の好ましい含有量は、下限が0.30%に、上限が2.00%である。 Cu is an element that additionally increases the acid corrosion resistance of stainless steel and has the effect of improving the toughness, so it can be contained. If the content exceeds 3.00%, εCu precipitates beyond the solid solubility during hot rolling and causes embrittlement, so the upper limit was made 3.00%. When Cu is contained, the preferred lower limit is 0.30% and the upper limit is 2.00%.

V、Nb、Taは鋼の中で炭化物、窒化物を生成する元素であって、耐食性を付加的に高めるために微量含有させることが可能である。一方で、Nを含有する鋼におけるV、Nb、Taの多量の含有は炭窒化物を生成し靭性を阻害するようになるため、上限が規制される。V、Nb、Taの作用の大きさ、合金コストを勘案し、それぞれの上限を1.00%、0.200%、0.200%と定めた。含有させる場合の好適範囲はそれぞれ、下限が0.03%、0.010%、0.010%に、上限が0.20%、0.100%、0.100%である。 V, Nb, and Ta are elements that form carbides and nitrides in steel, and can be added in trace amounts to additionally improve corrosion resistance. On the other hand, if a steel containing N contains a large amount of V, Nb, and Ta, carbonitrides are formed and the toughness is impaired, so the upper limit is regulated. Considering the effect of V, Nb, and Ta, and the alloy cost, the upper limits of these elements are set to 1.00%, 0.200%, and 0.200%, respectively. Preferred ranges for inclusion include lower limits of 0.03%, 0.010% and 0.010% and upper limits of 0.20%, 0.100% and 0.100%, respectively.

Ti、Zr、Hfは鋼の中で窒化物、炭化物を生成する元素であって、結晶組織を微細化する目的で微量含有させることが可能である。Ti、Zr、Hfの窒化物形成能力は非常に強いため、Nを含有する鋼におけるTi、Zr、Hfの多量の含有は粗大な窒化物を生成し靭性を阻害するようになるため、上限が規制される。Ti、Zr、Hfの作用の大きさ、合金コストを勘案し、それぞれの上限を0.030%、0.050%、0.100%と定めた。含有させる場合の好適範囲はそれぞれ、下限が0.003%、0.005%、0.010%に、上限が0.020%、0.030%、0.050%である。 Ti, Zr, and Hf are elements that form nitrides and carbides in steel, and can be contained in trace amounts for the purpose of refining the crystal structure. Since Ti, Zr, and Hf have very strong nitride-forming abilities, a large amount of Ti, Zr, and Hf in steel containing N produces coarse nitrides and impairs toughness. Regulated. Considering the effect of Ti, Zr, and Hf and the alloy cost, the upper limits of each were set to 0.030%, 0.050%, and 0.100%. Preferred ranges for inclusion include lower limits of 0.003%, 0.005% and 0.010% and upper limits of 0.020%, 0.030% and 0.050%.

Bは鋼の中で窒化物、炭化物を生成する元素であり、また鋼の中での固溶度が小さく、粒界に偏析しやすい元素である。その作用として熱間加工性を改善する。一方、過剰な含有は粗大な窒化物を形成し、鋼の靭性を阻害するようになる。このため、含有量の上限を0.0050%と定めた。含有させる場合の好適な含有量は、下限が0.0005%に、上限が0.0035%である。 B is an element that forms nitrides and carbides in steel, has a low solid solubility in steel, and is an element that tends to segregate at grain boundaries. As its action, it improves hot workability. On the other hand, an excessive content forms coarse nitrides, impairing the toughness of the steel. Therefore, the upper limit of the content is set at 0.0050%. When it is contained, the preferable lower limit is 0.0005% and the upper limit is 0.0035%.

Alは鋼の脱酸のために含有することができる。また、窒化物を生成する元素であり、過剰な含有は粗大な窒化物を形成して靭性を阻害するようになることから、その上限を0.050%と定めた。含有させる場合の好適な含有量、下限が0.003%に、上限が0.030%である。 Al can be contained for deoxidizing steel. In addition, it is an element that forms nitrides, and an excessive content forms coarse nitrides, impairing the toughness, so the upper limit was set to 0.050%. The preferable content when it is included, the lower limit is 0.003% and the upper limit is 0.030%.

CaおよびMgは鋼の熱間加工性を改善するために含有することができる。過剰な含有は逆に熱間加工性を阻害するようになることから、その上限を0.0050%と定めた。含有させる場合の好適な含有量範囲は、下限が0.0005%に、上限が0.0035%である。 Ca and Mg can be included to improve the hot workability of the steel. An excessive content adversely affects hot workability, so the upper limit was set at 0.0050%. When it is contained, the preferable content range is 0.0005% as the lower limit and 0.0035% as the upper limit.

REMは鋼の熱間加工性を改善するために含有することができる。過剰な含有は逆に熱間加工性を阻害するようになることから、その上限を0.100%と定めた。好適な含有量範囲は、下限が0.010%に、上限が0.080%である。ここでREMはLaやCe等のランタノイド系希土類元素の含有量の総和とする。 REM can be included to improve the hot workability of the steel. An excessive content adversely affects hot workability, so the upper limit was set at 0.100%. A preferred content range has a lower limit of 0.010% and an upper limit of 0.080%. Here, REM is the total content of lanthanoid rare earth elements such as La and Ce.

Snは鋼の酸に対する耐食性を付加的に高める元素であり、この目的で含有させることができる。一方で過剰な含有は鋼の熱間加工性を阻害するようになることより、その上限を0.100%と定めた。含有させる場合の好適な含有量は、下限が0.010%に、上限が0.080%である。 Sn is an element that additionally increases the acid corrosion resistance of steel and can be included for this purpose. On the other hand, an excessive content impairs the hot workability of steel, so the upper limit was set at 0.100%. When it is contained, the preferable lower limit is 0.010% and the upper limit is 0.080%.

PREWはステンレス鋼の耐孔食性に対する指標であって、合金元素Cr、Mo、W、Nの含有量(%)を用いて、式5で算出される。二相ステンレス鋼のPREWが24未満であると汽水環境における耐食性を発揮することができず、35を超えて合金元素を含有させるとコストが高くなるため、PREWの範囲を24以上35以下と規定した。
PREW=Cr+3.3(Mo+0.5W)+16N (式5)
ただし、式5における各元素記号は、当該元素の含有量(質量%)を示し、含有しない場合は0を代入する。
PREW is an index for the pitting corrosion resistance of stainless steel, and is calculated by Equation 5 using the contents (%) of alloying elements Cr, Mo, W, and N. If the duplex stainless steel has a PREW of less than 24, it cannot exhibit corrosion resistance in a brackish water environment. bottom.
PREW=Cr+3.3(Mo+0.5W)+16N (Formula 5)
However, each element symbol in Formula 5 indicates the content (% by mass) of the element, and 0 is substituted when the element is not contained.

