JP7222295B2 - Preheating method for continuous casting nozzle - Google Patents

Preheating method for continuous casting nozzle Download PDF

Info

Publication number
JP7222295B2
JP7222295B2 JP2019074766A JP2019074766A JP7222295B2 JP 7222295 B2 JP7222295 B2 JP 7222295B2 JP 2019074766 A JP2019074766 A JP 2019074766A JP 2019074766 A JP2019074766 A JP 2019074766A JP 7222295 B2 JP7222295 B2 JP 7222295B2
Authority
JP
Japan
Prior art keywords
preheating
refractory
continuous casting
nozzle
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019074766A
Other languages
Japanese (ja)
Other versions
JP2020171937A (en
Inventor
僚 松原
武士 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019074766A priority Critical patent/JP7222295B2/en
Publication of JP2020171937A publication Critical patent/JP2020171937A/en
Application granted granted Critical
Publication of JP7222295B2 publication Critical patent/JP7222295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、通気性耐火物を内孔面に配置した連続鋳造ノズルの予熱方法に関する。 TECHNICAL FIELD The present invention relates to a method for preheating a continuous casting nozzle in which a permeable refractory is arranged on the bore surface.

溶鋼の高清浄化や連続鋳造ノズル内孔面への非金属介在物の付着抑制のため、連続鋳造ノズルから溶鋼中へ不活性ガスを吹込むことが広く行われている。溶鋼中に不活性ガスを吹込む機能を備えた連続鋳造ノズルでは、溶鋼と接する内孔面の一部又は全部に通気性耐火物を配置し、通気性耐火物の背面側に不活性ガスの流通経路及びガス圧力の均一化等を目的とする中空室(ガスプールともいう。)を設けた構造とし、中空室に不活性ガスを供給し、通気性耐火物を介して溶鋼中に不活性ガスを吹込む方法が多く採用されている。 Blowing an inert gas into molten steel from a continuous casting nozzle is widely practiced for the purpose of highly cleaning the molten steel and suppressing adhesion of non-metallic inclusions to the inner hole surface of the continuous casting nozzle. In a continuous casting nozzle with a function of blowing inert gas into molten steel, a breathable refractory is placed on part or all of the inner hole surface that contacts the molten steel, and the inert gas is placed on the back side of the breathable refractory. It has a structure with a hollow chamber (also called a gas pool) for the purpose of uniforming the distribution route and gas pressure, etc., supplying inert gas to the hollow chamber and inerting it in the molten steel through the permeable refractory. Many methods of blowing gas are adopted.

しかし、内孔面に通気性耐火物を配置した連続鋳造ノズルの場合、連続鋳造操業において、鋳造開始時からの時間経過と共に、不活性ガスの気泡径が拡大する現象が起きることが確認されている。不活性ガスの気泡径拡大は、ガス気泡が鋳片内に残存した際に気泡系欠陥の発生を招くだけでなく、アルミナ等の非金属介在物の付着抑制効果が低下することによるノズル内孔閉塞も招くことになる。 However, in the case of a continuous casting nozzle in which a permeable refractory is arranged on the inner hole surface, it has been confirmed that the diameter of the inert gas bubbles expands with the passage of time from the start of casting during the continuous casting operation. there is The expansion of the bubble diameter of the inert gas not only causes the generation of bubble-based defects when the gas bubbles remain in the slab, but also reduces the effect of suppressing the adhesion of non-metallic inclusions such as alumina, resulting in It will also lead to blockages.

そこで、例えば特許文献1では、安定的なガス吹込みを阻害する耐火物損傷の防止を目的として、予熱時の水分に着目した予熱方法が開示されている。この方法では、ノズルの予熱工程を第1予熱と第2予熱に分け、ノズル内に吸湿された水分を、第1予熱でスリット内部に正圧負荷を発生させることなくノズル系外へ排気し、ガス供給管に過剰な熱負荷がかかる前に第2予熱で供給管をガス冷却しつつ、耐火物を指定温度まで昇温させる。
また、特許文献2記載の連続鋳造用ノズルでは、粒径が1μm以下のSiOを配合した通気性耐火物を使用することで、気孔径の拡大が生じない効果を得たうえで、通気性耐火物の耐熱衝撃性等を改善してガス吹込みの安定化を図っている。
Therefore, for example, Patent Document 1 discloses a preheating method focusing on moisture during preheating for the purpose of preventing refractory damage that hinders stable gas blowing. In this method, the nozzle preheating process is divided into the first preheating and the second preheating, and the moisture absorbed in the nozzle is exhausted outside the nozzle system without generating a positive pressure load inside the slit in the first preheating, Before an excessive heat load is applied to the gas supply pipe, the supply pipe is gas-cooled by the second preheating, and the refractory is heated to a specified temperature.
Further, in the continuous casting nozzle described in Patent Document 2, by using a permeable refractory compounded with SiO 2 having a particle size of 1 μm or less, the effect of not causing expansion of the pore diameter is obtained, and air permeability is improved. The gas injection is stabilized by improving the thermal shock resistance of the refractories.

特開2000-317626号公報JP-A-2000-317626 特開2011-212720号公報Japanese Patent Application Laid-Open No. 2011-212720

特許文献1記載の技術によれば、ガス吹込みの安定化に関して相応の効果が得られる。しかしながら、耐火物損傷がなくてもガス吹込みが安定せず、高清浄鋼を安定して製造できない場合があることを本発明者らは発見した。
また、特許文献2記載の技術も、ガス吹込みの安定化に関して相応の効果が得られるが、ガス吹込みが安定しない場合があり、高清浄鋼を安定して製造するためには、さらなる改善が必要であることが判明した。
According to the technique described in Patent Literature 1, a suitable effect can be obtained with respect to stabilization of gas blowing. However, the present inventors have discovered that even if there is no damage to the refractory, the gas injection is not stable and high-cleanliness steel cannot be stably produced in some cases.
In addition, the technique described in Patent Document 2 also has a corresponding effect in stabilizing gas blowing, but gas blowing may not be stable. was found to be necessary.

