JP2020057524A - Recovery method of sulfide solid electrolyte - Google Patents
Recovery method of sulfide solid electrolyte Download PDFInfo
- Publication number
- JP2020057524A JP2020057524A JP2018187524A JP2018187524A JP2020057524A JP 2020057524 A JP2020057524 A JP 2020057524A JP 2018187524 A JP2018187524 A JP 2018187524A JP 2018187524 A JP2018187524 A JP 2018187524A JP 2020057524 A JP2020057524 A JP 2020057524A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- sulfide solid
- relationship
- heating
- dew point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002203 sulfidic glass Substances 0.000 title claims abstract description 90
- 238000011084 recovery Methods 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 56
- 238000012423 maintenance Methods 0.000 claims abstract description 19
- 230000014759 maintenance of location Effects 0.000 claims description 20
- 239000007784 solid electrolyte Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910018091 Li 2 S Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本願は硫化物固体電解質の回復方法を開示するものである。 This application discloses a method for recovering a sulfide solid electrolyte.
特許文献1にはLiI−Li2S−P2S5系硫化物固体電解質を、常温且つ1×10−4Pa以下の減圧環境下で72時間以上乾燥する工程を有することを特徴とする、硫化物固体電解質の回復方法が開示されている。特許文献2にはLiI−Li2S−P2S5硫化物固体電解質を用いた少なくとも1つの層を140℃よりも高温へと加熱することにより、LiI−Li2S−P2S5硫化物固体電解質に吸着された水分量を低減する脱水工程を含む硫化物固体電解質の製造方法が開示されている。 Patent Document 1 has a step of drying a LiI-Li 2 SP 2 S 5 -based sulfide solid electrolyte at room temperature and under a reduced pressure environment of 1 × 10 −4 Pa or less for 72 hours or more, A method for recovering a sulfide solid electrolyte is disclosed. Patent Literature 2 discloses that at least one layer using a LiI-Li 2 SP 2 S 5 sulfide solid electrolyte is heated to a temperature higher than 140 ° C. to thereby produce LiI-Li 2 SP 2 S 5 sulfide. There is disclosed a method for producing a sulfide solid electrolyte including a dehydration step of reducing the amount of water adsorbed on a solid electrolyte.
特許文献1、2では硫化物固体電解質の適切な回復処理時間について、詳細に検討されていなかった。 Patent Documents 1 and 2 did not discuss in detail the appropriate recovery treatment time of the sulfide solid electrolyte.
そこで、本願では適切な回復処理時間を決定することができる硫化物固体電解質の回復方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for recovering a sulfide solid electrolyte that can determine an appropriate recovery processing time.
本発明者は、鋭意検討の結果、予め所定の露点温度環境に硫化物固体電解質を曝露した時間、及び、硫化物固体電解質の伝導度維持率の関係である第1の関係と、上記露点温度環境に曝露した硫化物固体電解質を所定の加熱温度で加熱した時間、及び、硫化物固体電解質の伝導度維持率の関係である第2の関係とを得て、これらの関係を用いることにより適切な回復処理時間を決定できることを見出し、本発明を完成させた。 As a result of intensive studies, the present inventor has determined that the time during which the sulfide solid electrolyte was previously exposed to a predetermined dew point temperature environment, and the first relationship that is the relationship between the conductivity maintenance rate of the sulfide solid electrolyte and the dew point temperature The time during which the sulfide solid electrolyte exposed to the environment is heated at a predetermined heating temperature, and the second relationship, which is the relationship between the conductivity maintenance rate of the sulfide solid electrolyte, are obtained, and it is appropriate to use these relationships. The present inventors have found that a proper recovery processing time can be determined, and completed the present invention.
