JP2002254145A - Immersion nozzle for continuous casting having gas blowing function - Google Patents

Immersion nozzle for continuous casting having gas blowing function

Info

Publication number
JP2002254145A
JP2002254145A JP2001057373A JP2001057373A JP2002254145A JP 2002254145 A JP2002254145 A JP 2002254145A JP 2001057373 A JP2001057373 A JP 2001057373A JP 2001057373 A JP2001057373 A JP 2001057373A JP 2002254145 A JP2002254145 A JP 2002254145A
Authority
JP
Japan
Prior art keywords
gas
silica
immersion nozzle
back pressure
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001057373A
Other languages
Japanese (ja)
Inventor
Chiyuutatsu Yo
仲達 余
Takenori Yoshitomi
丈記 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2001057373A priority Critical patent/JP2002254145A/en
Publication of JP2002254145A publication Critical patent/JP2002254145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an immersion nozzle for continuous casting having a gas blowing function, which has a long service life, has little concern about sudden breakage trouble in a nozzle neck or the like, and can prolong a casting time while preventing the casting defect (blow hole defect) of a steel by exerting the floating effect of inclusions in a molten steel and preventing the clogging of an immersion nozzle hole. SOLUTION: In order to minimize the lowering of back pressure of argon gas during casting even after the dissipation of silica while bringing out a spalling resistance and the effectiveness of silica in an immersion nozzle structure, a melted silica material having a grain diameter of 0.1-0.6 mm is blended in the gas permeable material at an inner hole side of a slit. Thereby, the lowering of gas flow resistance caused by the dissipation of silica can be restrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の連続鋳造にお
いて、タンディッシュからモールドへの溶鋼の注入時に
使用されるスリットによるガス吹きを行うガス吹き形の
連続鋳造用浸漬ノズル、とりわけ、スリットに対し溶鋼
が流通する内孔側に配置される通気性材料に特徴を持つ
連続鋳造用浸漬ノズルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas casting type continuous casting immersion nozzle for performing gas blowing by a slit used when pouring molten steel from a tundish into a mold in continuous casting of steel, and more particularly to a slit for casting. On the other hand, the present invention relates to an immersion nozzle for continuous casting, which is characterized by a gas-permeable material disposed on the side of an inner hole through which molten steel flows.

【0002】[0002]

【従来の技術】鋼の連続鋳造において、例えば、タンデ
ィッシュからモールドへの溶鋼の注入する浸漬ノズルは
溶鋼の酸化防止やモールド内の流動の制御など重要な役
割を果たしている。この連続鋳造用浸漬ノズル(以下浸
漬ノズルとも言う)には、各種のタイプがあるが、ガス
吹き式の浸漬ノズル、あるいはスリット式ノズルと称せ
られるものがあり、通常、図1に示す様に、母材1本体
と、ガス吹き込みのためのガスプールにあたるスリット
2と、気孔率が15〜40%の通気性材質3と、パウダ
ーライン構成材4から構成され、下端には吐出口5が形
成され、溶鋼中の介在物の浮上効果と浸漬ノズル孔の閉
塞防止のため、浸漬ノズル内孔へ向け通気性材質3か
ら、アルゴンガス等の不活性ガスの吹き込みが行われ
る。
2. Description of the Related Art In continuous casting of steel, for example, an immersion nozzle for injecting molten steel from a tundish into a mold plays an important role in preventing oxidation of the molten steel and controlling flow in the mold. Although there are various types of immersion nozzles for continuous casting (hereinafter also referred to as immersion nozzles), there are those which are referred to as gas-blowing immersion nozzles or slit-type nozzles. Usually, as shown in FIG. It is composed of a base material 1 main body, a slit 2 corresponding to a gas pool for gas injection, a permeable material 3 having a porosity of 15 to 40%, and a powder line component 4, and a discharge port 5 is formed at a lower end. An inert gas such as an argon gas is blown from the permeable material 3 toward the inner hole of the immersion nozzle in order to float the inclusions in the molten steel and prevent the immersion nozzle hole from being closed.

【0003】この浸漬ノズルを形成する母材1に関して
言えば、熱衝撃性に優れた低熱膨張性のアルミナ−黒鉛
質が使用されるのが通常である。また、通気性材質3も
通気の為にやや多孔質とはしているが、母材と通気性材
質の物理特性、とりわけ熱膨張係数などが大きく異なる
と構造体として問題で、加熱、冷却時の熱膨張差が主原
因と考えられるが、内孔の通気性材質が母材から剥離し
たり、あるいは通気性材質により母材が突き上げられ、
母材側に亀裂が発生し、首折れのトラブルが生じたりす
るために、母材と類似の材質で構成される。
As for the base material 1 forming the immersion nozzle, alumina-graphite having low thermal expansion and excellent thermal shock resistance is usually used. The gas permeable material 3 is also made slightly porous for ventilation. However, if the physical properties of the base material and the gas permeable material, especially the thermal expansion coefficient, are significantly different, there is a problem as a structural body. It is considered that the difference in thermal expansion is the main cause, but the permeable material of the inner hole is peeled off from the base material, or the base material is pushed up by the permeable material,
The base material is made of a material similar to the base material because a crack is generated on the base material side and a trouble of neck break occurs.