なお、ガス吹込みが安定しない(不活性ガスの通気特性が不安定になる)とは、操業に伴って、ガス流路断面積(通気性耐火物表面の気孔径やガス流路の径)が拡大することにより、不活性ガスの流量を一定にすると、時間の経過と共にガス供給圧(背圧)が低下していき、背圧を一定にすると、時間の経過と共に不活性ガスの流量が増加していくことをいう。 In addition, the fact that the gas injection is not stable (the ventilation characteristics of the inert gas become unstable) means that the cross-sectional area of the gas channel (the pore diameter of the breathable refractory surface and the diameter of the gas channel) If the inert gas flow rate is constant, the gas supply pressure (back pressure) will decrease over time, and if the back pressure is constant, the inert gas flow rate will decrease over time. It means increasing.

本発明はかかる事情に鑑みてなされたもので、ガス流路断面積の拡大によるガス吹込みの変動を抑制して高清浄鋼を安定して製造することができる、連続鋳造ノズルの予熱方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a method for preheating a continuous casting nozzle that can suppress fluctuations in gas blowing due to an increase in the cross-sectional area of the gas flow path and can stably produce high-cleanliness steel. intended to provide

上記目的を達成するため、本発明は、SiO及びCを配合した通気性耐火物を内孔面に配置した連続鋳造ノズルの予熱に際し、
予熱中の前記通気性耐火物に通気する不活性ガスの流量である予熱時不活性ガス流量[L/min]を、次式の条件を満足する値とすることを特徴としている。
冷間通気量[L/min at 0.098MPa]×前記内孔面に露出する前記通気性耐火物の単位面積当たり予熱時不活性ガス流量[NL/min/cm]×予熱時間[min]≧6.8
但し、前記冷間通気量は、室温(5~40℃)、大気圧下において測定するものとし、前記連続鋳造ノズルの予熱の温度は600℃以上とする。
In order to achieve the above object, the present invention provides, when preheating a continuous casting nozzle in which a permeable refractory containing SiO 2 and C is arranged on the inner hole surface,
The inert gas flow rate during preheating [L/min], which is the flow rate of the inert gas passing through the permeable refractory during preheating, is set to a value that satisfies the following equation.
Cold ventilation rate [L/min at 0.098 MPa] x inert gas flow rate per unit area of the breathable refractory exposed on the inner hole surface [NL/min/cm 2 ] x preheating time [min] ≧6.8
However, the cold aeration rate shall be measured at room temperature (5 to 40° C.) and atmospheric pressure, and the temperature for preheating the continuous casting nozzle shall be 600° C. or higher.

本発明における不活性ガスは、Ar等の周期律表における不活性ガス以外に窒素ガスを含むものとする。
冷間通気量は、室温(5~40℃)、常圧下において0.098MPaの空気供給圧力を通気性耐火物に負荷した際の単位時間当たり通気量で表される。室温の範囲では冷間通気量に有意な差は見られない。なお、単位Lはリットルである。
予熱時間は、600℃以上の滞留時間である。
The inert gas in the present invention includes nitrogen gas in addition to the inert gas in the periodic table such as Ar.
The cold ventilation rate is expressed as the ventilation rate per unit time when the permeable refractory is loaded with an air supply pressure of 0.098 MPa at room temperature (5 to 40° C.) and normal pressure. There is no significant difference in cold aeration in the room temperature range. The unit L is liter.
The preheating time is the residence time above 600°C.

通気性耐火物に含まれるSiOがガス化することによりガス流路断面積が拡大し、不活性ガスの通気特性が不安定となる。他方、通気性耐火物に配合されているCとガス化したSiOが反応して、ガス流路表面全体を覆うようにSiC層が生成されると、SiOのガス化が停止する。
そこで、本発明者らは、連続鋳造ノズル予熱時に、SiOのガス化とCとの反応を促進させることにより、SiOのガス化反応を概ね完了させておく発想に想到した。
Gasification of the SiO 2 contained in the permeable refractory increases the cross-sectional area of the gas flow path and destabilizes the inert gas permeation characteristics. On the other hand, when C contained in the breathable refractory reacts with gasified SiO 2 to form a SiC layer covering the entire surface of the gas flow path, the gasification of SiO 2 stops.
Therefore, the present inventors came up with the idea of almost completing the gasification reaction of SiO 2 by promoting the gasification of SiO 2 and the reaction with C when preheating the continuous casting nozzle.

本発明者らは、SiOのガス化とCとの反応を促進させるファクターとして、予熱前のガス流路の表面積(小さいほど反応が完了しやすい)、予熱時のガス流量(多いほど反応が促進される)、予熱時間(長いほど反応が促進される)が重要であると考えた。しかし、ガス流路の表面積の実測は困難であることから、本発明では、ガス流路の表面積とトレードオフの関係にあると考えられる冷間通気量を、ガス流路の表面積の代替として使用する。 The present inventors found that the factors that promote the gasification of SiO2 and the reaction with C are the surface area of the gas flow path before preheating (the smaller the reaction, the easier it is to complete), the gas flow rate during preheating (the larger the reaction, the more ) and the preheating time (the longer the reaction, the faster the reaction) are important. However, since it is difficult to actually measure the surface area of the gas channel, in the present invention, the cold aeration rate, which is considered to have a trade-off relationship with the surface area of the gas channel, is used as a substitute for the surface area of the gas channel. do.