すなわち、本願は上記課題を解決する1つの手段として、露点温度−30℃以下の露点温度環境に硫化物固体電解質を曝露した時間、及び、硫化物固体電解質の伝導度維持率の関係である第1の関係を得る第1の関係決定工程と、上記露点温度環境に曝露した硫化物固体電解質を100℃以上に設定された加熱温度で加熱した時間、及び、硫化物固体電解質の伝導度維持率の関係である第2の関係を得る第2の関係決定工程と、硫化物固体電解質を上記露点温度下に曝露する曝露工程と、曝露工程により得られる硫化物固体電解質を上記加熱温度で加熱する加熱工程と、を備え、加熱工程における加熱時間は、曝露工程における硫化物固体電解質の曝露時間及び第1の関係から決定された曝露工程後の硫化物固体電解質の伝導度維持率を用いて、第2の関係から決定することを特徴とする、硫化物固体電解質の回復方法、を開示する。 That is, as one means for solving the above-mentioned problems, the present application relates to a relationship between the time during which the sulfide solid electrolyte was exposed to a dew point temperature environment of a dew point temperature of −30 ° C. or less, and the conductivity retention rate of the sulfide solid electrolyte. A first relation determining step for obtaining the relation 1, and a time during which the sulfide solid electrolyte exposed to the dew point temperature environment is heated at a heating temperature set to 100 ° C. or higher, and a conductivity maintenance rate of the sulfide solid electrolyte. A second relation determining step of obtaining a second relation of the following, an exposure step of exposing the sulfide solid electrolyte below the dew point temperature, and heating the sulfide solid electrolyte obtained by the exposure step at the heating temperature. A heating step, wherein the heating time in the heating step is determined by using the exposure time of the sulfide solid electrolyte in the exposure step and the conductivity retention rate of the sulfide solid electrolyte after the exposure step determined from the first relationship. , And determining the second relationship, recovery process of a sulfide solid electrolyte, disclose.
本開示によれば適切な回復処理時間を決定することができ、伝導度維持率の高い硫化物固体電解質の生産効率を向上させることができる。 According to the present disclosure, an appropriate recovery processing time can be determined, and the production efficiency of a sulfide solid electrolyte having a high conductivity retention rate can be improved.
<硫化物固体電解質の回復方法>
本開示の硫化物固体電解質の回復方法の1つの実施形態である硫化物固体電解質の回復方法10(以下、「回復方法10」ということがある。)について説明する。図1は回復方法10のフローチャートである。図1に示したとおり回復方法10は第1の関係決定工程S1と、第2の関係決定工程S2と、曝露工程S3と、加熱工程S4と、を備えている。また、図1のとおり、積層工程S5をさらに備えていても良い。
<Recovery method for sulfide solid electrolyte>
A sulfide solid electrolyte recovery method 10 (hereinafter, sometimes referred to as “recovery method 10”), which is one embodiment of the sulfide solid electrolyte recovery method of the present disclosure, will be described. FIG. 1 is a flowchart of the recovery method 10. As shown in FIG. 1, the recovery method 10 includes a first relation determination step S1, a second relation determination step S2, an exposure step S3, and a heating step S4. Further, as shown in FIG. 1, a stacking step S5 may be further provided.
(第1の関係決定工程S1)
第1の関係決定工程S1は、露点温度−30℃以下の露点温度環境に硫化物固体電解質を曝露した時間、及び、硫化物固体電解質の伝導度維持率の関係である第1の関係を得る工程である。
(First Relationship Determination Step S1)
The first relationship determining step S1 obtains a first relationship that is a relationship between a time during which the sulfide solid electrolyte is exposed to a dew point temperature environment of a dew point temperature of −30 ° C. or less, and a conductivity retention rate of the sulfide solid electrolyte. It is a process.
ここで、「露点温度−30℃以下の露点温度環境」とは、露点温度が−30℃以下である環境であり、好ましくは露点温度が−80℃以上−30℃以下である環境であり、より好ましくは露点温度が−80℃以上−50℃以下である環境である。
なお、露点温度とは水蒸気を含む空気を冷却したとき凝結が始まる温度であり、例えば露点温度計等により測定することができる。
Here, the “dew point temperature environment of dew point temperature of −30 ° C. or less” is an environment in which the dew point temperature is −30 ° C. or less, preferably an environment in which the dew point temperature is −80 ° C. or more and −30 ° C. or less, More preferably, the environment has a dew point temperature of −80 ° C. or more and −50 ° C. or less.
The dew point temperature is a temperature at which condensation starts when air containing water vapor is cooled, and can be measured by, for example, a dew point thermometer.