【0004】一方、溶鋼、通鋼時の浸漬ノズルの温度分
布を考えると、内孔側の温度が高く、外周の母材の温度
が低いために、双方の熱膨張差をなくすように内孔の通
気性材料は母材以上に低膨張であることが望ましい。こ
のため、内孔の通気性材料3には、アルミナ−黒鉛質を
ベースに、低膨張性原料であり、溶鋼注入時の急加熱に
よる熱衝撃に対する耐スポーリング性を向上させるため
に溶融シリカを含有させることが一般的に行われてい
る。このように、溶融シリカは、内孔通気性材質にとっ
て、欠くことのできない配合成分である。
On the other hand, considering the temperature distribution of the immersion nozzle during molten steel and steel passing, since the temperature on the inner hole side is high and the temperature of the base metal on the outer periphery is low, the inner hole is so formed as to eliminate the difference in thermal expansion between the two. It is desirable that the air permeable material has a lower expansion than the base material. For this reason, the air-permeable material 3 of the inner hole is a low-expansion raw material based on alumina-graphite, and is made of fused silica in order to improve spalling resistance to thermal shock due to rapid heating during molten steel injection. It is generally carried out. As described above, fused silica is an indispensable compounding component for the pore-permeable material.

【0005】しかしながら、一方で、内孔の通気材料に
溶融シリカを含有せしめることによる大きな問題があ
る。すなわち、溶鋼鋳造中に、配合されたシリカが消失
することによる問題である。シリカが消失するメカニズ
ムは,種々検討されているが、例えば、低炭素アルミキ
ルド鋼の鋳造では、下記の式のように、溶鋼中のアルミ
ニウムが浸漬ノズル中のシリカと反応し、シリコンとな
って溶鋼中に溶出し、あるいは、チタン含有の低炭素ア
ルミキルド鋼の鋳造では、チタンによる還元反応がある
とも言われている。
[0005] On the other hand, however, there is a major problem due to the inclusion of fused silica in the vent material of the inner hole. That is, there is a problem due to the disappearance of the compounded silica during molten steel casting. Various mechanisms have been studied for the disappearance of silica. For example, in the casting of low-carbon aluminum killed steel, the aluminum in the molten steel reacts with the silica in the immersion nozzle to form silicon as shown in the following equation. It is said that there is a reduction reaction by titanium in the casting of low-carbon aluminum-killed steel that elutes in or contains titanium.

【0006】 4Al+3SiO→ 2Al+3Si Ti+SiO→TiO+3Si さらには、高温下で長時間使用していると、通気性材料
中に含まれるシリカと炭素質成分との間で下記の反応が
起こり、SiOガスとなって飛散することも考えられ
る。
4Al + 3SiO 2 → 2Al 2 O 3 + 3Si Ti + SiO 2 → TiO 2 + 3Si Further, when used for a long time at a high temperature, the following reaction occurs between silica and carbonaceous components contained in the gas-permeable material. May occur and may be scattered as SiO gas.

【0007】SiO+C→SiO↑+CO↑ 何れにしても、シリカの消失によってもたらされた気孔
の増大、通気性の増大によって吹き込まれるアルゴンガ
ス気泡径が増大し、それが鋼の鋳造欠陥をもたらす。例
えば、熱間圧延後の鋼板、あるいは、焼鈍、冷延鋼板の
板表面に、しばしば、幅1〜4mm、長さ数mmに隆起
した、あるいは、これら数mmの隆起が線状に連続し
て、数百mmにわたって連なった、いわゆるふくれ状の
欠陥を生じる。それによって、鋼板の品質低下や製品歩
留まりを大きく低下させることになる。このふくれ欠陥
の主原因は、浸漬ノズルから吹き込まれたアルゴンガス
が、鋳片内部に捕捉されたためといわれ、アルゴンガス
による泡欠陥と言える。このようなシリカの消失に伴う
バブリング機能の変化が泡欠陥を生み出す。
In any case, SiO 2 + C → SiO {+ CO} In any case, the pore diameter caused by the disappearance of silica and the gas permeability of the argon gas bubbled due to the increase in air permeability increase, and this causes casting defects in steel. Bring. For example, the steel sheet after hot rolling, or, annealing, on the surface of the cold-rolled steel sheet, often raised to a width of 1 to 4 mm, a few mm in length, or these several mm of ridges are continuously linearly , A so-called blister-like defect extending over several hundred mm. As a result, the quality of the steel sheet is reduced and the product yield is significantly reduced. It is said that the main cause of the blister defect is that the argon gas blown from the immersion nozzle is trapped inside the slab, and it can be said that the bubble defect due to the argon gas. Such a change in the bubbling function accompanying the disappearance of the silica produces a bubble defect.

【0008】このシリカの消失に伴うバブリング機能の
変化の状態は、鋳造中に、アルゴンガスを一定流量で吹
き込むことで、背圧低下の現象となって現れ、背圧を常
時測定することでモニタリングする事ができる。そし
て、泡欠陥の危険性を回避するには、鋳造中の背圧の低
下を如何に防ぎ安定させるかにかかっている。そして、
シリカを含有する通気性材料は、鋳造中に背圧低下によ
る、バブリング機能の低下と、鋳造時間が長くなるにつ
れて、鋼の泡欠陥を生み出す比率が高くなる。このよう
な泡欠陥の発生は、鋳造時間の延長と共に出易くなるた
めに、浸漬ノズル自体の寿命を短くならざるを得ない状
況も起こり得る。
The state of the change of the bubbling function accompanying the disappearance of the silica appears as a phenomenon of a decrease in back pressure by blowing argon gas at a constant flow rate during casting, and is monitored by constantly measuring the back pressure. You can do it. In order to avoid the risk of bubble defects, it depends on how to prevent and stabilize the back pressure during casting. And
Breathable materials containing silica have a reduced rate of bubbling due to reduced back pressure during casting, and the longer the casting time, the higher the rate of foaming defects in the steel. Since the occurrence of such a bubble defect is likely to occur as the casting time is prolonged, a situation may occur in which the life of the immersion nozzle itself must be shortened.