上記想定に基づき鋭意検討した結果、本発明者らは、冷間通気量と、内孔面に露出する通気性耐火物の単位面積当たり予熱時不活性ガス流量と、予熱時間の積を一定値(6.8)以上とすることにより、ガス流路断面積の拡大が概ね完了し、高清浄鋼を安定して製造できることを見出した。 As a result of intensive studies based on the above assumptions, the present inventors have found that the product of the cold ventilation amount, the inert gas flow rate per unit area of the breathable refractory exposed on the inner hole surface, and the preheating time is set to a constant value. (6.8) It has been found that the expansion of the cross-sectional area of the gas passage is almost completed by the above, and high-cleanliness steel can be produced stably.

また、本発明に係る連続鋳造ノズルの予熱方法では、前記SiOの一部又は全部に粒径1μm以下のSiO粒子が配合されていてもよい。 Further, in the method for preheating a continuous casting nozzle according to the present invention, SiO 2 particles having a particle size of 1 μm or less may be blended with part or all of the SiO 2 .

粒径1μm以下のSiOを用いると、鋳造初期において高清浄鋼の安定製造が困難になるという知見を本発明者らは得ている。例えばガス流量一定の場合、鋳造開始時とそれ以降の背圧の差が極めて大きく、鋳造開始時に通気性耐火物が破損するおそれがある。しかし、本発明によれば、SiOの一部又は全部に粒径1μm以下のSiO粒子が配合されている通気性耐火物を用いた場合であっても、通気性耐火物の破損を防止し、背圧の低下を顕著に抑制することができる。 The present inventors have found that the use of SiO 2 with a grain size of 1 μm or less makes it difficult to stably produce high-cleanliness steel in the initial stage of casting. For example, if the gas flow rate is constant, the difference in back pressure between the start of casting and after that is extremely large, and there is a risk that the permeable refractory will break at the start of casting. However, according to the present invention, even when a breathable refractory containing SiO2 particles having a particle size of 1 μm or less is used in part or all of SiO2 , damage to the breathable refractory is prevented. and the decrease in back pressure can be remarkably suppressed.

本発明に係る連続鋳造ノズルの予熱方法では、連続鋳造ノズル予熱時にSiOのガス化反応を概ね完了させるので、ガス流路断面積の拡大によるガス吹込みの変動が抑制され、高清浄鋼を安定して製造することができる。 In the method for preheating a continuous casting nozzle according to the present invention, the gasification reaction of SiO 2 is substantially completed during preheating of the continuous casting nozzle, so fluctuations in gas blowing due to the expansion of the cross-sectional area of the gas flow path are suppressed, and high-cleanliness steel is produced. It can be produced stably.

本発明の一実施の形態に係る連続鋳造ノズルの予熱方法に使用される上ノズル及び浸漬ノズルの縦断面図である。1 is a longitudinal sectional view of an upper nozzle and a submerged nozzle used in a continuous casting nozzle preheating method according to an embodiment of the present invention; FIG. 浸漬ノズルの予熱方法及び通気性耐火物の予熱温度測定方法を示した模式図である。It is a schematic diagram showing a preheating method of the submerged nozzle and a preheating temperature measuring method of the permeable refractory.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。 Next, an embodiment embodying the present invention will be described with reference to the attached drawings for understanding of the present invention.

本発明の一実施の形態に係る連続鋳造ノズルの予熱方法に使用される上ノズル11及び浸漬ノズル12を図1に示す。
タンディッシュ10の下面には、上ノズル11から吐出される溶鋼の流量調節を行うスライディングノズル13が取り付けられている。スライディングノズル13は、上ノズル11の下面に固定された上プレート13a、浸漬ノズル12の上端部に下ノズル14を介して固定された下プレート13c、上プレート13aと下プレート13cに挟まれた状態でスライドする中間プレート13b、及び中間プレート13bをスライドさせるアクチュエータ(図示省略)から概略構成されている。
FIG. 1 shows an upper nozzle 11 and a submerged nozzle 12 used in a continuous casting nozzle preheating method according to an embodiment of the present invention.
A sliding nozzle 13 for adjusting the flow rate of the molten steel discharged from the upper nozzle 11 is attached to the lower surface of the tundish 10 . The sliding nozzle 13 has an upper plate 13a fixed to the lower surface of the upper nozzle 11, a lower plate 13c fixed to the upper end of the submerged nozzle 12 through the lower nozzle 14, and a state sandwiched between the upper plate 13a and the lower plate 13c. and an actuator (not shown) for sliding the intermediate plate 13b.

上ノズル11(連続鋳造ノズルの一例)は、溶鋼の流通路となる内孔11aと、内孔11aを囲繞する耐火物からなる円錐台状のノズル本体11bとから構成されている。内孔面には、SiO及びCを配合した通気性耐火物15が配置されている。通気性耐火物15には、ノズル系外から通気性耐火物15の背面に向けて不活性ガスが供給される。 The upper nozzle 11 (an example of a continuous casting nozzle) is composed of an inner hole 11a serving as a flow passage for molten steel and a frusto-conical nozzle body 11b made of a refractory surrounding the inner hole 11a. A permeable refractory 15 containing SiO 2 and C is arranged on the inner hole surface. Inert gas is supplied to the permeable refractory 15 from outside the nozzle system toward the rear surface of the permeable refractory 15 .