回復方法10で用いることのできる硫化物固体電解質の種類は電池に利用可能な硫化物固体電解質であれば特に限定されないが、粒子表面に沿って配向した結晶相を有する硫化物固体電解質が好ましい。具体的にはLi2S−P2S5−P2O4(Li3PS3O)系の硫化物固体電解質を例示することができる。粒子表面に沿って配向した結晶相を有する硫化物固体電解質は耐水性が高いため、硫化物固体電解質と空気中の水分とが反応して硫化物固体電解質の伝導度維持率が低下したとしても、加熱によって回復する効果が高い。 The type of the sulfide solid electrolyte that can be used in the recovery method 10 is not particularly limited as long as it is a sulfide solid electrolyte that can be used for a battery, but a sulfide solid electrolyte having a crystal phase oriented along the particle surface is preferable. Specifically there can be mentioned Li 2 S-P 2 S 5 -P 2 O 4 (Li 3 PS 3 O) based sulfide solid electrolyte. Since the sulfide solid electrolyte having a crystal phase oriented along the particle surface has high water resistance, even if the sulfide solid electrolyte reacts with moisture in the air and the conductivity retention rate of the sulfide solid electrolyte decreases, The effect of recovery by heating is high.
「露点温度−30℃以下の露点温度環境に硫化物固体電解質を曝露した時間、及び、硫化物固体電解質の伝導度維持率の関係である第1の関係を得る」とは、上記硫化物固体電解質を曝露した時間及び硫化物固体電解質の伝導度維持率の関係を示す関係式や、関係図を得ることである。関係式とは、上記硫化物固体電解質を曝露した時間及び硫化物固体電解質の伝導度維持率を変数として有する式であり、後述の関係図から算出することができる。関係図とは上記硫化物固体電解質を曝露した時間及び硫化物固体電解質の伝導度維持率が縦軸及び横軸に取られた図である。後述の第2の関係も同様の意味である。 "Acquiring the first relationship, which is the relationship between the time during which the sulfide solid electrolyte is exposed to a dew point temperature environment of a dew point temperature of -30 ° C. or less, and the conductivity retention rate of the sulfide solid electrolyte," The purpose of the present invention is to obtain a relational expression or a relational diagram showing the relation between the time of exposure to the electrolyte and the conductivity maintenance rate of the sulfide solid electrolyte. The relational expression is an expression having, as variables, the time during which the sulfide solid electrolyte is exposed and the conductivity maintenance rate of the sulfide solid electrolyte, and can be calculated from a relation diagram described later. The relation diagram is a diagram in which the vertical axis and the horizontal axis represent the time of exposure to the sulfide solid electrolyte and the conductivity retention of the sulfide solid electrolyte. The second relationship described later has the same meaning.
第1の関係決定工程S1は露点温度が制御可能なグローブボックス内で行うことが好ましい。 The first relation determining step S1 is preferably performed in a glove box in which the dew point temperature can be controlled.
(第2の関係決定工程S2)
第2の関係決定工程S2は、上記露点温度環境(第1の関係決定工程S1で設定した露点温度環境)に曝露した硫化物固体電解質を100℃以上に設定された加熱温度で加熱した時間、及び、硫化物固体電解質の伝導度維持率の関係である第2の関係を得る工程である。
(Second relationship determination step S2)
The second relation determining step S2 is a step of heating the sulfide solid electrolyte exposed to the dew point temperature environment (the dew point temperature environment set in the first relation determining step S1) at a heating temperature set to 100 ° C. or higher, And a step of obtaining a second relationship, which is a relationship between the conductivity retention rate of the sulfide solid electrolyte.
加熱温度は100℃以上に設定する必要がある。硫化物固体電解質中の水分を気化及び蒸発させるためである。一方で、上限は特に限定されないが、150℃以下であることが好ましい。 The heating temperature must be set to 100 ° C. or higher. This is for vaporizing and evaporating water in the sulfide solid electrolyte. On the other hand, the upper limit is not particularly limited, but is preferably 150 ° C. or lower.
第2の関係決定工程S2は露点温度が制御可能なグローブボックス内で行うことが好ましい。また、第2の関係決定工程S2に用いる加熱装置はホットプレート等の公知の加熱装置を用いることができる。 The second relation determining step S2 is preferably performed in a glove box in which the dew point temperature can be controlled. In addition, a known heating device such as a hot plate can be used as the heating device used in the second relation determination step S2.