σ相析出温度:Tσ(℃)は合わせ材の化学組成により決まる指標であって、シグマ相が平衡的に析出し始める温度を表し、金属材料の平衡状態図に対する熱力学計算により求められる値である。熱力学計算は、市販されているサーモカルク(Themocalc@)とよばれるソフトウェアと熱力学データベース(FE-DATA version6など)を用いて算出することができる。各種の二相ステンレス鋼に対してこの計算を行った。シグマ相はFe、Cr、Mo、Wを主要元素とする金属間化合物であり、Fe、Cr含有量が一定の数値範囲にある二相ステンレス鋼において、Mo、Wが析出を促進する。Crはシグマ相を析出させる主要元素であり、Cr量の大小によってもTσは変化する。このため、本発明者らは発明鋼の成分範囲で適用可能なTσの値を求める式(式2)を作成した。熱間圧延中のシグマ相の析出を制御して所望のクラッド鋼板を得る目的よりこのTσ(式2)の下限値を800℃、上限値を950℃とした。Tσが800℃未満であるとシグマ相の析出は抑制されるがMo、Cr含有量が少ない鋼種となるため所望の耐食性を得ることが困難となる、一方で950℃を超えるとクラッド鋼板表層部のシグマ相析出抑制が困難となるため、上記の数値範囲を定めた。
Tσ=4Cr+25Ni+71(Mo+W)-11.4(Mo-1.3)×(Mo-1.3)+5Si-6Mn-30N+569(℃) (式2)
ただし、式2における各元素記号は、当該元素の含有量(質量%)を示し、含有しない場合は0を代入する。
σ phase precipitation temperature: Tσ (°C) is an index determined by the chemical composition of the cladding material, represents the temperature at which the sigma phase begins to precipitate in equilibrium, and is a value obtained by thermodynamic calculation for the equilibrium diagram of the metal material. be. Thermodynamic calculations can be performed using commercially available software called Thermocalc@ and a thermodynamic database (FE-DATA version 6, etc.). This calculation was performed for various duplex stainless steels. The sigma phase is an intermetallic compound containing Fe, Cr, Mo, and W as main elements, and Mo and W promote precipitation in a duplex stainless steel in which the Fe and Cr contents are within a certain numerical range. Cr is the main element that precipitates the sigma phase, and Tσ changes depending on the amount of Cr. For this reason, the inventors created an equation (Equation 2) for determining the value of Tσ that can be applied within the composition range of the invention steel. For the purpose of obtaining a desired clad steel sheet by controlling the precipitation of the sigma phase during hot rolling, the lower limit of Tσ (Equation 2) was set to 800°C and the upper limit to 950°C. When Tσ is less than 800°C, precipitation of the sigma phase is suppressed, but the steel grade contains less Mo and Cr, making it difficult to obtain the desired corrosion resistance. Since it is difficult to suppress the sigma phase precipitation of , the above numerical range is determined.
Tσ = 4Cr + 25Ni + 71 (Mo + W) - 11.4 (Mo - 1.3) × (Mo - 1.3) + 5Si - 6Mn - 30N + 569 (°C) (Formula 2)
However, each element symbol in Formula 2 indicates the content (% by mass) of the element, and 0 is substituted when the element is not contained.

合わせ材の表面硬度は、クラッド鋼板の表面特性を左右する特性であって、高いことが好ましい。本発明鋼板は熱間圧延の後に冷却され、固溶化熱処理を省略して適用される製品であり、固溶化熱処理材よりも高い硬度を有することを特徴とする。このため、合わせ材の表面硬度が固溶化熱処理状態の1.3倍以下の硬度を有することを規定した。この硬度は大きい方が好ましいが、熱間圧延中に導入され残留した大きな歪により金属間化合物の析出が促進され、クラッド鋼板表面の耐食性を損なうようになることから、この上限を1.3倍と定めた。
ここで固溶化熱処理状態とは、同じ合わせ材を固溶化熱処理したときの表面硬度のことをいう。この硬度の倍率の測定には、二相ステンレス鋼よりなる合わせ材の対象とする表層部(表面からから厚さ方向に0.1~0.5mm深さまでの領域)の位置(試料A1)を研磨してビッカース硬度測定をおこなうとともに、この試料に対して1050℃均熱の固溶化熱処理を加えた材料(試料B1)について同様に硬度測定をおこない、合わせ材の表面硬度が固溶化熱処理状態に対する比(試料A1の硬度/試料B1の硬度)の値を持って数値化する。好ましくは、合わせ材(試料A1)の表面硬度が、固溶化熱処理を施した場合(試料B1)の表面硬度の1.05~1.30倍であるとよい。試料A1と試料B1は、同じ試料であることを例に説明したが、必ずしも同じものである必要はなく、同一の鋼材であれば別個の試料(例えば鋼材から切り取った別個の試料)であってもよい。
The surface hardness of the cladding material is a property that affects the surface properties of the clad steel plate, and is preferably high. The steel sheet of the present invention is a product that is cooled after hot rolling and is applied without solution heat treatment, and is characterized by having a hardness higher than that of a solution heat treated material. For this reason, it is specified that the surface hardness of the cladding material should be 1.3 times or less that of the solution heat treated state. The higher the hardness, the better, but the large strain introduced during hot rolling and remaining promotes the precipitation of intermetallic compounds, impairing the corrosion resistance of the surface of the clad steel plate. I decided.
Here, the state of solution heat treatment means the surface hardness when the same laminated material is subjected to solution heat treatment. For the measurement of this hardness magnification, the position (Sample A1) of the target surface layer portion (region from the surface to the depth of 0.1 to 0.5 mm in the thickness direction) of the laminated material made of duplex stainless steel was measured. In addition to polishing and measuring the Vickers hardness, the material (sample B1) obtained by subjecting this sample to solution heat treatment at 1050 ° C. was similarly subjected to hardness measurement, and the surface hardness of the laminated material was compared to the solution heat treatment state. The value of the ratio (hardness of sample A1/hardness of sample B1) is quantified. Preferably, the surface hardness of the laminated material (Sample A1) is 1.05 to 1.30 times the surface hardness of the solution heat treated (Sample B1). Although the sample A1 and the sample B1 are described as being the same sample, they are not necessarily the same. good too.

フェライト相のミクロ歪:εαは鋼板の合わせ材を規定する重要な特性値である。二相ステンレス鋼はフェライト相とオーステナイト相より構成されているが、熱間加工中の組織変化挙動は大きく異なる。熱間加工により導入される歪は材料内部で転位となり、その転位は回復、再結晶の過程を経て減少する。オーステナイト相における転位密度減少の速度は小さい。一方、フェライト相における転位密度減少の速度は大きい。このような知見を基に、本発明者らは二相ステンレス鋼のクラッド鋼板を種々の熱間圧延条件のもとで作成し、その合わせ材表層部の金属組織を観察した。その結果、本発明者らは、二相ステンレス鋼に対して適切な熱間圧延を施さないとフェライト相の転位密度減少が抑制され、クラッド鋼板の合わせ材に歪が残留することを知見した。また、熱間圧延後の冷却過程でフェライト相の中に、光学顕微鏡では観察困難な金属間化合物が析出し、これに対応して耐食性が低下することも知見した。さらに、このような析出の過程でフェライト相のミクロ歪が増大することも知見した。これらの知見を整理することにより、合わせ材表層部のフェライト相のミクロ歪が、式1で求められるεmaxよりも小さくなるように制御することで所望の特性を得ることができる(図1)。
εmax=0.0035-Tσ×2.63×10-6 (式1)
ただし、式1における各元素記号は、当該元素の含有量(質量%)を示し、含有しない場合は0を代入する。
Micro strain of ferrite phase: ε α is an important characteristic value that defines the laminated steel sheet. Duplex stainless steel is composed of ferrite phase and austenite phase, but their microstructural change behavior during hot working is very different. The strain introduced by hot working becomes dislocations inside the material, and the dislocations are reduced through the processes of recovery and recrystallization. The rate of dislocation density reduction in the austenite phase is small. On the other hand, the rate of dislocation density reduction in the ferrite phase is high. Based on such findings, the present inventors prepared clad steel sheets of duplex stainless steel under various hot rolling conditions, and observed the metallographic structure of the surface layer of the cladding material. As a result, the present inventors have found that if the duplex stainless steel is not subjected to appropriate hot rolling, the decrease in dislocation density of the ferrite phase is suppressed, and strain remains in the clad steel plate cladding. They also found that intermetallic compounds, which are difficult to observe with an optical microscope, precipitate in the ferrite phase during the cooling process after hot rolling, and correspondingly, the corrosion resistance is lowered. Furthermore, the inventors have also found that the micro strain of the ferrite phase increases during the process of such precipitation. By organizing these findings, it is possible to obtain the desired characteristics by controlling the micro strain of the ferrite phase in the surface layer of the cladding material so that it is smaller than ε max obtained by Equation 1 (Fig. 1). .
ε max =0.0035−Tσ×2.63×10 −6 (Formula 1)
However, each element symbol in Formula 1 represents the content (% by mass) of the element, and 0 is substituted when the element is not contained.

ここで、ミクロ歪の値はX線回折法により求めることができる値であり、単位は無次元である。具体的な測定方法について説明する。二相ステンレス鋼よりなる合わせ材の表層部(表面から厚さ方向に0.1mm以上0.5mm以下の深さまでの領域)の位置(試料A2)を機械加工と電解研磨により試料作成時の歪が残らないように3mm厚さx20mm幅x20mm長さ程度の寸法に仕上げたのち、CuKα線等の線源を用いたX線回折をおこない、フェライト相、オーステナイト相の各回折面の回折強度プロファイルAを測定する。比較材として、上記合わせ材に1050℃均熱の固溶化熱処理を加えて熱間加工により導入されていた歪を取り除き(試料B2)、同様のX線回折用試料を作成してX線回折をおこない、歪の無い回折強度プロファイルBを測定する。残留した歪の大きい試料では回折強度プロファイルが回折角2θに対して広がり(半価幅)を持っており、プロファイルAとBの対比により半価幅の増加量を回折面毎に求め数値処理することにより、フェライト相とオーステナイト相のミクロ歪が定量化される。このようにして求めたミクロ歪と材料内部の転位密度との関係は一定の関係がある。フェライト相についての両者の関係は非特許文献1を参照すると良い。 Here, the value of micro strain is a value that can be obtained by an X-ray diffraction method, and the unit is dimensionless. A specific measuring method will be described. The position (specimen A2) of the surface layer portion (the region from the surface to the depth of 0.1 mm or more and 0.5 mm or less in the thickness direction) of the laminated material made of duplex stainless steel was machined and electropolished to determine the strain during sample preparation. After finishing it to a size of about 3 mm thick x 20 mm wide x 20 mm long so that no remains, X-ray diffraction is performed using a radiation source such as CuKα rays, and the diffraction intensity profile A of each diffraction surface of the ferrite phase and austenite phase to measure. As a comparative material, the above laminated material was subjected to solution heat treatment at 1050 ° C. to remove the strain introduced by hot working (sample B2), and a similar X-ray diffraction sample was prepared and X-ray diffraction was performed. Then, a diffraction intensity profile B without distortion is measured. In a sample with a large residual strain, the diffraction intensity profile has a broadening (half-value width) with respect to the diffraction angle 2θ. This quantifies the microstrains of the ferrite and austenite phases. There is a certain relationship between the micro strain obtained in this way and the dislocation density inside the material. See Non-Patent Document 1 for the relationship between the two regarding the ferrite phase.

製造方法について、説明する。 A manufacturing method will be described.

サンドイッチ組み立てとは、母材となる鋼板の片面に上記の化学組成を有する合わせ材を貼り合わせたスラブ2体を、それぞれ合わせ材を内側に配置するように重ね合わせて1体のスラブとして組み立てる方式である。母材となる鋼板の化学組成は特に限定しない。このように母材、合わせ材、合わせ材、母材からなるスラブを常法にしたがって加熱し、加熱炉から抽出後に熱間圧延をおこない、圧延クラッド鋼板を製造する。仕上温度TFは熱間圧延の最終パスの入口における鋼材表面温度で定義する。上記で述べた実験において、合わせ材である二相ステンレス鋼のシグマ相析出温度TσとTFの関係を式3で示す関係で熱間圧延し、熱間圧延後のクラッド鋼板のTFから600℃までの平均冷却速度を0.6℃/s(sは秒を示す。)以上となるように製造するとよい。
TF≧Tσ-50 (℃) (式3)
Tσは、上記式2で得られるσ相析出温度である。
なお、サンドイッチ組み立ての場合、合わせ材が内側に母材が外側に配置されるため、合わせ材温度は鋼板表面温度より高くなることを考慮している。
Sandwich assembly is a method of assembling two slabs, which are made by laminating a cladding material having the above-mentioned chemical composition on one side of a steel plate as a base material, and assembling them as a single slab by stacking them so that the cladding material is placed inside. is. The chemical composition of the steel plate that serves as the base material is not particularly limited. A slab consisting of a base material, a cladding material, a cladding material and a base material is heated according to a conventional method, extracted from a heating furnace, and then hot-rolled to produce a rolled clad steel sheet. The finishing temperature TF is defined as the steel material surface temperature at the entrance of the final pass of hot rolling. In the experiment described above, the relationship between the sigma phase precipitation temperature Tσ and TF of the two-phase stainless steel, which is the laminated material, is hot-rolled according to the relationship shown in Equation 3, and the TF of the clad steel plate after hot rolling from TF to 600 ° C. The average cooling rate of 0.6 ° C. / s (s indicates seconds) or more.
TF≧Tσ−50 (° C.) (Formula 3)
Tσ is the σ phase precipitation temperature obtained by Equation 2 above.
In the case of sandwich assembly, since the laminated material is arranged inside and the base material is arranged outside, the temperature of the laminated material is higher than the surface temperature of the steel plate.

TFから600℃までの平均冷却速度を規定した理由は、熱間圧延後の金属組織において、シグマ相などの金属間化合物が析出する温度域が900(好ましくはTσ)~700℃程度であることより、この温度区間の冷却速度を大きくする必要があるためである。好ましくは、冷却開始温度をTσ℃以上にするとよい。
板厚が大きなサンドイッチ組み立て方式で熱間圧延されたクラッド鋼板の冷却速度を0.6℃/s以上とするためには熱間圧延終了後に水冷を施すと良い。板厚が小さい場合は空冷や強制風冷に依っても良い。
冷却速度は高いほどよく、好ましくは1.0℃/s以上、さらに好ましくは5.0℃/s以上にするとよい。
The reason why the average cooling rate from TF to 600 ° C. is specified is that in the metal structure after hot rolling, the temperature range where intermetallic compounds such as sigma phase precipitate is about 900 (preferably Tσ) to 700 ° C. This is because it is necessary to increase the cooling rate in this temperature section. Preferably, the cooling start temperature is Tσ° C. or higher.
In order to make the cooling rate of 0.6° C./s or higher for a clad steel sheet hot-rolled by the sandwich assembly method having a large thickness, it is preferable to apply water cooling after completion of hot rolling. If the plate thickness is small, air cooling or forced air cooling may be used.
A higher cooling rate is better, preferably 1.0° C./s or more, more preferably 5.0° C./s or more.

オープンサンド組み立てとは、母材となる鋼板と二相ステンレス鋼の合わせ材を貼り合わせてスラブとして組み立てる方式である。このように母材と合わせ材からなるスラブを常法にしたがって加熱し、加熱炉から抽出後に熱間圧延をおこない、圧延クラッド鋼板を製造する。仕上温度TFは熱間圧延の最終パスの入口における鋼材表面温度で定義する。上記で述べた実験において、合わせ材である二相ステンレス鋼のシグマ相析出温度TσとTFの関係を式4で示す関係で熱間圧延し、熱間圧延後のクラッド鋼板のTFから600℃までの平均冷却速度を0.6℃/s以上となるように製造するとよい。
TF≧Tσ+30 (℃) (式4)
Tσは、上記式2で得られるσ相析出温度である。
なお、オープンサンドイッチ組み立ての場合、合わせ材が外側に母材が内側に配置されるため、合わせ材温度が鋼板表面温度になることを考慮している。
Open sand assembly is a method of assembling a slab by laminating a steel plate as a base material and a duplex stainless steel laminate. The slab composed of the base material and the clad material is heated according to a conventional method, extracted from the heating furnace, and then hot-rolled to produce a rolled clad steel sheet. The finishing temperature TF is defined as the steel material surface temperature at the entrance of the final pass of hot rolling. In the experiment described above, the relationship between the sigma phase precipitation temperature Tσ and TF of the duplex stainless steel, which is the cladding material, is hot-rolled according to the relationship shown in Equation 4, and the TF of the clad steel plate after hot rolling from TF to 600 ° C. It is preferable to manufacture so that the average cooling rate of is 0.6° C./s or more.
TF≧Tσ+30 (°C) (Formula 4)
Tσ is the σ phase precipitation temperature obtained by Equation 2 above.
In the case of open sandwich assembly, since the laminated material is arranged on the outside and the base material is arranged on the inside, it is considered that the temperature of the laminated material becomes the surface temperature of the steel plate.

ここでTFから600℃までの平均冷却速度を規定した理由は、サンドイッチ組み立ての場合と同様、熱間圧延後の金属組織において、シグマ相などの金属間化合物が析出する温度域が900(好ましくはTσ)~700℃程度であることより、この温度区間の冷却速度を大きくする必要があるためである。好ましくは、冷却開始温度をTσ以上にするとよい。
冷却速度は高いほどよく、好ましくは1.0℃/s以上にするとよい。オープンサンド組み立て方式で熱間圧延されたクラッド鋼板は水冷のように大きな冷却速度を与える冷却をおこなうと合わせ材と母材となる鋼との熱膨張差によりクラッド鋼板に反りが発生し通板が困難となることがある。このため、空冷や強制風冷などの冷却方法を採用することが好ましい。好ましくは、10.0℃/s以下に制限するとよい。
The reason why the average cooling rate from TF to 600 ° C. is specified here is that, as in the case of sandwich assembly, in the metal structure after hot rolling, the temperature range where intermetallic compounds such as sigma phase precipitate is 900 (preferably Tσ) to about 700° C., it is necessary to increase the cooling rate in this temperature interval. Preferably, the cooling start temperature should be Tσ or higher.
A higher cooling rate is better, preferably 1.0° C./s or more. If the clad steel plate hot-rolled by the open-sand assembly method is cooled at a high cooling rate, such as water cooling, the clad steel plate will warp due to the difference in thermal expansion between the cladding material and the base steel, making it difficult to thread. It can be difficult. Therefore, it is preferable to adopt a cooling method such as air cooling or forced air cooling. Preferably, it should be limited to 10.0° C./s or less.

合わせ材とする二相ステンレス鋼のシグマ相析出温度にあわせて適切な熱間圧延をおこなうことで合わせ材表面へのシグマ相析出にともなう組織変化を抑制し、優れた耐食性を有するクラッド鋼板を製造できる。シグマ相析出温度よりも過冷却された温度で二相ステンレス鋼が熱間圧延されると、その過冷却度に応じて、二相ステンレス鋼の組織変化が進行し、耐食性が低下する。ここで、サンドイッチ組み立て方式のクラッド鋼板では合わせ材が鋼材の内部に位置しているために、鋼材表面温度より合わせ材の温度が高い状態で熱間圧延される。このため、サンドイッチ組み立て方式では合わせ材の温度が熱間圧延中の鋼材表面温度よりも高い。このように組み立て方式により、合わせ材が実質的に圧延される温度が異なることになる。即ち、それぞれの組み立て圧延方式で式3または式4の圧延温度規定が必要であることが明らかとなったものである。 Appropriate hot rolling is performed according to the sigma phase precipitation temperature of the duplex stainless steel used as the cladding material to suppress structural changes due to sigma phase precipitation on the surface of the cladding material, producing clad steel sheets with excellent corrosion resistance. can. When the duplex stainless steel is hot rolled at a temperature supercooled below the sigma phase precipitation temperature, the structural change of the duplex stainless steel progresses according to the degree of supercooling, and the corrosion resistance decreases. Here, in the clad steel plate of the sandwich assembly method, since the clad material is positioned inside the steel material, hot rolling is performed in a state where the temperature of the clad material is higher than the surface temperature of the steel material. Therefore, in the sandwich assembly method, the temperature of the laminated material is higher than the surface temperature of the steel material during hot rolling. Thus, the temperature at which the cladding material is substantially rolled differs depending on the assembling method. That is, it has become clear that the rolling temperature regulation of Equation 3 or Equation 4 is necessary for each assembly rolling method.

クラッド鋼板は、合わせ材である二相ステンレス鋼のシグマ相析出温度に応じて熱間圧延の温度を特定温度以上とし、冷却速度を0.6℃/s以上にすることで得られる。したがって、クラッド鋼板の母材は、普通鋼(炭素鋼)、および合金鋼(ただし、ステンレス鋼を除く)からなる群より1種以上を選択して用いることができ、特に限定されるものではない。目的用途に応じて適宜選択して使用できる。合金鋼としては、低合金鋼、ニッケル鋼、マンガン鋼、クロムモリブデン鋼、高速度鋼などが挙げられるがこれらに限定されるものではなく、普通鋼に1種以上の元素を含有した鋼であっても良い。 The clad steel sheet is obtained by setting the hot rolling temperature to a specific temperature or higher according to the sigma phase precipitation temperature of the duplex stainless steel that is the cladding material, and by setting the cooling rate to 0.6° C./s or higher. Therefore, the base material of the clad steel plate can be selected from one or more types selected from the group consisting of ordinary steel (carbon steel) and alloy steel (excluding stainless steel), and is not particularly limited. . It can be appropriately selected and used according to the intended use. Alloy steels include, but are not limited to, low alloy steels, nickel steels, manganese steels, chromium molybdenum steels, high speed steels, etc. Steels containing one or more elements in ordinary steels. can be

以下に実施例について記載する。表1に合わせ材の化学組成を示す。なお表1に記載されている成分以外はFeおよび不可避的な不純物元素である。また表1に示した成分について含有量が記載されていない部分は不純物レベルであることを示し、REMはランタノイド系希土類元素を意味し、含有量はそれら元素の合計を示している。また、表中のシグマ相析出温度は式2で求めた。 Examples are described below. Table 1 shows the chemical composition of the cladding material. Components other than those listed in Table 1 are Fe and unavoidable impurity elements. In addition, for the components shown in Table 1, the portion where the content is not described indicates the impurity level, REM means the lanthanoid rare earth element, and the content indicates the total of those elements. Also, the sigma phase precipitation temperature in the table was determined by Equation (2).

クラッド鋼板は表1に示した化学組成の二相ステンレス鋼を合わせ材とし、母材としてC:0.16%、Si:0.21%、Mn:0.63%、P:0.018%、S:0.006%、Ni:0.01%、Cr:0.04%、Cu:0.02%、残部Feおよび不純物の組成を有するSS400鋼を所定の厚さの素材とし、溶接により母材となる鋼の片面に合わせ材を貼り合わせ、厚さを130mmのスラブとした。オープンサンド方式ではこのスラブを熱間圧延用の素材に用いた。サンドイッチ方式では、130mm厚のスラブ2体を、合わせ材を内側にして溶接により組み立て(サンドイッチ組み立て)、260mm厚のスラブとした。 The clad steel plate is made of a duplex stainless steel having the chemical composition shown in Table 1, and the base material is C: 0.16%, Si: 0.21%, Mn: 0.63%, P: 0.018%. , S: 0.006%, Ni: 0.01%, Cr: 0.04%, Cu: 0.02%, and the balance Fe and impurities. A slab having a thickness of 130 mm was obtained by bonding a cladding material to one side of the steel as the base material. In the open sand method, this slab was used as the material for hot rolling. In the sandwich method, two slabs with a thickness of 130 mm were assembled by welding (sandwich assembly) with the cladding material on the inside to form a slab with a thickness of 260 mm.

サンドイッチ組み立て方式の熱間圧延は260mm厚のスラブを1150~1220℃の所定の温度に加熱した後、2段圧延機によりクラッド鋼板を作成した。熱間圧延条件としては、8~12回の圧下を繰り返し、最終板厚が20~50mmとなるようにTFが830~1030℃で仕上圧延を実施した。一部のクラッド鋼板はスプレー冷却装置で加速冷却し、その後冷却床に移送して冷却した。冷却後に板厚中央部で剥離し、2枚のクラッド鋼板に分離した。このようにして合わせ材の厚さが3mmで全板厚が10~25mmのクラッド鋼板を得た。この鋼板の一部を用いて1050℃で固溶化熱処理を実施し、熱処理前後の合わせ材表層部の金属組織を評価するためのX線回折用試料と孔食電位測定用試料を採取した。 In the hot rolling of the sandwich assembly method, a slab with a thickness of 260 mm was heated to a predetermined temperature of 1150 to 1220° C., and then a clad steel plate was produced by a two-stage rolling mill. As the hot rolling conditions, rolling was repeated 8 to 12 times, and finish rolling was performed at a TF of 830 to 1030° C. so that the final plate thickness was 20 to 50 mm. Some of the clad steel plates were accelerated cooled with a spray cooling device and then transferred to a cooling bed for cooling. After cooling, the plate was separated at the central portion of the plate thickness and separated into two clad steel plates. In this way, a clad steel plate having a cladding thickness of 3 mm and a total thickness of 10 to 25 mm was obtained. A part of this steel plate was subjected to solution heat treatment at 1050° C., and a sample for X-ray diffraction and a sample for pitting potential measurement were taken to evaluate the metal structure of the surface layer of the cladding material before and after the heat treatment.

オープンサンド組み立て方式の熱間圧延は合わせ材側を下面としたスラブを1150~1220℃の所定の温度に加熱した後、2段圧延機によりクラッド鋼板を作成した。熱間圧延条件としては、8~15回の圧下を繰り返し、最終板厚が10~25mmとなるようにTFが780~1030℃で仕上圧延を実施した。その後、冷却床に移送して冷却した。このようにして合わせ材の厚さが3mmで全板厚が10~25mmのクラッド鋼板を得た。
この鋼板の一部を用いて1050℃で固溶化熱処理を実施し、熱処理前後の合わせ材表層部の金属組織を評価するためのX線回折用試料と孔食電位測定用試料を採取した。
In the hot rolling of the open sand assembling method, a clad steel plate was produced by a two-high rolling mill after heating a slab with the cladding side facing down to a predetermined temperature of 1150 to 1220°C. As for the hot rolling conditions, rolling was repeated 8 to 15 times, and finish rolling was performed at a TF of 780 to 1030° C. so that the final plate thickness was 10 to 25 mm. It was then transferred to a cooling bed and cooled. In this way, a clad steel plate having a cladding thickness of 3 mm and a total thickness of 10 to 25 mm was obtained.
A part of this steel plate was subjected to solution heat treatment at 1050° C., and a sample for X-ray diffraction and a sample for pitting potential measurement were taken to evaluate the metal structure of the surface layer of the cladding material before and after the heat treatment.

合わせ材の表面のミクロ歪の測定は鋼材の表面下0.3mmの面を試験片加工の歪が残らないようにエメリー紙による湿式研磨と電解研磨によって仕上げた2.5mmtx20wx25LのX線回折用試料を採取し、CuKαの線源を用いたX線回折測定により、フェライト相とオーステナイト相の回折プロファイルを測定した。固溶化熱処理を施す前後(試料Aと試料B)の鋼材についてのそれぞれの半価幅データより固溶化熱処理前の試料A3の両相のミクロ歪を求めた。このうち、フェライト相のミクロ歪の値を表2(サンドイッチ組み立て方式)と表3(オープンサンド組み立て方式)に示す。 The micro strain on the surface of the laminated material was measured using a 2.5 mm x 20 w x 25 L X-ray diffraction sample that was finished by wet polishing and electrolytic polishing with emery paper so that the surface 0.3 mm below the surface of the steel material would not remain strained during processing of the test piece. was collected, and the diffraction profiles of the ferrite phase and the austenite phase were measured by X-ray diffraction measurement using a CuKα radiation source. The micro strains of both phases of sample A3 before solution heat treatment were obtained from the half-value width data of the steel materials before and after solution heat treatment (sample A and sample B). Among them, the values of the micro strain of the ferrite phase are shown in Table 2 (sandwich assembly method) and Table 3 (open sand assembly method).

合わせ材の表面硬度測定は鋼材の表面下0.3mmの面に対してビッカース荷重5kgfの条件にて実施した。固溶化熱処理を施す前後の鋼材(即ち固溶化熱処理をしていない試料Aと固溶化熱処理をした試料B)についてそれぞれn=3で測定し、平均値を求め、その平均値の比(=試料Aの硬度/試料Bの硬度)の値を表2と表3に示した。 The surface hardness of the laminated material was measured under the condition of a Vickers load of 5 kgf on the surface of the steel material 0.3 mm below the surface. Steel materials before and after solution heat treatment (i.e., sample A without solution heat treatment and sample B with solution heat treatment) are measured at n = 3, the average value is obtained, and the ratio of the average values (= sample Tables 2 and 3 show the values of (hardness of A/hardness of sample B).

合わせ材の孔食電位測定は鋼材の表面下0.3mmの面に対してJIS G0577に定められた方法に准じて50℃-1モルNaCl溶液中で分極をおこない、電流密度が100μA/cmに対応する電位(V100)を測定した。固溶化熱処理を施す前後の鋼材(即ち固溶化熱処理をしていない試料A3と固溶化熱処理をした試料B3)についてそれぞれn=3で測定し、平均値を求めその試料の孔食電位とした。その平均値の差を表2と表3に示した。その試料Aと試料Bの孔食電位およびその差も表2と表3に示した。試料Aの孔食電位が0.3V以上であり、さらに固溶化熱処理材の電位に対するクラッド鋼板の電位の差(試料Aと試料Bの孔食電位の差)が0.1V以下のものを合格とした。The pitting potential measurement of the laminated material is performed by polarizing the surface of the steel material 0.3 mm below the surface in accordance with the method specified in JIS G0577 in a 50 ° C.-1 mol NaCl solution, and the current density is 100 μA / cm. 2 was measured (V C100 ). The steel materials before and after solution heat treatment (i.e., sample A3 without solution heat treatment and sample B3 with solution heat treatment) were measured at n = 3, and the average value was determined to be the pitting potential of the sample. Tables 2 and 3 show the difference in the average values. Tables 2 and 3 also show the pitting potentials of Sample A and Sample B and the difference between them. If the pitting potential of sample A is 0.3 V or more, and the difference in the potential of the clad steel plate with respect to the potential of the solution heat-treated material (difference in pitting potential between sample A and sample B) is 0.1 V or less, it passes. and

表2に、表1に示した鋼を合わせ材とし、サンドイッチ方式で組み立て熱間圧延したクラッド鋼板の合わせ材に対する実施例をまとめた。
このように本発明の実施例となるクラッド鋼板は合わせ材の表面硬度が大きく、耐食性は固溶化熱処理材と比べてその差が0.1V以下であり遜色がないことが確認された。
Table 2 summarizes the examples of the clad steel plates assembled and hot-rolled by the sandwich method using the steels shown in Table 1 as the cladding members.
As described above, it was confirmed that the clad steel sheets according to the examples of the present invention have a large surface hardness of the laminated material, and the difference in corrosion resistance is 0.1 V or less compared to the solution heat treated material, which is comparable.

表3に、表1に示した鋼を合わせ材とし、オープンサンド方式で組み立て熱間圧延したクラッド鋼板の合わせ材に対する実施例をまとめた。
このように実施例となるクラッド鋼板は合わせ材の表面硬度が大きく、耐食性は固溶化熱処理材と比べてその差が0.1V以下であり遜色がないことが確認された。
Table 3 summarizes the examples of the clad steel plate cladding, which was assembled by the open sand method and hot-rolled using the steel shown in Table 1 as the cladding.
As described above, it was confirmed that the clad steel sheets of the examples had a large surface hardness of the laminated material, and the difference in corrosion resistance was 0.1 V or less compared to the solution heat-treated material, which was comparable.

Figure 0007224443000001
Figure 0007224443000001

Figure 0007224443000002
Figure 0007224443000002

Figure 0007224443000003
Figure 0007224443000003

本発明により耐食性が良好な合金元素節減型の経済的なクラッド鋼板を提供することが可能となり、本発明は、海水淡水化機器、輸送船のタンク類、各種容器等などあらゆる産業機器や構造物用として利用することができる。 According to the present invention, it is possible to provide an economical clad steel sheet with reduced alloying elements and good corrosion resistance. can be used for

Claims (4)

母材となる鋼板の片面または両面に合わせ材をクラッドしたクラッド鋼板であって、
前記合わせ材の化学組成が質量%で、
C:0.030%以下、
Si:0.05~1.00%、
Mn:0.10~3.00%、
P:0.050%以下、
S:0.0050%以下、
Cr:22.0~27.0%、
Ni:4.00~7.00%、
Mo:0.50~2.50%、
W:0~1.50%、
N:0.100~0.250%、
酸素:0.001~0.006%、
Co:0~1.00%、
Cu:0~3.00%、
V:0~1.00%、
Nb:0~0.200%、
Ta:0~0.200%、
Ti:0~0.030%、
Zr:0~0.050%、
Hf:0~0.100%、
B:0~0.0050%、
Al:0~0.050%、
Ca:0~0.0050%、
Mg:0~0.0050%、
REM:0~0.100%、
Sn:0~0.100%を含有し、
残部がFeおよび不純物であり、
式5で求められるPREWが24以上35以下であり、
式2で求められるσ相析出温度Tσ(℃)が800℃以上950℃以下であり、
合わせ材の表面硬度が固溶化熱処理状態の1.3倍以下の値であり、
そのフェライト相のミクロ歪εαが式1で求められるεmax以下であることを特徴とするクラッド鋼板。
ε max =0.0035-Tσ×2.63×10-6 (式1)
Tσ=4Cr+25Ni+71(Mo+W)-11.4(Mo-1.3)×(Mo-1.3)+5Si-6Mn-30N+569(℃) (式2)
PREW=Cr+3.3(Mo+0.5W)+16N (式5)
ただし、式1、式2、式5における各元素記号は、前記合わせ材における当該元素の含有量(質量%)を示し、含有しない場合は0を代入する。
A clad steel plate in which one or both sides of a steel plate serving as a base material are clad with a cladding material,
The chemical composition of the laminated material is % by mass,
C: 0.030% or less,
Si: 0.05 to 1.00%,
Mn: 0.10-3.00%,
P: 0.050% or less,
S: 0.0050% or less,
Cr: 22.0 to 27.0%,
Ni: 4.00 to 7.00%,
Mo: 0.50-2.50%,
W: 0 to 1.50%,
N: 0.100 to 0.250%,
Oxygen: 0.001-0.006%,
Co: 0 to 1.00%,
Cu: 0 to 3.00%,
V: 0 to 1.00%,
Nb: 0 to 0.200%,
Ta: 0 to 0.200%,
Ti: 0 to 0.030%,
Zr: 0 to 0.050%,
Hf: 0 to 0.100%,
B: 0 to 0.0050%,
Al: 0 to 0.050%,
Ca: 0 to 0.0050%,
Mg: 0-0.0050%,
REM: 0-0.100%,
Sn: contains 0 to 0.100%,
the balance being Fe and impurities,
PREW obtained by Equation 5 is 24 or more and 35 or less,
The σ phase precipitation temperature Tσ (° C.) obtained by Equation 2 is 800° C. or higher and 950° C. or lower,
The surface hardness of the laminated material is 1.3 times or less that of the solution heat treated state,
A clad steel sheet, wherein the micro strain ε α of the ferrite phase is equal to or less than ε max obtained by Equation (1).
ε max =0.0035−Tσ × 2.63 × 10 −6 (Formula 1)
Tσ = 4Cr + 25Ni + 71 (Mo + W) - 11.4 (Mo - 1.3) × (Mo - 1.3) + 5Si - 6Mn - 30N + 569 (°C) (Formula 2)
PREW=Cr+3.3(Mo+0.5W)+16N (Formula 5)
However, each element symbol in Formulas 1, 2, and 5 indicates the content (% by mass) of the element in the cladding material, and 0 is substituted when the element is not contained.
前記合わせ材の化学組成において、質量%で、
Co:0.03~1.00%、
Cu:0.30~3.00%、
V:0.03~1.00%、
Nb:0.010~0.200%、
Ta:0.010~0.200%、
Ti:0.003~0.030%、
Zr:0.005~0.050%、
Hf:0.010~0.100%、
B:0.0005~0.0050%、
Al:0.003~0.050%、
Ca:0.0005~0.0050%、
Mg:0.0005~0.0050%、
REM:0.010~0.100%、
Sn:0.010~0.100%の1種または2種以上を含有する
請求項1に記載のクラッド鋼板。
In the chemical composition of the laminated material, in mass%,
Co: 0.03 to 1.00%,
Cu: 0.30 to 3.00%,
V: 0.03 to 1.00%,
Nb: 0.010 to 0.200%,
Ta: 0.010 to 0.200%,
Ti: 0.003 to 0.030%,
Zr: 0.005 to 0.050%,
Hf: 0.010 to 0.100%,
B: 0.0005 to 0.0050%,
Al: 0.003 to 0.050%,
Ca: 0.0005 to 0.0050%,
Mg: 0.0005-0.0050%,
REM: 0.010 to 0.100%,
Sn: The clad steel sheet according to claim 1, containing one or more of 0.010 to 0.100%.
請求項1または2に記載の合わせ材を母材となる鋼板の片面に貼り合わせたスラブ2体を、合わせ材が内側に配置するように重ね合わせて体のスラブにして熱間圧延を施すサンドイッチ組み立てによるクラッド鋼板の製造方法であって、
式3を満足する仕上温度TFになるよう熱間圧延を施し、その後TFから600℃まで平均冷却速度を0.6℃/以上で冷却することを特徴とする請求項1または2に記載のクラッド鋼板の製造方法。
TF≧Tσ-50 (℃) (式3)
Tσ=4Cr+25Ni+71(Mo+W)-11.4(Mo-1.3)×(Mo-1.3)+5Si-6Mn-30N+569(℃) (式2)
ただし、式2における各元素記号は、前記合わせ材における当該元素の含有量(質量%)を示し、含有しない場合は0を代入する。
Two slabs obtained by laminating the laminated material according to claim 1 or 2 on one side of a steel plate as a base material are superimposed so that the laminated material is arranged on the inside to form a single slab, and hot rolling is performed. A method of manufacturing a clad steel plate by sandwich assembly, comprising:
3. The steel sheet according to claim 1 or 2, wherein hot rolling is performed so that the finishing temperature TF satisfies Equation 3, and then cooling is performed from TF to 600°C at an average cooling rate of 0.6°C/ s or more. clad steel plate manufacturing method.
TF≧Tσ−50 (° C.) (Formula 3)
Tσ = 4Cr + 25Ni + 71 (Mo + W) - 11.4 (Mo - 1.3) × (Mo - 1.3) + 5Si - 6Mn - 30N + 569 (°C) (Formula 2)
However, each element symbol in Formula 2 represents the content (% by mass) of the element in the cladding material, and 0 is substituted when the element is not contained.
請求項1または2に記載の合わせ材を母材となる鋼板の片面または両面に貼り合わせたスラブに熱間圧延を施すオープンサンド組み立てによるクラッド鋼板の製造方法であって、式4を満足する仕上温度TFになるよう熱間圧延を施し、その後TFから600℃までの平均冷却速度を0.6℃/以上で冷却することを特徴とする請求項1または2に記載のクラッド鋼板の製造方法。
TF≧Tσ+30 (℃) (式4)
Tσ=4Cr+25Ni+71(Mo+W)-11.4(Mo-1.3)×(Mo-1.3)+5Si-6Mn-30N+569(℃) (式2)
ただし、式2における各元素記号は、前記合わせ材における当該元素の含有量(質量%)を示し、含有しない場合は0を代入する。
A method for manufacturing a clad steel plate by open sand assembly in which hot rolling is performed on a slab in which the laminated material according to claim 1 or 2 is bonded to one or both sides of a steel plate as a base material, the finish satisfying formula 4 The method for producing a clad steel sheet according to claim 1 or 2, wherein hot rolling is performed to a temperature TF, and then cooling is performed from TF to 600 ° C. at an average cooling rate of 0.6 ° C./s or more. .
TF≧Tσ+30 (°C) (Formula 4)
Tσ = 4Cr + 25Ni + 71 (Mo + W) - 11.4 (Mo - 1.3) × (Mo - 1.3) + 5Si - 6Mn - 30N + 569 (°C) (Formula 2)
However, each element symbol in Formula 2 represents the content (% by mass) of the element in the cladding material, and 0 is substituted when the element is not contained.
JP2021512094A 2019-03-29 2020-03-27 Clad steel plate and manufacturing method thereof Active JP7224443B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019068968 2019-03-29
JP2019068968 2019-03-29
PCT/JP2020/014404 WO2020203938A1 (en) 2019-03-29 2020-03-27 Cladded steel plate and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2020203938A1 JPWO2020203938A1 (en) 2020-10-08
JP7224443B2 true JP7224443B2 (en) 2023-02-17

Family

ID=72668924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021512094A Active JP7224443B2 (en) 2019-03-29 2020-03-27 Clad steel plate and manufacturing method thereof

Country Status (5)

Country Link
EP (1) EP3950999A4 (en)
JP (1) JP7224443B2 (en)
KR (1) KR102514911B1 (en)
CN (1) CN113646457B (en)
WO (1) WO2020203938A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115976426B (en) * 2023-01-29 2023-07-04 襄阳金耐特机械股份有限公司 High-strength and high-toughness martensitic heat-resistant steel
CN116005077A (en) * 2023-02-16 2023-04-25 慈溪市龙山汽配有限公司 High-strength guide rail material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180567A (en) 2011-03-02 2012-09-20 Nippon Steel & Sumikin Stainless Steel Corp Clad steel sheet having duplex stainless steel as mating material, and method for production thereof
WO2013132863A1 (en) 2012-03-08 2013-09-12 Jfeスチール株式会社 Seawater-resistant stainless clad steel
WO2014148540A1 (en) 2013-03-19 2014-09-25 新日鐵住金ステンレス株式会社 Clad steel plate having as mating material duplex stainless steel having good linear heating performance, and method for manufacturing same
JP2018028146A (en) 2016-08-10 2018-02-22 新日鐵住金ステンレス株式会社 Two-phase stainless steel for clad steel and clad steel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110880A (en) 1985-11-09 1987-05-21 Sumitomo Metal Ind Ltd Production of two-phase stainless steel clad steel
JPH0636993B2 (en) 1989-04-25 1994-05-18 日本鋼管株式会社 Method for producing stainless clad steel sheet with excellent corrosion resistance and toughness
JPH0422677A (en) 1990-05-17 1992-01-27 Kuraray Co Ltd Thermal recording sheet
JPH0636993A (en) 1992-05-21 1994-02-10 Canon Inc Aligner and manufacture of semiconductor element
JPH07292445A (en) 1994-04-22 1995-11-07 Japan Steel Works Ltd:The Duplex stainless clad steel, its production and welding method therefor
WO2012102330A1 (en) * 2011-01-27 2012-08-02 新日鐵住金ステンレス株式会社 Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
JP5329632B2 (en) * 2011-10-21 2013-10-30 新日鐵住金ステンレス株式会社 Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP5454723B2 (en) * 2012-04-25 2014-03-26 Jfeスチール株式会社 Laminated stainless steel clad sheet excellent in seawater corrosion resistance, stainless clad steel sheet using the same, and method for producing the same
JP5803890B2 (en) * 2012-12-07 2015-11-04 Jfeスチール株式会社 Duplex stainless clad steel excellent in pitting corrosion resistance, duplex stainless clad steel using the same, and method for producing the same
JP5977854B1 (en) * 2015-03-26 2016-08-24 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in carburization resistance and oxidation resistance and method for producing the same
CN105671424A (en) * 2016-01-26 2016-06-15 宝山钢铁股份有限公司 Nickel base alloy clad steel plates for pipeline and manufacturing method thereof
JP6799387B2 (en) * 2016-05-17 2020-12-16 日鉄ステンレス株式会社 Manufacturing method of ferritic stainless steel with excellent steam oxidation resistance
JP6946737B2 (en) * 2017-05-18 2021-10-06 日本製鉄株式会社 Duplex stainless steel and its manufacturing method
JP7059357B2 (en) * 2018-03-30 2022-04-25 日鉄ステンレス株式会社 Duplex stainless clad steel sheet and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180567A (en) 2011-03-02 2012-09-20 Nippon Steel & Sumikin Stainless Steel Corp Clad steel sheet having duplex stainless steel as mating material, and method for production thereof
WO2013132863A1 (en) 2012-03-08 2013-09-12 Jfeスチール株式会社 Seawater-resistant stainless clad steel
WO2014148540A1 (en) 2013-03-19 2014-09-25 新日鐵住金ステンレス株式会社 Clad steel plate having as mating material duplex stainless steel having good linear heating performance, and method for manufacturing same
JP2018028146A (en) 2016-08-10 2018-02-22 新日鐵住金ステンレス株式会社 Two-phase stainless steel for clad steel and clad steel

Also Published As

Publication number Publication date
WO2020203938A1 (en) 2020-10-08
KR20210091788A (en) 2021-07-22
KR102514911B1 (en) 2023-03-27
CN113646457A (en) 2021-11-12
CN113646457B (en) 2022-10-25
EP3950999A1 (en) 2022-02-09
JPWO2020203938A1 (en) 2020-10-08
EP3950999A4 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
US20190226068A1 (en) Process for manufacturing hot-rolled plate, strip or coil made of duplex stainless steel
KR101728789B1 (en) Hot-rolled steel sheet and method for producing the same
JP5750546B2 (en) Low yield ratio high toughness steel sheet and manufacturing method thereof
JP5888476B2 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
KR20130105721A (en) Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
JP5406233B2 (en) Clad steel plate made of duplex stainless steel and method for producing the same
CN109923237B (en) Pressure vessel steel having excellent hydrogen-induced cracking resistance and method for manufacturing same
JP2005290554A (en) Steel plate excellent in machinability, toughness and weldability, and method for production thereof
KR101185977B1 (en) Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
KR101850231B1 (en) Ferritic stainless steel and method for producing same
JP7224443B2 (en) Clad steel plate and manufacturing method thereof
EP3859043A1 (en) Abrasion resistant steel having excellent hardness and impact toughness, and manufacturing method therefor
KR20200039738A (en) Steel pipe and steel plate
KR101903181B1 (en) Duplex stainless steel with improved corrosion resistance and formability and method of manufacturing the same
KR102164116B1 (en) Steel plate having excellent hic resistance and manufacturing method for thereof
CN113227425B (en) High-strength structural steel having excellent cold-bending properties and method for producing same
JP7442270B2 (en) Clad steel plate and its manufacturing method
JP4757858B2 (en) Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof
KR20150074968A (en) Hot rolled steel sheet having a good low temperature toughness and method for manufacturing the same
JP2002105601A (en) High strength dual phase stainless steel and its production method
JP4757857B2 (en) Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof
EP3901306B1 (en) Structural steel having excellent brittle fracture resistance and method for manufacturing same
CN114008232B (en) High-strength structural steel having excellent corrosion resistance and method for producing same
JP7277711B2 (en) Wear-resistant thick steel plate
JP2005290555A (en) Steel plate excellent in machinability and toughness, and method for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230207

R150 Certificate of patent or registration of utility model

Ref document number: 7224443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150