浸漬ノズル12(連続鋳造ノズルの一例)は、上端部が溶鋼の流入口とされ、流入口から下方に延びる流路(内孔)12aが内部に形成された、底部を有する管体12bから構成されている。管体12bの下がわ側面部には、内孔12aと連通する一対の吐出孔12cが対向して形成されている。
内孔面には、SiO及びCを配合した通気性耐火物16が配置され、通気性耐火物16と連通する中空室17が管体12b内部に形成されている。通気性耐火物16には、ノズル系外から中空室17を経由して通気性耐火物16の背面に不活性ガスが供給される。
The immersion nozzle 12 (an example of a continuous casting nozzle) has an upper end serving as an inlet for molten steel, and is composed of a tubular body 12b having a bottom and having a flow path (inner hole) 12a extending downward from the inlet. It is A pair of discharge holes 12c communicating with the inner hole 12a are formed in the lower side surface of the tubular body 12b so as to face each other.
An air-permeable refractory 16 containing SiO 2 and C is arranged on the inner hole surface, and a hollow chamber 17 communicating with the air-permeable refractory 16 is formed inside the tubular body 12b. An inert gas is supplied to the back surface of the permeable refractory 16 from outside the nozzle system via the hollow chamber 17 .

前述したように、不活性ガスの通気特性が不安定になるのは、操業に伴って通気性耐火物表面の気孔径やガス流路の径が拡大することにより発生する。その場合、不活性ガスの流量を一定にすると、時間の経過と共に背圧が低下していき、背圧を一定にすると、時間の経過と共に不活性ガスの流量が増加していく。
以下の説明では、不活性ガスの流量を一定にする場合について説明するが、背圧を一定する場合も基本的な考え方は同じである。
As described above, the inert gas permeability becomes unstable due to the expansion of the pore diameter on the surface of the gas permeable refractory and the diameter of the gas flow path during operation. In this case, if the inert gas flow rate is constant, the back pressure will decrease over time, and if the back pressure is constant, the inert gas flow rate will increase over time.
In the following explanation, the case where the flow rate of the inert gas is kept constant will be explained, but the basic idea is the same when the back pressure is kept constant.

[本発明の技術思想について]
溶鋼の高清浄化や連続鋳造ノズルの内孔面への非金属介在物の付着抑制を目的として、連続鋳造ノズルから溶鋼中への不活性ガス吹き込み技術を用いた場合、鋳造開始直後から初期にかけて(鋳造開始時に新品の連続鋳造ノズルを使用する前提で、例えば鋳造開始直後~30分)、不活性ガスの通気特性が不安定になる。具体的には、流量一定として不活性ガスを溶鋼中に吹き込んだ場合、ガス供給圧(背圧)が低下していく。
[Regarding the technical idea of the present invention]
When using the inert gas blowing technology from the continuous casting nozzle into the molten steel for the purpose of highly cleaning the molten steel and suppressing the adhesion of non-metallic inclusions to the inner hole surface of the continuous casting nozzle, from immediately after the start of casting to the initial stage ( On the premise that a new continuous casting nozzle is used at the start of casting, for example, 30 minutes after the start of casting, the inert gas ventilation characteristics become unstable. Specifically, when inert gas is blown into molten steel at a constant flow rate, the gas supply pressure (back pressure) decreases.

上記背圧低下は、ガス流路断面積(通気性耐火物表面の気孔径やガス流路径)の拡大に起因している。ガス流路断面積の拡大は気泡径の増大に直結するため、気泡欠陥の原因となる。また、気泡径の増大は、ガス流量一定下においては、気泡個数の減少、即ち全気泡の表面積合計の減少の原因となるため、介在物捕捉効果が低下し、介在物欠陥の原因ともなる。 The decrease in back pressure is caused by an increase in the cross-sectional area of the gas flow path (the pore diameter on the surface of the breathable refractory and the diameter of the gas flow path). An increase in the cross-sectional area of the gas flow path directly leads to an increase in bubble diameter, which causes bubble defects. In addition, an increase in bubble diameter causes a decrease in the number of bubbles, that is, a decrease in the total surface area of all bubbles under a constant gas flow rate.

一方、背圧が安定した後(例えば鋳造開始から30分経過後)に適正な背圧となるように、予め気孔率が調整された通気性耐火物を使用すると、鋳造開始時(鋳造開始後0分)において高背圧となるため、耐火物の破損を招く場合がある。逆に、耐火物の破損を防止するため、背圧を下げてガス流量を低減させた場合は、介在物捕捉効果が低下する原因となる。
本発明者らが発見した上記課題は、特許文献2記載の技術、即ち1μm以下のSiOを使用した通気性耐火物の場合、極めて高い背圧となるため深刻な課題となる。
On the other hand, if a permeable refractory with pre-adjusted porosity is used so that the back pressure becomes appropriate after the back pressure stabilizes (for example, after 30 minutes from the start of casting), 0 minutes), the back pressure becomes high, which may cause damage to the refractory. Conversely, if the gas flow rate is reduced by lowering the back pressure in order to prevent damage to the refractory, the effect of trapping inclusions will be reduced.
The above problem discovered by the present inventors is a serious problem in the case of the technique described in Patent Document 2, that is, in the case of a permeable refractory using SiO 2 of 1 μm or less, because the back pressure is extremely high.