(曝露工程S3)
曝露工程S3は硫化物固体電解質を上記露点温度環境(第1の関係決定工程S1で設定した露点温度環境)下に曝露する工程である。
曝露工程S3は、例えば、硫化物固体電解質の混練工程、塗工工程、乾燥工程を含むことができる。すなわち、曝露工程S3は硫化物固体電解質を用いて全固体電池に使用可能な、固体電解質層、正極層、負極層を作製する工程とすることもできる。これらの具体的な方法は当業者に自明である。例えば特許文献2に記載されている。
(Exposure step S3)
The exposing step S3 is a step of exposing the sulfide solid electrolyte under the above dew point temperature environment (the dew point temperature environment set in the first relation determining step S1).
The exposure step S3 can include, for example, a kneading step of a sulfide solid electrolyte, a coating step, and a drying step. That is, the exposure step S3 can be a step of producing a solid electrolyte layer, a positive electrode layer, and a negative electrode layer that can be used for an all-solid-state battery using a sulfide solid electrolyte. These specific methods will be obvious to those skilled in the art. For example, it is described in Patent Document 2.
ここで、曝露工程S3では後述の加熱工程S4の加熱時間を決定するために硫化物固体電解質を露点温度環境に曝露した時間を測定する。例えば、硫化物固体電解質の混練工程、塗工工程、乾燥工程の合計時間を曝露時間とする。 Here, in the exposure step S3, the time during which the sulfide solid electrolyte is exposed to the dew point temperature environment is measured in order to determine the heating time in the heating step S4 described below. For example, the total time of the kneading step, coating step, and drying step of the sulfide solid electrolyte is defined as the exposure time.
(加熱工程S4)
加熱工程S4は曝露工程S3により得られる硫化物固体電解質を上記加熱温度(第2の関係決定工程S2で設定した加熱温度)で加熱する工程である。これにより、硫化物固体電解質の伝導度維持率を回復することができる。
(Heating step S4)
The heating step S4 is a step of heating the sulfide solid electrolyte obtained in the exposure step S3 at the above-mentioned heating temperature (the heating temperature set in the second relation determining step S2). Thereby, the conductivity maintenance rate of the sulfide solid electrolyte can be recovered.
加熱工程S4における加熱時間は次のように決定する。まず、曝露工程S3における硫化物固体電解質の曝露時間及び上記第1の関係から、曝露工程S3後の硫化物固体電解質の伝導度維持率を決定する。そして、決定された伝導度維持率及び上記第2の関係から加熱工程S4における加熱時間を決定する。
これにより、適切な回復処理時間(加熱時間)を決定することができる。
The heating time in the heating step S4 is determined as follows. First, the conductivity retention rate of the sulfide solid electrolyte after the exposure step S3 is determined from the exposure time of the sulfide solid electrolyte in the exposure step S3 and the first relationship. Then, the heating time in the heating step S4 is determined from the determined conductivity maintaining rate and the second relationship.
Thereby, an appropriate recovery processing time (heating time) can be determined.
(積層工程S5)
積層工程S5は、上記曝露工程S3及び加熱工程S4において固体電解質層、正極層、及び負極層を作製した場合に、これらを積層する工程である。具体的な方法は当業者に自明である。例えば特許文献2に記載されている。
(Lamination step S5)
The laminating step S5 is a step of laminating the solid electrolyte layer, the positive electrode layer, and the negative electrode layer in the case of producing the solid electrolyte layer, the positive electrode layer, and the negative electrode layer in the exposure step S3 and the heating step S4. The specific method will be obvious to those skilled in the art. For example, it is described in Patent Document 2.
以下、本開示の硫化物固体電解質の回復方法について実施例を用いて説明する。 Hereinafter, the recovery method of the sulfide solid electrolyte according to the present disclosure will be described using examples.
(硫化物固体電解質の作製)
実施例に係る硫化物固体電解質を作製した。具体的には、Li3POの組成になるように、Li2S、P2S5、P2O5を秤量し、振動ミルで30分混合した後、カーボン坩堝に入れ、カーボン坩堝ごと石英管に真空封入した。石英管を950℃、2.5時間加熱処理し、加熱状態から氷水に投入することで冷却処理して、実施例に係る硫化物固体電解質を作製した。
(Preparation of sulfide solid electrolyte)
A sulfide solid electrolyte according to an example was produced. Specifically, Li 2 S, P 2 S 5 , and P 2 O 5 are weighed so as to have a composition of Li 3 PO, mixed by a vibrating mill for 30 minutes, put into a carbon crucible, and put the quartz together with the carbon crucible. The tube was vacuum sealed. The quartz tube was subjected to a heat treatment at 950 ° C. for 2.5 hours, and then cooled by being put into ice water from the heated state to produce a sulfide solid electrolyte according to the example.