【0009】このようなシリカの消失に端を発した問題
の解決のために、通気性材料をノンシリカまたは、低シ
リカ材質にすることが考えられる。例えば、シリカ量を
5重量%以下に制限する事が特開平5−1593号公報
に開示されている。又、シリカ量を5重量%以下に制限
した場合に生じる耐スポール性の低下を補う為に、さら
に5〜15wt%の炭化珪素を併用する等の手法が特許
第2891757号に開示されている。
In order to solve such a problem originated from the disappearance of silica, it is conceivable to use a non-silica or low-silica air-permeable material. For example, Japanese Patent Application Laid-Open No. 5-1593 discloses that the amount of silica is limited to 5% by weight or less. Further, in order to compensate for a decrease in spall resistance that occurs when the amount of silica is limited to 5% by weight or less, a method of additionally using 5 to 15% by weight of silicon carbide is disclosed in Japanese Patent No. 2891757.

【0010】ところが、このシリカの低減は、泡欠陥の
低減には非常に効果的であるが、浸漬ノズルの内孔体剥
離や首折れのトラブル頻度の増大をもたらすことにもな
る。
[0010] Although the reduction of silica is very effective in reducing bubble defects, it also causes an increase in the frequency of troubles such as peeling of the inner body of the immersion nozzle and breaking of the neck.

【0011】このように、本来は、浸漬ノズルを構成す
る母材の耐食性によって、浸漬ノズル自体の寿命が決定
される筈であるところ、現実には、内孔体の欠陥の発生
が廃棄の原因となることも少なくない。
As described above, originally, the life of the immersion nozzle itself should be determined by the corrosion resistance of the base material constituting the immersion nozzle. Is often the case.

【0012】[0012]

【発明が解決しようとする課題】本発明の課題は、ガス
吹き形連続鋳造用浸漬ノズルの寿命を決定する要因とも
なりうる内孔体を材料面から改善して、突発性の首折れ
のトラブルなどの危険性が少なく、なおかつ、溶鋼中の
介在物の浮上効果と浸漬ノズル孔の閉塞防止により、鋼
の鋳造欠陥(泡欠陥)を防ぎつつ、鋳造時間の延長を達
成するものである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the inner hole, which may be a factor in determining the life of a gas-blowing type continuous casting immersion nozzle, from the viewpoint of the material, and to prevent sudden neck breakage. In addition, the present invention achieves a longer casting time while preventing the casting defects (bubble defects) of the steel by the floating effect of the inclusions in the molten steel and the prevention of the clogging of the immersion nozzle holes, with less dangers.

【0013】[0013]

【課題を解決するための手段】本発明は、通気性材料の
構成材料からシリカの無理な低減をせず、通気特性の変
化により背圧の安定性が良い通気性材質を配置すること
でその課題を解決した。
SUMMARY OF THE INVENTION According to the present invention, a permeable material having good back pressure stability due to a change in the permeable property is provided, without forcibly reducing silica from the constituent material of the permeable material. Solved the problem.

【0014】耐スポーリング性や浸漬ノズル構造体中で
のシリカの有効性を生かしつつ、シリカの消失後もある
程度以上の背圧を維持する事を種々検討した結果鋳造中
のアルゴンガスの背圧の低下を極力小さくするため、粒
径0.1〜0.6mmの溶融シリカ原料を内孔体の通気
性材料中に配合することにより、シリカの消失に起因す
る通気抵抗の低下を抑制する事が可能な事を見出した。
Various investigations were made to maintain the back pressure of a certain level or more after the disappearance of the silica while utilizing the spalling resistance and the effectiveness of the silica in the immersion nozzle structure. In order to minimize the decrease in the air permeability, by mixing a fused silica raw material having a particle size of 0.1 to 0.6 mm into the air permeable material of the inner body, it is possible to suppress a decrease in air flow resistance due to the disappearance of silica. Found that it is possible.

【0015】すなわち、本発明のガス吹き形連続鋳造用
浸漬ノズルは、粒径0.1〜0.6mmのものが80%
以上占める溶融シリカ原料を5〜25質量%と、残部が
アルミナと黒鉛質骨材とからなる通気性材料をスリット
に対し内孔側に配置したことを特徴とする。
That is, the immersion nozzle for gas-blown continuous casting of the present invention has a particle diameter of 0.1 to 0.6 mm at 80%.
It is characterized in that the fused silica raw material occupying 5 to 25% by mass and the permeable material composed of alumina and graphite aggregate are disposed on the inner side of the slit with respect to the slit.

【0016】溶融シリカ原料の粒径が0.1mm未満に
なると、その比表面積の増大により、シリカの消失速度
が大きくなると同時に、一定単位の使用量の下で粒径の
違いによる粒の数を比較してみた場合、粒径が小さいと
その粒の個数が多くなり、鋳造中におけるシリカの消失
に起因する通気性材料の組織劣化が組織全体にわたる
為、材料自身強度が脆弱化し、耐溶鋼流の摩耗性に劣
る。
When the particle size of the fused silica raw material is less than 0.1 mm, the specific surface area is increased, thereby increasing the rate of disappearance of silica. In comparison, when the particle size is small, the number of the particles increases, and the structural deterioration of the gas-permeable material due to the disappearance of silica during casting extends throughout the entire structure. Is inferior in wear resistance.

【0017】一方、溶融シリカ原料の粒径が0.6mm
を超えると、前述同様に大きい粒は一定単位の使用量の
下でのその粒の個数が少なくなり、鋳造中におけるシリ
カの消失に起因する通気性材料の組織劣化が局部的とな
り、その影響が小さくなると考えられるが、耐溶鋼流の
摩耗性の低下は少ない。しかし、シリカの消失により新
たに形成したガス通路が消失したシリカの粒径に比例し
て大きくなり、ガス通過に対する抵抗が小さくなって、
鋳造中のアルゴンガスの背圧低下が激しくなると同時
に、バブリングの気泡径も大きくなり、鋳片のフクレ等
の欠陥発生を招くことになる。配合する粒度域は、0.
1〜0.6mmが良いが、実質的にその80%以上が、
この粒度範囲であれば、その効果に大きな違いはない。
On the other hand, the particle diameter of the fused silica raw material is 0.6 mm.
As described above, as described above, the large grains have a smaller number of grains under a certain unit usage amount, and the structural deterioration of the gas-permeable material due to the disappearance of silica during casting becomes localized, and the effect is reduced. Although it is thought to be smaller, the wear resistance of the molten steel flow is hardly reduced. However, the newly formed gas passage due to the disappearance of silica increases in proportion to the particle size of the disappeared silica, and the resistance to gas passage decreases,
At the same time as the back pressure of the argon gas during casting decreases sharply, the bubble diameter of the bubbling also increases, which causes defects such as blistering of the slab. The particle size range to be blended is 0.
1-0.6 mm is good, but 80% or more thereof is substantially
Within this particle size range, there is no significant difference in the effect.

【0018】通気性材料中の溶融シリカ原料の配合量に
ついては、25質量%を越えると、鋳造中における一定
流量下での背圧低下率や鋳片欠陥の発生率と、局部的な
組織劣化に起因する耐溶鋼流の摩耗性の低下が著しくな
る。一方、5質量%未満ではそれ自休の耐スポーリング
性の低下が大きいと同時に、種々の母材と通気性材料と
の間の熱膨張率の差に起因するノズルの首などのくびれ
部分からの折損トラブル率が増大してしまう。これらを
総合的に考慮した上、通気性材料中の溶融シリ力原料の
配合量は、5〜25質量%が良く、より好ましくは、1
0〜25質量%である。
If the amount of the fused silica raw material in the gas-permeable material exceeds 25% by mass, the rate of back pressure reduction and the rate of occurrence of slab defects at a constant flow rate during casting and the local structural deterioration , The wear resistance of the molten steel flow is significantly reduced. On the other hand, when the content is less than 5% by mass, the spalling resistance of the self-rest is greatly reduced, and at the same time, from the neck portion such as the nozzle neck caused by the difference in the coefficient of thermal expansion between the various base materials and the air permeable material. Break trouble rate increases. After considering these factors comprehensively, the amount of the molten silicic material in the gas-permeable material is preferably 5 to 25% by mass, more preferably 1 to 25% by mass.
0 to 25% by mass.

【0019】この様にして得られる通気性材質の通気特
性は、バブリング機能の変化と背圧を制御できれば向上
可能であるとの知見を得た。まず、気泡径拡大指数a
は、シリカが消失状態の平均ガス気泡径rと還元焼成後
でシリカ成分がまだ健全な状態の平均ガス気泡径r’と
して a=r/r’=1.0〜2.1 (1) より好ましくは1.0〜2.0を許容範囲とすることで
鋳片の膨れによる欠陥を抑制すると共に介在物の浮上を
促進させる。
It has been found that the air permeability of the air-permeable material thus obtained can be improved if the change in the bubbling function and the back pressure can be controlled. First, the bubble diameter expansion index a
A = r / r '= 1.0 to 2.1 as the average gas bubble diameter r in a state where the silica has disappeared and the average gas bubble diameter r' in a state where the silica component is still healthy after the reduction firing. Preferably, by setting the range of 1.0 to 2.0 as an allowable range, defects due to swelling of the slab are suppressed and the floating of inclusions is promoted.

【0020】また、背圧低下指数bは、使用後の状態で
ある溶銑加熱後の背圧をp、還元焼成後の背圧をp’と
して、 b=p/p’=0.3〜1 (2) より好ましくは0.4〜1の範囲にあることで鋳片の膨
れによる欠陥現象を抑制する。即ち、ガスバブリング機
能は、これらa、b二つの条件が基準内である時に鋳片
の膨れ等の欠陥が減少すると共に介在物の減少に寄与す
る。
The back pressure drop index b is defined as b = p / p '= 0.3 to 1 where p is the back pressure after hot metal heating and p' is the back pressure after reduction firing, which is the state after use. (2) More preferably, in the range of 0.4 to 1, the defect phenomenon due to the swelling of the slab is suppressed. That is, the gas bubbling function reduces defects such as swelling of the slab and contributes to the reduction of inclusions when the two conditions a and b are within the standard.

【0021】さらに、溶鋼流に接する箇所であり、溶鋼
摩耗性を見るためシリカ消失後のBS摩耗値mとシリカ
消失前のBS摩耗値m’との比m/m’を組織劣化指数
cとしたとき、 c=m/m’=1〜1.7 (3) より好ましくは、1〜1.6の範囲を許容値とすること
で浸漬ノズルの寿命は増大する。
Further, in order to check the abrasion properties of the molten steel, the ratio m / m 'of the BS wear value m after the disappearance of the silica and the BS wear value m' before the disappearance of the silica is referred to as a structural deterioration index c. Then, c = m / m ′ = 1 to 1.7 (3) More preferably, by setting the range of 1 to 1.6 as an allowable value, the life of the immersion nozzle is increased.