一般の通気性耐火物にはSiOが配合されているが、鋳造開始後に通気性耐火物が加熱された場合、SiOがガス化(SiOガス)し、ガス流路断面積が拡大することを本発明者らは見出した。即ち、通気性耐火物に含まれるSiOがガス化することによりガス流路断面積が拡大し、不活性ガスの通気特性が不安定となることを本発明者らは見出した。 General breathable refractories contain SiO2 , but when the breathable refractory is heated after casting starts, SiO2 gasifies (SiO gas) and the cross-sectional area of the gas flow path expands. The inventors have found that That is, the present inventors have found that gasification of SiO 2 contained in the permeable refractory increases the cross-sectional area of the gas flow path and destabilizes the inert gas permeation characteristics.

他方、通気性耐火物に配合されているCとガス化したSiO(SiOガス)が反応して、ガス流路表面全体を覆うようにSiC層が生成されると、SiOのガス化が停止し、ガス流路断面積の拡大が抑制される。 On the other hand, when C contained in the permeable refractory reacts with gasified SiO 2 (SiO gas) to form a SiC layer covering the entire surface of the gas flow path, gasification of SiO 2 occurs. stop, and the expansion of the cross-sectional area of the gas passage is suppressed.

そこで、本発明者らは、連続鋳造ノズル予熱時に、SiOのガス化とCとの反応を促進させることにより、SiOのガス化反応を概ね完了させておくこととした。
本発明者らは、SiOのガス化とCとの反応を促進させるファクターとして、予熱前のガス流路の表面積、予熱時のガス流量、予熱時間が重要であると考えた。
Therefore, the present inventors have decided to complete the gasification reaction of SiO 2 by promoting the gasification of SiO 2 and the reaction with C when preheating the continuous casting nozzle.
The inventors considered that the surface area of the gas flow path before preheating, the gas flow rate during preheating, and the preheating time are important factors for promoting the gasification of SiO 2 and the reaction with C.

本発明者らは、一般に販売されている、通気性耐火物が配置された浸漬ノズルでは、通気性耐火物の冷間通気量が測定されていることに着目した。
冷間通気量とガス流路の表面積は概ねトレードオフの関係にあると考えられる。即ち、冷間通気量が少ないほど(細いガス流路が多数存在)、ガス流路の表面積が増大してガス流路に露出するSiOの量が増加し、ガス化させる対象となるSiOが増加すると考えられる。逆に、冷間通気量が多いほど(太いガス流路が少数存在)、ガス流路の表面積が減少してガス流路に露出するSiOの量が減少し、ガス化させる対象となるSiOが減少すると考えられる。
The inventors of the present invention paid attention to the cold aeration rate of the breathable refractory being measured in a commercially available immersion nozzle in which the breathable refractory is arranged.
It is considered that there is generally a trade-off relationship between the amount of cold ventilation and the surface area of the gas flow path. That is, the smaller the amount of cold aeration (there are many narrow gas channels), the larger the surface area of the gas channels and the more the amount of SiO2 exposed in the gas channels, the more SiO2 to be gasified. increase. Conversely, as the amount of cold aeration increases (there are a few thick gas channels), the surface area of the gas channels decreases and the amount of SiO exposed to the gas channels decreases, resulting in a decrease in the amount of SiO to be gasified. 2 is considered to decrease.

通気性耐火物は、概ね一定のかさ密度で製造されており、ガス流路の体積は概ね一定となるが、ガス流路の表面積の多寡は、上述したように、冷間通気量で評価できると考えられる。 Breathable refractories are manufactured with a generally constant bulk density, and the volume of gas channels is generally constant. it is conceivable that.

また、ノズル内孔面に露出した通気性耐火物の単位面積当たりの予熱時不活性ガス流量が多くなると、ガス化したSiOを浸漬ノズル外へ除去する効果が得られ、SiOのガス化反応が進行すると考えられる。
なお、予熱時間が長くなるほど、SiOのガス化反応が進行するのは自明である。
In addition, when the inert gas flow rate per unit area of the permeable refractory exposed on the nozzle inner hole surface increases during preheating, the effect of removing gasified SiO 2 to the outside of the submerged nozzle is obtained, and SiO 2 is gasified. It is believed that the reaction proceeds.
It is obvious that the gasification reaction of SiO 2 progresses as the preheating time increases.

予熱温度は、SiOのガス化温度(顕著なガス化は600℃以上で発生)以上とすれば、工業的に採用できる予熱温度(最高1100℃程度)の範囲内において、SiOのガス化とCとの反応の進行状況に大差はないと考えられる。
一方、600℃未満(例えば500℃程度)の予熱では、SiOのガス化とCとの反応促進不足が懸念されると共に、鋳造開始時(通湯開始時)のスポーリングにより耐火物の損傷も懸念される。
If the preheating temperature is equal to or higher than the gasification temperature of SiO 2 (significant gasification occurs at 600 ° C. or higher), SiO 2 can be gasified within the range of preheating temperatures that can be industrially adopted (maximum of about 1100 ° C.). It is considered that there is not much difference in the progress of the reaction between and C.
On the other hand, preheating at less than 600 ° C (for example, about 500 ° C) may cause insufficient promotion of gasification of SiO 2 and reaction with C, and damage to the refractory due to spalling at the start of casting (at the start of pouring). is also of concern.