また、比較例に係る硫化物固体電解質を作製した。具体的には75(75Li2S−25P2S5)−15LiBr−10LiIの組成になるようにLi2S、P2S5、LiBr,LiIを秤量し、ジルコニアボールが入ったジルコニアポットに投入し380rpm、20時間のメカニカルアロイングを行い、固体電解質ガラスを得た。この固体電解質ガラスをペレット化して石英管に真空封入し、200℃、4時間の加熱処理を行い、比較例に係る硫化物固体電解質を作製した。 Further, a sulfide solid electrolyte according to a comparative example was produced. Specifically, 75 (75Li 2 S-25P 2 S 5) so that the composition of -15LiBr-10LiI Li 2 S, P 2 S 5, LiBr, weighed LiI, poured into a zirconia pot containing zirconia balls Then, mechanical alloying was performed at 380 rpm for 20 hours to obtain a solid electrolyte glass. The solid electrolyte glass was pelletized, vacuum-sealed in a quartz tube, and heated at 200 ° C. for 4 hours to produce a sulfide solid electrolyte according to a comparative example.
(第1の関係の決定)
実施例に係る硫化物固体電解質を露点温度−30℃に制御したグローブボックス内に曝露した。そして所定の時間経過後、曝露した硫化物固体電解質を露点温度−80℃に制御されているグローブボックス内に移し、該グローブボックス内で伝導度測定セルを組み、伝導度維持率を評価した。
曝露時間と伝導度維持率との関係を図2に示した。
(Determination of the first relationship)
The sulfide solid electrolyte according to the example was exposed in a glove box controlled at a dew point of −30 ° C. After a lapse of a predetermined time, the exposed sulfide solid electrolyte was transferred into a glove box controlled at a dew point temperature of −80 ° C., and a conductivity measuring cell was assembled in the glove box to evaluate the conductivity retention rate.
FIG. 2 shows the relationship between the exposure time and the conductivity retention rate.
図2の伝導度維持率の推移を近似曲線でフィッティングした結果、曝露時間と伝導度維持率との関係は下記の式(1)で表現することができた。なお、下記の「78」は曝露時間が無限大になったときに到達する伝導度維持率である。
曝露後の伝導度維持率(%)=78+22×exp(−0.5×曝露時間(h))・・・(1)
As a result of fitting the transition of the conductivity retention rate in FIG. 2 with an approximate curve, the relationship between the exposure time and the conductivity retention rate could be expressed by the following equation (1). In addition, the following "78" is the conductivity maintenance rate reached when the exposure time becomes infinite.
Conductivity maintenance rate after exposure (%) = 78 + 22 × exp (−0.5 × exposure time (h)) (1)
(第2の関係の決定)
露点温度−30℃の環境に6時間曝露した実施例および比較例に係る硫化物固体電解質を露点温度−80℃の環境に制御されているグローブボックス内に移し、該グローブボックス内でホットプレートを用いて加熱処理を行った。加熱温度は100℃に設定した。
加熱時間と伝導度維持率との関係を図3に示した。
(Determination of the second relationship)
The sulfide solid electrolytes according to Examples and Comparative Examples exposed to an environment with a dew point of −30 ° C. for 6 hours were transferred into a glove box controlled to an environment with a dew point of −80 ° C., and a hot plate was placed in the glove box. Was used for heat treatment. The heating temperature was set at 100 ° C.
FIG. 3 shows the relationship between the heating time and the conductivity retention.
図3より、実施例の伝導度維持率は20分で飽和することが分かった。そこで、実施例の伝導度維持率の20分までの推移をフィッティングした結果、曝露時間と伝導度維持率との関係を下記の式(2)で表現できた。
加熱後の伝導度維持率(%)=0.70×加熱時間(min)+79・・・(2)
From FIG. 3, it was found that the conductivity retention rate of the example was saturated in 20 minutes. Thus, as a result of fitting the transition of the conductivity maintenance rate up to 20 minutes in the example, the relationship between the exposure time and the conductivity maintenance rate could be expressed by the following equation (2).
