JP7222657B2 - Remaining battery level measurement circuit - Google Patents

Remaining battery level measurement circuit Download PDF

Info

Publication number
JP7222657B2
JP7222657B2 JP2018200637A JP2018200637A JP7222657B2 JP 7222657 B2 JP7222657 B2 JP 7222657B2 JP 2018200637 A JP2018200637 A JP 2018200637A JP 2018200637 A JP2018200637 A JP 2018200637A JP 7222657 B2 JP7222657 B2 JP 7222657B2
Authority
JP
Japan
Prior art keywords
transistor
insulator
oxide
conductor
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018200637A
Other languages
Japanese (ja)
Other versions
JP2020068136A (en
JP2020068136A5 (en
Inventor
隆徳 松嵜
隆之 池田
圭 高橋
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2018200637A priority Critical patent/JP7222657B2/en
Publication of JP2020068136A publication Critical patent/JP2020068136A/en
Publication of JP2020068136A5 publication Critical patent/JP2020068136A5/ja
Application granted granted Critical
Publication of JP7222657B2 publication Critical patent/JP7222657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Thin Film Transistor (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

本発明の一様態は、物、方法、又は、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置または電子機器の製造方法に関する。特に、充電制御システム、充電制御方法、及び二次電池を有する電子機器に関する。本発明の一態様は、車両、または車両に設けられる車両用電子機器に関する。 One aspect of the present invention relates to an article, method, or manufacturing method. Alternatively, the invention relates to a process, machine, manufacture, or composition of matter. One embodiment of the present invention relates to a method for manufacturing a semiconductor device, a display device, a light-emitting device, a power storage device, a lighting device, or an electronic device. In particular, the present invention relates to a charging control system, a charging control method, and an electronic device having a secondary battery. One aspect of the present invention relates to a vehicle or a vehicle electronic device provided in the vehicle.

なお、本明細書中において、蓄電装置とは、蓄電機能を有する素子及び装置全般を指すものである。例えば、リチウムイオン二次電池などの蓄電池(二次電池ともいう)、リチウムイオンキャパシタ、全固体電池、及び電気二重層キャパシタなどを含む。 Note that in this specification, a power storage device generally refers to elements and devices having a power storage function. For example, storage batteries such as lithium ion secondary batteries (also referred to as secondary batteries), lithium ion capacitors, all-solid-state batteries, electric double layer capacitors, and the like are included.

近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン二次電池は、携帯電話、スマートフォン、タブレット、もしくはノート型コンピュータ等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ、医療機器、又は、ハイブリッド車(HEV)、電気自動車(EV)、もしくはプラグインハイブリッド車(PHEV)等の次世代クリーンエネルギー自動車など、半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。 In recent years, various power storage devices such as lithium ion secondary batteries, lithium ion capacitors, and air batteries have been actively developed. In particular, lithium-ion secondary batteries, which have high output and high energy density, are used in portable information terminals such as mobile phones, smart phones, tablets, or notebook computers, portable music players, digital cameras, medical equipment, or hybrid vehicles (HEV). , electric vehicles (EV), and next-generation clean energy vehicles such as plug-in hybrid vehicles (PHEV). It has become an indispensable part of the modernized society.

特許文献1には、二次電池の残存容量の演算に、ニューラルネットワークを用いる一例が示されている。 Patent Literature 1 shows an example of using a neural network to calculate the remaining capacity of a secondary battery.

従来、電池の残量計測に関する技術としては、さまざまな提案がされている。例えば、電池の内部インピーダンス測定により開放端電圧を推定するインピーダンストラック法が用いられている。インピーダンストラック法は、電池のインピーダンスを測定する場合、電力消費が発生する。また、電池の残量計測に関する技術としてクーロンカウンタ法や電圧測定法も知られている。 Conventionally, various proposals have been made as techniques for measuring the remaining amount of a battery. For example, the impedance track method is used to estimate the open-circuit voltage by measuring the internal impedance of the battery. The impedance track method consumes power when measuring the impedance of a battery. In addition, a coulomb counter method and a voltage measurement method are also known as techniques for measuring the remaining amount of a battery.

米国特許公開第2006/0181245号公報U.S. Patent Publication No. 2006/0181245

リチウムイオン二次電池は、設計容量(DC)のうち、電池の残容量(RC)を満充電容量(FCC(Full Charge Capacity))のしめる割合、即ち充電率(SOC)が0%から100%全て使用する設定になっておらず、過放電を防ぐため0%からマージンが5%(または10%)程度とられている。また、過充電を防ぐため100%からもマージン5%(または10%)程度がとられており、結果として、設計容量の5%から95%の範囲内(または10%から90%の範囲内)で使用しているといわれている。実際には二次電池に接続されるBMS(Battery Management System)を用いて上限電圧Vmaxと下限電圧Vminの電圧範囲を設定することで設計容量の5%から95%の範囲内(または10%から90%の範囲内)で使用する。 Lithium ion secondary batteries have a ratio of the remaining capacity (RC) of the battery to the full charge capacity (FCC (Full Charge Capacity)) of the design capacity (DC), that is, the charging rate (SOC) is 0% to 100%. It is not set to use all of them, and a margin of about 5% (or 10%) is taken from 0% to prevent overdischarge. Also, in order to prevent overcharging, a margin of about 5% (or 10%) is taken from 100%, and as a result, the design capacity is within the range of 5% to 95% (or 10% to 90%). ) is said to be used in Actually, by setting the voltage range of the upper limit voltage V max and the lower limit voltage V min using a BMS (Battery Management System) connected to the secondary battery, the design capacity is within the range of 5% to 95% (or 10 % to 90%).

二次電池は使用することや経時変化や温度変化により劣化が生じる。二次電池の内部の状態、特にSOC(充電率)を正確に知ることで二次電池を管理する。SOCを正確に知ることで上限電圧Vmaxと下限電圧Vminの電圧範囲を広くすることもできる。 Secondary batteries deteriorate due to use, aging, and temperature changes. To manage a secondary battery by accurately knowing the internal state of the secondary battery, especially the SOC (state of charge). By accurately knowing the SOC, it is also possible to widen the voltage range between the upper limit voltage Vmax and the lower limit voltage Vmin .

本明細書では、電池の放電可能な容量を推定する新規の電池残量計測回路を提供する。また、電池残量計測回路をシンプルな回路で実現することも課題の一つとする。 A novel battery fuel gauging circuit is provided herein for estimating the dischargeable capacity of a battery. Another issue is to realize the remaining battery level measurement circuit with a simple circuit.

上記課題を解決するため、電圧測定方式を用いる。リチウムイオン二次電池に充電された電圧(開回路電圧)を用いて残量の割合に応じた電圧を記憶手段に書き込み、リチウムイオン二次電池から放電された電圧と、記憶手段に書き込まれた電圧を比較回路(コンパレータ回路など)で比較することで、残量を示す。 In order to solve the above problems, a voltage measurement method is used. Using the voltage charged in the lithium ion secondary battery (open circuit voltage), the voltage corresponding to the percentage of the remaining amount is written in the storage means, and the voltage discharged from the lithium ion secondary battery and the voltage written in the storage means The remaining capacity is indicated by comparing the voltage with a comparison circuit (comparator circuit, etc.).

本明細書で開示する発明の構成の一つは、二次電池の残量を表示する表示回路を有する残量計測回路であり、二次電池の出力端子の電圧値を測定する測定手段と、酸化物半導体を半導体層とするトランジスタを含む複数の記憶手段と、複数の記憶手段に記憶させた電圧値と、測定手段で得られた電圧値とを比較する比較回路とを有する。 One of the configurations of the invention disclosed in this specification is a remaining amount measuring circuit having a display circuit for displaying the remaining amount of the secondary battery, measuring means for measuring the voltage value of the output terminal of the secondary battery, It has a plurality of storage means including transistors each having an oxide semiconductor as a semiconductor layer, and a comparison circuit that compares the voltage values stored in the plurality of storage means with the voltage value obtained by the measurement means.

また、レベルシフタ回路を有する構成としてもよく、その構成は、二次電池の残量を表示する表示回路を有する残量計測回路であり、二次電池の出力端子の電圧値を測定する測定手段と、酸化物半導体を半導体層とするトランジスタを含む複数の記憶手段と、複数の記憶手段に記憶させた電圧値と、前記測定手段で得られた電圧値とを比較する比較回路と、記憶手段と比較回路との間にレベルシフタ回路を有する。 In addition, a level shifter circuit may be provided, and the configuration is a remaining amount measuring circuit having a display circuit for displaying the remaining amount of the secondary battery, and measuring means for measuring the voltage value of the output terminal of the secondary battery. a plurality of memory means including transistors having oxide semiconductor as a semiconductor layer; a comparison circuit for comparing the voltage values stored in the plurality of memory means with the voltage value obtained by the measuring means; and a memory means. It has a level shifter circuit between it and the comparison circuit.

上記構成において、記憶手段はアナログ信号を保持する機能を有し、酸化物半導体を半導体層とするトランジスタを含む。酸化物半導体を半導体層とするトランジスタを用いることでシンプルな電池残量計測回路を実現できる。上記構成において、複数の記憶手段は、抵抗分圧で生成されたそれぞれ異なるアナログ信号を保持する。 In the above structure, the memory means has a function of holding an analog signal and includes a transistor including an oxide semiconductor as a semiconductor layer. A simple remaining battery level measuring circuit can be realized by using a transistor having an oxide semiconductor as a semiconductor layer. In the above configuration, the plurality of storage means hold different analog signals generated by resistive voltage division.

二次電池の残量は、用いる記憶手段の個数に合わせて検出することができ、例えば20%、30%、40%、50%、60%、70%、80%とそれぞれ記憶手段を設ければよい。20%用の記憶手段を用意する場合、外部制御する電圧と比較する比較回路で20%の容量を判別する。なお、リチウムイオン二次電池の満充電時を100%、放電終止電圧時を0%とする容量に対する百分率(%)で表す。 The remaining capacity of the secondary battery can be detected according to the number of storage means used, for example, 20%, 30%, 40%, 50%, 60%, 70%, and 80%, respectively. Just do it. When the memory means for 20% is prepared, the capacity of 20% is discriminated by a comparison circuit which compares with the externally controlled voltage. It is expressed as a percentage (%) with respect to the capacity of the lithium ion secondary battery, which is 100% when fully charged and 0% when the final discharge voltage is reached.

リチウムイオン二次電池の状態を正確に把握することのできる電池残量計測回路を実現できる。 It is possible to realize a battery level measuring circuit that can accurately grasp the state of a lithium ion secondary battery.

本発明の一態様を示す回路図の一例である。1 is an example of a circuit diagram illustrating one embodiment of the present invention; FIG. 本発明の一態様を示すグラフである。4 is a graph showing one aspect of the present invention; 本発明の一態様を示す回路図の一例である。1 is an example of a circuit diagram illustrating one embodiment of the present invention; FIG. 本発明の一態様を示すタイミングチャート及びブロック図の一例である。1A and 1B are an example of a timing chart and a block diagram illustrating one embodiment of the present invention; 本発明の一態様を示す回路図の一例である。1 is an example of a circuit diagram illustrating one embodiment of the present invention; FIG. メモリの回路構成例を説明する図。FIG. 4 is a diagram illustrating a circuit configuration example of a memory; 半導体装置の構成例を示す断面図である。1 is a cross-sectional view showing a configuration example of a semiconductor device; FIG. 半導体装置の構成例を示す断面図である。1 is a cross-sectional view showing a configuration example of a semiconductor device; FIG. トランジスタの構造例を示す上面図、及び断面図である。1A and 1B are a top view and a cross-sectional view illustrating a structure example of a transistor; 円筒型二次電池を説明する図である。It is a figure explaining a cylindrical secondary battery. 二次電池を説明する図である。It is a figure explaining a secondary battery. 二次電池を説明する図である。It is a figure explaining a secondary battery. 二次電池を説明する図である。It is a figure explaining a secondary battery. 二次電池を説明する図である。It is a figure explaining a secondary battery. 電子機器の一例を示す図である。It is a figure which shows an example of an electronic device. 市場イメージを説明する図。A diagram explaining the market image.

以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Embodiments of the present invention will be described in detail below with reference to the drawings. However, those skilled in the art will easily understand that the present invention is not limited to the following description, and that the forms and details thereof can be variously changed. Moreover, the present invention should not be construed as being limited to the description of the embodiments shown below.

(実施の形態1)
本実施の形態では、二次電池の残量0%、20%、40%、60%、80%の5段階の表示を図1に示す電池残量計測回路で実現する。
(Embodiment 1)
In this embodiment, the battery remaining amount measuring circuit shown in FIG. 1 realizes a display of the remaining amount of the secondary battery in five levels of 0%, 20%, 40%, 60%, and 80%.

図1に示す電池残量計測回路は開回路電圧の低下で残量を計算する。リチウムイオン二次電池に充電された電圧(開回路電圧)を用いて残量の割合に応じた電圧をメモリに書き込み、リチウムイオン二次電池から放電された電圧とメモリに書き込まれた電圧をコンパレータで比較することで、残量を示す。 The remaining battery capacity measurement circuit shown in FIG. 1 calculates the remaining capacity by the drop in open circuit voltage. Using the voltage (open-circuit voltage) charged in the lithium-ion secondary battery, the voltage corresponding to the percentage of the remaining amount is written in the memory, and the voltage discharged from the lithium-ion secondary battery and the voltage written in the memory are compared. By comparing with , the remaining amount is indicated.

充電終了後の電圧値(開回路電圧)を分圧し、入力端子電圧IN1、IN2、IN3、IN4、及びIN5を生成し、それぞれのメモリに保存する。本実施の形態では制御信号Pをトランジスタのゲートに入力し、同時にメモリにアナログ値を書き込んでいる。なお、入力端子電圧IN1から入力端子電圧IN5の生成は外部機器や制御回路で行ってもよい。また、入力端子電圧IN1から入力端子電圧IN5の生成は抵抗分圧で生成してもよい。 The voltage value (open-circuit voltage) after charging is divided to generate input terminal voltages IN1, IN2, IN3, IN4, and IN5, which are stored in respective memories. In this embodiment mode, the control signal P is input to the gate of the transistor and an analog value is written in the memory at the same time. The input terminal voltage IN5 may be generated from the input terminal voltage IN1 by an external device or a control circuit. Also, the input terminal voltage IN5 may be generated from the input terminal voltage IN1 by resistance voltage division.

また、図2は放電曲線を示しており、それぞれ入力端子電圧IN1、IN2、IN3、IN4、IN5を設定している。なお、入力端子電圧IN1、IN2、IN3、IN4、IN5は過放電電圧と過充電電圧の間で設定する。 Further, FIG. 2 shows discharge curves, and sets input terminal voltages IN1, IN2, IN3, IN4, and IN5, respectively. The input terminal voltages IN1, IN2, IN3, IN4 and IN5 are set between the overdischarge voltage and the overcharge voltage.

例えば、リチウムイオン二次電池の電圧(開回路電圧)が入力端子電圧IN1より大きければ、リチウムイオン二次電池の残量を80%以上ということができる。 For example, if the voltage (open circuit voltage) of the lithium ion secondary battery is higher than the input terminal voltage IN1, the remaining capacity of the lithium ion secondary battery can be said to be 80% or more.

なお、リチウムイオン二次電池から放電された電圧は、無負荷を想定している。負荷電流によりリチウムイオンバッテリの電圧が低下した場合、残量に誤差が生じる可能性がある。従って、無負荷状態で残量を判断するのが好ましい。 It should be noted that the voltage discharged from the lithium ion secondary battery assumes no load. If the voltage of the lithium-ion battery drops due to the load current, an error may occur in the remaining capacity. Therefore, it is preferable to determine the remaining amount in the no-load state.

無負荷と負荷有で電圧値の差を取得すると、メモリに書き込まれた電圧を差分だけ変動させ、残量の誤差を防ぐことが可能である。差分だけ変動させた構成として、メモリの電圧値をレベルシフタ回路を用いて変動させた場合と、容量の対極をシフトさせた場合が考えられる。 Obtaining the difference between the voltage values with no load and with load allows the voltage written in the memory to fluctuate by the difference, thereby preventing an error in the remaining amount. As a configuration in which only the difference is varied, a case in which the voltage value of the memory is varied using a level shifter circuit, and a case in which the opposite polarity of the capacitance is shifted are conceivable.

図5に、電流負荷に応じて残量計測をするため、コンパレータとメモリとの間にレベルシフタ回路を設ける例を示す。メモリの保存値をレベルシフタ回路で変更する。図5では抵抗分圧でIN1、IN2、IN3、IN4、IN5を生成する場合を示している。抵抗分圧で各入力データを生成する場合には、単純な回路で電池残量計測回路を構成することができる。 FIG. 5 shows an example in which a level shifter circuit is provided between the comparator and the memory in order to measure the remaining amount according to the current load. The value stored in the memory is changed by the level shifter circuit. FIG. 5 shows a case where IN1, IN2, IN3, IN4, and IN5 are generated by resistive voltage division. When each input data is generated by resistive voltage division, a battery remaining amount measuring circuit can be configured with a simple circuit.

また、他の例として、制御回路11から出力される制御信号P1、P2、P3、P4、P5を用いてアナログ値を順にメモリに入力する例を図3及び図4に示す。アナログ値を図6に示したメモリに保持することで長時間の保持が可能である。図6に示したメモリは酸化物半導体を有するトランジスタを含み、そのトランジスタのリーク電流が極端に少ないため、容量の長時間の保持ができる。 As another example, FIGS. 3 and 4 show an example in which analog values are sequentially input to the memory using control signals P1, P2, P3, P4, and P5 output from the control circuit 11. FIG. By holding analog values in the memory shown in FIG. 6, it is possible to hold them for a long time. The memory illustrated in FIG. 6 includes a transistor including an oxide semiconductor, and the leakage current of the transistor is extremely low; therefore, the capacity can be retained for a long time.

図4(A)にタイミングチャートの一例を示す。また、各メモリに書き込むアナログ値は、図4(B)に示すブロック図に示すようにD/Aコンバータを用いて生成すればよい。A/DコンバータやD/Aコンバータを用いることでノイズを低減し、正確な残量を検知することができる。 FIG. 4A shows an example of a timing chart. Analog values to be written in each memory may be generated using a D/A converter as shown in the block diagram of FIG. 4B. By using an A/D converter or a D/A converter, noise can be reduced and the remaining amount can be accurately detected.