[本発明の構成]
本発明では、SiO及びCを配合した通気性耐火物を内孔面に配置した連続鋳造ノズルの予熱に際し、
予熱中の通気性耐火物に通気する不活性ガスの流量である予熱時不活性ガス流量[L/min]を、(1)式の条件を満足する値とする。
冷間通気量[L/min at 0.098MPa]×内孔面に露出する通気性耐火物の単位面積当たり予熱時不活性ガス流量[NL/min/cm]×予熱時間[min]≧6.8 (1)
[Configuration of the present invention]
In the present invention, when preheating a continuous casting nozzle in which a permeable refractory containing SiO 2 and C is arranged on the inner hole surface,
The inert gas flow rate during preheating [L/min], which is the flow rate of the inert gas that passes through the permeable refractory during preheating, is set to a value that satisfies the condition of formula (1).
Cold ventilation rate [L/min at 0.098 MPa] x inert gas flow rate per unit area of permeable refractory exposed on the inner hole surface [NL/min/cm 2 ] x preheating time [min] ≥ 6 .8 (1)

不活性ガスは、Ar等の周期律表における不活性ガス以外に窒素ガスを含む。
予熱時間は、600℃以上の滞留時間である。
Inert gases include nitrogen gas in addition to inert gases in the periodic table such as Ar.
The preheating time is the residence time above 600°C.

通気性耐火物100質量%に対して、単体(複合酸化物の場合を除く。)のSiOは2~12質量%程度、骨材として配合するCは7~30質量%程度である。
冷間通気量と、内孔面に露出する通気性耐火物の単位面積当たり予熱時不活性ガス流量と、予熱時間の積の上限値は特に定めないが、実用的な予熱条件(最高予熱温度、最高ガス流量、工業的に採用できる予熱時間)の場合、115程度が上限と見られる。
With respect to 100% by mass of the permeable refractory, the amount of SiO 2 as a simple substance (excluding the case of a composite oxide) is about 2 to 12% by mass, and the amount of C blended as an aggregate is about 7 to 30% by mass.
The upper limit of the product of the cold ventilation rate, the inert gas flow rate per unit area of the breathable refractory exposed to the inner hole surface during preheating, and the preheating time is not specified, but practical preheating conditions (maximum preheating temperature , the maximum gas flow rate, and the preheating time that can be industrially employed), about 115 is considered to be the upper limit.

SiOの一部又は全部に粒径1μm以下のSiO粒子が配合されていてもよい。粒径1μm以下のSiO粒子の配合量は、通気性耐火物100質量%に対して2~12質量%程度である。 SiO 2 particles having a particle size of 1 μm or less may be blended in part or all of the SiO 2 . The amount of SiO 2 particles with a particle size of 1 μm or less is about 2 to 12% by mass with respect to 100% by mass of the breathable refractory.

図2は、浸漬ノズル12の予熱方法及び通気性耐火物16の予熱温度測定方法を示した模式図である。
浸漬ノズル12を予熱する際は、吐出孔12cから内孔12aにバーナー20を挿入して内孔面を加熱すると共に、管体底面の直下にバーナー20を配置して管体底面を加熱する。
内孔面に配置された通気性耐火物16の予熱温度を測定する際は、吐出孔12cを通して通気性耐火物16に放射温度計21を向けて赤外線を照射し、通気性耐火物16の予熱温度を測定する。
FIG. 2 is a schematic diagram showing a method of preheating the submerged nozzle 12 and a method of measuring the preheating temperature of the permeable refractory 16. As shown in FIG.
When preheating the submerged nozzle 12, the burner 20 is inserted into the inner hole 12a from the discharge hole 12c to heat the inner hole surface, and the burner 20 is arranged directly below the bottom surface of the tubular body to heat the bottom surface of the tubular body.
When measuring the preheating temperature of the permeable refractory 16 placed on the inner hole surface, the permeable refractory 16 is irradiated with infrared rays by directing the radiation thermometer 21 to the permeable refractory 16 through the discharge hole 12c to preheat the permeable refractory 16. Measure the temperature.

なお、吐出孔12cを通して内孔12aの底面に放射温度計21を向けて赤外線を照射し、内孔12aの底面の予熱温度を測定した値を代用してもよい。内孔12aの底面は、予熱時に外気に触れるため予熱温度が最も低く、通気性耐火物16の温度は測定温度以上であると考えられる。
あるいは、熱電対を通気性耐火物16に直接接触させて測定する方法でもよい。
Alternatively, a value obtained by irradiating the bottom surface of the inner hole 12a with infrared rays through the discharge hole 12c with the radiation thermometer 21 and measuring the preheating temperature of the bottom surface of the inner hole 12a may be used instead. Since the bottom surface of the inner hole 12a is in contact with the outside air during preheating, the preheating temperature is the lowest, and the temperature of the permeable refractory 16 is considered to be higher than the measured temperature.
Alternatively, a method of directly contacting a thermocouple to the breathable refractory 16 for measurement may be used.

上ノズル11の予熱温度を測定する際は、内孔11aの上方から、内孔面に配置された通気性耐火物15に放射温度計21を向けて赤外線を照射し、通気性耐火物15の予熱温度を測定する。 When measuring the preheating temperature of the upper nozzle 11, infrared rays are irradiated from above the inner hole 11a to the breathable refractory 15 arranged on the inner hole surface with a radiation thermometer 21, and the breathable refractory 15 is measured. Measure the preheat temperature.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。 Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment. Other possible embodiments and modifications are also included.

本発明の効果について検証するために実施した検証試験について説明する。
検証試験には、内孔面に通気性耐火物を配置した2種類のアルミナグラファイト質浸漬ノズルを使用した。2種類の浸漬ノズルA及びBに配置されている通気性耐火物の組成及び構造を表1に示す。
Verification tests conducted to verify the effects of the present invention will be described.
Two types of alumina-graphitic submerged nozzles with a breathable refractory placed on the bore face were used for the verification tests. Table 1 shows the composition and structure of the breathable refractories placed in the two types of submerged nozzles A and B.