Conductivity maintenance rate after heating (%) = 0.70 × heating time (min) +79 (2)
さらに、最大20分の加熱で伝導度維持率の回復が飽和することを考慮して式(2)を変換することで、曝露後の伝導度維持率と必要な加熱時間との関係を下記式(3)で表現できる。
加熱時間(min)=20−(曝露後の伝導度維持率(%)−79)/0.7・・・(3)
Further, by converting equation (2) in consideration of the fact that the recovery of the conductivity retention rate is saturated by heating for a maximum of 20 minutes, the relationship between the conductivity retention rate after exposure and the required heating time is calculated by the following equation. It can be expressed by (3).
Heating time (min) = 20- (conductivity maintenance rate after exposure (%)-79) /0.7 (3)
式(1)、式(3)を用いることで、露点温度−30℃の環境で硫化物固体電解質の取り扱いが可能になり、効率的な回復工程の決定が可能となる。
具体的には、硫化物固体電解質を用いて固体電解質層等を作製する際に、露点温度−30℃の環境における硫化物固体電解質の曝露時間を算出しておけば、式(1)により曝露工程後の硫化物固体電解質の伝導度維持率を決定することができ、そして、得られた曝露工程後の硫化物固体電解質の伝導度維持率と式(3)から、次工程である加熱工程の必要な加熱時間を決定することができる。
By using the formulas (1) and (3), the sulfide solid electrolyte can be handled in an environment with a dew point of −30 ° C., and an efficient recovery step can be determined.
Specifically, when producing a solid electrolyte layer or the like using a sulfide solid electrolyte, if the exposure time of the sulfide solid electrolyte in an environment with a dew point temperature of −30 ° C. is calculated, the exposure time can be calculated by equation (1). The conductivity maintaining rate of the sulfide solid electrolyte after the step can be determined, and from the obtained conductivity maintaining rate of the sulfide solid electrolyte after the exposure step and the equation (3), the heating step as the next step is performed. Required heating time can be determined.
なお、図3によれば、比較例に係る硫化物固体電解質は加熱によって伝導度維持率が低下することが分かった。これは水分により電解質の構造が崩壊してしまったため、加熱しても回復効果が得られなかったと推察される。
一方で、実施例に係る硫化物固体電解質は高い耐水性を有しているため、硫化物固体電解質と空気中の水分とが反応して硫化物固体電解質の伝導度維持率が低下したとしても、加熱によって回復する効果が高いと考えられる。
According to FIG. 3, it was found that the conductivity retention rate of the sulfide solid electrolyte according to the comparative example was reduced by heating. This is presumed to be because the structure of the electrolyte was collapsed due to moisture, so that the recovery effect could not be obtained by heating.
On the other hand, since the sulfide solid electrolyte according to the example has high water resistance, even if the sulfide solid electrolyte reacts with moisture in the air and the conductivity retention rate of the sulfide solid electrolyte decreases, It is considered that the effect of recovery by heating is high.