【0022】すなわち、上記(1)〜(3)の条件を充
たすことで、長寿命の浸漬ノズルが得られる。
That is, by satisfying the above conditions (1) to (3), a long-life immersion nozzle can be obtained.

【0023】[0023]

【発明の実施の形態】以下本発明の実施の形態を実施例
にによって説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below with reference to examples.

【0024】通気性材料として、とりわけ重要な因子と
なる使用中のガス気泡径の拡大、背圧低下、組織劣化、
耐溶鋼流摩耗性、及びノズル全体の耐熱衝撃性につい
て、以下に評価を行った。
As a gas-permeable material, the expansion of gas bubbles during use, reduction of back pressure, deterioration of tissue,
The molten steel flow wear resistance and the thermal shock resistance of the entire nozzle were evaluated as follows.

【0025】母材は、ごく一般的に用いられているアル
ミナ−黒鉛質材質であって、黒鉛量が20質量%をベー
スに試作製造を行った。通気性材質を表1に示した通
り、溶融シリカの粒度及び使用量が異なる各種の物を配
合し、図1の概略図に示したように3の部分に内装し
た。
The base material is a very commonly used alumina-graphite material, and a trial production was carried out based on a graphite content of 20% by mass. As shown in Table 1, various kinds of air-permeable materials having different particle sizes and amounts of fused silica were blended, and as shown in the schematic diagram of FIG.

【0026】表中では、アルミナは、純度99%の電融
アルミナを、黒鉛は、純度98%の天然鱗状黒鉛を使用
したが、これに限定する物ではない。アルミナとして、
電融アルミナ、焼結アルミナの他に、やや純度は低い
が、ボーキサイト(アルミナ成分≧85wt%)類を電
融した物等も用いる事ができる。又、黒鉛は、他の炭素
質原料、例えば、ピッチ、コークス、無煙炭、人造黒
鉛、カーボンブラック、メソフェーズピッチなどをその
一部に併用する事も可能である。
In the table, alumina was used as fused alumina having a purity of 99%, and graphite was used as natural scaly graphite having a purity of 98%, but is not limited thereto. As alumina
In addition to electrofused alumina and sintered alumina, those obtained by electrofusing bauxite (alumina component ≧ 85 wt%), although the purity is somewhat low, can also be used. In addition, other carbonaceous raw materials, for example, pitch, coke, anthracite, artificial graphite, carbon black, mesophase pitch, etc., can be used as a part of graphite.

【0027】溶融シリカは、比較的高純度な非晶質のシ
リカであるが、経済性を考慮すれば、シリコン単結晶の
引き上げに用いられた非晶質のシリカ質るつぼ屑なども
利用できる。
The fused silica is relatively high-purity amorphous silica. However, in consideration of economy, the amorphous silica crucible used for pulling the silicon single crystal can be used.

【0028】製造方法は、業界周知であり、従来の浸漬
ノズルと同様であるので、その詳細は省略するが、母
材、通気性材料、各々の配合を、フェノール樹脂などの
有機バインダーで混練した後、静水圧プレス機により、
ノズル形状に成型し、還元焼成後、浸漬ノズルの製品と
するものである。
The production method is well known in the industry and is the same as that of a conventional immersion nozzle, so details thereof will be omitted. However, the base material, the air-permeable material, and the respective components are kneaded with an organic binder such as a phenol resin. Later, with a hydrostatic press machine,
It is molded into a nozzle shape, reduced and fired, and then used as a product of an immersion nozzle.

【0029】また、通気性材料その物の、シリカの消失
特性などを調査する為.浸漬ノズルと同様の条件で40
×40×160mmの小型サンブルを作成し、実使用後
を想定した熱処理前後での通気特性や耐摩耗性を調べ
た。
Further, in order to investigate the elimination characteristics of silica, etc. of the breathable material itself. 40 under the same conditions as the immersion nozzle
A small sample having a size of × 40 × 160 mm was prepared, and the ventilation characteristics and abrasion resistance before and after the heat treatment assuming actual use were examined.

【0030】実炉を想定した熱処理は、高周波誘導炉を
用い、銑鉄を1600℃に加熱、溶解した中に、小型サ
ンブルを2時間浸漬、加熱処理を行った。還元焼成後の
製品とこの溶銑加熱後の状態を比較検討し、シリカの消
失の影響を詳細に調査した。
In the heat treatment assuming a real furnace, a small-sized sample was immersed for 2 hours in a high-frequency induction furnace in which pig iron was heated and melted at 1600 ° C. and heat-treated. The product after reduction firing and the state after hot metal heating were compared and examined in detail, and the effect of the disappearance of silica was investigated in detail.

【0031】まず、鋳造中におけるガス気泡径拡大の評
価は、前述の小型サンプルを水モデル装置にセットし、
40×160mmの面を上に向け、水中バブリング試験
により平均ガス気泡径を測定した。
First, the evaluation of the expansion of the gas bubble diameter during casting was performed by setting the small sample described above in a water model device,
The average gas bubble diameter was measured by an underwater bubbling test with the surface of 40 × 160 mm facing upward.

【0032】溶銑加熱後に、溶融シリカはほぼ消失して
いたが、シリカ成分が消失した状態の平均ガス気泡径/
還元焼成後でシリカ成分がまだ健全な状態での平均ガス
気泡径の比率を気泡径拡大指数として表1に示した。こ
の数値が小さく、1に近い程、ガスバブリングの気泡径
の拡大程度が小さく、バブリング機能の安定性が良いこ
とを示す。
After the hot metal was heated, the fused silica had almost disappeared, but the average gas bubble diameter / silica component disappeared.
Table 1 shows the ratio of the average gas bubble diameter in a state where the silica component is still healthy after the reduction firing, as a bubble diameter expansion index. The smaller the value, the closer to 1, the smaller the degree of expansion of the bubble diameter of gas bubbling, and the better the stability of the bubbling function.

【0033】又、この時、鋳造中にモニタリングされる
背圧の変動を想定し、この水モデルで一定のガス流量を
流しながら同時に、背圧も測定した。気泡径拡大指数と
同様に、溶銑加熱後の背圧/還元焼成後の背圧の比を背
圧低下指数として、表1に示した。この数値が大きく、
1に近い程、鋳造中の背圧変動が少なく、バブリング機
能の安定性が良いことを示す。
At this time, assuming fluctuations in the back pressure monitored during casting, the back pressure was measured while flowing a constant gas flow rate using this water model. As in the case of the cell diameter expansion index, Table 1 shows the ratio of back pressure after hot metal heating / back pressure after reduction firing as the back pressure reduction index. This number is large,
The closer to 1, the smaller the fluctuation of the back pressure during casting and the better the stability of the bubbling function.

【0034】鋳造中のシリカの消失度合によって、組織
劣化が進行し、耐溶鋼流摩耗性が低下するが、その耐溶
鋼流摩耗性の評価は、炭化珪素の砥粒を高速気流で吹付
け、試片に摩耗によって生じる窪みの容積を測定するB
S摩耗試験を採用した。傾向として、溶融シリカが多い
物が摩耗性にやや劣るが、実用レベルで大きな差では無
いと考えられる。むしろ、シリカ消失後の耐摩耗性低下
の方が大きく問題である。そこで、各サンプル共、還元
焼成後のBS摩耗値を基準とした、溶銑加熱後のBS摩
耗値/還元焼成後のBS摩耗値の比を組織劣化指数とし
て、表1に示した。この数値が小さく、1に近い程、組
織劣化が少なく、耐溶鋼流摩耗性が良いと判断される。
Depending on the degree of disappearance of silica during casting, the structural deterioration progresses and the molten steel flow wear resistance is reduced. The evaluation of the molten steel flow wear resistance is performed by blowing abrasive grains of silicon carbide with a high-speed airflow. B to measure the volume of the dent caused by wear on the specimen
The S wear test was employed. As a tendency, it is considered that a material having a large amount of fused silica is slightly inferior in abrasion, but is not a large difference at a practical level. Rather, the reduction in wear resistance after the disappearance of silica is more problematic. Therefore, in each sample, the ratio of the BS wear value after heating the hot metal / the BS wear value after the reduction firing, based on the BS wear value after the reduction firing, is shown in Table 1 as a structural deterioration index. It is judged that the smaller the value is, the closer to 1, the less the structural deterioration is and the better the resistance to molten steel flow wear is.

【0035】浸漬ノズル構造体としての評価は、前述の
通り、実際のノズル形状にて行った。実使用時、亀裂や
首折れ、もしくは内孔体剥離を生じない為に、耐熱衝撃
性の評価が重要となる。
As described above, the evaluation as the immersion nozzle structure was performed with the actual nozzle shape. In actual use, evaluation of thermal shock resistance is important in order not to cause cracks, neck breaks, or peeling of the inner body.

【0036】耐熱衝撃性の評価方法としては、実機の使
用状態を想定し、内孔体に所定ガス流量を流している状
態で、超高温バーナーを用い、約2000℃の火炎を直
接ノズル内孔に通して急加熱し、ノズル本体と内孔通気
性材料の急激な熱膨張差等に起因するノズル本体の亀裂
発生、あるいは、内孔体の剥離の有無などを確認した。
当然ながら、ノズル本体の亀裂や内孔体の剥離が生じな
ければ、耐熱衝撃性が良好(○)であり、亀裂や剥離が
生じる場合、耐熱衝撃性が欠如(×)していることにな
り、実使用には耐えないと判定される。本試験は、実炉
の使用条件よりもむしろ苛酷すぎると考えられるが、こ
の試験にパスする事で、実炉における安全率が高いと評
価できる。
As a method of evaluating thermal shock resistance, assuming the use condition of the actual machine, a flame of about 2000 ° C. was directly injected into the nozzle bore using an ultra-high temperature burner while a predetermined gas flow rate was flowing through the bore. To rapidly heat the nozzle body and confirm the occurrence of cracks in the nozzle body due to a sudden thermal expansion difference between the nozzle body and the bore material, or the presence or absence of peeling of the bore body.
Naturally, if the nozzle body does not crack or the inner body does not peel, the thermal shock resistance is good ((). If the crack or peeling occurs, the thermal shock resistance is lacking (×). , Is determined not to withstand actual use. Although this test is considered to be too severe rather than the operating conditions of the actual furnace, it can be evaluated that the safety factor in the actual furnace is high by passing this test.

【0037】表1に内孔体通気性材料の配合割合と各種
の評価結果を示す。
Table 1 shows the mixing ratio of the air-permeable material for the inner hole and various evaluation results.

【0038】[0038]

【表1】 表1において、気泡径拡大指数が、2以下(〜1)、背
圧低下指数が、0.4以上を満足する場合に、ガスバブ
リング機能が○と標記した。また同様に組織劣化指数
が、1.6以下を、耐溶鋼流摩耗性が○とした。
[Table 1] In Table 1, when the bubble diameter expansion index satisfies 2 or less (以下 1) and the back pressure reduction index satisfies 0.4 or more, the gas bubbling function is marked as ○. Similarly, the microstructure deterioration index was 1.6 or less, and the molten steel flow wear resistance was evaluated as ○.

【0039】実施例1、2、3、4は本発明の範囲にあ
り、ガス気泡径拡大指数は1.2〜2.0、ガス背圧低
下指数は0.4〜0.7、組織劣化指数は1.1〜1.
6、耐熱衝撃性は良好である。また実炉テストした結
果、安定的な背圧とバブリング状態、良好な耐溶鋼摩耗
性と耐熱衝撃性を発揮し、1・0回の使用にも耐えた。
Examples 1, 2, 3, and 4 are within the scope of the present invention. The gas bubble diameter expansion index is 1.2 to 2.0, the gas back pressure reduction index is 0.4 to 0.7, and the structure is deteriorated. The index is 1.1 to 1.
6. The thermal shock resistance is good. In addition, as a result of an actual furnace test, it exhibited stable back pressure and bubbling state, good resistance to molten steel abrasion and thermal shock resistance, and could withstand 1.0 use.

【0040】比較例1は実施例1に比べ、同配合量の粗
粒溶融シリカ原料を使用した。その結果、気泡径拡大指
数の増加と背圧低下指数の低下を招き、安定なバブリン
グ状態が得られない。
Comparative Example 1 used a coarse fused silica raw material having the same amount as in Example 1. As a result, the bubble diameter expansion index increases and the back pressure reduction index decreases, and a stable bubbling state cannot be obtained.

【0041】比較例2は実施例1に比べ、同配合量の細
粒溶融シリカ原料を使用した。その結果、組織劣化指数
の増大を招き、バブリング状態は良好だが、良好な耐用
が得られない。
In Comparative Example 2, compared with Example 1, the same amount of fine-grained fused silica raw material was used. As a result, the structure deterioration index is increased, and the bubbling state is good, but good durability cannot be obtained.

【0042】比較例3は実施例1、2、3、4に比べ、
溶融シリカ原料の配合量が少ない。その結果、バブリン
グ性や耐摩耗性は問題ないが、耐熱衝撃性が欠如し、全
く実用化ができなかった。
Comparative Example 3 is different from Examples 1, 2, 3, and 4
The amount of the fused silica raw material is small. As a result, there was no problem in the bubbling property and the abrasion resistance, but the thermal shock resistance was lacking, so that it could not be put to practical use at all.

【0043】比較例4は実施例1、2、3、4に比べ、
溶融シリカ原料の配合量が多い。その結果、気泡径拡大
指数の増加と背圧低下指数の低下、さらには組織劣化指
数の増大をも招き、安定なバブリング状態と良好な耐用
が得られ難い。
Comparative Example 4 is different from Examples 1, 2, 3, and 4
The amount of the fused silica raw material is large. As a result, an increase in the bubble diameter expansion index, a decrease in the back pressure reduction index, and an increase in the tissue deterioration index are also caused, and it is difficult to obtain a stable bubbling state and good durability.

【0044】使用する溶融シリカは、実質的にすべて
0.1〜0.6mmの粒度が望ましいが、実用幅を考え
るとその80%以上がこの範囲にあれば良い。
It is desirable that substantially all of the fused silica used has a particle size of 0.1 to 0.6 mm, but considering the practical range, it is sufficient that 80% or more of the particle size falls within this range.

【0045】実施例5は、問題ないが、比較例5、6
は、この範囲を超えている為、気泡径拡大指数と背圧低
下指数、或いは組織劣化指数の点で問題があり、安定的
なバブリング状態と良好な耐用が得られ難い。
Example 5 has no problem, but Comparative Examples 5 and 6
Is out of this range, there is a problem in the bubble diameter expansion index and the back pressure drop index, or the tissue deterioration index, and it is difficult to obtain a stable bubbling state and good durability.

【0046】[0046]

【発明の効果】本発明に係る効果を総合して記載すると
以下の通りである。
The effects of the present invention are described as follows.

【0047】1. 通気中の背圧安定性が良く、又耐熱
衝撃性に優れているため、熱衝撃による割れ等の問題は
全く発生せず、鋼の連続鋳造ガスバブリング用通気性材
料として安定して使用することができる。
1. It has good back pressure stability during ventilation and excellent thermal shock resistance, so there is no problem such as cracking due to thermal shock, and it should be used stably as a gas permeable material for continuous casting gas bubbling of steel. Can be.

【0048】2. 良好な耐溶鋼摩耗性と比較的小さい
ガス気泡径拡大指数を有するため、長時間の鋳造に対し
ても安定したバブリングが可能となり、非金属介在物の
付着防止と鋳片品質の安定化ができる。
2. Having good wear resistance of molten steel and relatively small gas bubble diameter expansion index, stable bubbling is possible even for long-time casting, preventing adhesion of nonmetallic inclusions and stabilizing slab quality. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ス吹込み形鋳造用ノズルの断面図を示す。FIG. 1 is a cross-sectional view of a blow-in type casting nozzle.

【符号の説明】[Explanation of symbols]

1 母材 2 スリット 3 内孔の通気材料 4 パウダーライン材質 5 吐出口 1 Base material 2 Slit 3 Ventilation material for inner hole 4 Powder line material 5 Discharge port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒径0.1〜0.6mmのものが80%
以上占める溶融シリカ原料を5〜25質量%と、残部が
アルミナと黒鉛質骨材とからなる通気性材料をスリット
に対し内孔側に配置したガス吹き機能を持つ連続鋳造用
浸漬ノズル。
1. 80% of particles having a particle size of 0.1 to 0.6 mm
An immersion nozzle for continuous casting having a gas blowing function in which a permeable material composed of 5 to 25% by mass of the fused silica raw material occupied as described above and the balance of alumina and graphite aggregate is disposed on the inner side of the slit.
【請求項2】 通気性材料の通気特性として、 バブリング機構における気泡径拡大指数をaとし、使用
後の平均ガス気泡径をrに、焼成後の平均ガス気泡径を
r’としたとき、それぞれが下記(1)式の条件を充た
し、 a=r/r’=1.0〜2.1 (1) 背圧低下指数がbで使用後の状態である溶銑加熱後の背
圧をpとし、焼成後の背圧をp’としたとき、それぞれ
が下記(2)式の条件を充たし、 b=p/p’=0.3〜1 (2) 且つ、 溶鋼摩耗性を示す組織劣化指数をcとし、使用後のBS
摩耗値をmに、焼成後のBS摩耗値をm’としたとき、
それぞれが下記(3)式の条件を充たす c=m/m’=1〜1.7 (3) 請求項1に記載のガス吹き機能を持つ連続鋳造用浸漬ノ
ズル。
2. As the gas permeability of the gas-permeable material, when the bubble diameter expansion index in the bubbling mechanism is a, the average gas bubble diameter after use is r, and the average gas bubble diameter after firing is r ′, Satisfies the condition of the following formula (1), a = r / r '= 1.0 to 2.1 (1) The back pressure drop index is b and the back pressure after hot metal heating in the state after use is p. When the back pressure after firing is defined as p ′, each satisfies the condition of the following formula (2), b = p / p ′ = 0.3 to 1 (2) and a structural deterioration index indicating abrasion of molten steel Is c, BS after use
When the wear value is m and the BS wear value after firing is m ',
C = m / m ′ = 1 to 1.7, each satisfying the following condition (3): (3) The continuous casting immersion nozzle having a gas blowing function according to claim 1.
JP2001057373A 2001-03-01 2001-03-01 Immersion nozzle for continuous casting having gas blowing function Pending JP2002254145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001057373A JP2002254145A (en) 2001-03-01 2001-03-01 Immersion nozzle for continuous casting having gas blowing function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001057373A JP2002254145A (en) 2001-03-01 2001-03-01 Immersion nozzle for continuous casting having gas blowing function

Publications (1)

Publication Number Publication Date
JP2002254145A true JP2002254145A (en) 2002-09-10

Family

ID=18917260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001057373A Pending JP2002254145A (en) 2001-03-01 2001-03-01 Immersion nozzle for continuous casting having gas blowing function

Country Status (1)

Country Link
JP (1) JP2002254145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239755A (en) * 2005-03-04 2006-09-14 Nippon Steel Corp Heat insulating material for molten steel surface and method for continuously casting steel using the same
JP2006239704A (en) * 2005-02-28 2006-09-14 Kurosaki Harima Corp Refractory material having gas permeability for continuous casting
JP2020108903A (en) * 2019-01-07 2020-07-16 日本製鉄株式会社 Tundish upper nozzle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239704A (en) * 2005-02-28 2006-09-14 Kurosaki Harima Corp Refractory material having gas permeability for continuous casting
JP2006239755A (en) * 2005-03-04 2006-09-14 Nippon Steel Corp Heat insulating material for molten steel surface and method for continuously casting steel using the same
JP4486526B2 (en) * 2005-03-04 2010-06-23 新日本製鐵株式会社 Molten steel surface heat insulating material and continuous casting method of steel using the same
JP2020108903A (en) * 2019-01-07 2020-07-16 日本製鉄株式会社 Tundish upper nozzle
JP7157387B2 (en) 2019-01-07 2022-10-20 日本製鉄株式会社 Nozzle on tundish

Similar Documents

Publication Publication Date Title
US11192825B2 (en) Refractory product for casting of steel, and plate for sliding nozzle device
KR20160107249A (en) Refractory for steel casting, plate for sliding nozzle device, and method for producing refractory for steel casting
JP4343907B2 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the same
WO2021197002A1 (en) Anti-nodulation tundish gas-permeable upper nozzle
JP4132212B2 (en) Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same
JP2002254145A (en) Immersion nozzle for continuous casting having gas blowing function
JPH07214259A (en) Nozzle for continuous casting of molten steel
US5902511A (en) Refractory composition for the prevention of alumina clogging
JP5166302B2 (en) Continuous casting nozzle
JP6021667B2 (en) Refractory, refractory manufacturing method, and immersion nozzle for continuous casting
JP5048928B2 (en) Breathable refractory material for continuous casting
JP5489279B2 (en) Breathable refractories and continuous casting nozzles
US20020190443A1 (en) Immersion nozzle
KR100349243B1 (en) digestion nozzle for continous casting
JPH02180753A (en) Production of immersion nozzle for continuous casting
JP3101651B2 (en) Nozzle for continuous casting
JPH11292624A (en) Porous refractory
JP4589151B2 (en) Nozzle for continuous casting and continuous casting method
KR20010048719A (en) digestion noggle for continous casting
JPH09277032A (en) Refractory for continuous casting
JP4231164B2 (en) Porous plug
KR100544063B1 (en) sliding plate refractory for flow controling of molten metal
JP2554320Y2 (en) Immersion nozzle for continuous casting
JP2004323265A (en) Refractory for continuous casting, which inhibits sticking of alumina
KR100318492B1 (en) Sliding plate refractory for flow controling of molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091204