Figure 0007222295000001
Figure 0007222295000001

通気性耐火物は、Al、SiO、SiC、骨材に配合されたCを含み、残部はCaO等の酸化物、バインダーとしてのC、イグニッションロス等である。
浸漬ノズルAの通気性耐火物は粒径1μm以下のSiO粒子を2質量%含み、浸漬ノズルBの通気性耐火物は粒径1μm以下のSiO粒子を含まない。
The permeable refractory contains Al 2 O 3 , SiO 2 , SiC, and C mixed in the aggregate, and the balance is oxides such as CaO, C as a binder, ignition loss, and the like.
The permeable refractory of submerged nozzle A contains 2% by mass of SiO 2 particles with a particle size of 1 μm or less, and the permeable refractory of submerged nozzle B does not contain SiO 2 particles with a particle size of 1 μm or less.

試験結果の一覧を表2に示す。
予熱時間は600℃以上に加熱している時間とし、予熱時の通気性耐火物には、不活性ガス(窒素ガス)を表2記載の予熱時不活性ガス流量一定として供給した。
Table 2 shows a list of test results.
The preheating time was the time during which the refractory was heated to 600° C. or higher, and an inert gas (nitrogen gas) was supplied to the permeable refractory during preheating at a constant inert gas flow rate shown in Table 2 during preheating.

試験結果の評価は以下のように行った。
実機の鋳造開始後0分の通気性耐火物に不活性ガス(Arガス)を供給する際の供給圧力(背圧)を100%として鋳造開始後30分の背圧が90%以上の場合、実機に適用することができるので、○とした。
規定流量の通気は可能であるが、鋳造開始後0分の背圧を100%として鋳造開始後30分の背圧が90%未満、もしくはスポーリングで耐火物に割れが発生した場合、△とした。ただし、実機には適用不可である。
鋳造初期の背圧が高く耐火物が破損するおそれがあるため、ガス流量を減少させた場合、実機に適用できないので、×とした。
The test results were evaluated as follows.
When the supply pressure (back pressure) when supplying inert gas (Ar gas) to the breathable refractory at 0 minutes after the start of casting of the actual machine is 100%, and the back pressure at 30 minutes after the start of casting is 90% or more, Since it can be applied to the actual machine, it was marked with ○.
Ventilation at a specified flow rate is possible, but if the back pressure at 0 minutes after the start of casting is 100% and the back pressure at 30 minutes after the start of casting is less than 90%, or cracks occur in the refractory due to spalling, △ and bottom. However, it cannot be applied to the actual machine.
Since the back pressure in the early stage of casting may be high and the refractory may be damaged, if the gas flow rate is reduced, it cannot be applied to the actual equipment, so it was marked as x.

Figure 0007222295000002
Figure 0007222295000002

検証試験から判明したことを以下に列記する。
・実施例は全て評価が○であった。
・粒径1μm以下のSiO粒子が配合されている通気性耐火物を使用した比較例1~4は、鋳造初期の背圧が高く耐火物が破損するおそれがあるため、ガス流量を減少せざるを得なかった。
・比較例5、6は、粒径1μm以下のSiO粒子が配合されていない通気性耐火物を使用していたが、(1)式の値が6.8未満であったため、評価が△であった。
The findings from the verification tests are listed below.
- All the examples were evaluated as ◯.
・Comparative Examples 1 to 4, which use permeable refractories containing SiO2 particles with a particle size of 1 μm or less, have a high back pressure in the early stage of casting, which may damage the refractory, so the gas flow rate cannot be reduced. I had no choice.
・Comparative Examples 5 and 6 used breathable refractories that did not contain SiO2 particles with a particle size of 1 μm or less, but the value of formula (1) was less than 6.8, so the evaluation was △ Met.

・冷間通気量を変更して(1)式の値を6.8以上とすることにより背圧の安定化が確認された(実施例1と比較例1の比較)。
・内孔面に露出する通気性耐火物の単位面積当たり予熱時不活性ガス流量を変更して(1)式の値を6.8以上とすることにより背圧の安定化が確認された(実施例1と比較例3の比較)。
・予熱時間を変更して(1)式の値を6.8以上とすることにより背圧の安定化が確認された(実施例1と比較例2の比較、実施例5と比較例5の比較)。
- It was confirmed that the back pressure was stabilized by changing the amount of cold aeration to make the value of formula (1) 6.8 or more (comparison between Example 1 and Comparative Example 1).
・It was confirmed that the back pressure was stabilized by changing the inert gas flow rate per unit area of the permeable refractory exposed to the inner hole surface during preheating to make the value of formula (1) 6.8 or more ( Comparison between Example 1 and Comparative Example 3).
・By changing the preheating time and setting the value of formula (1) to 6.8 or more, it was confirmed that the back pressure was stabilized (comparison between Example 1 and Comparative Example 2, and between Example 5 and Comparative Example 5). comparison).

10:タンディッシュ、11:上ノズル(連続鋳造ノズルの一例)、12:浸漬ノズル(連続鋳造ノズルの一例)、11a、12a:内孔、11b:ノズル本体、12b:管体、12c:吐出孔、13:スライディングノズル、13a:上プレート、13b:中間プレート、13c:下プレート、14:下ノズル、15、16:通気性耐火物、17:中空室、20:バーナー、21:放射温度計 10: tundish, 11: upper nozzle (an example of a continuous casting nozzle), 12: immersion nozzle (an example of a continuous casting nozzle), 11a, 12a: inner hole, 11b: nozzle body, 12b: tubular body, 12c: discharge hole , 13: sliding nozzle, 13a: upper plate, 13b: intermediate plate, 13c: lower plate, 14: lower nozzle, 15, 16: breathable refractory, 17: hollow chamber, 20: burner, 21: radiation thermometer

Claims (2)

SiO及びCを配合した通気性耐火物を内孔面に配置した連続鋳造ノズルの予熱に際し、
予熱中の前記通気性耐火物に通気する不活性ガスの流量である予熱時不活性ガス流量[L/min]を、次式の条件を満足する値とすることを特徴とする連続鋳造ノズルの予熱方法。
冷間通気量[L/min at 0.098MPa]×前記内孔面に露出する前記通気性耐火物の単位面積当たり予熱時不活性ガス流量[NL/min/cm]×予熱時間[min]≧6.8
但し、前記冷間通気量は、室温(5~40℃)、大気圧下において測定するものとし、前記連続鋳造ノズルの予熱の温度は600℃以上とする。
During preheating of a continuous casting nozzle in which a permeable refractory compounded with SiO 2 and C is arranged on the inner hole surface,
A continuous casting nozzle characterized in that the inert gas flow rate during preheating [L/min], which is the flow rate of the inert gas that passes through the permeable refractory during preheating, is set to a value that satisfies the following formula: preheating method.
Cold ventilation rate [L/min at 0.098 MPa] x inert gas flow rate per unit area of the breathable refractory exposed on the inner hole surface [NL/min/cm 2 ] x preheating time [min] ≧6.8
However, the cold aeration rate shall be measured at room temperature (5 to 40° C.) and atmospheric pressure, and the temperature for preheating the continuous casting nozzle shall be 600° C. or higher.
請求項1記載の連続鋳造ノズルの予熱方法において、前記SiOの一部又は全部に粒径1μm以下のSiO粒子が配合されていることを特徴とする連続鋳造ノズルの予熱方法。 2. The method for preheating a continuous casting nozzle according to claim 1, wherein SiO2 particles having a particle size of 1 [mu]m or less are blended with part or all of said SiO2 .
JP2019074766A 2019-04-10 2019-04-10 Preheating method for continuous casting nozzle Active JP7222295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019074766A JP7222295B2 (en) 2019-04-10 2019-04-10 Preheating method for continuous casting nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019074766A JP7222295B2 (en) 2019-04-10 2019-04-10 Preheating method for continuous casting nozzle

Publications (2)

Publication Number Publication Date
JP2020171937A JP2020171937A (en) 2020-10-22
JP7222295B2 true JP7222295B2 (en) 2023-02-15

Family

ID=72830433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019074766A Active JP7222295B2 (en) 2019-04-10 2019-04-10 Preheating method for continuous casting nozzle

Country Status (1)

Country Link
JP (1) JP7222295B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317626A (en) 1999-05-12 2000-11-21 Nippon Steel Corp Method for preheating immersion nozzle for continuous casting
JP2011212720A (en) 2010-03-31 2011-10-27 Kurosaki Harima Corp Air-permeable refractory and nozzle for continuous casting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130754A (en) * 1985-12-02 1987-06-13 Akechi Ceramics Kk Gas blowing type immersion nozzle
JPH0763820B2 (en) * 1990-06-18 1995-07-12 新日本製鐵株式会社 Continuous casting method for slabs for thin steel sheets
JPH0515953A (en) * 1991-07-09 1993-01-26 Nippon Steel Corp Immersion nozzle for continuous casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317626A (en) 1999-05-12 2000-11-21 Nippon Steel Corp Method for preheating immersion nozzle for continuous casting
JP2011212720A (en) 2010-03-31 2011-10-27 Kurosaki Harima Corp Air-permeable refractory and nozzle for continuous casting

Also Published As

Publication number Publication date
JP2020171937A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
KR20090095651A (en) Method of and apparatus for conveying molten metals while providing heat thereto
KR101128610B1 (en) Stopper rod for delivering gas into a molten metal
JP7222295B2 (en) Preheating method for continuous casting nozzle
JP2018534147A (en) Nozzle, casting apparatus and casting method
JP4343907B2 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the same
BRPI0908385B1 (en) pot protection tube, cap stem or nozzle / submerged inlet protection tube
JP6515388B2 (en) Upper nozzle for continuous casting
KR20100046983A (en) Submerged nozzle for continuous casting
UA79829C2 (en) Permeable refractory material for a gas purged nozzle
JP5048928B2 (en) Breathable refractory material for continuous casting
JP5057933B2 (en) Exterior heater for continuous casting nozzle
JP4516937B2 (en) Immersion nozzle preheating device and continuous casting method.
JP3853085B2 (en) Molten metal container and surface treatment method thereof
JP6815499B2 (en) Nozzle and its manufacturing method
JP2011212720A (en) Air-permeable refractory and nozzle for continuous casting
KR20120044410A (en) Insulator for molten steel and steel manufactured by using the same
US20210370390A1 (en) Scum adsorbing member, twin roll continuous casting device, and method of producing slab
EP4302900A1 (en) High-thermal-conductivity heat insulation material
JP2938746B2 (en) Plate for discharging molten metal
JP4144638B2 (en) Furnace wall repair method
JP2011224651A (en) Immersion nozzle
JP2002254145A (en) Immersion nozzle for continuous casting having gas blowing function
JP2000312952A (en) Dipping nozzle for continuous casting
JP2010069515A (en) Continuous casting method for steel
JPS63160761A (en) Nozzle for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R151 Written notification of patent or utility model registration

Ref document number: 7222295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151