Claims (1)
前記露点温度環境に曝露した前記硫化物固体電解質を100℃以上に設定された加熱温度で加熱した時間、及び、前記硫化物固体電解質の伝導度維持率の関係である第2の関係を得る第2の関係決定工程と、
前記硫化物固体電解質を前記露点温度環境下に曝露する曝露工程と、
前記曝露工程により得られる前記硫化物固体電解質を前記加熱温度で加熱する加熱工程と、を備え、
前記加熱工程における加熱時間は、前記曝露工程における前記硫化物固体電解質の曝露時間及び前記第1の関係から決定された前記曝露工程後の前記硫化物固体電解質の伝導度維持率を用いて、前記第2の関係から決定することを特徴とする、
硫化物固体電解質の回復方法。 A time of exposing the sulfide solid electrolyte to a dew point temperature environment of a dew point temperature of −30 ° C. or less, and a first relationship determination step of obtaining a first relationship that is a relationship between the conductivity maintenance rates of the sulfide solid electrolyte;
A time for heating the sulfide solid electrolyte exposed to the dew point temperature environment at a heating temperature set to 100 ° C. or higher, and a second relationship that is a relationship between the conductivity maintenance rate of the sulfide solid electrolyte and 2. a relationship determining step;
An exposure step of exposing the sulfide solid electrolyte under the dew point temperature environment,
A heating step of heating the sulfide solid electrolyte obtained by the exposing step at the heating temperature,
The heating time in the heating step, using the exposure time of the sulfide solid electrolyte in the exposure step and the conductivity retention rate of the sulfide solid electrolyte after the exposure step determined from the first relationship, the Being determined from the second relationship,
Recovery method of sulfide solid electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018187524A JP7221635B2 (en) | 2018-10-02 | 2018-10-02 | Method for recovering sulfide solid electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018187524A JP7221635B2 (en) | 2018-10-02 | 2018-10-02 | Method for recovering sulfide solid electrolyte |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020057524A true JP2020057524A (en) | 2020-04-09 |
JP7221635B2 JP7221635B2 (en) | 2023-02-14 |
Family
ID=70107573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018187524A Active JP7221635B2 (en) | 2018-10-02 | 2018-10-02 | Method for recovering sulfide solid electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7221635B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013201111A (en) * | 2012-02-21 | 2013-10-03 | Toyota Motor Corp | Storage method and storage device of solid electrolyte, and manufacturing method of all solid state battery |
-
2018
- 2018-10-02 JP JP2018187524A patent/JP7221635B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013201111A (en) * | 2012-02-21 | 2013-10-03 | Toyota Motor Corp | Storage method and storage device of solid electrolyte, and manufacturing method of all solid state battery |
Also Published As
Publication number | Publication date |
---|---|
JP7221635B2 (en) | 2023-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108630983B (en) | Sulfide solid electrolyte and method for producing same | |
Wu et al. | Chem‐Bonding and Phys‐Trapping Se Electrode for Long‐Life Rechargeable Batteries | |
CN108682791B (en) | Method for preparing inorganic perovskite negative electrode material with layered structure by vapor phase method | |
Song et al. | Boosting Battery Safety by Mitigating Thermal‐Induced Crosstalk with a Bi‐Continuous Separator | |
CN105460917A (en) | Nitrogen-doped carbon nanotube adopting hierarchical structure and preparation method | |
CN106450301B (en) | A kind of lithium ion battery boric acid ferrous iron lithium anode material and preparation method thereof | |
CN105680092A (en) | Solid-state polymer electrolyte and preparation method thereof | |
CN108314013B (en) | Regular porous graphene thick film and preparation method thereof | |
CN106803601B (en) | preparation method of solid electrolyte lithium lanthanum titanium oxide film | |
CN108807888A (en) | A kind of three-dimensional porous copper silicon-carbon composite integrated polarizing electrode and preparation method thereof | |
JP7176937B2 (en) | Method for producing composite solid electrolyte | |
CN108238616A (en) | A kind of cubic phase sulfide and preparation method thereof | |
CN105609884A (en) | Method for assembling environmental-friendly aqueous-solution lithium ion battery system by sheet-shaped potassium vanadate material | |
CN103553017A (en) | Method for preparing fluorine-nitrogen double-doped oxidized graphene and device thereof | |
JP2015018726A (en) | Recovery method of sulfide solid electrolyte | |
CN108539130A (en) | A kind of carbon nanotube pole piece fluorination process of advance lithiumation processing | |
CN107394168A (en) | Fe2O3The preparation method of/ordered porous carbon composite | |
JP7221635B2 (en) | Method for recovering sulfide solid electrolyte | |
JP6589315B2 (en) | Positive electrode material for battery, method for producing positive electrode using the same, and all solid lithium ion battery | |
CN105241571A (en) | Application of employing N and Mo for improving temperature-sensitive characteristics of oxidized graphene | |
CN113173606A (en) | Modification method for improving performance of lithium-rich iron-manganese-based cathode material based on density functional theory calculation | |
CN109286018B (en) | Preparation method of ultrathin two-dimensional carbon sheet | |
CN117117299A (en) | Inorganic sulfide solid electrolyte and preparation method thereof | |
CN106935831A (en) | A kind of lithium titanate anode material for suppressing flatulence and its preparation method and application | |
CN106340626A (en) | High-capacity lithium-stored oxide nano-film composite expanded graphite material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210923 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230202 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7221635 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |