JP7221635B2 - Method for recovering sulfide solid electrolyte - Google Patents

Method for recovering sulfide solid electrolyte Download PDF

Info

Publication number
JP7221635B2
JP7221635B2 JP2018187524A JP2018187524A JP7221635B2 JP 7221635 B2 JP7221635 B2 JP 7221635B2 JP 2018187524 A JP2018187524 A JP 2018187524A JP 2018187524 A JP2018187524 A JP 2018187524A JP 7221635 B2 JP7221635 B2 JP 7221635B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
sulfide solid
relationship
heating
retention rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018187524A
Other languages
Japanese (ja)
Other versions
JP2020057524A (en
Inventor
真也 塩谷
了次 菅野
智 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Toyota Motor Corp
Original Assignee
Tokyo Institute of Technology NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Toyota Motor Corp filed Critical Tokyo Institute of Technology NUC
Priority to JP2018187524A priority Critical patent/JP7221635B2/en
Publication of JP2020057524A publication Critical patent/JP2020057524A/en
Application granted granted Critical
Publication of JP7221635B2 publication Critical patent/JP7221635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本願は硫化物固体電解質の回復方法を開示するものである。 The present application discloses a recovery method for sulfide solid electrolytes.

特許文献1にはLiI-LiS-P系硫化物固体電解質を、常温且つ1×10-4Pa以下の減圧環境下で72時間以上乾燥する工程を有することを特徴とする、硫化物固体電解質の回復方法が開示されている。特許文献2にはLiI-LiS-P硫化物固体電解質を用いた少なくとも1つの層を140℃よりも高温へと加熱することにより、LiI-LiS-P硫化物固体電解質に吸着された水分量を低減する脱水工程を含む硫化物固体電解質の製造方法が開示されている。 Patent Document 1 has a step of drying a LiI-Li 2 SP 2 S 5 -based sulfide solid electrolyte under a reduced pressure environment of 1 × 10 -4 Pa or less at room temperature for 72 hours or longer. A method for rejuvenating a sulfide solid electrolyte is disclosed. Patent document 2 describes LiI-Li 2 SP 2 S 5 sulfide by heating at least one layer using LiI-Li 2 SP 2 S 5 sulfide solid electrolyte to a temperature higher than 140 ° C. A method for producing a sulfide solid electrolyte is disclosed that includes a dehydration step to reduce the amount of water adsorbed on the solid electrolyte.

特開2015-018726号公報JP 2015-018726 A 特開2014-216217号公報JP 2014-216217 A

特許文献1、2では硫化物固体電解質の適切な回復処理時間について、詳細に検討されていなかった。 Patent Documents 1 and 2 do not discuss in detail the appropriate recovery treatment time for the sulfide solid electrolyte.

そこで、本願では適切な回復処理時間を決定することができる硫化物固体電解質の回復方法を提供することを課題とする。 Therefore, an object of the present application is to provide a recovery method for a sulfide solid electrolyte that can determine an appropriate recovery treatment time.

本発明者は、鋭意検討の結果、予め所定の露点温度環境に硫化物固体電解質を曝露した時間、及び、硫化物固体電解質の伝導度維持率の関係である第1の関係と、上記露点温度環境に曝露した硫化物固体電解質を所定の加熱温度で加熱した時間、及び、硫化物固体電解質の伝導度維持率の関係である第2の関係とを得て、これらの関係を用いることにより適切な回復処理時間を決定できることを見出し、本発明を完成させた。 As a result of intensive studies, the present inventors have found that the first relationship, which is the relationship between the time during which the sulfide solid electrolyte is exposed to a predetermined dew point temperature environment in advance, and the conductivity retention rate of the sulfide solid electrolyte, and the dew point temperature Appropriate by obtaining a second relationship that is the relationship between the time during which the sulfide solid electrolyte exposed to the environment is heated at a predetermined heating temperature and the conductivity retention rate of the sulfide solid electrolyte, and using these relationships The present invention has been completed by finding that an appropriate recovery processing time can be determined.

すなわち、本願は上記課題を解決する1つの手段として、露点温度-30℃以下の露点温度環境に硫化物固体電解質を曝露した時間、及び、硫化物固体電解質の伝導度維持率の関係である第1の関係を得る第1の関係決定工程と、上記露点温度環境に曝露した硫化物固体電解質を100℃以上に設定された加熱温度で加熱した時間、及び、硫化物固体電解質の伝導度維持率の関係である第2の関係を得る第2の関係決定工程と、硫化物固体電解質を上記露点温度下に曝露する曝露工程と、曝露工程により得られる硫化物固体電解質を上記加熱温度で加熱する加熱工程と、を備え、加熱工程における加熱時間は、曝露工程における硫化物固体電解質の曝露時間及び第1の関係から決定された曝露工程後の硫化物固体電解質の伝導度維持率を用いて、第2の関係から決定することを特徴とする、硫化物固体電解質の回復方法、を開示する。 That is, as one means for solving the above-mentioned problems, the present application describes the relationship between the time during which the sulfide solid electrolyte is exposed to a dew point temperature environment of -30 ° C. or less and the conductivity retention rate of the sulfide solid electrolyte. A first relationship determination step for obtaining a relationship of 1, the time for heating the sulfide solid electrolyte exposed to the dew point temperature environment at a heating temperature set to 100 ° C. or higher, and the conductivity retention rate of the sulfide solid electrolyte a second relationship determination step for obtaining a second relationship that is the relationship of; an exposure step of exposing the sulfide solid electrolyte to the dew point temperature; and heating the sulfide solid electrolyte obtained by the exposure step at the heating temperature. a heating step, wherein the heating time in the heating step is the exposure time of the sulfide solid electrolyte in the exposure step and the conductivity retention rate of the sulfide solid electrolyte after the exposure step determined from the first relationship, A method for recovering a sulfide solid electrolyte is disclosed, characterized in that it is determined from a second relationship.

本開示によれば適切な回復処理時間を決定することができ、伝導度維持率の高い硫化物固体電解質の生産効率を向上させることができる。 According to the present disclosure, an appropriate recovery treatment time can be determined, and production efficiency of a sulfide solid electrolyte with a high conductivity retention rate can be improved.

硫化物固体電解質の回復方法10のフローチャートである。1 is a flow chart of a recovery method 10 for a sulfide solid electrolyte; 実施例に係る固体電解質の曝露時間と伝導度維持率との関係を示す図である。FIG. 4 is a diagram showing the relationship between the exposure time and the conductivity retention rate of solid electrolytes according to Examples. 実施例及び比較例に係る固体電解質の加熱時間と伝導度維持率との関係を示す図である。FIG. 5 is a diagram showing the relationship between the heating time and the conductivity retention rate of solid electrolytes according to Examples and Comparative Examples.

<硫化物固体電解質の回復方法>
本開示の硫化物固体電解質の回復方法の1つの実施形態である硫化物固体電解質の回復方法10(以下、「回復方法10」ということがある。)について説明する。図1は回復方法10のフローチャートである。図1に示したとおり回復方法10は第1の関係決定工程S1と、第2の関係決定工程S2と、曝露工程S3と、加熱工程S4と、を備えている。また、図1のとおり、積層工程S5をさらに備えていても良い。
<Method for recovering sulfide solid electrolyte>
A sulfide solid electrolyte recovery method 10 (hereinafter sometimes referred to as “recovery method 10”), which is one embodiment of the sulfide solid electrolyte recovery method of the present disclosure, will be described. FIG. 1 is a flow chart of recovery method 10 . As shown in FIG. 1, the recovery method 10 comprises a first relationship determination step S1, a second relationship determination step S2, an exposure step S3, and a heating step S4. Further, as shown in FIG. 1, a stacking step S5 may be further provided.

(第1の関係決定工程S1)
第1の関係決定工程S1は、露点温度-30℃以下の露点温度環境に硫化物固体電解質を曝露した時間、及び、硫化物固体電解質の伝導度維持率の関係である第1の関係を得る工程である。
(First relationship determination step S1)
The first relationship determination step S1 obtains a first relationship that is the relationship between the time during which the sulfide solid electrolyte is exposed to a dew point temperature environment of −30° C. or less and the conductivity retention rate of the sulfide solid electrolyte. It is a process.

ここで、「露点温度-30℃以下の露点温度環境」とは、露点温度が-30℃以下である環境であり、好ましくは露点温度が-80℃以上-30℃以下である環境であり、より好ましくは露点温度が-80℃以上-50℃以下である環境である。
なお、露点温度とは水蒸気を含む空気を冷却したとき凝結が始まる温度であり、例えば露点温度計等により測定することができる。
Here, the "dew point environment with a dew point temperature of -30 ° C. or less" is an environment with a dew point temperature of -30 ° C. or less, preferably an environment with a dew point temperature of -80 ° C. or higher and -30 ° C. or lower, An environment with a dew point temperature of -80°C or higher and -50°C or lower is more preferable.
The dew point temperature is the temperature at which condensation begins when air containing water vapor is cooled, and can be measured, for example, with a dew point thermometer.

回復方法10で用いることのできる硫化物固体電解質の種類は電池に利用可能な硫化物固体電解質であれば特に限定されないが、粒子表面に沿って配向した結晶相を有する硫化物固体電解質が好ましい。具体的にはLiS-P-P(LiPSO)系の硫化物固体電解質を例示することができる。粒子表面に沿って配向した結晶相を有する硫化物固体電解質は耐水性が高いため、硫化物固体電解質と空気中の水分とが反応して硫化物固体電解質の伝導度維持率が低下したとしても、加熱によって回復する効果が高い。 The type of sulfide solid electrolyte that can be used in the recovery method 10 is not particularly limited as long as it is a sulfide solid electrolyte that can be used in batteries, but a sulfide solid electrolyte having a crystal phase oriented along the particle surface is preferred. Specifically, a Li 2 SP 2 S 5 —P 2 O 4 (Li 3 PS 3 O)-based sulfide solid electrolyte can be exemplified. Since the sulfide solid electrolyte having a crystal phase oriented along the particle surface has high water resistance, even if the sulfide solid electrolyte reacts with moisture in the air and the conductivity retention rate of the sulfide solid electrolyte decreases , the effect of recovery by heating is high.

「露点温度-30℃以下の露点温度環境に硫化物固体電解質を曝露した時間、及び、硫化物固体電解質の伝導度維持率の関係である第1の関係を得る」とは、上記硫化物固体電解質を曝露した時間及び硫化物固体電解質の伝導度維持率の関係を示す関係式や、関係図を得ることである。関係式とは、上記硫化物固体電解質を曝露した時間及び硫化物固体電解質の伝導度維持率を変数として有する式であり、後述の関係図から算出することができる。関係図とは上記硫化物固体電解質を曝露した時間及び硫化物固体電解質の伝導度維持率が縦軸及び横軸に取られた図である。後述の第2の関係も同様の意味である。 “Obtaining the first relationship, which is the relationship between the time during which the sulfide solid electrolyte is exposed to a dew point temperature environment of −30° C. or less and the conductivity retention rate of the sulfide solid electrolyte,” refers to the sulfide solid It is to obtain a relational expression and a relational diagram showing the relationship between the exposure time of the electrolyte and the conductivity retention rate of the sulfide solid electrolyte. The relational expression is a formula having as variables the exposure time of the sulfide solid electrolyte and the conductivity maintenance rate of the sulfide solid electrolyte, and can be calculated from the relational diagram described later. The relational diagram is a graph in which the vertical axis and the horizontal axis represent the exposure time of the sulfide solid electrolyte and the conductivity retention rate of the sulfide solid electrolyte. A second relationship described later has the same meaning.

第1の関係決定工程S1は露点温度が制御可能なグローブボックス内で行うことが好ましい。 The first relationship determination step S1 is preferably performed in a glove box in which the dew point temperature can be controlled.

(第2の関係決定工程S2)
第2の関係決定工程S2は、上記露点温度環境(第1の関係決定工程S1で設定した露点温度環境)に曝露した硫化物固体電解質を100℃以上に設定された加熱温度で加熱した時間、及び、硫化物固体電解質の伝導度維持率の関係である第2の関係を得る工程である。
(Second relationship determination step S2)
The second relationship determination step S2 includes heating the sulfide solid electrolyte exposed to the dew point temperature environment (the dew point temperature environment set in the first relationship determination step S1) at a heating temperature set to 100 ° C. or higher, and a step of obtaining a second relationship, which is the relationship between the conductivity retention rate of the sulfide solid electrolyte.

加熱温度は100℃以上に設定する必要がある。硫化物固体電解質中の水分を気化及び蒸発させるためである。一方で、上限は特に限定されないが、150℃以下であることが好ましい。 The heating temperature should be set to 100° C. or higher. This is for vaporizing and evaporating water in the sulfide solid electrolyte. On the other hand, although the upper limit is not particularly limited, it is preferably 150° C. or less.

第2の関係決定工程S2は露点温度が制御可能なグローブボックス内で行うことが好ましい。また、第2の関係決定工程S2に用いる加熱装置はホットプレート等の公知の加熱装置を用いることができる。 The second relationship determining step S2 is preferably performed in a glove box in which the dew point temperature can be controlled. A known heating device such as a hot plate can be used as the heating device used in the second relationship determination step S2.

(曝露工程S3)
曝露工程S3は硫化物固体電解質を上記露点温度環境(第1の関係決定工程S1で設定した露点温度環境)下に曝露する工程である。
曝露工程S3は、例えば、硫化物固体電解質の混練工程、塗工工程、乾燥工程を含むことができる。すなわち、曝露工程S3は硫化物固体電解質を用いて全固体電池に使用可能な、固体電解質層、正極層、負極層を作製する工程とすることもできる。これらの具体的な方法は当業者に自明である。例えば特許文献2に記載されている。
(Exposure step S3)
The exposure step S3 is a step of exposing the sulfide solid electrolyte to the dew point temperature environment (the dew point temperature environment set in the first relationship determination step S1).
The exposure step S3 can include, for example, a sulfide solid electrolyte kneading step, a coating step, and a drying step. That is, the exposure step S3 can also be a step of producing a solid electrolyte layer, a positive electrode layer, and a negative electrode layer that can be used in an all-solid-state battery using a sulfide solid electrolyte. These specific methods are obvious to those skilled in the art. For example, it is described in Patent Document 2.

ここで、曝露工程S3では後述の加熱工程S4の加熱時間を決定するために硫化物固体電解質を露点温度環境に曝露した時間を測定する。例えば、硫化物固体電解質の混練工程、塗工工程、乾燥工程の合計時間を曝露時間とする。 Here, in the exposure step S3, the time during which the sulfide solid electrolyte is exposed to the dew point temperature environment is measured in order to determine the heating time of the heating step S4, which will be described later. For example, the exposure time is the total time of the kneading process, the coating process, and the drying process of the sulfide solid electrolyte.

(加熱工程S4)
加熱工程S4は曝露工程S3により得られる硫化物固体電解質を上記加熱温度(第2の関係決定工程S2で設定した加熱温度)で加熱する工程である。これにより、硫化物固体電解質の伝導度維持率を回復することができる。
(Heating step S4)
The heating step S4 is a step of heating the sulfide solid electrolyte obtained in the exposure step S3 at the heating temperature (the heating temperature set in the second relationship determining step S2). Thereby, the conductivity retention rate of the sulfide solid electrolyte can be recovered.

加熱工程S4における加熱時間は次のように決定する。まず、曝露工程S3における硫化物固体電解質の曝露時間及び上記第1の関係から、曝露工程S3後の硫化物固体電解質の伝導度維持率を決定する。そして、決定された伝導度維持率及び上記第2の関係から加熱工程S4における加熱時間を決定する。
これにより、適切な回復処理時間(加熱時間)を決定することができる。
The heating time in the heating step S4 is determined as follows. First, the conductivity retention rate of the sulfide solid electrolyte after the exposure step S3 is determined from the exposure time of the sulfide solid electrolyte in the exposure step S3 and the first relationship. Then, the heating time in the heating step S4 is determined from the determined conductivity retention rate and the second relationship.
Thereby, an appropriate recovery processing time (heating time) can be determined.

(積層工程S5)
積層工程S5は、上記曝露工程S3及び加熱工程S4において固体電解質層、正極層、及び負極層を作製した場合に、これらを積層する工程である。具体的な方法は当業者に自明である。例えば特許文献2に記載されている。
(Lamination step S5)
The stacking step S5 is a step of stacking the solid electrolyte layer, the positive electrode layer, and the negative electrode layer when they are produced in the exposure step S3 and the heating step S4. Specific methods are obvious to those skilled in the art. For example, it is described in Patent Document 2.

以下、本開示の硫化物固体電解質の回復方法について実施例を用いて説明する。 Hereinafter, the recovery method of the sulfide solid electrolyte of the present disclosure will be described using examples.

(硫化物固体電解質の作製)
実施例に係る硫化物固体電解質を作製した。具体的には、LiPOの組成になるように、LiS、P、Pを秤量し、振動ミルで30分混合した後、カーボン坩堝に入れ、カーボン坩堝ごと石英管に真空封入した。石英管を950℃、2.5時間加熱処理し、加熱状態から氷水に投入することで冷却処理して、実施例に係る硫化物固体電解質を作製した。
(Preparation of sulfide solid electrolyte)
A sulfide solid electrolyte according to an example was produced. Specifically, Li 2 S, P 2 S 5 and P 2 O 5 were weighed so as to have a composition of Li 3 PO, mixed in a vibration mill for 30 minutes, then placed in a carbon crucible, and quartz was added together with the carbon crucible. The tube was vacuum sealed. The quartz tube was heat-treated at 950° C. for 2.5 hours, and cooled by putting it in ice water from the heated state to prepare a sulfide solid electrolyte according to an example.

また、比較例に係る硫化物固体電解質を作製した。具体的には75(75LiS-25P)-15LiBr-10LiIの組成になるようにLiS、P、LiBr,LiIを秤量し、ジルコニアボールが入ったジルコニアポットに投入し380rpm、20時間のメカニカルアロイングを行い、固体電解質ガラスを得た。この固体電解質ガラスをペレット化して石英管に真空封入し、200℃、4時間の加熱処理を行い、比較例に係る硫化物固体電解質を作製した。 Also, a sulfide solid electrolyte according to a comparative example was produced. Specifically, Li 2 S, P 2 S 5 , LiBr, and LiI were weighed so that the composition was 75(75Li 2 S-25P 2 S 5 )-15LiBr-10LiI, and put into a zirconia pot containing zirconia balls. Then, mechanical alloying was performed at 380 rpm for 20 hours to obtain a solid electrolyte glass. This solid electrolyte glass was pelletized, vacuum-sealed in a quartz tube, and heat-treated at 200° C. for 4 hours to prepare a sulfide solid electrolyte according to a comparative example.

(第1の関係の決定)
実施例に係る硫化物固体電解質を露点温度-30℃に制御したグローブボックス内に曝露した。そして所定の時間経過後、曝露した硫化物固体電解質を露点温度-80℃に制御されているグローブボックス内に移し、該グローブボックス内で伝導度測定セルを組み、伝導度維持率を評価した。
曝露時間と伝導度維持率との関係を図2に示した。
(Determination of first relationship)
The sulfide solid electrolyte according to the example was exposed in a glove box controlled to a dew point temperature of -30°C. After a predetermined period of time, the exposed sulfide solid electrolyte was transferred into a glove box controlled to a dew point temperature of −80° C., a conductivity measurement cell was assembled in the glove box, and the conductivity retention rate was evaluated.
FIG. 2 shows the relationship between the exposure time and the conductivity retention rate.

図2の伝導度維持率の推移を近似曲線でフィッティングした結果、曝露時間と伝導度維持率との関係は下記の式(1)で表現することができた。なお、下記の「78」は曝露時間が無限大になったときに到達する伝導度維持率である。

曝露後の伝導度維持率(%)=78+22×exp(-0.5×曝露時間(h))・・・(1)
As a result of fitting the transition of the conductivity retention rate in FIG. 2 with an approximate curve, the relationship between the exposure time and the conductivity retention rate could be expressed by the following formula (1). Note that "78" below is the conductivity retention rate reached when the exposure time becomes infinite.

Conductivity retention rate after exposure (%) = 78 + 22 x exp (-0.5 x exposure time (h)) (1)

(第2の関係の決定)
露点温度-30℃の環境に6時間曝露した実施例および比較例に係る硫化物固体電解質を露点温度-80℃の環境に制御されているグローブボックス内に移し、該グローブボックス内でホットプレートを用いて加熱処理を行った。加熱温度は100℃に設定した。
加熱時間と伝導度維持率との関係を図3に示した。
(Determination of the second relationship)
The sulfide solid electrolytes of Examples and Comparative Examples exposed to an environment with a dew point temperature of −30° C. for 6 hours were transferred into a glove box controlled to an environment with a dew point temperature of −80° C., and a hot plate was set in the glove box. Heat treatment was performed using The heating temperature was set at 100°C.
FIG. 3 shows the relationship between the heating time and the conductivity retention rate.

図3より、実施例の伝導度維持率は20分で飽和することが分かった。そこで、実施例の伝導度維持率の20分までの推移をフィッティングした結果、曝露時間と伝導度維持率との関係を下記の式(2)で表現できた。

加熱後の伝導度維持率(%)=0.70×加熱時間(min)+79・・・(2)
From FIG. 3, it was found that the conductivity retention rate of the example was saturated in 20 minutes. Therefore, as a result of fitting the transition of the conductivity retention rate up to 20 minutes in the example, the relationship between the exposure time and the conductivity retention rate could be expressed by the following formula (2).

Conductivity retention rate after heating (%) = 0.70 x heating time (min) + 79 (2)

さらに、最大20分の加熱で伝導度維持率の回復が飽和することを考慮して式(2)を変換することで、曝露後の伝導度維持率と必要な加熱時間との関係を下記式(3)で表現できる。

加熱時間(min)=20-(曝露後の伝導度維持率(%)-79)/0.7・・・(3)
Furthermore, by converting equation (2) considering that the recovery of the conductivity retention rate is saturated with heating for a maximum of 20 minutes, the relationship between the conductivity retention rate after exposure and the required heating time is expressed by the following formula. It can be expressed by (3).

Heating time (min) = 20 - (conductivity retention rate after exposure (%) - 79) / 0.7 (3)

式(1)、式(3)を用いることで、露点温度-30℃の環境で硫化物固体電解質の取り扱いが可能になり、効率的な回復工程の決定が可能となる。
具体的には、硫化物固体電解質を用いて固体電解質層等を作製する際に、露点温度-30℃の環境における硫化物固体電解質の曝露時間を算出しておけば、式(1)により曝露工程後の硫化物固体電解質の伝導度維持率を決定することができ、そして、得られた曝露工程後の硫化物固体電解質の伝導度維持率と式(3)から、次工程である加熱工程の必要な加熱時間を決定することができる。
By using equations (1) and (3), it becomes possible to handle the sulfide solid electrolyte in an environment with a dew point temperature of −30° C., and to determine an efficient recovery process.
Specifically, when producing a solid electrolyte layer or the like using a sulfide solid electrolyte, if the exposure time of the sulfide solid electrolyte in an environment with a dew point temperature of -30 ° C. is calculated, the exposure can be performed using the formula (1). It is possible to determine the conductivity retention rate of the sulfide solid electrolyte after the step, and from the obtained conductivity retention rate of the sulfide solid electrolyte after the exposure step and the formula (3), the next step, the heating step can determine the required heating time.

なお、図3によれば、比較例に係る硫化物固体電解質は加熱によって伝導度維持率が低下することが分かった。これは水分により電解質の構造が崩壊してしまったため、加熱しても回復効果が得られなかったと推察される。
一方で、実施例に係る硫化物固体電解質は高い耐水性を有しているため、硫化物固体電解質と空気中の水分とが反応して硫化物固体電解質の伝導度維持率が低下したとしても、加熱によって回復する効果が高いと考えられる。
In addition, according to FIG. 3, it was found that the conductivity retention rate of the sulfide solid electrolyte according to the comparative example was lowered by heating. It is presumed that this is because the structure of the electrolyte collapsed due to the water content, and the recovery effect was not obtained even by heating.
On the other hand, since the sulfide solid electrolyte according to the example has high water resistance, even if the sulfide solid electrolyte reacts with moisture in the air and the conductivity retention rate of the sulfide solid electrolyte decreases, , it is considered that the effect of recovery by heating is high.

Claims (1)

露点温度-30°以下の露点温度環境に硫化物固体電解質を曝露した時間、及び、前記硫化物固体電解質の伝導度維持率の関係である第1の関係を得る第1の関係決定工程と、
前記露点温度環境に曝露した前記硫化物固体電解質を100℃以上に設定された加熱温度で加熱した時間、及び、前記硫化物固体電解質の伝導度維持率の関係である第2の関係を得る第2の関係決定工程と、
前記硫化物固体電解質を前記露点温度環境下に曝露する曝露工程と、
前記曝露工程により得られる前記硫化物固体電解質を前記加熱温度で加熱する加熱工程と、
を備え、
前記硫化物固体電解質は粒子表面に沿って配向した結晶相を有し、
前記硫化物固体電解質の伝導度維持率は、前記第1の関係決定工程において、前記露点温度環境下に暴露する前の前記硫化物固体電解質の伝導度を基準としており、
前記第1の関係決定工程及び前記暴露工程において使用される前記硫化物固体電解質は、前記露点温度環境下に暴露される前の伝導度維持率が同じであり、かつ、前記露点温度環境に暴露されたとき伝導度維持率が低下する状態であり、
前記加熱工程における加熱時間は、前記曝露工程における前記硫化物固体電解質の曝露時間及び前記第1の関係から決定された前記曝露工程後の前記硫化物固体電解質の伝導度維持率を用いて、前記第2の関係から決定することを特徴とする、
硫化物固体電解質の回復方法。
A first relationship determination step of obtaining a first relationship that is a relationship between the time during which the sulfide solid electrolyte is exposed to an environment with a dew point temperature of −30° or less and the conductivity retention rate of the sulfide solid electrolyte;
Obtaining a second relationship that is a relationship between the time during which the sulfide solid electrolyte exposed to the dew point temperature environment is heated at a heating temperature set to 100 ° C. or higher and the conductivity retention rate of the sulfide solid electrolyte. 2 relationship determination step;
an exposure step of exposing the sulfide solid electrolyte to the dew point temperature environment;
a heating step of heating the sulfide solid electrolyte obtained by the exposure step at the heating temperature;
with
The sulfide solid electrolyte has a crystal phase oriented along the particle surface,
The conductivity retention rate of the sulfide solid electrolyte is based on the conductivity of the sulfide solid electrolyte before exposure to the dew point temperature environment in the first relationship determination step,
The sulfide solid electrolyte used in the first relationship determination step and the exposure step has the same conductivity retention rate before exposure to the dew point temperature environment, and is exposed to the dew point temperature environment. It is a state in which the conductivity retention rate decreases when
The heating time in the heating step is the exposure time of the sulfide solid electrolyte in the exposure step and the conductivity retention rate of the sulfide solid electrolyte after the exposure step determined from the first relationship. characterized by determining from a second relationship,
A recovery method for a sulfide solid electrolyte.
JP2018187524A 2018-10-02 2018-10-02 Method for recovering sulfide solid electrolyte Active JP7221635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018187524A JP7221635B2 (en) 2018-10-02 2018-10-02 Method for recovering sulfide solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187524A JP7221635B2 (en) 2018-10-02 2018-10-02 Method for recovering sulfide solid electrolyte

Publications (2)

Publication Number Publication Date
JP2020057524A JP2020057524A (en) 2020-04-09
JP7221635B2 true JP7221635B2 (en) 2023-02-14

Family

ID=70107573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187524A Active JP7221635B2 (en) 2018-10-02 2018-10-02 Method for recovering sulfide solid electrolyte

Country Status (1)

Country Link
JP (1) JP7221635B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201111A (en) 2012-02-21 2013-10-03 Toyota Motor Corp Storage method and storage device of solid electrolyte, and manufacturing method of all solid state battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201111A (en) 2012-02-21 2013-10-03 Toyota Motor Corp Storage method and storage device of solid electrolyte, and manufacturing method of all solid state battery

Also Published As

Publication number Publication date
JP2020057524A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP6878059B2 (en) Sulfide solid electrolyte and its manufacturing method
Zhao et al. Artificial solid electrolyte interphase-protected Li x Si nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries
WO2015165215A1 (en) Composite cathode material and preparation method thereof, cathode pole piece of lithium ion secondary battery, and lithium ion secondary battery
Wu et al. Chem‐Bonding and Phys‐Trapping Se Electrode for Long‐Life Rechargeable Batteries
JP6477672B2 (en) Method for producing sulfide solid electrolyte
JP6425426B2 (en) Sulfide solid electrolyte and method for producing sulfide solid electrolyte
CN105460917A (en) Nitrogen-doped carbon nanotube adopting hierarchical structure and preparation method
CN108807888B (en) Three-dimensional porous copper silicon carbon composite integrated electrode and preparation method thereof
TWI712197B (en) Manufacturing method of ion conductor
CN103072982A (en) Low-cost asphalt-based graphene sheet and preparation method thereof
CN108314013B (en) Regular porous graphene thick film and preparation method thereof
CN106803601B (en) preparation method of solid electrolyte lithium lanthanum titanium oxide film
JP5741653B2 (en) Method for producing sulfide solid electrolyte
JP2020015661A5 (en)
JP7176937B2 (en) Method for producing composite solid electrolyte
CN106450301B (en) A kind of lithium ion battery boric acid ferrous iron lithium anode material and preparation method thereof
JP7221635B2 (en) Method for recovering sulfide solid electrolyte
JP2015018726A (en) Recovery method of sulfide solid electrolyte
JP6589315B2 (en) Positive electrode material for battery, method for producing positive electrode using the same, and all solid lithium ion battery
CN107394168A (en) Fe2O3The preparation method of/ordered porous carbon composite
CN105280895B (en) Lithium ion battery cathode composite material and preparation method thereof
Zhao et al. A Supercapacitor Architecture for Extreme Low‐Temperature Operation Featuring MXene/Carbon Nanotube Electrodes with Vertically Aligned Channels and a Novel Freeze‐Resistant Electrolyte
JP2002093415A (en) Composite carbon material for nonaqueous lithium secondary battery and its synthetic method
CN106935831A (en) A kind of lithium titanate anode material for suppressing flatulence and its preparation method and application
CN106517172A (en) Preparation method of water-soluble sulfur-doped graphene and sulfur-doped graphene prepared by same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230202

R151 Written notification of patent or utility model registration

Ref document number: 7221635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151