本実施の形態ではメモリを5個用い、コンパレータを5個用いる例を示したが特に限定されないことは言うまでもない。例えば、10個以上用いて細かく残量表示を行ってもよい。 In this embodiment, an example of using five memories and five comparators is shown, but it goes without saying that the present invention is not particularly limited. For example, 10 or more may be used to finely display the remaining amount.

(実施の形態2)
本実施の形態では、図1に示したメモリの構成の一例を示す。メモリに用いることができる回路構成例を図6(A)乃至(G)に示す。図6(A)乃至(G)は、それぞれが記憶素子として機能する。このメモリ回路を含む回路、又は電池制御システムを、BTOS(Battery operating system、又はBattery oxide semiconductor)と呼称する場合がある。図6(A)に示す記憶素子410は、トランジスタM1と、容量素子CAと、を有する。記憶素子410は、1つのトランジスタと1つの容量素子を有する記憶素子である。
(Embodiment 2)
In this embodiment mode, an example of the structure of the memory shown in FIG. 1 is shown. Examples of circuit structures that can be used for memories are shown in FIGS. Each of FIGS. 6A to 6G functions as a memory element. A circuit including this memory circuit or a battery control system is sometimes called a BTOS (battery operating system or battery oxide semiconductor). A memory element 410 illustrated in FIG. 6A includes a transistor M1 and a capacitor CA. A memory element 410 is a memory element including one transistor and one capacitor.

トランジスタM1の第1端子は、容量素子CAの第1端子と接続され、トランジスタM1の第2端子は、配線BLと接続され、トランジスタM1のゲートは、配線WLと接続され、トランジスタM1のバックゲートは、配線BGLと接続されている。容量素子CAの第2端子は、配線CALと接続されている。トランジスタM1の第1端子と容量素子CAの第1端子が電気的に接続される節点をノードNDという。 The transistor M1 has a first terminal connected to the first terminal of the capacitor CA, a second terminal connected to the wiring BL, a gate connected to the wiring WL, and a back gate of the transistor M1. are connected to the wiring BGL. A second terminal of the capacitive element CA is connected to the wiring CAL. A node at which the first terminal of the transistor M1 and the first terminal of the capacitor CA are electrically connected is called a node ND.

実際のトランジスタにおいて、ゲートとバックゲートは、半導体層のチャネル形成領域を介して互いに重なるように設けられる。ゲートとバックゲートは、どちらもゲートとして機能できる。よって、一方を「バックゲート」という場合、他方を「ゲート」または「フロントゲート」という場合がある。また、一方を「第1ゲート」、他方を「第2ゲート」という場合がある。 In an actual transistor, a gate and a back gate are provided so as to overlap with each other with a channel formation region of a semiconductor layer interposed therebetween. Both gates and back gates can function as gates. Therefore, when one is called a "back gate", the other is sometimes called a "gate" or a "front gate". Also, one may be referred to as a "first gate" and the other as a "second gate".

バックゲートは、ゲートと同電位としてもよいし、接地電位や、任意の電位としてもよい。また、バックゲートの電位をゲートと連動させず独立して変化させることで、トランジスタのしきい値電圧を変化させることができる。 The back gate may have the same potential as the gate, or may have the ground potential or any potential. In addition, the threshold voltage of the transistor can be changed by changing the potential of the back gate independently of the potential of the gate.

バックゲートを設けることで、更には、ゲートとバックゲートを同電位とすることで、半導体層においてキャリアの流れる領域が膜厚方向においてより大きくなるため、キャリアの移動量が増加する。この結果、トランジスタのオン電流が大きくなると共に、電界効果移動度が高くなる。 By providing the back gate and further by setting the gate and the back gate to the same potential, the region in which carriers flow in the semiconductor layer becomes larger in the film thickness direction, so that the movement amount of carriers increases. As a result, the ON current of the transistor increases and the field effect mobility increases.

したがって、トランジスタを占有面積に対して大きいオン電流を有するトランジスタにすることができる。すなわち、求められるオン電流に対して、トランジスタの占有面積を小さくすることができる。よって、集積度の高い半導体装置を実現することができる。 Therefore, the transistor can be a transistor having a large on-current with respect to the occupied area. That is, the area occupied by the transistor can be reduced with respect to the required on-current. Therefore, a highly integrated semiconductor device can be realized.

配線BGLは、トランジスタM1のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM1のしきい値電圧を増減することができる。 The wiring BGL functions as a wiring for applying a potential to the back gate of the transistor M1. By applying an arbitrary potential to the wiring BGL, the threshold voltage of the transistor M1 can be increased or decreased.

データの書き込みおよび読み出しは、配線WLに高レベル電位を印加し、トランジスタM1を導通状態にし、配線BLとノードNDを電気的に接続することによって行われる。 Data is written and read by applying a high-level potential to the wiring WL, turning on the transistor M1, and electrically connecting the wiring BL and the node ND.

配線CALは、容量素子CAの第2端子に所定の電位を印加するための配線として機能する。配線CALには、固定電位を印加するのが好ましい。 The wiring CAL functions as a wiring for applying a predetermined potential to the second terminal of the capacitor CA. A fixed potential is preferably applied to the wiring CAL.

図6(B)に示す記憶素子420は、記憶素子410の変形例である。記憶素子420では、トランジスタM1のバックゲートが、配線WLと電気的に接続される。このような構成にすることによって、トランジスタM1のバックゲートに、トランジスタM1のゲートと同じ電位を印加することができる。よって、トランジスタM1が導通状態のときにおいて、トランジスタM1に流れる電流を増加することができる。 A memory element 420 illustrated in FIG. 6B is a modification of the memory element 410 . In the memory element 420, the back gate of the transistor M1 is electrically connected to the wiring WL. With such a structure, the same potential as that of the gate of the transistor M1 can be applied to the back gate of the transistor M1. Therefore, the current flowing through the transistor M1 can be increased when the transistor M1 is in a conducting state.

また、図6(C)に示す記憶素子430のように、トランジスタM1をシングルゲート構造のトランジスタ(バックゲートを有さないトランジスタ)としてもよい。記憶素子430は、記憶素子410および記憶素子420のトランジスタM1からバックゲートを除いた構成となっている。よって、記憶素子430は、記憶素子410、および記憶素子420よりも作製工程を短縮することができる。 Alternatively, the transistor M1 may be a single-gate transistor (a transistor without a back gate) as in the memory element 430 illustrated in FIG. 6C. The memory element 430 has a structure in which the back gate is removed from the transistors M1 of the memory elements 410 and 420 . Therefore, the manufacturing process of the memory element 430 can be shorter than that of the memory elements 410 and 420 .

記憶素子410、記憶素子420、および記憶素子430は、DRAM型の記憶素子である。 Storage element 410, storage element 420, and storage element 430 are DRAM-type storage elements.

トランジスタM1のチャネルが形成される半導体層には、酸化物半導体を用いることが好ましい。本明細書などでは、チャネルが形成される半導体層に酸化物半導体を含むトランジスタを「OSトランジスタ」ともいう。 An oxide semiconductor is preferably used for the semiconductor layer in which the channel of the transistor M1 is formed. In this specification and the like, a transistor including an oxide semiconductor in a semiconductor layer in which a channel is formed is also referred to as an “OS transistor”.

例えば、酸化物半導体として、インジウム、元素M(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)、亜鉛のいずれか一つを用いることができる。特に、酸化物半導体は、インジウム、ガリウム、亜鉛を含む酸化物半導体であることが好ましい。 For example, as an oxide semiconductor, indium, element M (element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, One or more selected from tantalum, tungsten, magnesium, etc.) and zinc can be used. In particular, the oxide semiconductor preferably contains indium, gallium, and zinc.

OSトランジスタは、オフ電流が極めて少ないという特性を有している。トランジスタM1としてOSトランジスタを用いることによって、トランジスタM1のリーク電流を非常に低くすることができる。つまり、書き込んだデータをトランジスタM1によって長時間保持することができる。よって、記憶素子のリフレッシュの頻度を少なくすることができる。また、記憶素子のリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、記憶素子410、記憶素子420、記憶素子430において多値データ、またはアナログデータを保持することができる。 An OS transistor has a characteristic of extremely low off-state current. By using an OS transistor as the transistor M1, leakage current of the transistor M1 can be significantly reduced. That is, written data can be held for a long time by the transistor M1. Therefore, the refresh frequency of the memory element can be reduced. In addition, the refresh operation of the memory element can be made unnecessary. In addition, since leakage current is extremely low, multilevel data or analog data can be held in the memory elements 410, 420, and 430. FIG.

本明細書などでは、OSトランジスタを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)という。 In this specification and the like, a DRAM using an OS transistor is referred to as a DOSRAM (Dynamic Oxide Semiconductor Random Access Memory).

図6(D)に、2つのトランジスタと1つの容量素子で構成するゲインセル型の記憶素子の回路構成例を示す。記憶素子440は、トランジスタM1と、トランジスタM2と、容量素子CAと、を有する。 FIG. 6D shows a circuit configuration example of a gain-cell memory element including two transistors and one capacitor. The memory element 440 includes a transistor M1, a transistor M2, and a capacitor CA.

トランジスタM1の第1端子は、容量素子CAの第1端子と接続され、トランジスタM1の第2端子は、配線WBLと接続され、トランジスタM1のゲートは、配線WWLと接続されている。容量素子CAの第2端子は、配線CALと接続されている。トランジスタM2の第1端子は、配線RBLと接続され、トランジスタM2の第2端子は、配線RWLと接続され、トランジスタM2のゲートは、容量素子CAの第1端子と接続されている。トランジスタM1の第1端子と、容量素子CAの第1端子と、トランジスタM2のゲートと、が電気的に接続される節点をノードNDという。 A first terminal of the transistor M1 is connected to the first terminal of the capacitor CA, a second terminal of the transistor M1 is connected to the wiring WBL, and a gate of the transistor M1 is connected to the wiring WWL. A second terminal of the capacitive element CA is connected to the wiring CAL. A first terminal of the transistor M2 is connected to the wiring RBL, a second terminal of the transistor M2 is connected to the wiring RWL, and a gate of the transistor M2 is connected to the first terminal of the capacitor CA. A node at which the first terminal of the transistor M1, the first terminal of the capacitor CA, and the gate of the transistor M2 are electrically connected is called a node ND.

ビット線WBLは、書き込みビット線として機能し、ビット線RBLは、読み出しビット線として機能し、ワード線WWLは、書き込みワード線として機能し、ワード線RWLは、読み出しワード線として機能する。トランジスタM1は、ノードNDとビット線WBLとを、導通または非導通とするスイッチとしての機能を有する。 Bit line WBL functions as a write bit line, bit line RBL functions as a read bit line, word line WWL functions as a write word line, and word line RWL functions as a read word line. Transistor M1 functions as a switch that makes the node ND and bit line WBL conductive or non-conductive.

トランジスタM1にOSトランジスタを用いることが好ましい。前述したとおり、OSトランジスタはオフ電流が非常に少ないため、トランジスタM1にOSトランジスタを用いることで、ノードNDに書き込んだ電位を長時間保持することができる。つまり、記憶素子に書き込んだデータを長時間保持することができる。 An OS transistor is preferably used as the transistor M1. As described above, the off-state current of the OS transistor is very low; therefore, by using the OS transistor as the transistor M1, the potential written to the node ND can be held for a long time. In other words, data written in the memory element can be held for a long time.

トランジスタM2に用いるトランジスタに特段の限定は無い。トランジスタM2として、OSトランジスタ、Siトランジスタ(半導体層にシリコンを用いたトランジスタ。)、またはその他のトランジスタを用いてもよい。 There is no particular limitation on the transistor used for the transistor M2. As the transistor M2, an OS transistor, a Si transistor (a transistor using silicon for a semiconductor layer), or another transistor may be used.

なお、トランジスタM2にSiトランジスタを用いる場合、半導体層に用いるシリコンは、非晶質シリコン、多結晶シリコン、低温ポリシリコン(LTPS:Low Temperature Poly-Silicon)、または単結晶シリコンとすればよい。Siトランジスタは、OSトランジスタよりも電界効果移動度が高くなる場合があるため、読み出しトランジスタとして、Siトランジスタを用いると、読み出し時の動作速度を高めることができる。 Note that when a Si transistor is used as the transistor M2, silicon used for the semiconductor layer may be amorphous silicon, polycrystalline silicon, low temperature polysilicon (LTPS), or single crystal silicon. A Si transistor may have a higher field-effect mobility than an OS transistor. Therefore, if a Si transistor is used as a reading transistor, the operation speed during reading can be increased.

トランジスタM1にOSトランジスタを用い、トランジスタM2にSiトランジスタを用いる場合、両者を異なる層に積層して設けてもよい。OSトランジスタは、Siトランジスタと同様の製造装置および同様のプロセスで作製することが可能である。よって、OSトランジスタとSiトランジスタの混載(ハイブリッド化)が容易であり、高集積化も容易である。 When an OS transistor is used as the transistor M1 and a Si transistor is used as the transistor M2, both may be stacked in different layers. An OS transistor can be manufactured using a manufacturing apparatus and a process similar to those of a Si transistor. Therefore, mixed mounting (hybridization) of an OS transistor and a Si transistor is easy, and high integration is also easy.

また、トランジスタM2にOSトランジスタを用いると、非選択時のリーク電流を極めて少なくすることができるため、読み出し精度を高めることができる。トランジスタM1およびトランジスタM2の両方にOSトランジスタを用いることで、半導体装置の作製工程が低減され、生産性を高めることができる。例えば、400℃以下のプロセス温度で半導体装置を作製することもできる。 In addition, when an OS transistor is used as the transistor M2, leakage current when not selected can be significantly reduced, so that reading accuracy can be improved. By using OS transistors for both the transistor M1 and the transistor M2, the number of steps for manufacturing a semiconductor device can be reduced, and productivity can be improved. For example, a semiconductor device can be manufactured at a process temperature of 400° C. or lower.

トランジスタM1およびトランジスタM2にバックゲートを有するトランジスタ(4端子型のトランジスタ。「4端子素子」ともいう。)を用いる場合の回路構成例を図6(E)乃至(G)に示す。図6(E)に示す記憶素子450、図6(F)に示す記憶素子460、および図6(G)に示す記憶素子470は、記憶素子440の変形例である。 FIGS. 6E to 6G show circuit configuration examples in which transistors having back gates (four-terminal transistors; also referred to as “four-terminal elements”) are used for the transistors M1 and M2. A memory element 450 illustrated in FIG. 6E, a memory element 460 illustrated in FIG. 6F, and a memory element 470 illustrated in FIG.

図6(E)に示す記憶素子450では、トランジスタM1のゲートとバックゲートが電気的に接続されている。また、トランジスタM2のゲートとバックゲートが電気的に接続されている。 In the memory element 450 illustrated in FIG. 6E, the gate and back gate of the transistor M1 are electrically connected. Also, the gate and back gate of the transistor M2 are electrically connected.

図6(F)に示す記憶素子460では、トランジスタM1のバックゲート、およびトランジスタM2のバックゲートを配線BGLと電気的に接続している。配線BGLを介して、トランジスタM1およびトランジスタM2のバックゲートに所定の電位を印加することができる。 In the memory element 460 illustrated in FIG. 6F, the back gate of the transistor M1 and the back gate of the transistor M2 are electrically connected to the wiring BGL. A predetermined potential can be applied to the back gates of the transistor M1 and the transistor M2 through the wiring BGL.

図6(G)に示す記憶素子470では、トランジスタM1のバックゲートが配線WBGLと電気的に接続され、トランジスタM2のバックゲートが配線RBGLと電気的に接続されている。トランジスタM1のバックゲートとトランジスタM2のバックゲートをそれぞれ異なる配線に接続することで、それぞれ独立してしきい値電圧を変化させることができる。 In the memory element 470 illustrated in FIG. 6G, the back gate of the transistor M1 is electrically connected to the wiring WBGL, and the back gate of the transistor M2 is electrically connected to the wiring RBGL. By connecting the back gate of the transistor M1 and the back gate of the transistor M2 to different wirings, the threshold voltages can be changed independently.

記憶素子440乃至記憶素子470は、2Tr1C型のメモリセルである。本明細書などにおいて、トランジスタM1にOSトランジスタを用いて、2Tr1C型のメモリセルを構成した記憶装置をNOSRAM(Non-volatile Oxide Semiconductor Random Access Memory)という。また、記憶素子440乃至記憶素子470は、ノードNDの電位をトランジスタM12で増幅して読みだすことができる。また、OSトランジスタはオフ電流が非常に少ないため、ノードNDの電位を長期間保持することができる。また、読み出し動作を行ってもノードNDの電位が保持される非破壊読み出しを行うことができる。 The memory elements 440 to 470 are 2Tr1C memory cells. In this specification and the like, a memory device in which a 2Tr1C memory cell is formed by using an OS transistor as the transistor M1 is called a NOSRAM (Non-volatile Oxide Semiconductor Random Access Memory). Further, in the memory elements 440 to 470, the potential of the node ND can be amplified by the transistor M12 and read. In addition, since the OS transistor has very low off-state current, the potential of the node ND can be held for a long time. In addition, nondestructive reading can be performed in which the potential of the node ND is held even when a reading operation is performed.

記憶素子101に保持されている情報は、書き換え頻度が少ない情報である。よって、記憶素子101としては、情報の非破壊読み出しが可能かつ長期保持が可能であるNOSRAMを用いることが好ましい。 Information held in the memory element 101 is information that is infrequently rewritten. Therefore, as the storage element 101, it is preferable to use a NOSRAM that can read information nondestructively and retain information for a long period of time.

また、図6(A)、(B)、(E)乃至(G)に示したトランジスタは、4端子素子であるため、MTJ(Magnetic Tunnel Junction)特性を利用したMRAM(Magnetoresistive Random Access Memory)、ReRAM(Resistive Random Access Memory)、相変化メモリ(Phase-change memory)などに代表される2端子素子と比較して、入出力の独立制御が簡便に行うことができるといった特徴を有する。 Further, since the transistors shown in FIGS. 6A, 6B, and 6E to 6G are four-terminal elements, they are MRAM (Magnetoresistive Random Access Memory) utilizing MTJ (Magnetic Tunnel Junction) characteristics. Compared with a two-terminal element represented by ReRAM (Resistive Random Access Memory), Phase-change memory, etc., it has the feature that input/output can be easily controlled independently.

また、MRAM、ReRAM、相変化メモリは、情報の書き換えの際に、原子レベルで構造変化が生じる場合がある。一方で、本発明の一態様の記憶装置は、情報の書き換えの際にトランジスタを介した電荷のチャージ、またはディスチャージにより動作するため、繰り返し書き換え耐性に優れ、構造変化も少ないといった特徴を有する。 In addition, MRAM, ReRAM, and phase change memory may undergo structural changes at the atomic level when information is rewritten. On the other hand, since the memory device of one embodiment of the present invention operates by charging or discharging electric charges through a transistor when data is rewritten, it has characteristics such as excellent resistance to repetitive rewriting and little structural change.

本実施の形態は他の実施の形態と自由に組み合わせることができる。 This embodiment can be freely combined with other embodiments.

(実施の形態3)
本実施の形態では、上記実施の形態で説明した記憶素子の構成に適用可能なトランジスタの構成、具体的には異なる電気特性を有するトランジスタを積層して設ける構成について説明する。特に本実施の形態では、半導体装置を構成するメモリ回路が有する各トランジスタの構成について説明する。当該構成とすることで、半導体装置の設計自由度を高めることができる。また、異なる電気特性を有するトランジスタを積層して設けることで、半導体装置の集積度を高めることができる。
(Embodiment 3)
In this embodiment, a structure of a transistor which can be applied to the structure of the memory element described in the above embodiment, specifically, a structure in which transistors having different electrical characteristics are stacked will be described. In particular, in this embodiment mode, a structure of each transistor included in a memory circuit included in a semiconductor device will be described. With such a structure, the degree of freedom in designing the semiconductor device can be increased. In addition, by stacking transistors having different electrical characteristics, the degree of integration of the semiconductor device can be increased.

図7に示す半導体装置は、トランジスタ300と、トランジスタ500と、容量素子600と、を有している。図9(A)はトランジスタ500のチャネル長方向の断面図であり、図9(B)はトランジスタ500のチャネル幅方向の断面図であり、図9(C)はトランジスタ300のチャネル幅方向の断面図である。 A semiconductor device illustrated in FIG. 7 includes a transistor 300 , a transistor 500 , and a capacitor 600 . 9A is a cross-sectional view of the transistor 500 in the channel length direction, FIG. 9B is a cross-sectional view of the transistor 500 in the channel width direction, and FIG. 9C is a cross-sectional view of the transistor 300 in the channel width direction. It is a diagram.

トランジスタ500は、チャネル形成領域に酸化物半導体を有するトランジスタ(OSトランジスタ)である。トランジスタ500は、オフ電流が小さいため、これを半導体装置が有するOSトランジスタに用いることにより、長期にわたり書き込んだデータ電圧あるいは電荷を保持することが可能である。つまり、リフレッシュ動作の頻度が少ない、あるいは、リフレッシュ動作を必要としないため、半導体装置の消費電力を低減することができる。 The transistor 500 is a transistor (OS transistor) including an oxide semiconductor in a channel formation region. Since the transistor 500 has a low off-state current, by using the transistor 500 as an OS transistor included in the semiconductor device, written data voltage or electric charge can be held for a long time. In other words, the power consumption of the semiconductor device can be reduced because the frequency of the refresh operation is low or the refresh operation is not required.

本実施の形態で説明する半導体装置は、図7に示すようにトランジスタ300、トランジスタ500、容量素子600を有する。トランジスタ500はトランジスタ300の上方に設けられ、容量素子600はトランジスタ300、及びトランジスタ500の上方に設けられている。なお、容量素子600は、メモリ回路における容量素子Csなどとすることができる。 The semiconductor device described in this embodiment includes a transistor 300, a transistor 500, and a capacitor 600 as illustrated in FIG. The transistor 500 is provided above the transistor 300 , and the capacitor 600 is provided above the transistors 300 and 500 . Note that the capacitor 600 can be a capacitor Cs or the like in a memory circuit.

トランジスタ300は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域又はドレイン領域として機能する低抵抗領域314a、及び低抵抗領域314bを有する。なお、トランジスタ300は、例えば、上記実施の形態におけるメモリ回路が有するトランジスタ等に適用することができる。 The transistor 300 is provided over a substrate 311 and has a conductor 316, an insulator 315, a semiconductor region 313 made of part of the substrate 311, and low-resistance regions 314a and 314b functioning as source or drain regions. . Note that the transistor 300 can be applied to, for example, the transistor included in the memory circuit in any of the above embodiments.

トランジスタ300は、図9(C)に示すように、半導体領域313の上面及びチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ300をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ300のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ300のオフ特性を向上させることができる。 In the transistor 300, as shown in FIG. 9C, a top surface and side surfaces in the channel width direction of a semiconductor region 313 are covered with a conductor 316 with an insulator 315 interposed therebetween. By making the transistor 300 Fin-type in this manner, the effective channel width is increased, so that the on-characteristics of the transistor 300 can be improved. Further, since the contribution of the electric field of the gate electrode can be increased, the off characteristics of the transistor 300 can be improved.

なお、トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。 Note that the transistor 300 may be of either p-channel type or n-channel type.

半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、又はドレイン領域となる低抵抗領域314a、及び低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。又は、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。又はGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。 A region in which a channel of the semiconductor region 313 is formed, a region in the vicinity thereof, the low-resistance regions 314a and 314b serving as a source region or a drain region, and the like preferably contain a semiconductor such as a silicon-based semiconductor. It preferably contains crystalline silicon. Alternatively, a material including Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), or the like may be used. A structure using silicon in which the effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing may be used. Alternatively, the transistor 300 may be a HEMT (High Electron Mobility Transistor) by using GaAs, GaAlAs, or the like.

低抵抗領域314a、及び低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、又はホウ素などのp型の導電性を付与する元素を含む。 In the low-resistance regions 314a and 314b, in addition to the semiconductor material applied to the semiconductor region 313, an element imparting n-type conductivity, such as arsenic or phosphorus, or an element imparting p-type conductivity, such as boron, is used. contains elements that

ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、又は金属酸化物材料などの導電性材料を用いることができる。 The conductor 316 functioning as a gate electrode is a semiconductor material such as silicon containing an element imparting n-type conductivity such as arsenic or phosphorus or an element imparting p-type conductivity such as boron, a metal material, or an alloy. material, or a conductive material such as a metal oxide material.

なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。 Note that since the work function is determined by the material of the conductor, the threshold voltage of the transistor can be adjusted by selecting the material of the conductor. Specifically, it is preferable to use a material such as titanium nitride or tantalum nitride for the conductor. Furthermore, in order to achieve both conductivity and embeddability, it is preferable to use a metal material such as tungsten or aluminum as a laminate for the conductor, and it is particularly preferable to use tungsten from the viewpoint of heat resistance.

なお、図7に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、半導体装置をOSトランジスタのみの単極性回路(nチャネル型トランジスタのみ、などと同極性のトランジスタを意味する)とする場合、図8に示すとおり、トランジスタ300の構成を、酸化物半導体を用いているトランジスタ500と同様の構成にすればよい。なお、トランジスタ500の詳細については後述する。 Note that the transistor 300 illustrated in FIG. 7 is an example, and the structure thereof is not limited, and an appropriate transistor may be used depending on the circuit configuration and the driving method. For example, in the case where the semiconductor device is a unipolar circuit including only an OS transistor (meaning a transistor with the same polarity as only an n-channel transistor), the transistor 300 is formed using an oxide semiconductor as illustrated in FIG. A structure similar to that of the transistor 500 may be used. Details of the transistor 500 will be described later.

トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326が順に積層して設けられている。 An insulator 320 , an insulator 322 , an insulator 324 , and an insulator 326 are stacked in order to cover the transistor 300 .

絶縁体320、絶縁体322、絶縁体324、及び絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。 For the insulators 320, 322, 324, and 326, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, or the like is used. Just do it.

なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。 In this specification, silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen, and silicon oxynitride refers to a material whose composition contains more nitrogen than oxygen. indicates In this specification, aluminum oxynitride refers to a material whose composition contains more oxygen than nitrogen, and aluminum oxynitride refers to a material whose composition contains more nitrogen than oxygen. indicates

絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。 The insulator 322 may function as a planarization film that planarizes a step caused by the transistor 300 or the like provided therebelow. For example, the top surface of the insulator 322 may be planarized by a chemical mechanical polishing (CMP) method or the like to improve planarity.

また、絶縁体324には、基板311、又はトランジスタ300などから、トランジスタ500が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。 For the insulator 324, it is preferable to use a film having a barrier property such that hydrogen or impurities do not diffuse from the substrate 311, the transistor 300, or the like to the region where the transistor 500 is provided.

水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。 As an example of a film having a barrier property against hydrogen, silicon nitride formed by a CVD method can be used. Here, diffusion of hydrogen into a semiconductor element including an oxide semiconductor, such as the transistor 500, might degrade the characteristics of the semiconductor element. Therefore, it is preferable to use a film that suppresses diffusion of hydrogen between the transistor 500 and the transistor 300 . Specifically, the film that suppresses diffusion of hydrogen is a film from which the amount of desorption of hydrogen is small.

水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。 The desorption amount of hydrogen can be analyzed using, for example, thermal desorption spectroscopy (TDS). For example, the amount of hydrogen released from the insulator 324 is the amount of hydrogen atoms released per area of the insulator 324 when the surface temperature of the film is in the range of 50° C. to 500° C. in TDS analysis. , 10×10 15 atoms/cm 2 or less, preferably 5×10 15 atoms/cm 2 or less.

なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。 Note that the insulator 326 preferably has a lower dielectric constant than the insulator 324 . For example, the dielectric constant of insulator 326 is preferably less than 4, more preferably less than 3. Also, for example, the dielectric constant of the insulator 326 is preferably 0.7 times or less, more preferably 0.6 times or less, that of the insulator 324 . By using a material with a low dielectric constant as the interlayer film, the parasitic capacitance generated between wirings can be reduced.

また、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326には容量素子600、又はトランジスタ500と接続する導電体328、及び導電体330等が埋め込まれている。なお、導電体328、及び導電体330は、プラグ又は配線としての機能を有する。また、プラグ又は配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、及び導電体の一部がプラグとして機能する場合もある。 In addition, the insulator 320, the insulator 322, the insulator 324, and the insulator 326 are embedded with conductors 328, 330, and the like connected to the capacitor 600 or the transistor 500, respectively. Note that the conductors 328 and 330 function as plugs or wirings. In addition, conductors that function as plugs or wiring may have a plurality of structures collectively given the same reference numerals. Further, in this specification and the like, the wiring and the plug connected to the wiring may be integrated. That is, part of the conductor may function as wiring, and part of the conductor may function as a plug.

各プラグ、及び配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、又は金属酸化物材料などの導電性材料を、単層又は積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。又は、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。 As a material for each plug and wiring (conductor 328, conductor 330, etc.), a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used as a single layer or a laminated layer. be able to. It is preferable to use a high-melting-point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably made of a low resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low-resistance conductive material.

絶縁体326、及び導電体330上に、配線層を設けてもよい。例えば、図7において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ300と接続するプラグ、又は配線としての機能を有する。なお導電体356は、導電体328、及び導電体330と同様の材料を用いて設けることができる。 A wiring layer may be provided over the insulator 326 and the conductor 330 . For example, in FIG. 7, an insulator 350, an insulator 352, and an insulator 354 are stacked in this order. A conductor 356 is formed over the insulators 350 , 352 , and 354 . The conductor 356 functions as a plug or wiring connected to the transistor 300 . Note that the conductor 356 can be provided using a material similar to that of the conductors 328 and 330 .

なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。 Note that for the insulator 350 , for example, an insulator having a barrier property against hydrogen is preferably used, like the insulator 324 . Further, the conductor 356 preferably contains a conductor having a barrier property against hydrogen. In particular, a conductor having a barrier property against hydrogen is formed in the opening of the insulator 350 having a barrier property against hydrogen. With this structure, the transistor 300 and the transistor 500 can be separated by a barrier layer, and diffusion of hydrogen from the transistor 300 to the transistor 500 can be suppressed.

なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。 Note that tantalum nitride or the like may be used as the conductor having a barrier property against hydrogen, for example. Further, by stacking tantalum nitride and tungsten having high conductivity, diffusion of hydrogen from the transistor 300 can be suppressed while the conductivity of the wiring is maintained. In this case, it is preferable that the tantalum nitride layer having a barrier property against hydrogen be in contact with the insulator 350 having a barrier property against hydrogen.

絶縁体354、及び導電体356上に、配線層を設けてもよい。例えば、図7において、絶縁体360、絶縁体362、及び絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、及び絶縁体364には、導電体366が形成されている。導電体366は、プラグ又は配線としての機能を有する。なお導電体366は、導電体328、及び導電体330と同様の材料を用いて設けることができる。 A wiring layer may be provided over the insulator 354 and the conductor 356 . For example, in FIG. 7, an insulator 360, an insulator 362, and an insulator 364 are stacked in this order. A conductor 366 is formed over the insulators 360 , 362 , and 364 . The conductor 366 functions as a plug or wiring. Note that the conductor 366 can be provided using a material similar to that of the conductors 328 and 330 .

なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。 Note that for the insulator 360, for example, an insulator having a barrier property against hydrogen is preferably used, like the insulator 324. Further, the conductor 366 preferably contains a conductor having a barrier property against hydrogen. In particular, a conductor having a barrier property against hydrogen is formed in the opening of the insulator 360 having a barrier property against hydrogen. With this structure, the transistor 300 and the transistor 500 can be separated by a barrier layer, and diffusion of hydrogen from the transistor 300 to the transistor 500 can be suppressed.

絶縁体364、及び導電体366上に、配線層を設けてもよい。例えば、図7において、絶縁体370、絶縁体372、及び絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、及び絶縁体374には、導電体376が形成されている。導電体376は、プラグ又は配線としての機能を有する。なお導電体376は、導電体328、及び導電体330と同様の材料を用いて設けることができる。 A wiring layer may be provided over the insulator 364 and the conductor 366 . For example, in FIG. 7, an insulator 370, an insulator 372, and an insulator 374 are stacked in this order. A conductor 376 is formed over the insulators 370 , 372 , and 374 . The conductor 376 functions as a plug or wiring. Note that the conductor 376 can be provided using a material similar to that of the conductors 328 and 330 .

なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。 Note that for the insulator 370, for example, an insulator having a barrier property against hydrogen is preferably used like the insulator 324. Further, the conductor 376 preferably contains a conductor having a barrier property against hydrogen. In particular, a conductor having a barrier property against hydrogen is formed in the opening of the insulator 370 having a barrier property against hydrogen. With this structure, the transistor 300 and the transistor 500 can be separated by a barrier layer, and diffusion of hydrogen from the transistor 300 to the transistor 500 can be suppressed.

絶縁体374、及び導電体376上に、配線層を設けてもよい。例えば、図7において、絶縁体380、絶縁体382、及び絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、及び絶縁体384には、導電体386が形成されている。導電体386は、プラグ又は配線としての機能を有する。なお導電体386は、導電体328、及び導電体330と同様の材料を用いて設けることができる。 A wiring layer may be provided over the insulator 374 and the conductor 376 . For example, in FIG. 7, an insulator 380, an insulator 382, and an insulator 384 are stacked in order. A conductor 386 is formed over the insulators 380 , 382 , and 384 . The conductor 386 functions as a plug or wiring. Note that the conductor 386 can be provided using a material similar to that of the conductors 328 and 330 .

なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。 Note that for the insulator 380, for example, an insulator having a barrier property against hydrogen is preferably used like the insulator 324. Further, the conductor 386 preferably contains a conductor having a barrier property against hydrogen. In particular, a conductor having a barrier property against hydrogen is formed in the opening of the insulator 380 having a barrier property against hydrogen. With this structure, the transistor 300 and the transistor 500 can be separated by a barrier layer, and diffusion of hydrogen from the transistor 300 to the transistor 500 can be suppressed.

上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、及び導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。 The wiring layer including the conductor 356, the wiring layer including the conductor 366, the wiring layer including the conductor 376, and the wiring layer including the conductor 386 are described above. It is not limited to this. The number of wiring layers similar to the wiring layer including the conductor 356 may be three or less, or the number of wiring layers similar to the wiring layer including the conductor 356 may be five or more.

絶縁体384上には絶縁体510、絶縁体512、絶縁体514、及び絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、及び絶縁体516のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。 An insulator 510 , an insulator 512 , an insulator 514 , and an insulator 516 are stacked in this order over the insulator 384 . Any of the insulator 510, the insulator 512, the insulator 514, and the insulator 516 is preferably a substance having barrier properties against oxygen and hydrogen.

例えば、絶縁体510、及び絶縁体514には、例えば、基板311、又はトランジスタ300を設ける領域などから、トランジスタ500を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。 For the insulators 510 and 514, for example, a film having barrier properties such that hydrogen or impurities do not diffuse from the substrate 311 or a region where the transistor 300 is provided to a region where the transistor 500 is provided is used. is preferred. Therefore, a material similar to that of the insulator 324 can be used.

水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。 As an example of a film having a barrier property against hydrogen, silicon nitride formed by a CVD method can be used. Here, diffusion of hydrogen into a semiconductor element including an oxide semiconductor, such as the transistor 500, might degrade the characteristics of the semiconductor element. Therefore, it is preferable to use a film that suppresses diffusion of hydrogen between the transistor 500 and the transistor 300 . Specifically, the film that suppresses diffusion of hydrogen is a film from which the amount of desorption of hydrogen is small.

また、水素に対するバリア性を有する膜として、例えば、絶縁体510、及び絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。 As a film having a barrier property against hydrogen, for example, the insulators 510 and 514 are preferably formed using a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide.

特に、酸化アルミニウムは、酸素、及びトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中及び作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。 In particular, aluminum oxide has a high shielding effect of preventing the penetration of both oxygen and impurities such as hydrogen and moisture, which cause variations in the electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 500 during and after the manufacturing process of the transistor. In addition, release of oxygen from the oxide forming the transistor 500 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 500 .

また、例えば、絶縁体512、及び絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、及び絶縁体516として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。 Further, for example, the insulators 512 and 516 can be formed using a material similar to that of the insulator 320 . In addition, by using a material with a relatively low dielectric constant for these insulators, parasitic capacitance generated between wirings can be reduced. For example, the insulators 512 and 516 can be formed using a silicon oxide film, a silicon oxynitride film, or the like.

また、絶縁体510、絶縁体512、絶縁体514、及び絶縁体516には、導電体518、及びトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、容量素子600、又はトランジスタ300と接続するプラグ、又は配線としての機能を有する。導電体518は、導電体328、及び導電体330と同様の材料を用いて設けることができる。 In addition, the insulator 510 , the insulator 512 , the insulator 514 , and the insulator 516 are embedded with a conductor 518 , a conductor forming the transistor 500 (eg, the conductor 503 ), and the like. Note that the conductor 518 functions as a plug or wiring that is connected to the capacitor 600 or the transistor 300 . The conductor 518 can be provided using a material similar to that of the conductors 328 and 330 .

特に、絶縁体510、及び絶縁体514と接する領域の導電体518は、酸素、水素、及び水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ500とは、酸素、水素、及び水に対するバリア性を有する層で、分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。 In particular, a conductor 518 in a region in contact with the insulator 510 and the insulator 514 is preferably a conductor having barrier properties against oxygen, hydrogen, and water. With this structure, the transistor 300 and the transistor 500 can be separated by a layer having barrier properties against oxygen, hydrogen, and water, and diffusion of hydrogen from the transistor 300 to the transistor 500 can be suppressed.

絶縁体516の上方には、トランジスタ500が設けられている。 A transistor 500 is provided above the insulator 516 .

図9(A)(B)に示すように、トランジスタ500は、絶縁体514及び絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516及び導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542a及び導電体542bと、導電体542a及び導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面及び側面に配置された酸化物530cと、酸化物530cの形成面に配置された絶縁体550と、絶縁体550の形成面に配置された導電体560と、を有する。 As illustrated in FIGS. 9A and 9B, the transistor 500 is provided with a conductor 503 embedded in insulators 514 and 516 and over the insulators 516 and 503 . Insulator 520, insulator 522 over insulator 520, insulator 524 over insulator 522, oxide 530a over insulator 524, and oxide 530a an oxide 530b overlying a conductor 542a and a conductor 542b spaced apart from each other over the oxide 530b; An insulator 580 with an opening overlapping between them, an oxide 530c arranged on the bottom and side surfaces of the opening, an insulator 550 arranged on the formation surface of the oxide 530c, and an insulator 550 are formed. and a conductor 560 disposed on the surface.

また、図9(A)(B)に示すように、酸化物530a、酸化物530b、導電体542a、及び導電体542bと、絶縁体580との間に絶縁体544が配置されることが好ましい。また、図9(A)(B)に示すように、導電体560は、絶縁体550の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図9(A)(B)に示すように、絶縁体580、導電体560、及び絶縁体550の上に絶縁体574が配置されることが好ましい。 An insulator 544 is preferably provided between the oxide 530a, the oxide 530b, the conductors 542a and 542b, and the insulator 580 as shown in FIGS. . 9A and 9B, the conductor 560 includes a conductor 560a provided inside the insulator 550 and a conductor 560b embedded inside the conductor 560a. and preferably. Further, an insulator 574 is preferably provided over the insulator 580, the conductor 560, and the insulator 550 as shown in FIGS.

なお、以下において、酸化物530a、酸化物530b、及び酸化物530cをまとめて酸化物530という場合がある。 Note that the oxide 530a, the oxide 530b, and the oxide 530c are collectively referred to as the oxide 530 in some cases below.

なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、酸化物530b、及び酸化物530cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、酸化物530bと酸化物530aの2層構造、酸化物530bと酸化物530cの2層構造、又は4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ500では、導電体560を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構造であってもよいし、3層以上の積層構造であってもよい。また、図7、図9(A)に示すトランジスタ500は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。 Note that although the transistor 500 has a structure in which three layers of the oxide 530a, the oxide 530b, and the oxide 530c are stacked in a region where a channel is formed and in the vicinity thereof, the present invention is limited to this. not a thing For example, a single layer of the oxide 530b, a two-layer structure of the oxides 530b and 530a, a two-layer structure of the oxides 530b and 530c, or a stacked structure of four or more layers may be employed. Although the conductor 560 has a two-layer structure in the transistor 500, the present invention is not limited to this. For example, the conductor 560 may have a single-layer structure or a laminated structure of three or more layers. Further, the transistor 500 illustrated in FIGS. 7 and 9A is an example, and the structure is not limited, and an appropriate transistor may be used depending on the circuit structure and the driving method.

ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542a及び導電体542bは、それぞれソース電極又はドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、及び導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542a及び導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。 Here, the conductor 560 functions as a gate electrode of the transistor, and the conductors 542a and 542b function as source and drain electrodes, respectively. As described above, the conductor 560 is formed to be embedded in the opening of the insulator 580 and the region sandwiched between the conductors 542a and 542b. The placement of conductor 560 , conductor 542 a and conductor 542 b is selected in a self-aligned manner with respect to the opening in insulator 580 . That is, in the transistor 500, the gate electrode can be arranged between the source electrode and the drain electrode in a self-aligned manner. Therefore, the conductor 560 can be formed without providing an alignment margin, so that the area occupied by the transistor 500 can be reduced. As a result, miniaturization and high integration of the semiconductor device can be achieved.

さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542a又は導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542a及び導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。 Furthermore, since conductor 560 is formed in a region between conductors 542a and 542b in a self-aligned manner, conductor 560 does not have a region that overlaps conductors 542a or 542b. Accordingly, parasitic capacitance formed between the conductor 560 and the conductors 542a and 542b can be reduced. Therefore, the switching speed of the transistor 500 can be improved and high frequency characteristics can be obtained.

導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。 Conductor 560 may function as a first gate (also called top gate) electrode. In some cases, the conductor 503 functions as a second gate (also referred to as a bottom gate) electrode. In that case, the threshold voltage of the transistor 500 can be controlled by changing the potential applied to the conductor 503 independently of the potential applied to the conductor 560 . In particular, by applying a negative potential to the conductor 503, the threshold voltage of the transistor 500 can be made higher than 0 V and the off current can be reduced. Therefore, when a negative potential is applied to the conductor 503, the drain current when the potential applied to the conductor 560 is 0 V can be made smaller than when no potential is applied.

導電体503は、酸化物530、及び導電体560と、重なるように配置する。これにより、導電体560、及び導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。本明細書等において、第1のゲート電極、及び第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S-channel)構造とよぶ。 The conductor 503 is arranged so as to overlap with the oxide 530 and the conductor 560 . Accordingly, when a potential is applied to the conductor 560 and the conductor 503, the electric field generated from the conductor 560 and the electric field generated from the conductor 503 are connected to each other, so that the channel formation region formed in the oxide 530 is covered. can be done. In this specification and the like, a transistor structure in which a channel formation region is electrically surrounded by electric fields of a first gate electrode and a second gate electrode is referred to as a surrounded channel (S-channel) structure.

また、本明細書等において、surrounded channel(S-channel)構造は、ソース電極およびドレイン電極として機能する導電体542aおよび導電体542bに接する酸化物530の側面及び周辺が、チャネル形成領域と同じくI型であるといった特徴を有する。また、導電体542aおよび導電体542bに接する酸化物530の側面及び周辺は、絶縁体544と接しているため、チャネル形成領域と同様にI型となりうる。なお、本明細書等において、I型とは後述する高純度真性と同様として扱うことができる。また、本明細書等で開示するS-channel構造は、Fin型構造およびプレーナ型構造とは異なる。S-channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。 Further, in this specification and the like, the surrounded channel (S-channel) structure means that the side surfaces and the periphery of the oxide 530 in contact with the conductors 542a and 542b functioning as source and drain electrodes are the same as the channel formation region. It has the characteristic of being a type. In addition, since the side surface and the periphery of the oxide 530 that are in contact with the conductors 542a and 542b are in contact with the insulator 544, they can be i-type like the channel formation region. In this specification and the like, type I can be treated as the same as high-purity intrinsic, which will be described later. Also, the S-channel structure disclosed in this specification and the like is different from the Fin type structure and the planar type structure. By adopting the S-channel structure, it is possible to increase resistance to the short channel effect, in other words, to make the transistor less susceptible to the short channel effect.

また、導電体503は、導電体518と同様の構成であり、絶縁体514及び絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503a及び導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、又は3層以上の積層構造として設ける構成にしてもよい。 The conductor 503 has the same structure as the conductor 518. A conductor 503a is formed in contact with the inner walls of the openings of the insulators 514 and 516, and a conductor 503b is formed inside. Note that although the structure in which the conductors 503a and 503b are stacked is shown in the transistor 500, the present invention is not limited to this. For example, the conductor 503 may be provided as a single layer or a laminated structure of three or more layers.

ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、又は酸素の拡散を抑制する機能とは、上記不純物、又は上記酸素のいずれか一又は、すべての拡散を抑制する機能とする。 Here, for the conductor 503a, it is preferable to use a conductive material that has a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms (the impurities are less likely to permeate). Alternatively, it is preferable to use a conductive material that has a function of suppressing diffusion of oxygen (eg, at least one of oxygen atoms, oxygen molecules, etc.) (the above oxygen is difficult to permeate). In this specification, the function of suppressing the diffusion of impurities or oxygen means the function of suppressing the diffusion of one or all of the impurities or oxygen.

例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。 For example, since the conductor 503a has a function of suppressing the diffusion of oxygen, it is possible to suppress a decrease in conductivity due to oxidation of the conductor 503b.

また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、又はアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。その場合、導電体505は、必ずしも設けなくともよい。なお、導電体503bを単層で図示したが、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。 In the case where the conductor 503 also functions as a wiring, the conductor 503b is preferably made of a highly conductive material containing tungsten, copper, or aluminum as its main component. In that case, the conductor 505 is not necessarily provided. Note that although the conductor 503b is illustrated as a single layer, it may have a layered structure, for example, a layered layer of titanium, titanium nitride, and any of the above conductive materials.

絶縁体520、絶縁体522、絶縁体524、及び絶縁体550は、第2のゲート絶縁膜としての機能を有する。 The insulator 520, the insulator 522, the insulator 524, and the insulator 550 function as a second gate insulating film.

ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。つまり、絶縁体524には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損を低減し、トランジスタ500の信頼性を向上させることができる。 Here, the insulator 524 in contact with the oxide 530 preferably contains more oxygen than the stoichiometric composition. In other words, the insulator 524 preferably has an excess oxygen region. By providing such an insulator containing excess oxygen in contact with the oxide 530, oxygen vacancies in the oxide 530 can be reduced and the reliability of the transistor 500 can be improved.

過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、又は3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、又は100℃以上400℃以下の範囲が好ましい。 Specifically, an oxide material from which part of oxygen is released by heating is preferably used as the insulator having the excess oxygen region. The oxide that desorbs oxygen by heating means that the desorption amount of oxygen in terms of oxygen atoms is 1.0×10 18 atoms/cm 3 or more, preferably 1, in TDS (Thermal Desorption Spectroscopy) analysis. 0×10 19 atoms/cm 3 or more, more preferably 2.0×10 19 atoms/cm 3 or more, or 3.0×10 20 atoms/cm 3 or more. The surface temperature of the film during the TDS analysis is preferably in the range of 100° C. or higher and 700° C. or lower, or 100° C. or higher and 400° C. or lower.

また、上記過剰酸素領域を有する絶縁体と、酸化物530と、を接して加熱処理、マイクロ波処理、またはRF処理のいずれか一または複数の処理を行っても良い。当該処理を行うことで、酸化物530中の水、または水素を除去することができる。例えば、酸化物530において、VoHの結合が切断される反応が起きる、別言すると「VH→V+H」という反応が起きて、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してHOとして、酸化物530、または酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542に拡散または捕獲(ゲッタリングともいう)される場合がある。 Further, one or more of heat treatment, microwave treatment, and RF treatment may be performed while the insulator having the excess oxygen region and the oxide 530 are in contact with each other. By performing the treatment, water or hydrogen in the oxide 530 can be removed. For example, in the oxide 530, a reaction that breaks the bond of VoH occurs, in other words, a reaction of “V OHV 2 O +H” occurs, and dehydrogenation can be performed. Part of the hydrogen generated at this time is combined with oxygen to form H 2 O and removed from the oxide 530 or an insulator near the oxide 530 in some cases. In addition, part of hydrogen may be diffused or captured (also referred to as gettering) in the conductor 542 .

また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、または、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく酸化物530、または酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば、酸素と、アルゴンとを用い、酸素流量比(O/(O+Ar))が50%以下、好ましくは10%以上30%以下で行うとよい。 For the above microwave treatment, for example, it is preferable to use an apparatus having a power supply for generating high-density plasma or an apparatus having a power supply for applying RF to the substrate side. For example, by using a gas containing oxygen and using high-density plasma, high-density oxygen radicals can be generated. By applying RF to the substrate side, the oxygen radicals generated by the high-density plasma can be generated. , can be efficiently introduced into the oxide 530 or an insulator near the oxide 530 . Further, the microwave treatment may be performed at a pressure of 133 Pa or higher, preferably 200 Pa or higher, and more preferably 400 Pa or higher. In addition, for example, oxygen and argon are used as gases to be introduced into the apparatus for microwave treatment, and the oxygen flow rate ratio (O 2 /(O 2 +Ar)) is 50% or less, preferably 10% or more and 30%. % or less.

また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。 Further, heat treatment is preferably performed with the surface of the oxide 530 exposed during the manufacturing process of the transistor 500 . The heat treatment may be performed at, for example, 100° C. to 450° C., more preferably 350° C. to 400° C. Note that the heat treatment is performed in a nitrogen gas atmosphere, an inert gas atmosphere, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas. For example, heat treatment is preferably performed in an oxygen atmosphere. Accordingly, oxygen can be supplied to the oxide 530 to reduce oxygen vacancies (V 0 ). Moreover, you may perform heat processing in a pressure-reduced state. Alternatively, the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas in order to compensate for desorbed oxygen after the heat treatment is performed in a nitrogen gas or inert gas atmosphere. good. Alternatively, after heat treatment in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas, heat treatment may be continuously performed in a nitrogen gas or inert gas atmosphere.

なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「V+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。 Note that by performing oxygenation treatment on the oxide 530, oxygen vacancies in the oxide 530 can be repaired by the supplied oxygen, in other words, the reaction “V 2 O +O→null” can be promoted. . Furthermore, the supplied oxygen reacts with the hydrogen remaining in the oxide 530, so that the hydrogen can be removed as H 2 O (dehydrated). Accordingly, hydrogen remaining in the oxide 530 can be suppressed from being recombined with oxygen vacancies to form VOH .

また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。 In addition, when the insulator 524 has an excess oxygen region, the insulator 522 preferably has a function of suppressing diffusion of oxygen (eg, oxygen atoms, oxygen molecules, etc.) (the above oxygen is difficult to permeate).

絶縁体522が、酸素や不純物の拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524や、酸化物530が有する酸素と反応することを抑制することができる。 Since the insulator 522 has a function of suppressing diffusion of oxygen and impurities, oxygen contained in the oxide 530 does not diffuse toward the insulator 520, which is preferable. In addition, the conductor 503 can be prevented from reacting with oxygen contained in the insulator 524 and the oxide 530 .

絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、又は(Ba,Sr)TiO(BST)などのいわゆるhigh-k材料を含む絶縁体を単層又は積層で用いることが好ましい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh-k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。 The insulator 522 is, for example, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate ( SrTiO3 ), or It is preferable to use an insulator containing a so-called high-k material such as (Ba,Sr)TiO 3 (BST) in a single layer or a laminated layer. As transistors are miniaturized and highly integrated, thinning of gate insulating films may cause problems such as leakage current. By using a high-k material for the insulator that functions as the gate insulating film, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.

特に、不純物、及び酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方又は双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方又は双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出や、トランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。 In particular, an insulator containing an oxide of one or both of aluminum and hafnium, which is an insulating material having a function of suppressing diffusion of impurities and oxygen (through which oxygen is difficult to permeate), is preferably used. As the insulator containing oxides of one or both of aluminum and hafnium, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used. When the insulator 522 is formed using such a material, the insulator 522 suppresses release of oxygen from the oxide 530 and entry of impurities such as hydrogen from the periphery of the transistor 500 into the oxide 530. act as a layer.

又は、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。又はこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコン又は窒化シリコンを積層して用いてもよい。 Alternatively, aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators. Alternatively, these insulators may be nitrided. Silicon oxide, silicon oxynitride, or silicon nitride may be stacked over the above insulator.

また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコン及び酸化窒化シリコンは、熱的に安定であるため、好適である。また、high-k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体520や、絶縁体526を得ることができる。 Insulator 520 is also preferably thermally stable. For example, silicon oxide and silicon oxynitride are preferred because they are thermally stable. Further, by combining an insulator made of a high-k material with silicon oxide or silicon oxynitride, the insulators 520 and 526 having a stacked structure which are thermally stable and have a high relative dielectric constant can be obtained.

なお、図10(A)(B)のトランジスタ500では、3層の積層構造からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、及び絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、又は4層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。 Note that in the transistor 500 in FIGS. 10A and 10B, the insulator 520, the insulator 522, and the insulator 524 are illustrated as the second gate insulating film having a stacked-layer structure of three layers. The second gate insulating film may have a single layer, two layers, or a laminated structure of four or more layers. In that case, it is not limited to a laminated structure made of the same material, and a laminated structure made of different materials may be used.

トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体を用いることが好ましい。例えば、酸化物530として、In-M-Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムなどから選ばれた一種、又は複数種)等の酸化物半導体を用いるとよい。特に、酸化物530として適用できるIn-M-Zn酸化物は、CAAC-OS(c-axis aligned crystalline oxide semiconductor)、CAC-OS(Cloud-Aligned Composite oxide semiconductor)であることが好ましい。CAAC-OSとはCAAC構造を有する酸化物を指しており、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa-b面においては配向せずに連結した結晶構造である。また、CAC-OSとは、例えば、酸化物半導体を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、又はその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、又はその近傍のサイズで混合した状態をモザイク状、又はパッチ状ともいう。また、酸化物530として、In-Ga酸化物、In-Zn酸化物を用いてもよい。 An oxide semiconductor is preferably used for the oxide 530 including a channel formation region in the transistor 500 . For example, as the oxide 530, In-M-Zn oxide (element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium , hafnium, tantalum, tungsten, magnesium, or the like) may be used. Particularly, the In-M-Zn oxide that can be applied as the oxide 530 is preferably CAAC-OS (c-axis aligned crystalline oxide semiconductor) or CAC-OS (Cloud-Aligned Composite Oxide Semiconductor). CAAC-OS refers to an oxide having a CAAC structure, and the CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have a c-axis orientation and are connected without being oriented in the ab plane. is. A CAC-OS is, for example, one structure of a material in which elements constituting an oxide semiconductor are unevenly distributed with a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 2 nm or less, or in the vicinity thereof. Note that hereinafter, in the oxide semiconductor, one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 2 nm or less, or a size in the vicinity thereof. The mixed state is also called a mosaic shape or a patch shape. Alternatively, as the oxide 530, an In--Ga oxide or an In--Zn oxide may be used.

また、トランジスタ500には、キャリア濃度の低い酸化物半導体を用いることが好ましい。酸化物半導体のキャリア濃度を低くする場合においては、酸化物半導体中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、酸化物半導体中の不純物としては、例えば、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。 An oxide semiconductor with low carrier concentration is preferably used for the transistor 500 . In the case of lowering the carrier concentration of the oxide semiconductor, the impurity concentration in the oxide semiconductor may be lowered to lower the defect level density. In this specification and the like, a low impurity concentration and a low defect level density are referred to as high-purity intrinsic or substantially high-purity intrinsic. Note that impurities in an oxide semiconductor include, for example, hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, and the like.

特に、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸化物半導体中に酸素欠損(V:oxygen vacancyともいう)を形成する場合がある。また、酸化物半導体中の酸素欠損に水素が入った場合、酸素欠損と水素とが結合しVHを形成する場合がある。VHはドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。また、酸化物半導体中の水素は、熱、電界などのストレスによって動きやすいため、酸化物半導体に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、酸化物530中のVHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VHが十分低減された酸化物半導体を得るには、酸化物半導体中の水分、水素などの不純物を除去すること(脱水、脱水素化処理と記載する場合がある。)と、酸化物半導体に酸素を供給して酸素欠損を補填すること(加酸素化処理と記載する場合がある。)が重要である。VHなどの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。 In particular, hydrogen contained in an oxide semiconductor reacts with oxygen that bonds to a metal atom to become water; thus, an oxygen vacancy (V 2 O ) may be formed in the oxide semiconductor. Further, when hydrogen enters oxygen vacancies in the oxide semiconductor, the oxygen vacancies and hydrogen may combine to form VOH . VOH may function as a donor and generate an electron, which is a carrier. In addition, part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron that is a carrier. Therefore, a transistor including an oxide semiconductor containing a large amount of hydrogen is likely to have normally-on characteristics. In addition, hydrogen in an oxide semiconductor easily moves due to stress such as heat and an electric field; therefore, when a large amount of hydrogen is contained in the oxide semiconductor, the reliability of the transistor might be deteriorated. In one aspect of the present invention, it is preferred to reduce V OH in oxide 530 as much as possible to be highly pure intrinsic or substantially highly pure intrinsic. In order to obtain an oxide semiconductor in which V OH is sufficiently reduced in this way, impurities such as moisture and hydrogen in the oxide semiconductor are removed (sometimes referred to as dehydration or dehydrogenation treatment). In addition, it is important to supply oxygen to the oxide semiconductor to fill oxygen vacancies (sometimes referred to as oxygenation treatment). By using an oxide semiconductor in which impurities such as V OH are sufficiently reduced for a channel formation region of a transistor, stable electrical characteristics can be imparted.

酸素欠損に水素が入った欠陥は、酸化物半導体のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、酸化物半導体においては、ドナー濃度ではなく、キャリア濃度で評価される場合がある。よって、本明細書等では、酸化物半導体のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア濃度を用いる場合がある。つまり、本明細書等に記載の「キャリア濃度」は、「ドナー濃度」と言い換えることができる場合がある。 A defect in which hydrogen enters an oxygen vacancy can function as a donor of an oxide semiconductor. However, it is difficult to quantitatively evaluate the defects. Therefore, in some cases, the oxide semiconductor is evaluated based on the carrier concentration instead of the donor concentration. Therefore, in this specification and the like, instead of the donor concentration, the carrier concentration assuming a state in which no electric field is applied is used as a parameter of the oxide semiconductor in some cases. In other words, the “carrier concentration” described in this specification and the like may be rephrased as “donor concentration”.

よって、酸化物半導体を酸化物530に用いる場合、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。水素などの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。 Therefore, when an oxide semiconductor is used for the oxide 530, hydrogen in the oxide semiconductor is preferably reduced as much as possible. Specifically, in the oxide semiconductor, the hydrogen concentration obtained by secondary ion mass spectrometry (SIMS) is less than 1×10 20 atoms/cm 3 , preferably 1×10 19 atoms/cm. It is less than 3 , more preferably less than 5×10 18 atoms/cm 3 , still more preferably less than 1×10 18 atoms/cm 3 . By using an oxide semiconductor in which impurities such as hydrogen are sufficiently reduced for a channel formation region of a transistor, stable electrical characteristics can be imparted.

また、酸化物530に酸化物半導体を用いる場合、チャネル形成領域との酸化物半導体のキャリア濃度は、1×1018cm-3以下であることが好ましく、1×1017cm-3未満であることがより好ましく、1×1016cm-3未満であることがさらに好ましく、1×1013cm-3未満であることがさらに好ましく、1×1012cm-3未満であることがさらに好ましい。なお、チャネル形成領域の酸化物半導体のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10-9cm-3とすることができる。 In the case where an oxide semiconductor is used for the oxide 530, the carrier concentration of the oxide semiconductor with the channel formation region is preferably 1×10 18 cm −3 or less and less than 1×10 17 cm −3 . is more preferably less than 1×10 16 cm −3 , still more preferably less than 1×10 13 cm −3 , even more preferably less than 1×10 12 cm −3 . Note that the lower limit of the carrier concentration of the oxide semiconductor in the channel formation region is not particularly limited, but can be set to 1×10 −9 cm −3 , for example.

また、酸化物530に酸化物半導体を用いる場合、導電体542(導電体542a、および導電体542b)と酸化物530とが接することで、酸化物530中の酸素が導電体542へ拡散し、導電体542が酸化する場合がある。導電体542が酸化することで、導電体542の導電率が低下する蓋然性が高い。なお、酸化物530中の酸素が導電体542へ拡散することを、導電体542が酸化物530中の酸素を吸収する、と言い換えることができる。 In the case where an oxide semiconductor is used for the oxide 530, the conductors 542 (the conductors 542a and 542b) are in contact with the oxide 530, whereby oxygen in the oxide 530 diffuses into the conductor 542. Conductor 542 may oxidize. Oxidation of the conductor 542 is highly likely to reduce the conductivity of the conductor 542 . Note that diffusion of oxygen in the oxide 530 to the conductor 542 can be rephrased as that the conductor 542 absorbs oxygen in the oxide 530 .

また、酸化物530中の酸素が導電体542(導電体542a、および導電体542b)へ拡散することで、導電体542aと酸化物530bとの間、および、導電体542bと酸化物530bとの間に異層が形成される場合がある。当該異層は、導電体542よりも酸素を多く含むため、当該異層は絶縁性を有すると推定される。このとき、導電体542と、当該異層と、酸化物530bとの3層構造は、金属-絶縁体-半導体からなる3層構造とみなすことができ、MIS(Metal-Insulator-Semiconductor)構造と呼ぶ、またはMIS構造を主としたダイオード接合構造と呼ぶ場合がある。 Further, oxygen in the oxide 530 diffuses into the conductor 542 (the conductor 542a and the conductor 542b), so that the conductor 542a and the oxide 530b and the conductor 542b and the oxide 530b are diffused. Different layers may form between them. Since the different layer contains more oxygen than the conductor 542, the different layer is presumed to have insulating properties. At this time, the three-layer structure of the conductor 542, the different layer, and the oxide 530b can be regarded as a three-layer structure composed of metal-insulator-semiconductor, and is called a metal-insulator-semiconductor (MIS) structure. Alternatively, it may be called a diode junction structure mainly composed of the MIS structure.

なお、上記異層は、導電体542と酸化物530bとの間に形成されることに限られず、例えば、異層が、導電体542と酸化物530cとの間に形成される場合や、導電体542と酸化物530bとの間、および導電体542と酸化物530cとの間に形成される場合がある。 Note that the different layer is not limited to being formed between the conductor 542 and the oxide 530b. It may form between body 542 and oxide 530b and between conductor 542 and oxide 530c.

また、酸化物530においてチャネル形成領域にとして機能する酸化物半導体は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい酸化物半導体を用いることで、トランジスタのオフ電流を低減することができる。 Further, an oxide semiconductor that functions as a channel formation region in the oxide 530 preferably has a bandgap of 2 eV or more, preferably 2.5 eV or more. By using an oxide semiconductor with a large bandgap in this manner, the off-state current of the transistor can be reduced.

酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。また、酸化物530b上に酸化物530cを有することで、酸化物530cよりも上方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。 Since the oxide 530 includes the oxide 530a under the oxide 530b, diffusion of impurities from a structure formed below the oxide 530a to the oxide 530b can be suppressed. In addition, by providing the oxide 530c over the oxide 530b, diffusion of impurities from a structure formed above the oxide 530c to the oxide 530b can be suppressed.

なお、酸化物530は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物530aに用いる酸化物半導体において、構成元素中の元素Mの原子数比が、酸化物530bに用いる酸化物半導体における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる酸化物半導体において、Inに対する元素Mの原子数比が、酸化物530bに用いる酸化物半導体における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる酸化物半導体において、元素Mに対するInの原子数比が、酸化物530aに用いる酸化物半導体における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物530cは、酸化物530a又は酸化物530bに用いることができる酸化物半導体を、用いることができる。 Note that the oxide 530 preferably has a layered structure with oxides having different atomic ratios of metal atoms. Specifically, in the oxide semiconductor used for the oxide 530a, the atomic ratio of the element M among the constituent elements is higher than the atomic ratio of the element M among the constituent elements in the oxide semiconductor used for the oxide 530b. is preferred. Further, the atomic ratio of the element M to In in the oxide semiconductor used for the oxide 530a is preferably higher than the atomic ratio of the element M to In in the oxide semiconductor used for the oxide 530b. Further, the atomic ratio of In to the element M in the oxide semiconductor used for the oxide 530b is preferably higher than the atomic ratio of In to the element M in the oxide semiconductor used for the oxide 530a. For the oxide 530c, an oxide semiconductor that can be used for the oxide 530a or the oxide 530b can be used.

また、酸化物530a及び酸化物530cの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530a及び酸化物530cの電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。 In addition, it is preferable that the energies of the conduction band bottoms of the oxides 530a and 530c be higher than the energies of the conduction band bottoms of the oxide 530b. In other words, the electron affinities of the oxides 530a and 530c are preferably smaller than that of the oxide 530b.

ここで、酸化物530a、酸化物530b、及び酸化物530cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530a、酸化物530b、及び酸化物530cの接合部における伝導帯下端のエネルギー準位は、連続的に変化又は連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面、及び酸化物530bと酸化物530cとの界面において形成される混合層の欠陥準位密度を低くするとよい。 Here, the energy level at the bottom of the conduction band changes smoothly at the junction of the oxide 530a, the oxide 530b, and the oxide 530c. In other words, it can be said that the energy level of the bottom of the conduction band at the junction of the oxide 530a, the oxide 530b, and the oxide 530c continuously changes or continuously joins. In order to achieve this, the defect level density of the mixed layers formed at the interface between the oxides 530a and 530b and the interface between the oxides 530b and 530c should be lowered.

具体的には、酸化物530aと酸化物530b、酸化物530bと酸化物530cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn-Ga-Zn酸化物の場合、酸化物530a及び酸化物530cとして、In-Ga-Zn酸化物、Ga-Zn酸化物、酸化ガリウムなどを用いるとよい。 Specifically, the oxide 530a and the oxide 530b, and the oxide 530b and the oxide 530c have a common element (main component) other than oxygen, thereby forming a mixed layer with a low defect level density. be able to. For example, when the oxide 530b is an In--Ga--Zn oxide, the oxides 530a and 530c may be In--Ga--Zn oxide, Ga--Zn oxide, gallium oxide, or the like.

このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530a、酸化物530cを上述の構成とすることで、酸化物530aと酸化物530bとの界面、及び酸化物530bと酸化物530cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。 At this time, the main path of carriers is the oxide 530b. When the oxides 530a and 530c have the above structure, defect level densities at the interfaces between the oxides 530a and 530b and between the oxides 530b and 530c can be reduced. Therefore, the influence of interface scattering on carrier conduction is reduced, and the transistor 500 can obtain a high on-state current.

酸化物530b上には、ソース電極、及びドレイン電極として機能する導電体542a、及び導電体542bが設けられる。導電体542a、及び導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、又は上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、又は、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素又は酸素に対するバリア性があるため好ましい。 Conductors 542a and 542b functioning as source and drain electrodes are provided over the oxide 530b. Conductors 542a and 542b include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, and ruthenium. , iridium, strontium, and lanthanum, an alloy containing the above-described metal elements as a component, or an alloy in which the above-described metal elements are combined. For example, tantalum nitride, titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, and the like are used. is preferred. Also, tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize. It is preferable because it is a conductive material or a material that maintains conductivity even after absorbing oxygen. Furthermore, a metal nitride film such as tantalum nitride is preferable because it has a barrier property against hydrogen or oxygen.

また、図9では、導電体542a、及び導電体542bを単層構造として示したが、2層以上の積層構造としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅-マグネシウム-アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。 In addition, although the conductor 542a and the conductor 542b have a single-layer structure in FIG. 9, they may have a stacked structure of two or more layers. For example, a tantalum nitride film and a tungsten film are preferably stacked. Alternatively, a titanium film and an aluminum film may be stacked. A two-layer structure in which an aluminum film is stacked over a tungsten film, a two-layer structure in which a copper film is stacked over a copper-magnesium-aluminum alloy film, a two-layer structure in which a copper film is stacked over a titanium film, a two-layer structure in which a copper film is stacked over a titanium film, A two-layer structure in which copper films are stacked may be used.

また、チタン膜又は窒化チタン膜と、そのチタン膜又は窒化チタン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にチタン膜又は窒化チタン膜を形成する三層構造、モリブデン膜又は窒化モリブデン膜と、そのモリブデン膜又は窒化モリブデン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にモリブデン膜又は窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫又は酸化亜鉛を含む透明導電材料を用いてもよい。 Further, a three-layer structure in which a titanium film or a titanium nitride film is laminated, an aluminum film or a copper film is laminated on the titanium film or the titanium nitride film, and a titanium film or a titanium nitride film is formed thereon, a molybdenum film or a There is a three-layer structure including a molybdenum nitride film, an aluminum film or a copper film laminated on the molybdenum film or the molybdenum nitride film, and a molybdenum film or a molybdenum nitride film formed thereon. Note that a transparent conductive material containing indium oxide, tin oxide, or zinc oxide may be used.

また、図9(A)に示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、及び領域543bが形成される場合がある。このとき、領域543aはソース領域又はドレイン領域の一方として機能し、領域543bはソース領域又はドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。 9A, regions 543a and 543b are formed as low-resistance regions at the interface between the oxide 530 and the conductor 542a (conductor 542b) and in the vicinity thereof. There is At this time, the region 543a functions as one of the source region and the drain region, and the region 543b functions as the other of the source region and the drain region. A channel formation region is formed in a region sandwiched between the regions 543a and 543b.

酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア濃度が増加し、領域543a(領域543b)は、低抵抗領域となる。 By providing the conductor 542a (the conductor 542b) so as to be in contact with the oxide 530, the oxygen concentration of the region 543a (the region 543b) may be reduced. In some cases, a metal compound layer containing the metal contained in the conductor 542a (conductor 542b) and the component of the oxide 530 is formed in the region 543a (region 543b). In such a case, the carrier concentration of the region 543a (region 543b) increases and the region 543a (region 543b) becomes a low resistance region.

絶縁体544は、導電体542a、及び導電体542bを覆うように設けられ、導電体542a、及び導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。 The insulator 544 is provided so as to cover the conductors 542a and 542b and suppress oxidation of the conductors 542a and 542b. At this time, the insulator 544 may be provided so as to cover the side surface of the oxide 530 and be in contact with the insulator 524 .

絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタン又は、マグネシウムなどから選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコン又は窒化シリコンなども用いることができる。 The insulator 544 is a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, neodymium, lanthanum, magnesium, and the like. can be used. Alternatively, silicon nitride oxide, silicon nitride, or the like can be used as the insulator 544 .

特に、絶縁体544として、アルミニウム、又はハフニウムの一方又は双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、及びハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、及び導電体542bが耐酸化性を有する材料、又は、酸素を吸収しても著しく導電性が低下しない場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。 In particular, as the insulator 544, an insulator containing one or both oxides of aluminum and hafnium, such as aluminum oxide, hafnium oxide, or an oxide containing aluminum and hafnium (hafnium aluminate), is preferably used. . In particular, hafnium aluminate has higher heat resistance than hafnium oxide film. Therefore, it is preferable because it is less likely to be crystallized in heat treatment in a later step. Note that the insulator 544 is not essential when the conductors 542a and 542b are made of an oxidation-resistant material or when the conductivity does not significantly decrease even when oxygen is absorbed. It may be appropriately designed depending on the required transistor characteristics.

絶縁体544を有することで、絶縁体580に含まれる水、及び水素などの不純物が酸化物530c、絶縁体550を介して、酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体560が酸化するのを抑制することができる。 The insulator 544 can suppress diffusion of impurities such as water and hydrogen contained in the insulator 580 through the oxide 530c and the insulator 550 into the oxide 530b. In addition, oxidation of the conductor 560 due to excess oxygen in the insulator 580 can be suppressed.

絶縁体550は、第1のゲート絶縁膜として機能する。絶縁体550は、酸化物530cの内側(上面、及び側面)接して配置することが好ましい。絶縁体550は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。 The insulator 550 functions as a first gate insulating film. The insulator 550 is preferably placed in contact with the inside (top and side surfaces) of the oxide 530c. The insulator 550 is preferably formed using an insulator that contains excess oxygen and releases oxygen by heating, similarly to the insulator 524 described above.

具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、及び窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、及び酸化窒化シリコンは熱に対し安定であるため好ましい。 Specifically, silicon oxide containing excess oxygen, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, and vacancies are can be used. In particular, silicon oxide and silicon oxynitride are preferable because they are stable against heat.

加熱により酸素が放出される絶縁体を、絶縁体550として、酸化物530cの上面に接して設けることにより、絶縁体550から、酸化物530cを通じて、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体550中の水又は水素などの不純物濃度が低減されていることが好ましい。絶縁体550の膜厚は、1nm以上20nm以下とするのが好ましい。 By providing an insulator from which oxygen is released by heating as the insulator 550 in contact with the top surface of the oxide 530c, oxygen is effectively introduced from the insulator 550 to the channel formation region of the oxide 530b through the oxide 530c. can be supplied. Further, similarly to the insulator 524, the concentration of impurities such as water or hydrogen in the insulator 550 is preferably reduced. The thickness of the insulator 550 is preferably 1 nm or more and 20 nm or less.

また、絶縁体550が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体550と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体550から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体550から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。 Further, a metal oxide may be provided between the insulator 550 and the conductor 560 in order to efficiently supply excess oxygen contained in the insulator 550 to the oxide 530 . The metal oxide preferably suppresses diffusion of oxygen from the insulator 550 to the conductor 560 . By providing the metal oxide that suppresses diffusion of oxygen, diffusion of excess oxygen from the insulator 550 to the conductor 560 is suppressed. That is, reduction in the amount of excess oxygen supplied to the oxide 530 can be suppressed. In addition, oxidation of the conductor 560 due to excess oxygen can be suppressed. As the metal oxide, a material that can be used for the insulator 544 may be used.

なお、絶縁体550は、第2のゲート絶縁膜と同様に、積層構造としてもよい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high-k材料と、熱的に安定している材料との積層構造とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構造とすることができる。 Note that the insulator 550 may have a stacked structure similarly to the second gate insulating film. As transistors are miniaturized and highly integrated, thinning of the gate insulating film may cause problems such as leakage current. By forming a laminated structure with a material that is relatively stable, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness. Moreover, it is possible to obtain a laminated structure that is thermally stable and has a high dielectric constant.

第1のゲート電極として機能する導電体560は、図9(A)(B)では2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。 Although the conductor 560 functioning as the first gate electrode has a two-layer structure in FIGS. 9A and 9B, it may have a single-layer structure or a stacked structure of three or more layers.

導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体550に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、又は酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。 The conductor 560a has a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (such as N 2 O, NO, NO 2 ), and copper atoms. Materials are preferably used. Alternatively, a conductive material having a function of suppressing diffusion of oxygen (eg, at least one of oxygen atoms and oxygen molecules) is preferably used. Since the conductor 560a has a function of suppressing diffusion of oxygen, oxygen contained in the insulator 550 can suppress oxidation of the conductor 560b and a decrease in conductivity. As the conductive material having a function of suppressing diffusion of oxygen, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used, for example. Further, an oxide semiconductor that can be used for the oxide 530 can be used as the conductor 560a. In that case, by forming the conductor 560b by a sputtering method, the electric resistance value of the conductor 560a can be lowered to make the conductor 560a a conductor. This can be called an OC (Oxide Conductor) electrode.

また、導電体560bは、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層構造としてもよい。 A conductive material containing tungsten, copper, or aluminum as its main component is preferably used for the conductor 560b. In addition, since the conductor 560b also functions as a wiring, a conductor with high conductivity is preferably used. For example, a conductive material whose main component is tungsten, copper, or aluminum can be used. Further, the conductor 560b may have a layered structure, for example, a layered structure of titanium, titanium nitride, and the above conductive material.

絶縁体580は、絶縁体544を介して、導電体542a、及び導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、及び窒素を添加した酸化シリコン、空孔を有する酸化シリコン、又は樹脂などを有することが好ましい。特に、酸化シリコン、及び酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。 The insulator 580 is provided over the conductors 542a and 542b with the insulator 544 interposed therebetween. Insulator 580 preferably has excess oxygen regions. For example, the insulator 580 may be silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, or oxide with vacancies. It preferably contains silicon, resin, or the like. In particular, silicon oxide and silicon oxynitride are preferable because they are thermally stable. In particular, silicon oxide and silicon oxide having vacancies are preferable because an excess oxygen region can be easily formed in a later step.

絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を、酸化物530cと接して設けることで、絶縁体580中の酸素を、酸化物530cを通じて、酸化物530へと効率良く供給することができる。なお、絶縁体580中の水又は水素などの不純物濃度が低減されていることが好ましい。 Insulator 580 preferably has excess oxygen regions. By providing the insulator 580 from which oxygen is released by heating in contact with the oxide 530c, oxygen in the insulator 580 can be efficiently supplied to the oxide 530 through the oxide 530c. Note that the concentration of impurities such as water or hydrogen in the insulator 580 is preferably low.

絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、及び導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。 The opening of the insulator 580 is formed so as to overlap a region between the conductors 542a and 542b. Thus, the conductor 560 is formed so as to be embedded in the opening of the insulator 580 and the region sandwiched between the conductors 542a and 542b.

半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。 When miniaturizing a semiconductor device, it is required to shorten the gate length, but it is necessary to prevent the conductivity of the conductor 560 from being lowered. Therefore, when the film thickness of the conductor 560 is increased, the conductor 560 can have a shape with a high aspect ratio. In this embodiment mode, since the conductor 560 is embedded in the opening of the insulator 580, the conductor 560 can be formed without collapsing during the process even if the conductor 560 has a high aspect ratio. can be done.

絶縁体574は、絶縁体580の上面、導電体560の上面、及び絶縁体550の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体550、及び絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。 The insulator 574 is preferably provided in contact with the top surface of the insulator 580 , the top surface of the conductor 560 , and the top surface of the insulator 550 . By forming the insulator 574 by a sputtering method, excess oxygen regions can be provided in the insulators 550 and 580 . Accordingly, oxygen can be supplied into the oxide 530 from the excess oxygen region.

例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、又はマグネシウムなどから選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。 For example, the insulator 574 can be a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, and the like. can be done.

特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、及び窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。 In particular, aluminum oxide has a high barrier property and can suppress diffusion of hydrogen and nitrogen even in a thin film having a thickness of 0.5 nm or more and 3.0 nm or less. Therefore, the aluminum oxide film formed by the sputtering method can function not only as an oxygen supply source but also as a barrier film against impurities such as hydrogen.

なお、トランジスタ500の形成後、トランジスタ500を囲むように開口を形成し、当該開口を覆うように、水素、または水に対するバリア性が高い絶縁体を形成してもよい。上述のバリア性の高い絶縁体でトランジスタ500を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。または、複数のトランジスタ500をまとめて、水素、または水に対するバリア性が高い絶縁体で包み込んでもよい。なお、トランジスタ500を囲むように開口を形成する場合、例えば、絶縁体514または絶縁体522に達する開口を形成し、絶縁体514または絶縁体522に接するように上述のバリア性の高い絶縁体を形成すると、トランジスタ500の作製工程の一部を兼ねられるため、好適である。なお、水素、または水に対するバリア性が高い絶縁体としては、例えば、絶縁体522と同様の材料を用いればよい。 Note that after the transistor 500 is formed, an opening may be formed so as to surround the transistor 500, and an insulator having a high barrier property against hydrogen or water may be formed so as to cover the opening. By wrapping the transistor 500 with the above insulator with a high barrier property, entry of moisture and hydrogen from the outside can be prevented. Alternatively, the plurality of transistors 500 may be wrapped together with an insulator having a high barrier property against hydrogen or water. Note that in the case where the opening is formed so as to surround the transistor 500, for example, the opening is formed to reach the insulator 514 or the insulator 522, and the above insulator with a high barrier property is provided so as to be in contact with the insulator 514 or the insulator 522. It is preferable to form the transistor 500 because it can also be part of the manufacturing process of the transistor 500 . Note that as the insulator with high barrier properties against hydrogen or water, a material similar to that of the insulator 522 may be used, for example.

また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水又は水素などの不純物濃度が低減されていることが好ましい。 An insulator 581 functioning as an interlayer film is preferably provided over the insulator 574 . The insulator 581 preferably has a reduced concentration of impurities such as water or hydrogen in the film, similarly to the insulator 524 and the like.

また、絶縁体581、絶縁体574、絶縁体580、及び絶縁体544に形成された開口に、導電体540a、及び導電体540bを配置する。導電体540a及び導電体540bは、導電体560を挟んで対向して設ける。導電体540a及び導電体540bは、後述する導電体546、及び導電体548と同様の構成である。 In addition, conductors 540 a and 540 b are provided in openings formed in the insulators 581 , 574 , 580 , and 544 . The conductor 540a and the conductor 540b are provided to face each other with the conductor 560 interposed therebetween. The conductors 540a and 540b have the same structure as the conductors 546 and 548, which are described later.

絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素や水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。 An insulator 582 is provided over the insulator 581 . It is preferable that the insulator 582 use a substance that has a barrier property against oxygen and hydrogen. Therefore, a material similar to that of the insulator 514 can be used for the insulator 582 . For example, the insulator 582 is preferably formed using a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide.

特に、酸化アルミニウムは、酸素、及びトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中及び作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。 In particular, aluminum oxide has a high shielding effect of preventing the penetration of both oxygen and impurities such as hydrogen and moisture, which cause variations in the electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 500 during and after the manufacturing process of the transistor. In addition, release of oxygen from the oxide forming the transistor 500 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 500 .

また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。 An insulator 586 is provided over the insulator 582 . A material similar to that of the insulator 320 can be used for the insulator 586 . In addition, by using a material with a relatively low dielectric constant for these insulators, parasitic capacitance generated between wirings can be reduced. For example, a silicon oxide film, a silicon oxynitride film, or the like can be used as the insulator 586 .

また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、及び絶縁体586には、導電体546、及び導電体548等が埋め込まれている。 In addition, the insulator 520, the insulator 522, the insulator 524, the insulator 544, the insulator 580, the insulator 574, the insulator 581, the insulator 582, and the insulator 586 include the conductor 546, the conductor 548, and the like. is embedded.

導電体546、及び導電体548は、容量素子600、トランジスタ500、又はトランジスタ300と接続するプラグ、又は配線としての機能を有する。導電体546、及び導電体548は、導電体328、及び導電体330と同様の材料を用いて設けることができる。 The conductors 546 and 548 function as plugs or wirings that connect to the capacitor 600 , the transistor 500 , or the transistor 300 . The conductors 546 and 548 can be formed using a material similar to that of the conductors 328 and 330 .

続いて、トランジスタ500の上方には、容量素子600が設けられている。容量素子600は、導電体610と、導電体620、絶縁体630とを有する。 Next, a capacitor 600 is provided above the transistor 500 . A capacitor 600 includes a conductor 610 , a conductor 620 , and an insulator 630 .

また、導電体546、及び導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、又は配線としての機能を有する。導電体610は、容量素子600の電極としての機能を有する。なお、導電体612、及び導電体610は、同時に形成することができる。 A conductor 612 may be provided over the conductor 546 and the conductor 548 . The conductor 612 functions as a plug or wiring connected to the transistor 500 . The conductor 610 functions as an electrode of the capacitor 600 . Note that the conductor 612 and the conductor 610 can be formed at the same time.

導電体612、及び導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、又は上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。又は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。 The conductors 612 and 610 are metal films containing elements selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or metal nitride films containing any of the above elements. (tantalum nitride film, titanium nitride film, molybdenum nitride film, tungsten nitride film) or the like can be used. Alternatively, indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon oxide are added. Conductive materials such as indium tin oxide can also be applied.

図7では、導電体612、及び導電体610は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、及び導電性が高い導電体に対して密着性が高い導電体を形成してもよい。 Although the conductors 612 and 610 have a single-layer structure in FIGS. 7A and 7B, they are not limited to this structure and may have a stacked structure of two or more layers. For example, between a conductor with barrier properties and a conductor with high conductivity, a conductor with barrier properties and a conductor with high adhesion to the conductor with high conductivity may be formed.

絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、又は金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。 A conductor 620 is provided so as to overlap with the conductor 610 with an insulator 630 interposed therebetween. Note that a conductive material such as a metal material, an alloy material, or a metal oxide material can be used for the conductor 620 . It is preferable to use a high-melting-point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is particularly preferable to use tungsten. In addition, when forming simultaneously with another structure such as a conductor, a low-resistance metal material such as Cu (copper) or Al (aluminum) may be used.

導電体620、及び絶縁体630上には、絶縁体640が設けられている。絶縁体640は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体640は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。 An insulator 640 is provided over the conductor 620 and the insulator 630 . The insulator 640 can be provided using a material similar to that of the insulator 320 . In addition, the insulator 640 may function as a planarizing film that covers the uneven shape thereunder.

本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化又は高集積化を図ることができる。 By using this structure, a semiconductor device including a transistor including an oxide semiconductor can be miniaturized or highly integrated.

(実施の形態4)
本実施の形態では、円筒型の二次電池の例について図10を参照して説明する。円筒型の二次電池616は、図10(A)に示すように、上面に正極キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。また、二次電池616の電池缶の底面付近には、樹脂カバーで覆われた保護回路基板618が電気的に接続されている。
(Embodiment 4)
In this embodiment, an example of a cylindrical secondary battery will be described with reference to FIGS. As shown in FIG. 10A, a cylindrical secondary battery 616 has a positive electrode cap (battery lid) 601 on its top surface and battery cans (armor cans) 602 on its side and bottom surfaces. The positive electrode cap and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610 . A protection circuit board 618 covered with a resin cover is electrically connected to the vicinity of the bottom surface of the battery can of the secondary battery 616 .

図10(C)に示す電子部品700はIC半導体装置であり、リードおよび回路部を有する。回路部は、例えば、実施の形態1に示した電池残量計測回路を含む。電子部品700は、例えばプリント基板に実装される。保護回路基板618は、一つまたは複数の電子部品700が実装されたプリント基板である。 An electronic component 700 shown in FIG. 10C is an IC semiconductor device and has leads and a circuit portion. The circuit unit includes, for example, the remaining battery level measurement circuit described in the first embodiment. Electronic component 700 is mounted, for example, on a printed circuit board. Protection circuit board 618 is a printed circuit board on which one or more electronic components 700 are mounted.

図10(B)は、円筒型の二次電池の断面を模式的に示した図である。中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。 FIG. 10B is a schematic cross-sectional view of a cylindrical secondary battery. A battery element in which a strip-shaped positive electrode 604 and a strip-shaped negative electrode 606 are wound with a separator 605 interposed therebetween is provided inside a hollow columnar battery can 602 . Although not shown, the battery element is wound around a center pin. Battery can 602 is closed at one end and open at the other end. The battery can 602 can be made of a metal such as nickel, aluminum, or titanium that is resistant to corrosion by the electrolyte, an alloy thereof, or an alloy of these metals with another metal (for example, stainless steel). . Also, in order to prevent corrosion due to the electrolyte, it is preferable to coat with nickel, aluminum, or the like. Inside the battery can 602 , the battery element in which the positive electrode, the negative electrode and the separator are wound is sandwiched between a pair of insulating plates 608 and 609 facing each other. A non-aqueous electrolyte (not shown) is filled inside the battery can 602 in which the battery element is provided. The same non-aqueous electrolyte as used in coin-type secondary batteries can be used.

円筒型の二次電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構617に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構617は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構617は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。 Since the positive electrode and the negative electrode used in a cylindrical secondary battery are wound, it is preferable to form the active material on both sides of the current collector. A positive electrode terminal (positive collector lead) 603 is connected to the positive electrode 604 , and a negative electrode terminal (negative collector lead) 607 is connected to the negative electrode 606 . A metal material such as aluminum can be used for both the positive terminal 603 and the negative terminal 607 . The positive terminal 603 and the negative terminal 607 are resistance welded to the safety valve mechanism 617 and the bottom of the battery can 602, respectively. The safety valve mechanism 617 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611 . The safety valve mechanism 617 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in internal pressure of the battery exceeds a predetermined threshold. The PTC element 611 is a thermal resistance element whose resistance increases when the temperature rises, and the increase in resistance limits the amount of current to prevent abnormal heat generation. Barium titanate (BaTiO 3 ) semiconductor ceramics or the like can be used for the PTC element.

[二次電池の構造例]
二次電池の別の構造例について、図11乃至図14を用いて説明する。
[Structural example of secondary battery]
Another structural example of the secondary battery is described with reference to FIGS.

図11(A)及び図11(B)は、電池パックの外観図を示す図である。電池パックは、回路基板900と、二次電池913と、を有する。二次電池913は、端子951と、端子952とを有し、ラベル910で覆われている。また電池パックはアンテナ914を有してもよい。アンテナ914を用いて二次電池913に非接触で充電を行うこともできる。 11(A) and 11(B) are diagrams showing external views of the battery pack. The battery pack has a circuit board 900 and a secondary battery 913 . A secondary battery 913 has a terminal 951 and a terminal 952 and is covered with a label 910 . The battery pack may also have an antenna 914 . The secondary battery 913 can also be charged without contact using the antenna 914 .

回路基板900はシール915で固定されている。回路基板900は、電子部品700が実装されており、例えば、実施の形態1に示した電池残量計測回路を含む。端子911は、回路基板900を介して、二次電池913が有する端子951および端子952と電気的に接続される。また端子911は、回路基板900を介して、アンテナ914、及び電子部品700と電気的に接続される。なお、端子911を複数設けて、複数の端子911のそれぞれを、制御信号入力端子、電源端子などとしてもよい。 The circuit board 900 is fixed with a seal 915 . Electronic component 700 is mounted on circuit board 900, and includes, for example, the remaining battery level measurement circuit described in the first embodiment. Terminal 911 is electrically connected to terminals 951 and 952 of secondary battery 913 through circuit board 900 . Also, the terminal 911 is electrically connected to the antenna 914 and the electronic component 700 through the circuit board 900 . Note that a plurality of terminals 911 may be provided and each of the plurality of terminals 911 may be used as a control signal input terminal, a power supply terminal, or the like.

電子部品700は、マイクロショートなどの異常を検出する。さらに、過充電、過放電および過電流から二次電池913を保護する、保護回路としての機能を有してもよい。電子部品700は、回路基板900の裏面に設けられていてもよい。なお、アンテナ914は、コイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。アンテナ914は、たとえば外部機器とのデータ通信を行うことができる機能を有する。アンテナ914を介した電池パックと他の機器との通信方式としては、NFCなど、電池パックと他の機器との間で用いることができる応答方式などを適用することができる。 The electronic component 700 detects an abnormality such as a micro-short. Furthermore, it may have a function as a protection circuit that protects the secondary battery 913 from overcharge, overdischarge, and overcurrent. Electronic component 700 may be provided on the back surface of circuit board 900 . Note that the antenna 914 is not limited to a coil shape, and may have a linear shape or a plate shape, for example. Further, antennas such as planar antennas, aperture antennas, traveling wave antennas, EH antennas, magnetic field antennas, and dielectric antennas may be used. Antenna 914 has a function of performing data communication with an external device, for example. As a communication method between the battery pack and the other device via the antenna 914, a response method such as NFC that can be used between the battery pack and the other device can be applied.

電池パックは、アンテナ914と、二次電池913との間に層916を有する。層916は、例えば二次電池913による電磁界への影響を防止することができる機能を有する。層916としては、例えば磁性体を用いることができる。 The battery pack has layer 916 between antenna 914 and secondary battery 913 . The layer 916 has a function of preventing the influence of the secondary battery 913 on the electromagnetic field, for example. A magnetic material, for example, can be used as the layer 916 .

なお、電池パックの構造は、図11に限定されない。 Note that the structure of the battery pack is not limited to that shown in FIG.

例えば、図12(A-1)及び図12(A-2)に示すように、図11(A)及び図11(B)に示す二次電池913のうち、対向するもう一対の面にアンテナ918を設けてもよい。図12(A-1)は、上記一対の面の一方側方向から見た外観図であり、図12(A-2)は、上記一対の面の他方側方向から見た外観図である。なお、図11(A)及び図11(B)に示す電池パックと同じ部分については、図11(A)及び図11(B)に示す電池パックの説明を適宜援用できる。 For example, as shown in FIGS. 12A-1 and 12A-2, of the secondary battery 913 shown in FIGS. 918 may be provided. FIG. 12A-1 is an external view of the pair of surfaces viewed from one side, and FIG. 12A-2 is an external view of the pair of surfaces viewed from the other side. Note that the description of the battery pack shown in FIGS. 11A and 11B can be used as appropriate for the same parts as those of the battery pack shown in FIGS. 11A and 11B.

図12(A-1)に示すように、二次電池913の一対の面の一方に層916を挟んでアンテナ914が設けられ、図12(A-2)に示すように、二次電池913の一対の面の他方に層917を挟んでアンテナ918が設けられる。層917は、例えば二次電池913による電磁界への影響を防止することができる機能を有する。層917としては、例えば磁性体を用いることができる。 As shown in FIG. 12A-1, an antenna 914 is provided on one of a pair of surfaces of a secondary battery 913 with a layer 916 interposed therebetween, and as shown in FIG. An antenna 918 is provided with a layer 917 interposed on the other of the pair of surfaces. The layer 917 has a function of preventing the influence of the secondary battery 913 on the electromagnetic field, for example. A magnetic material, for example, can be used as the layer 917 .

上記構造にすることにより、電池パックにアンテナを二つ設け、かつアンテナ914及びアンテナ918の両方のサイズを大きくすることができる。 With the above structure, two antennas can be provided in the battery pack, and the sizes of both the antennas 914 and 918 can be increased.

アンテナ918は、アンテナ914に適用可能な形状のアンテナを適用することができる。さらにアンテナ918は平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、アンテナ914を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。これらのアンテナと二次電池の間には充電制御回路が設けられ、二次電池と電気的に接続する保護回路を設けてもよい。 An antenna having a shape applicable to the antenna 914 can be applied to the antenna 918 . Further, the antenna 918 may be a planar conductor. This flat conductor can function as one of conductors for electric field coupling. In other words, the antenna 914 may function as one of the two conductors of the capacitor. As a result, electric power can be exchanged not only by electromagnetic fields and magnetic fields, but also by electric fields. A charge control circuit is provided between these antennas and the secondary battery, and a protection circuit electrically connected to the secondary battery may be provided.

又は、図12(B-1)に示すように、図11(A)及び図11(B)に示す電池パックに表示装置920を設けてもよい。表示装置920は、端子911に電気的に接続される。なお、図11(A)及び図11(B)に示す電池パックと同じ部分については、図11(A)及び図11(B)に示す電池パックの説明を適宜援用できる。 Alternatively, as shown in FIG. 12B-1, the display device 920 may be provided in the battery packs shown in FIGS. 11A and 11B. The display device 920 is electrically connected to the terminals 911 . Note that the description of the battery pack shown in FIGS. 11A and 11B can be used as appropriate for the same parts as those of the battery pack shown in FIGS. 11A and 11B.

表示装置920には、例えば充電中であるか否かを示す画像、二次電池の残量を示す画像、異常発生を警告する情報などを表示してもよい。表示装置920としては、例えば電子ペーパー、液晶表示装置、エレクトロルミネセンス(ELともいう)表示装置などを用いることができる。例えば、電子ペーパーを用いることにより表示装置920の消費電力を低減することができる。 The display device 920 may display, for example, an image indicating whether or not the battery is being charged, an image indicating the remaining amount of the secondary battery, information warning of the occurrence of an abnormality, and the like. As the display device 920, electronic paper, a liquid crystal display device, an electroluminescence (also referred to as EL) display device, or the like can be used, for example. For example, by using electronic paper, power consumption of the display device 920 can be reduced.

又は、図12(B-2)に示すように、図11(A)及び図11(B)に示す二次電池913にセンサ921を設けてもよい。センサ921は、端子922および回路基板900を介して端子911に電気的に接続される。なお、図11(A)及び図11(B)に示す二次電池と同じ部分については、図11(A)及び図11(B)に示す二次電池の説明を適宜援用できる。 Alternatively, as shown in FIG. 12B-2, a sensor 921 may be provided in the secondary battery 913 shown in FIGS. 11A and 11B. Sensor 921 is electrically connected to terminal 911 through terminal 922 and circuit board 900 . Note that the description of the secondary battery illustrated in FIGS. 11A and 11B can be used as appropriate for the same portions as those of the secondary battery illustrated in FIGS.

センサ921としては、例えば、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定することができる機能を有すればよい。センサ921を設けることにより、例えば、二次電池が置かれている環境を示すデータ(温度など)を検出し、電子部品700内のメモリに記憶しておくこともできる。図12(C)は、回路基板900の上面図の一例である。回路基板の端子961は端子951と接続し、端子962は、端子952と電気的に接続する。センサ921の端子922は、回路基板900の端子963と電気的に接続する。これらの端子からの入力が電子部品700に入力され、それらの情報を基にマイクロショートなどの異常を検知することができる。 Sensors 921 include, for example, displacement, position, speed, acceleration, angular velocity, number of revolutions, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate , humidity, gradient, vibration, smell, or infrared rays. By providing the sensor 921 , for example, data (such as temperature) indicating the environment in which the secondary battery is placed can be detected and stored in the memory within the electronic component 700 . FIG. 12C is an example of a top view of the circuit board 900. FIG. The terminal 961 of the circuit board is connected with the terminal 951 and the terminal 962 is electrically connected with the terminal 952 . Terminal 922 of sensor 921 is electrically connected to terminal 963 of circuit board 900 . Inputs from these terminals are input to the electronic component 700, and abnormalities such as micro-shorts can be detected based on the information.

さらに、二次電池913の構造例について図13及び図14を用いて説明する。 Further, a structural example of the secondary battery 913 is described with reference to FIGS.

図13(A)に示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液に含浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図13(A)では、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。 A secondary battery 913 illustrated in FIG. 13A includes a wound body 950 provided with a terminal 951 and a terminal 952 inside a housing 930 . The wound body 950 is impregnated with the electrolytic solution inside the housing 930 . The terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like. Note that in FIG. 13A , the housing 930 is shown separately for convenience, but actually, the wound body 950 is covered with the housing 930 and the terminals 951 and 952 are connected to the housing 930 . extending outside. As the housing 930, a metal material (such as aluminum) or a resin material can be used.

なお、図13(B)に示すように、図13(A)に示す筐体930を複数の材料によって形成してもよい。例えば、図13(B)に示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体950が設けられている。 Note that as shown in FIG. 13B, the housing 930 shown in FIG. 13A may be formed using a plurality of materials. For example, in a secondary battery 913 illustrated in FIG. 13B, a housing 930a and a housing 930b are attached to each other, and a wound body 950 is provided in a region surrounded by the housings 930a and 930b. .

筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナ914などのアンテナを設けてもよい。筐体930bとしては、例えば金属材料を用いることができる。 An insulating material such as an organic resin can be used for the housing 930a. In particular, by using a material such as an organic resin for the surface on which the antenna is formed, shielding of the electric field by the secondary battery 913 can be suppressed. Note that an antenna such as the antenna 914 may be provided inside the housing 930a if the shielding of the electric field by the housing 930a is small. A metal material, for example, can be used as the housing 930b.

さらに、捲回体950の構造について図14に示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。 Furthermore, the structure of the wound body 950 is shown in FIG. A wound body 950 has a negative electrode 931 , a positive electrode 932 , and a separator 933 . The wound body 950 is a wound body in which the negative electrode 931 and the positive electrode 932 are laminated with the separator 933 interposed therebetween, and the laminated sheet is wound. Note that the negative electrode 931, the positive electrode 932, and the separator 933 may be stacked more than once.

負極931は、端子951及び端子952の一方を介して図11に示す端子911に接続される。正極932は、端子951及び端子952の他方を介して図11に示す端子911に接続される。 The negative electrode 931 is connected to the terminal 911 shown in FIG. 11 through one of the terminals 951 and 952 . The positive electrode 932 is connected to the terminal 911 shown in FIG. 11 through the other of the terminals 951 and 952 .

図11に示す端子952及び端子911とそれぞれ電気的に接続される回路基板900は、電子部品700が実装されており、例えば、実施の形態1に示した電池残量計測回路を含むため、二次電池913の充電状態を正確に知ることができる。 Electronic component 700 is mounted on circuit board 900 electrically connected to terminals 952 and 911 shown in FIG. The state of charge of the secondary battery 913 can be accurately known.

(実施の形態5)
上述した実施の形態では、回路基板に一つの電子部品700を設ける例を示したが、特に限定されず、パッケージ基板(プリント基板)上にインターポーザが設けられ、インターポーザ上にIC半導体装置が複数組み合わされている電子部品730を用いてもよい。電子部品700または電子部品730には、上述した実施の形態1の電池残量計測回路を有し、二次電池の充電状態を知ることができる。
(Embodiment 5)
In the above-described embodiment, an example in which one electronic component 700 is provided on a circuit board is shown, but there is no particular limitation, and an interposer is provided on a package substrate (printed circuit board), and a plurality of IC semiconductor devices are combined on the interposer. Any electronic component 730 may be used. Electronic component 700 or electronic component 730 has the battery remaining amount measuring circuit of Embodiment 1 described above, and can know the charging state of the secondary battery.

本実施の形態では、保護回路を備えた電子機器の例について図15を用いて説明を行う。 In this embodiment, an example of an electronic device including a protection circuit will be described with reference to FIGS.

ロボット7100は、二次電池、照度センサ、マイクロフォン、カメラ、スピーカ、ディスプレイ、各種センサ(赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなど)、および移動機構などを備える。ロボット7100の二次電池に接続されている実施の形態1に示した電池残量計測回路を含むため、二次電池の充電状態を正確に知ることができる。 The robot 7100 includes a secondary battery, an illumination sensor, a microphone, a camera, a speaker, a display, various sensors (infrared sensor, ultrasonic sensor, acceleration sensor, piezo sensor, optical sensor, gyro sensor, etc.), a moving mechanism, and the like. Since the battery remaining amount measuring circuit shown in Embodiment 1 connected to the secondary battery of the robot 7100 is included, the charged state of the secondary battery can be accurately known.

マイクロフォンは、使用者の音声および環境音などの音響信号を検知する機能を有する。また、スピーカは、音声および警告音などのオーディオ信号を発する機能を有する。ロボット7100は、マイクロフォンを介して入力されたオーディオ信号を解析し、必要なオーディオ信号をスピーカから発することができる。ロボット7100において、は、マイクロフォン、およびスピーカを用いて、使用者とコミュニケーションをとることが可能である。 A microphone has a function of detecting acoustic signals such as a user's voice and environmental sounds. The speaker also has the function of emitting audio signals such as voice and warning sounds. The robot 7100 can analyze an audio signal input via a microphone and emit a necessary audio signal from a speaker. Robot 7100 can communicate with the user using a microphone and speaker.

カメラは、ロボット7100の周囲を撮像する機能を有する。また、ロボット7100は、移動機構を用いて移動する機能を有する。ロボット7100は、カメラを用いて周囲の画像を撮像し、画像を解析して移動する際の障害物の有無などを察知することができる。 The camera has a function of capturing images around the robot 7100 . Robot 7100 also has a function of moving using a moving mechanism. The robot 7100 can capture an image of its surroundings using a camera, analyze the image, and sense the presence or absence of an obstacle when moving.

飛行体7120は、プロペラ、カメラ、および二次電池などを有し、自律して飛行する機能を有する。 The flying object 7120 has a propeller, a camera, a secondary battery, and the like, and has a function of autonomous flight.

また、飛行体7120の二次電池に接続された実施の形態1に示した電池残量計測回路を含むため、二次電池の充電状態を正確に知ることができる。 In addition, since the remaining battery level measurement circuit described in Embodiment 1 connected to the secondary battery of the aircraft 7120 is included, the charging state of the secondary battery can be accurately known.

掃除ロボット7140は、二次電池、上面に配置されたディスプレイ、側面に配置された複数のカメラ、ブラシ、操作ボタン、各種センサなどを有する。図示されていないが、掃除ロボット7300には、タイヤ、吸い込み口などが備えられている。掃除ロボット7300は自走し、ゴミを検知し、下面に設けられた吸い込み口からゴミを吸引することができる。掃除ロボット7140の二次電池の保護回路に実施の形態1に示した電池残量計測回路を含むため、二次電池の充電状態を正確に知ることができる。 The cleaning robot 7140 has a secondary battery, a display arranged on the top surface, a plurality of cameras arranged on the side surface, a brush, operation buttons, various sensors, and the like. Although not shown, the cleaning robot 7300 is provided with tires, a suction port, and the like. The cleaning robot 7300 can run by itself, detect dust, and suck the dust from a suction port provided on the bottom surface. Since the secondary battery protection circuit of the cleaning robot 7140 includes the remaining battery level measurement circuit described in Embodiment 1, the charged state of the secondary battery can be accurately known.

移動体の一例として電気自動車7160を示す。電気自動車7160は、二次電池、タイヤ、ブレーキ、操舵装置、カメラなどを有する。電気自動車7160の二次電池に接続する保護回路に実施の形態1に示した電池残量計測回路を含むため、二次電池の充電状態を正確に知ることができる。 An electric vehicle 7160 is shown as an example of a mobile object. An electric vehicle 7160 has a secondary battery, tires, brakes, a steering device, a camera, and the like. Since the battery level measurement circuit described in Embodiment 1 is included in the protection circuit connected to the secondary battery of the electric vehicle 7160, the charged state of the secondary battery can be accurately known.

なお、上述では、移動体の一例として電気自動車について説明しているが、移動体は電気自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体の二次電池の保護回路に実施の形態1に示した電池残量計測回路を含むため、二次電池の充電状態を正確に知ることができる。 In addition, although an electric vehicle is described above as an example of a mobile object, the mobile object is not limited to an electric vehicle. For example, moving bodies include trains, monorails, ships, flying bodies (helicopters, unmanned aerial vehicles (drones), airplanes, rockets), etc., and a secondary battery protection circuit for these moving bodies can also be used. 1, it is possible to accurately know the state of charge of the secondary battery.

電子部品700および/または電子部品730は、スマートフォン7210、PC7220(パーソナルコンピュータ)、ゲーム機7240等に組み込むことができる。 Electronic component 700 and/or electronic component 730 can be incorporated into smart phone 7210, PC 7220 (personal computer), game console 7240, and the like.

スマートフォン7210は、携帯情報端末の一例である。スマートフォン7210は、マイクロフォン、カメラ、スピーカ、各種センサ、および表示部を有する。電子部品730によってこれら周辺機器が制御される。スマートフォン7210の二次電池に電気的に接続する本発明の一態様の保護回路に実施の形態1に示した電池残量計測回路を含むため、二次電池の充電状態を正確に知ることができる。 A smartphone 7210 is an example of a mobile information terminal. A smartphone 7210 has a microphone, a camera, a speaker, various sensors, and a display portion. Electronic components 730 control these peripherals. Since the battery level measurement circuit described in Embodiment 1 is included in the protection circuit of one embodiment of the present invention electrically connected to the secondary battery of the smartphone 7210, the charging state of the secondary battery can be accurately known. .

PC7220はそれぞれノート型PCの例である。ノート型PCの二次電池に電気的に接続する本発明の一態様の保護回路に実施の形態1に示した電池残量計測回路を含むため、二次電池の充電状態を正確に知ることができる。 Each PC7220 is an example of a notebook PC. Since the battery level measurement circuit described in Embodiment 1 is included in the protection circuit of one embodiment of the present invention electrically connected to the secondary battery of the notebook PC, the charged state of the secondary battery can be accurately known. can.

ゲーム機7240は携帯型ゲーム機の例である。ゲーム機7260は家庭用の据え置き型ゲーム機の例である。ゲーム機7260には、無線または有線でコントローラ7262が接続されている。コントローラ7262に、電子部品700および/または電子部品730に実施の形態1に示した電池残量計測回路を組み込むことで、二次電池の充電状態を正確に知ることができる。 Game machine 7240 is an example of a handheld game machine. The game machine 7260 is an example of a home-use stationary game machine. A controller 7262 is wirelessly or wiredly connected to the game machine 7260 . By incorporating the remaining battery level measurement circuit described in Embodiment 1 into electronic component 700 and/or electronic component 730 in controller 7262, the charged state of the secondary battery can be accurately known.

本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with the structures described in other embodiments and the like.

(実施の形態6)
本実施の形態では、OSトランジスタを用いることができる市場イメージについて説明する。
(Embodiment 6)
In this embodiment, a market image in which an OS transistor can be used will be described.

<市場イメージ>
まず、OSトランジスタを用いることができる市場イメージを図16に示す。図16において、領域701は、OSトランジスタを用いたディスプレイ(Display)に応用可能な製品領域(OS Display)を表し、領域702は、OSトランジスタを用いたLSI(Large Scale Integration)をアナログ(analog)処理に応用可能な製品領域(OS LSI analog)を表し、領域703は、OSトランジスタを用いたLSIをデジタル(digital)処理に応用可能な製品領域(OS LSI digital)を表す。OSトランジスタは、図16に示す領域701、領域702、および領域703の3つの領域、別言すると3つの大きな市場に好適に用いることができる。
<Market image>
First, FIG. 16 shows a market image in which an OS transistor can be used. In FIG. 16, an area 701 represents a product area (OS Display) that can be applied to a display using an OS transistor, and an area 702 represents an analog LSI (Large Scale Integration) using an OS transistor. An area 703 represents a product area (OS LSI analog) that can be applied to processing, and an area 703 represents a product area (OS LSI digital) that can apply an LSI using an OS transistor to digital processing. OS transistors can be suitably used in three areas, areas 701, 702, and 703 shown in FIG. 16, in other words, three large markets.

また、図16において、領域704は、領域701と、領域702とが重なった領域を表し、領域705は、領域702と、領域703とが重なった領域を表し、領域706は、領域701と、領域703とが重なった領域を表し、領域707は、領域701と、領域702と、領域703とが、それぞれ重なった領域を表す。 In FIG. 16, a region 704 represents a region where the regions 701 and 702 overlap, a region 705 represents a region where the regions 702 and 703 overlap, and a region 706 represents the regions 701 and 703. A region 703 represents an overlapping region, and a region 707 represents an overlapping region of the regions 701, 702, and 703, respectively.

OS Displayでは、例えば、Bottom Gate型のOS FET(BG OSFET)、Top Gate型のOS FET(TG OS FET)などのFET構造を好適に用いることができる。なお、Bottom Gate型のOS FETには、チャネルエッチ型のFET、およびチャネル保護型のFETも含まれる。また、Top Gate型のOS FETには、TGSA(Top Gate Self-Aligned)型のFETも含まれる。 In OS displays, for example, FET structures such as a bottom gate type OS FET (BG OSFET) and a top gate type OS FET (TG OS FET) can be preferably used. Bottom gate OS FETs include channel etch FETs and channel protection FETs. The top gate type OS FET also includes a TGSA (top gate self-aligned) type FET.

また、OS LSI analogおよびOS LSI digitalでは、例えば、Gate Last型のOS FET(GL OS FET)を好適に用いることができる。 Also, in OS LSI analog and OS LSI digital, for example, a gate-last type OS FET (GL OS FET) can be preferably used.

なお、上述のトランジスタは、それぞれ、ゲート電極が1つのSingle Gate構造のトランジスタ、ゲート電極が2つのDual Gate構造のトランジスタ、またはゲート電極が3つ以上のトランジスタを含む。また、Dual Gate構造のトランジスタの中でも特に、S-channel(surrounded channel)構造のトランジスタを用いると好適である。 Note that each of the transistors described above includes a single gate transistor with one gate electrode, a dual gate transistor with two gate electrodes, and a transistor with three or more gate electrodes. Among dual gate transistors, it is particularly preferable to use a transistor with an S-channel (surrounded channel) structure.

また、OS Display(領域701)に含まれる製品としては、LCD(liquid crystal display)、EL(Electro Luminescence)、およびLED(Light Emitting Diode)を表示デバイスに有する製品が挙げられる。または、上記表示デバイスと、Q-Dot(Quantum Dot)とを組み合わせることも好適である。 Products included in the OS Display (area 701) include products having LCDs (liquid crystal displays), ELs (Electro Luminescence), and LEDs (Light Emitting Diodes) as display devices. Alternatively, it is also preferable to combine the above display device with Q-Dots (Quantum Dots).

なお、本実施の形態において、ELとは、有機EL、および無機ELを含む。また、本実施の形態において、LEDとは、マイクロLED、ミニLED、およびマクロLEDを含む。なお、本明細書等において、チップの面積が10000μm以下の発光ダイオードをマイクロLED、チップの面積が10000μmより大きく1mm以下の発光ダイオードをミニLED、チップの面積が1mmより大きい発光ダイオードをマクロLEDと記す場合がある。 Note that in this embodiment, EL includes organic EL and inorganic EL. In addition, in the present embodiment, LEDs include micro LEDs, mini LEDs, and macro LEDs. In this specification and the like, light emitting diodes with a chip area of 10000 μm 2 or less are micro LEDs, light emitting diodes with a chip area of 10000 μm 2 or more and 1 mm 2 or less are mini LEDs, and light emitting diodes with a chip area of 1 mm 2 or more. is sometimes referred to as a macro LED.

また、OS LSI analog(領域702)に含まれる製品としては、様々な周波数の音域(例えば、周波数が20Hz~20kHzの可聴音、または20kHz以上の超音波など)に対応する音源定位デバイス、あるいはバッテリ制御用デバイス(バッテリ制御用IC、バッテリ保護用IC、またはバッテリマネジメントシステム)などが挙げられる。 Products included in the OS LSI analog (region 702) include sound source localization devices or battery Control devices (battery control ICs, battery protection ICs, battery management systems) and the like are included.

また、OS LSI digital(領域703)に含まれる製品としては、メモリーデバイス、CPU(Central Processing Unit)デバイス、GPU(Graphics Processing Unit)デバイス、FPGA(field-programmable gate array)デバイス、パワーデバイス、OS LSIと、Si LSIとを積層または混在させたハイブリッドデバイス、発光デバイスなどが挙げられる。 Products included in the OS LSI digital (region 703) include memory devices, CPU (Central Processing Unit) devices, GPU (Graphics Processing Unit) devices, FPGA (field-programmable gate array) devices, power devices, and OS LSIs. and a Si LSI are laminated or mixed to form a hybrid device, a light-emitting device, and the like.

また、領域704に含まれる製品としては、表示領域に赤外線センサ、または近赤外線センサを有する表示デバイス、あるいはOS FETを有するセンサ付き信号処理デバイス、または埋め込み型バイオセンサデバイスなどが挙げられる。また、領域705に含まれる製品としては、A/D(Analog to Digital)変換回路などを有する処理回路、あるいは、当該処理回路を有するAI(Artificial Intelligence)デバイスなどが挙げられる。また、領域706に含まれる製品としては、Pixel AI技術が適用された表示デバイスなどが挙げられる。なお、本明細書等において、Pixel AI技術とは、ディスプレイの画素回路に搭載されたOS FETなどにより構成されるメモリを活用する技術をいう。 Products included in area 704 include display devices having infrared sensors or near-infrared sensors in the display area, signal processing devices with sensors having OS FETs, implantable biosensor devices, and the like. Products included in the area 705 include a processing circuit including an A/D (Analog to Digital) conversion circuit, an AI (Artificial Intelligence) device including the processing circuit, and the like. Products included in the area 706 include display devices to which Pixel AI technology is applied. In this specification and the like, Pixel AI technology refers to technology that utilizes a memory configured by an OS FET or the like mounted in a pixel circuit of a display.

また、領域707に含まれる製品としては、上記領域701乃至領域706に含まれる、あらゆる製品を組み合わせた複合的な製品が挙げられる。 Products included in the area 707 include composite products that combine all the products included in the areas 701 to 706 .

以上のように、本発明の一態様の半導体装置は、図16に示すように、あらゆる製品領域に適用することが可能である。すなわち、本発明の一態様の半導体装置は、多くの市場に適用することが可能である。 As described above, the semiconductor device of one embodiment of the present invention can be applied to any product region as shown in FIG. That is, the semiconductor device of one embodiment of the present invention can be applied to many markets.

本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in appropriate combination with any structure described in any of the other embodiments.

11 制御回路
101 記憶素子
300 トランジスタ
311 基板
313 半導体領域
314a 低抵抗領域
314b 低抵抗領域
315 絶縁体
316 導電体
320 絶縁体
322 絶縁体
324 絶縁体
326 絶縁体
328 導電体
330 導電体
350 絶縁体
352 絶縁体
354 絶縁体
356 導電体
360 絶縁体
362 絶縁体
364 絶縁体
366 導電体
370 絶縁体
372 絶縁体
374 絶縁体
376 導電体
380 絶縁体
382 絶縁体
384 絶縁体
386 導電体
410 記憶素子
420 記憶素子
430 記憶素子
440 記憶素子
450 記憶素子
460 記憶素子
470 記憶素子
500 トランジスタ
503 導電体
503a 導電体
503b 導電体
505 導電体
510 絶縁体
512 絶縁体
514 絶縁体
516 絶縁体
518 導電体
520 絶縁体
522 絶縁体
524 絶縁体
526 絶縁体
530 酸化物
530a 酸化物
530b 酸化物
530c 酸化物
540a 導電体
540b 導電体
542 導電体
542a 導電体
542b 導電体
543a 領域
543b 領域
544 絶縁体
546 導電体
548 導電体
550 絶縁体
560 導電体
560a 導電体
560b 導電体
574 絶縁体
580 絶縁体
581 絶縁体
582 絶縁体
586 絶縁体
600 容量素子
601 正極キャップ
602 電池缶
603 正極端子
604 正極
605 セパレータ
606 負極
607 負極端子
608 絶縁板
609 絶縁板
610 導電体
611 PTC素子
612 導電体
616 二次電池
617 安全弁機構
618 保護回路基板
620 導電体
630 絶縁体
640 絶縁体
700 電子部品
730 電子部品
900 回路基板
910 ラベル
911 端子
913 二次電池
914 アンテナ
915 シール
916 層
917 層
918 アンテナ
920 表示装置
921 センサ
922 端子
930 筐体
930a 筐体
930b 筐体
931 負極
932 正極
933 セパレータ
950 捲回体
951 端子
952 端子
961 端子
962 端子
963 端子
7100 ロボット
7120 飛行体
7140 掃除ロボット
7160 電気自動車
7210 スマートフォン
7220 PC
7240 ゲーム機
7260 ゲーム機
7262 コントローラ
7300 掃除ロボット
11 control circuit 101 storage element 300 transistor 311 substrate 313 semiconductor region 314a low resistance region 314b low resistance region 315 insulator 316 conductor 320 insulator 322 insulator 324 insulator 326 insulator 328 conductor 330 conductor 350 insulator 352 insulation Body 354 Insulator 356 Conductor 360 Insulator 362 Insulator 364 Insulator 366 Conductor 370 Insulator 372 Insulator 374 Insulator 376 Conductor 380 Insulator 382 Insulator 384 Insulator 386 Conductor 410 Memory element 420 Memory element 430 Memory element 440 Memory element 450 Memory element 460 Memory element 470 Memory element 500 Transistor 503 Conductor 503a Conductor 503b Conductor 505 Conductor 510 Insulator 512 Insulator 514 Insulator 516 Insulator 518 Conductor 520 Insulator 522 Insulator 524 Insulator 526 Insulator 530 Oxide 530a Oxide 530b Oxide 530c Oxide 540a Conductor 540b Conductor 542 Conductor 542a Conductor 542b Conductor 543a Region 543b Region 544 Insulator 546 Conductor 548 Conductor 550 Insulator 560 Conductive Body 560a Conductor 560b Conductor 574 Insulator 580 Insulator 581 Insulator 582 Insulator 586 Insulator 600 Capacitive element 601 Positive electrode cap 602 Battery can 603 Positive electrode terminal 604 Positive electrode 605 Separator 606 Negative electrode 607 Negative electrode terminal 608 Insulating plate 609 Insulating plate 610 Conductor 611 PTC element 612 Conductor 616 Secondary battery 617 Safety valve mechanism 618 Protective circuit board 620 Conductor 630 Insulator 640 Insulator 700 Electronic component 730 Electronic component 900 Circuit board 910 Label 911 Terminal 913 Secondary battery 914 Antenna 915 Seal 916 Layer 917 Layer 918 Antenna 920 Display device 921 Sensor 922 Terminal 930 Housing 930a Housing 930b Housing 931 Negative electrode 932 Positive electrode 933 Separator 950 Winding body 951 Terminal 952 Terminal 961 Terminal 962 Terminal 963 Terminal 7100 Robot 7120 Flying body 7140 Cleaning robot 7160 Electric vehicle 7210 Smartphone 7220 PC
7240 game machine 7260 game machine 7262 controller 7300 cleaning robot

Claims (5)

二次電池の残量を表示する表示回路を有する残量計測回路であり、
前記二次電池の出力端子の電圧値を測定する測定手段と、
酸化物半導体を半導体層とするトランジスタを含む複数の記憶手段と、
前記複数の記憶手段に記憶させた電圧値と、前記測定手段で得られた電圧値とを比較する比較回路とを有し、
前記複数の記憶手段は、それぞれアナログ信号を保持する機能を有する二次電池の残量計測回路。
A remaining amount measuring circuit having a display circuit for displaying the remaining amount of the secondary battery,
measuring means for measuring the voltage value of the output terminal of the secondary battery;
a plurality of storage means including a transistor having an oxide semiconductor as a semiconductor layer;
a comparison circuit that compares the voltage values stored in the plurality of storage means with the voltage values obtained by the measuring means ;
Each of the plurality of storage means is a secondary battery remaining amount measuring circuit having a function of holding an analog signal.
二次電池の残量を表示する表示回路を有する残量計測回路であり、
前記二次電池の出力端子の電圧値を測定する測定手段と、
酸化物半導体を半導体層とするトランジスタを含む複数の記憶手段と、
前記複数の記憶手段に記憶させた電圧値と、前記測定手段で得られた電圧値とを比較する比較回路と、
前記記憶手段と前記比較回路との間にレベルシフタ回路を有し、
前記複数の記憶手段は、それぞれアナログ信号を保持する機能を有する二次電池の残量計測回路。
A remaining amount measuring circuit having a display circuit for displaying the remaining amount of the secondary battery,
measuring means for measuring the voltage value of the output terminal of the secondary battery;
a plurality of storage means including a transistor having an oxide semiconductor as a semiconductor layer;
a comparison circuit that compares the voltage values stored in the plurality of storage means with the voltage values obtained by the measuring means;
a level shifter circuit between the storage means and the comparison circuit ;
Each of the plurality of storage means is a secondary battery remaining amount measuring circuit having a function of holding an analog signal.
二次電池の残量を表示する表示回路を有する残量計測回路であり、
前記二次電池の出力端子の電圧値を測定する測定手段と、
酸化物半導体を半導体層とするトランジスタを含む複数の記憶手段と、
前記複数の記憶手段に記憶させた電圧値と、前記測定手段で得られた電圧値とを比較する比較回路とを有し、
前記複数の記憶手段は、それぞれ抵抗分圧で生成された異なるアナログ信号を保持する機能を有する二次電池の残量計測回路。
A remaining amount measuring circuit having a display circuit for displaying the remaining amount of the secondary battery,
measuring means for measuring the voltage value of the output terminal of the secondary battery;
a plurality of storage means including a transistor having an oxide semiconductor as a semiconductor layer;
a comparison circuit that compares the voltage values stored in the plurality of storage means with the voltage values obtained by the measuring means ;
The plurality of storage means is a secondary battery residual capacity measurement circuit having a function of holding different analog signals generated by resistance voltage division.
二次電池の残量を表示する表示回路を有する残量計測回路であり、
前記二次電池の出力端子の電圧値を測定する測定手段と、
酸化物半導体を半導体層とするトランジスタを含む複数の記憶手段と、
前記複数の記憶手段に記憶させた電圧値と、前記測定手段で得られた電圧値とを比較する比較回路と、
前記記憶手段と前記比較回路との間にレベルシフタ回路を有し、
前記複数の記憶手段は、それぞれ抵抗分圧で生成された異なるアナログ信号を保持する機能を有する二次電池の残量計測回路。
A remaining amount measuring circuit having a display circuit for displaying the remaining amount of the secondary battery,
measuring means for measuring the voltage value of the output terminal of the secondary battery;
a plurality of storage means including a transistor having an oxide semiconductor as a semiconductor layer;
a comparison circuit that compares the voltage values stored in the plurality of storage means with the voltage values obtained by the measuring means;
a level shifter circuit between the storage means and the comparison circuit ;
The plurality of storage means is a secondary battery residual capacity measurement circuit having a function of holding different analog signals generated by resistance voltage division.
請求項1乃至のいずれか一において、
前記比較回路は、酸化物半導体を半導体層とするトランジスタを含む二次電池の残量計測回路。
In any one of claims 1 to 4 ,
The comparison circuit is a secondary battery remaining amount measurement circuit including a transistor having an oxide semiconductor as a semiconductor layer.
JP2018200637A 2018-10-25 2018-10-25 Remaining battery level measurement circuit Active JP7222657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018200637A JP7222657B2 (en) 2018-10-25 2018-10-25 Remaining battery level measurement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200637A JP7222657B2 (en) 2018-10-25 2018-10-25 Remaining battery level measurement circuit

Publications (3)

Publication Number Publication Date
JP2020068136A JP2020068136A (en) 2020-04-30
JP2020068136A5 JP2020068136A5 (en) 2021-12-02
JP7222657B2 true JP7222657B2 (en) 2023-02-15

Family

ID=70388579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200637A Active JP7222657B2 (en) 2018-10-25 2018-10-25 Remaining battery level measurement circuit

Country Status (1)

Country Link
JP (1) JP7222657B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145285A (en) 2004-11-17 2006-06-08 Ricoh Co Ltd Battery residual charge detector
JP2013009325A (en) 2011-05-20 2013-01-10 Semiconductor Energy Lab Co Ltd Semiconductor integrated circuit
JP2018142544A (en) 2012-12-28 2018-09-13 株式会社半導体エネルギー研究所 Power storage system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3063105B2 (en) * 1990-01-16 2000-07-12 ソニー株式会社 Battery level display
JP2794003B2 (en) * 1992-07-23 1998-09-03 4シー テクノロジーズ インコーポレイティド Display device for residual capacity of nickel-cadmium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145285A (en) 2004-11-17 2006-06-08 Ricoh Co Ltd Battery residual charge detector
JP2013009325A (en) 2011-05-20 2013-01-10 Semiconductor Energy Lab Co Ltd Semiconductor integrated circuit
JP2018142544A (en) 2012-12-28 2018-09-13 株式会社半導体エネルギー研究所 Power storage system

Also Published As

Publication number Publication date
JP2020068136A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP7399857B2 (en) Secondary battery protection circuit
JP7405763B2 (en) Power storage device and operating method of power storage device
US20220045532A1 (en) Semiconductor device and charge control system
WO2020012296A1 (en) Semiconductor device
JP7330986B2 (en) Semiconductor device and method of operating semiconductor device
CN113261145A (en) Semiconductor device with a plurality of semiconductor chips
JP7325439B2 (en) power storage device
JP7273064B2 (en) HYSTERESIS COMPARATOR, SEMICONDUCTOR DEVICE, AND POWER STORAGE DEVICE
JP7345497B2 (en) battery pack
WO2020128743A1 (en) Semiconductor device and battery pack
WO2020109901A1 (en) Semiconductor device and secondary battery system
JP7222657B2 (en) Remaining battery level measurement circuit
JP7470642B2 (en) Secondary battery charging control circuit
KR20210119462A (en) Semiconductor device and method of operation of semiconductor device
CN114303315A (en) Semiconductor device and method for operating semiconductor device
JP7327927B2 (en) semiconductor equipment
US11791640B2 (en) Overdischarge prevention circuit of secondary battery and secondary battery module
JP7404264B2 (en) Power supply circuit, semiconductor device
JP2024091685A (en) Secondary battery charging control circuit
CN117941483A (en) Semiconductor device, memory device, and electronic apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230203

R150 Certificate of patent or registration of utility model

Ref document number: 7222657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150