JP7221203B2 - モバイル装置の位置特定方法 - Google Patents

モバイル装置の位置特定方法 Download PDF

Info

Publication number
JP7221203B2
JP7221203B2 JP2019539772A JP2019539772A JP7221203B2 JP 7221203 B2 JP7221203 B2 JP 7221203B2 JP 2019539772 A JP2019539772 A JP 2019539772A JP 2019539772 A JP2019539772 A JP 2019539772A JP 7221203 B2 JP7221203 B2 JP 7221203B2
Authority
JP
Japan
Prior art keywords
neural network
images
image
series
orientation information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019539772A
Other languages
English (en)
Other versions
JP2020506471A (ja
Inventor
ワン,セン
クラーク,ロナルド
トリゴニ,ニキ
Original Assignee
オックスフォード ユニヴァーシティ イノヴェーション リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1703005.7A external-priority patent/GB201703005D0/en
Application filed by オックスフォード ユニヴァーシティ イノヴェーション リミテッド filed Critical オックスフォード ユニヴァーシティ イノヴェーション リミテッド
Publication of JP2020506471A publication Critical patent/JP2020506471A/ja
Application granted granted Critical
Publication of JP7221203B2 publication Critical patent/JP7221203B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Description

本発明は、モバイル装置の位置を特定することに関する。より詳細には、排他的ではないが、本発明は、モバイル装置のカメラによって取り込まれた画像からモバイル装置の位置を特定するために、ニューラルネットワークを使用することに関する。
特に、本発明は、排他的ではないが、モバイル装置が自律型ロボットである場合に適用可能なものである。しかしながら、本発明は、携帯電話、スマートウォッチ、及びそれらの類のものといった、他の種類のモバイル及びウェアラブル装置にも適用可能である。
本明細書で扱う「位置」は、モバイル装置が緯度及び経度によって規定される地球上の位置にある、といった絶対位置を指し、又、別の位置に対する相対位置を指すこともある(例えば、モバイル装置は最初の開始位置からの距離及び方向)。位置の特定には、例えば地球の磁場に関する絶対的な用語での、及び初期の向きに対する特定量の回転のような相対的な用語での、向きの特定も含まれることが多い。
GPS信号が利用できない場所で、モバイル装置の位置を特定できることが望ましい。これは、正確な誘導を可能にする自律型ロボットの場合に特に当てはまる。既知のアプローチは、位置を特定するためにカメラからの画像を使用することである。しかしながら、そのようなシステムでは、位置を確実に特定する場合、カメラに非常に正確な較正が必要になる傾向がある。従来のビジュアル・オドメトリ技術には、スパース法(特徴の検出及び照合と動きの推定及び最適化とを含む、幾つかのステップを含む)、及び直接法(動きの推定及び最適化のステップを含む)が含まれる。そのような技術は、正確なカメラ較正を必要とする傾向があり、テクスチャの少ない環境(すなわち特徴が少ない環境)や、画像を取り込むカメラが急速に回転する場合に、失敗することがよくある。更に、このようなシステムは、通常、移動経路の形状を判定することはできるが、大抵はスケール、つまり実際の移動距離を推定することはできない。
或いは、位置を特定するために、ニューラルネットワークを使用してカメラからの画像を処理することが知られている。モハンティ等作、DeepVO:単眼ビジュアル・オドメトリのための深層学習方法、arXiv識別子:1611.06069、2016年11月18日公開の論文は、そのようなシステムを開示している。しかしながら、ニューラルネットワークを使用する既知のシステムには様々な問題がある。それらは、使用される特定の環境向けのトレーニングを必要とする傾向があるため、最初に適切なトレーニングが行われないと、新しい環境で使用することができない。
本発明は、上述した問題を軽減しようとするものである。又、代替的及び/又は付加的に、本発明は、モバイル装置の位置を特定する改善された方法を提供しようとするものである。
本発明の第1の態様によれば、カメラを含むモバイル装置の位置を特定するための、コンピュータで実行される方法であって、カメラを使用して、一定期間にわたって一連の画像を取り込むステップと、一連の画像からの、複数の連続した一対の画像について、各一対の画像のうち1番目の画像が取り込まれた時間と、各一対の画像のうち2番目の画像が取り込まれた時間との間の、装置の動きを示す特徴を、第1のニューラルネットワークを用いて抽出するステップと、一連の連続した画像について、第1のニューラルネットワークによって抽出された特徴から、装置の位置を示す特徴を、第2のニューラルネットワークを用いて抽出するステップと、一連の連続した画像について、第2のニューラルネットワークによって抽出された特徴から、装置の位置を特定するステップと、含む方法が提供される。
2つのニューラルネットワークの組み合わせを使用することで、はるかに堅牢で信頼性の高い位置特定が可能になることが判明した。特に、第1のニューラルネットワークは、画像間の差分によって示唆される動きを示す画像から、特徴を最も効果的に抽出するようにトレーニングすることができ、前記動きは、2つの画像のみに依存し、以前に特定された位置のような履歴情報に依存しない。しかしながら、以前に特定された場所といった履歴情報が非常に有用であると、第1のニューラルネットワークによって抽出された特徴から、モバイル装置の位置を最も効果的に特定するように、第2のニューラルネットワークを同時にトレーニングすることができる。このように2つのニューラルネットワークに処理を分割することにより、段階的な動きと総体的な位置との双方のトレーニングを、効果的に達成することができる。更に、システム全体をトレーニングすることで、双方のニューラルネットワークを同時にトレーニングできるため、特に、実際には使用に最適なタイプの特徴ではない虞がある事前に選択された属性で、動きの特徴を抽出するようにトレーニングするのではなく、システム全体の動作に最適な動きの特徴を抽出するように、第1のニューラルネットワークをトレーニングすることができる。
好ましくは、装置の位置に加えて装置の向きが特定される。従って、装置の「ポーズ」が特定される。
好ましくは、一連の画像の画像が単眼画像である。
好適には、第1のニューラルネットワークが畳み込みニューラルネットワークである。この種のニューラルネットワークは、画像データ等の多数のパラメータを有するデータを処理するのに特に適している。
好適には、第2のニューラルネットワークがリカレントニューラルネットワークである。この場合、好ましくは、第2のニューラルネットワークが長・短期記憶ニューラルネットワークである。リカレントニューラルネットワーク、特に長・短期記憶タイプのものは、時間依存型データの処理に特に適している。
好ましくは、本方法は、更に、第2のニューラルネットワークによって抽出された特徴から、連続して取り込まれた各一対の画像について、装置の相対的な位置及び向きの情報を抽出するステップを含む。この場合、好ましくは、装置の位置を特定するステップが、第2のニューラルネットワークによって抽出された特徴から抽出される、相対的な位置及び向きの情報を構成することを含む。換言すれば、装置の位置は、連続した動きの推定からオドメトリ的に(odometrically)特定される。
好適には、本方法は、更に、連続して取り込まれた各一対の画像について、相対的な位置及び向きの情報に対応する不確実性の情報を抽出するステップを含む。不確実性の情報は、ポーズの情報と共に、同時ローカリゼーション及びマッピング(SLAM)アルゴリズムへの入力として使用することができる。
一連の画像の各画像は、その対応する位置の情報に関連付けられていてもよく、本方法は、更に、対応する位置の情報を使用して、第1及び第2のニューラルネットワークを訓練するステップを含んでいてもよい。好ましくは、各画像は、その向きの情報にも関連付けられている。
装置は、自律型ロボットであってもよい。或いは、装置は、携帯電話、ウェアラブル装置、又は他の適切なモバイル装置であってもよい。
本発明の第2の態様によれば、モバイル装置であって、メモリ、プロセッサ、及びカメラを含み、カメラを使用して、一定期間にわたって一連の画像を取り込み、一連の画像からの、複数の連続した一対の画像について、各一対の画像のうち1番目の画像が取り込まれた時間と、各一対の画像のうち2番目の画像が取り込まれた時間との間の、装置の動きを示す特徴を、プロセッサにより提供される第1のニューラルネットワークを用いて抽出し、一連の連続した画像について、第1のニューラルネットワークによって抽出された特徴から、位置を示す特徴を、プロセッサにより提供される第2のニューラルネットワークを用いて抽出し、一連の連続した画像について、第2のニューラルネットワークによって抽出された特徴から、装置の位置を特定するように構成されている装置が提供される。
好ましくは、本装置は、装置の位置に加えて装置の向きを特定するように構成されている。
好ましくは、一連の画像の画像が単眼画像である。
好適には、第1のニューラルネットワークが畳み込みニューラルネットワークである。
好適には、第2のニューラルネットワークがリカレントニューラルネットワークである。この場合、好ましくは、第2のニューラルネットワークが長・短期記憶ニューラルネットワークである。
好ましくは、本装置は、更に、第2のニューラルネットワークによって抽出された特徴から、連続して取り込まれた各一対の画像について、装置の相対的な位置及び向きの情報を抽出するように構成されている。この場合、好ましくは、本装置は、第2のニューラルネットワークによって抽出された特徴から抽出される、相対的な位置及び向きの情報を構成することによって、装置の位置を特定するように構成されている。
好適には、本装置は、更に、連続して取り込まれた各一対の画像について、相対的な位置及び向きの情報に対応する不確実性の情報を抽出するように構成されている。
本発明の第3の態様によれば、モバイル装置で実行されたときに、上述した何れかの方法を実行するように構成された、コンピュータプログラム製品が提供される。
本発明の第4の態様によれば、モバイル装置で実行されたときに、上述した何れかのモバイル装置を提供するように構成された、コンピュータプログラム製品が提供される。
当然のことながら、本発明の一態様に関連して説明された特徴が、本発明の他の態様に組み込まれてもよいことは、理解されるであろう。例えば、本発明の方法は、本発明のモバイル装置を参照して説明された何れの特徴をも組み込むことができ、その逆もまた同様である。
ここで、本発明の実施形態について、添付の概略的な図面を参照しながら、単なる例として説明する。
本発明の実施形態に係る自律型ロボットの概略図である。 図1の自律型ロボットの、その位置を推定するための動作を示すフローチャートである。 図2の手順を表す概略図である。 図2及び図3の手順で使用されるLSTMの概略図である。
本発明の実施形態に係る自律型ロボットの概略図を、図1に示している。自律型ロボット1は、プロセッサ2を含んでいる。異なる実施形態では、プロセッサ2がシングルプロセッサシステム、デュアルプロセッサシステム、或いはその他の適切なプロセッサシステムであってもよいことは、理解されるであろう。プロセッサ2は、カメラ3及び(とりわけ)カメラ3によって取り込まれた画像を記憶するメモリ4と、通信を行う。
ここで、自律型ロボット1がその位置を特定するための動作について、図2のフローチャートを参照して説明する。その手順を図3にも概略的に示している。各時間ステップにおいて、自律型ロボット1は、現在利用可能な情報に基づいてその位置を特定する。図3は、3つの連続した時間ステップt、t+1、及びt+2を示しており、各時間ステップについての自律型ロボット1の「ポーズ(pose)」である、Pose、Poset+1、及びPoset+2の夫々が特定され、ポーズは、位置と進路情報(すなわち自律型ロボットが向いている向き)との組み合わせである。
まず、カメラ3によって連続的に取り込まれた一対の画像を取得する(ステップ21、図3の部分31)。次に、画像のサンプルセットから平均RGBチャネル値を減算することにより、各画像を前処理する(ステップ22、図3の部分32)。画像のセットは、例えば後に詳細に説明するように、自律型ロボット1が訓練される際の画像であってもよい。更に、画像を64の倍数になるようにサイズ変更する。但し、このような前処理はオプションであって、他の実施形態では存在しない。図3から分かるように、時間ステップtの場合、最初の一対の画像は前処理された画像RGB及びRGBt+1になるが、時間ステップt+1の場合、前処理された画像はRGBt+1及びRGBt+2であり、他の時間ステップについても同じように続いていく。
プロセッサ2及びメモリ4によって実装される畳み込みニューラルネットワーク(CNN)は、前処理された一対の画像を取得し、それを使用して特徴を抽出する(ステップ23、図3の部分33)。CNNは、以下の説明のように実行されたそのトレーニングに従って、特徴を抽出する。
CNNは、ネットワーク構造に畳み込み層を組み込むニューラルネットワークの一種であるため、他の種類のニューラルネットワークで使用される全結合層とは対照的に、データの空間的規則性を活用することができる。つまり、CNNに必要なパラメータの数が大幅に削減され、高次元の入力(生の画像データ等)を取り扱うことができるようになる。CNNでは、各畳み込み層で複数の畳み込み演算が適用され、前の層の出力マップから多くの特徴が抽出される。例えば[38]で説明されているように、マップの畳み込みに使用されるフィルターカーネルは、トレーニング中に学習される。
CNNは、前処理された連続した一対の画像を積み重ねることによって生成されたテンソルを、入力として受け取る。CNNは、9つの畳み込み層で構成され、最後を除く夫々に正規化線形ユニット(ReLU)非線形活性化(non-linearity activation)が続くことで、合計で17層になる。それらの層は次のように構成される。
Figure 0007221203000001
ネットワーク内の受容野のサイズは、7×7から5×5、そして3×3へと徐々に小さくなり、小さな興味深い特徴を捉えている。受容野の構成に適応するため、或いは、畳み込み後にテンソルの空間次元を保持するために、ゼロパディングが導入される。チャネル数、すなわち、特徴検出用のフィルター数は、様々な特徴を学習するために増加する。
本実施形態ではCNNが5500万の訓練可能な重みを有するが、他の実施形態では異なる数の重みを使用できることは、理解されるであろう。
そして、最終層(つまりConv6)からの特徴が、CNNの出力になる。
次に、リカレントニューラルネットワーク(RNN)が、CNNによって生成された特徴を取得し、それらから動きの特徴を抽出する(ステップ24、図3の部分34のLSTMボックス)。CNNと同様に、RNNは、以下に詳しく説明するそのトレーニングに従ってこれを行う。
RNNは、ニューラルネットワークの一種で、層は入力に対して作用するが、隠れ層及び/又は出力の遅延バージョンに対しても作用する。この方法において、RNNは、過去の入力及び対応する特定を追跡するための「メモリ」として使用できる、内部状態を有している。
本実施形態では、図4に示すような長・短期記憶(LSTM)アーキテクチャを備えたRNNが使用され(その様々なバリエーションが存在する)、図4において、丸中黒符号(○の中に●がある符号)は、要素単位の積を示し、丸囲み+符号(○の中に+がある符号)は、2つのベクトルの加算を示している。メモリセルの内容は、cに保存される。入力ゲートiは、現在の時間ステップで入力がメモリの内容に入る方法を制御する。忘却ゲートfは、必要に応じてメモリセルをクリアする制御信号0~1を生成することにより、メモリセルを空にするタイミングを決定する。最後に、出力ゲートoは、メモリセルの内容を現在の時間ステップで使用するか否かを決定する。RNNの動作は、以下の式で説明される。
Figure 0007221203000002
Figure 0007221203000003
Figure 0007221203000004
Figure 0007221203000005
Figure 0007221203000006
Figure 0007221203000007
パラメータWi,j及びbは、RNNの動作を完全にパラメータ化し、トレーニング中に学習される。再帰的な隠れ層により、ネットワークは、入力データの時間的規則性を利用してパフォーマンスを向上させることができる。
従来のLSTMモデルでは、隠れ状態のみが前の時間ステップから引き継がれるが、本実施形態では、前の時間ステップについて特定されたポーズが、入力としてRNNに直接送られる。これは図3で確認することができ、この図では、次の時間ステップのために、時間ステップのポーズがLSTMボックスに送られる。これを行う理由は、位置推定の場合、出力が基本的に各時間ステップでの連続する変位の積分であるためである。従って、前の時間ステップで特定されたポーズは、特に重要である。
本実施形態において、LSTMは、2000ユニットのセルを備えた2つの層を有するが、他の実施形態では、異なる数の層及びユニットを使用できることは、理解されるであろう。
次に、(高次元の)RNNによって抽出された動きの特徴は、全結合層に渡され(ステップ25)、それは低次元(少なくともポーズについて6、不確実性について6、更にポーズ及び不確実性の推定にガウス混合を使用する場合は各々についてより多いかもしれない)の特徴を出力する。
次に、全結合層からの低次元の特徴は、SE(3)層に渡される(ステップ26、図3の部分34のSE3ボックス)。SE(3)は、各時間ステップで自律型ロボット1の位置(実際には、時間ステップtについてのPose等のポーズ)を特定するために、各時間ステップで連続した動きの特徴を構成する。
SE3は、その要素が変換行列である特別なユークリッド群であって、特別な直交群SO3からの回転と並進ベクトルとで構成される。
Figure 0007221203000008
SO3コンポーネントが直交行列である必要があるため、SE3に属する変換推定値の生成は簡単ではない。しかしながら、SE3のリー代数se3は、直交性の制約を受けないコンポーネントによって記述することができる。
Figure 0007221203000009
そして、se3とSE3との間の変換は、指数マップを使用して実行できる。
Figure 0007221203000010
別の実施形態では、行列表現の代わりに回転の四元数表現が使用される。特に、ω成分はベクトルに変換される。
Figure 0007221203000011
Figure 0007221203000012
Figure 0007221203000013
これらの量の勾配の計算は、単純な線形代数演算のみを使用して実行することができる。更に、指数マップを計算するために必要な、高価な固有値の代償(expensive eigenvalue decompensation)が回避される。
従って、このようにして自律型ロボット1は、カメラ3からの画像を使用して、その位置、特にそのポーズを推定する。
連続したセンサ測定値からの位置の推定(すなわちオドメトリ)は、必然的にドリフトの影響を受ける。結果的に、それをループ閉じ込み、マップマッチング、又はポーズグラフ最適化手法と組み合わせて使用して、同時ローカリゼーション及びマッピング(SLAM)システムを作成するのが一般的である。オドメトリ測定をそのようなシステムに統合する重要な側面は、不確実性の推定値の可用性である。
そのような推定値を提供するために、全結合層の出力が使用される(SE(3)層の前)。全結合層によって生成された推定値は、訓練データからのグラウンドトゥルース・ポーズ情報と比較され、ポーズ(位置及び向き)の誤差分布をもたらす。そして、不確実性を表すガウス分布の混合の予測をトレーニングするために、最尤法が利用される。
動作させるためには、当然のことながら、ニューラルネットワークを訓練する必要があり、これは、テストデータと最小化される目的関数(cost function)とを提供することによって行われる。現在説明されている自律型ロボット1のCNNとRNNとのトレーニングは、実際、その双方が同時に訓練される。
上述したように、本実施形態のシステムは、ポーズと不確実性との双方を推定する。テストデータは、一連の画像であり、それらの画像の「グラウンドトゥルース」ポーズ(つまり正しいポーズ)が含まれる。トレーニングのための目的関数は、2つの部分で構成され、最初の部分がポーズの推定に関連し、2番目の部分が不確実性の推定に関連している。ポーズの推定については、推定されたポーズとグラウンドトゥルース・ポーズとの差を最小化するように、目的関数の最初の部分でシステムを訓練する。不確実性の推定については、ニューラルネットワークの出力をポーズラベルと比較することにより、目的関数の2番目の部分でシステムを訓練する。その後、時間を通して誤差逆伝播によるトレーニングを行い、CNNとRNNとの重みを調整して、目的関数の結果を最適に最小化する。
このように、CNNは、RNNへの入力に最も適した特徴を提供するように訓練され、同時にRNNは、それらの特徴(及び以前の特定)から自律型ロボット1のポーズ(及びその不確実性)を最も正確に特定するように訓練されることが分かる。特にCNNは、特定の種類の特徴又は特定の性質を備えた特徴を最適に提供するようには訓練されず、むしろ、システム全体の運用に最適な特徴を提供するように単純に訓練される。しかしながら、特定の実施形態では、初期の訓練プロセスを高速化するために、CNNが最初に単独で訓練され(或いはそのような訓練の効果を有する重みが与えられ)、連続する画像間の動きを示す特徴を提供する。これにより、CNNの初期状態が提供され、システムが全体として訓練されるにつれて、更に最適な訓練が行われる。
特定の実施形態を参照しながら、本発明について説明及び図示してきたが、当業者は、本明細書に具体的に示されていない多くの異なる変形例に、本発明が適していることを理解されるであろう。
前述の説明において、既知の、明白な又は予見可能な同等物を有する完全形(integer)や要素が言及されている場合、そのような同等物は、個別に記載されたものとして本明細書に組み込まれる。本発明の真の範囲の判定には特許請求の範囲を参照すべきであり、そのような同等物を包含するように解釈されるべきである。又、読者は、好ましいもの、有利なもの、便利なもの、又はそれらの類のものとして説明されている、本発明の完全形や特徴が任意のものであり、独立請求項の範囲を限定するものではないことは、理解されるであろう。更に、そのような任意の完全形や特徴は、本発明の幾つかの実施形態では可能な利点があるが、他の実施形態では望ましくないことがあり、従って存在しない場合があることを理解されたい。
1:自律型ロボット、2:プロセッサ、3:カメラ、4:メモリ

Claims (18)

  1. カメラを含むモバイル装置の位置を特定するための、コンピュータで実行される方法であって、
    前記カメラを使用して、一定期間にわたって一連の画像を取り込むステップと、
    前記一連の画像からの、複数の連続した一対の画像について、各一対の画像のうち1番目の画像が取り込まれた時間と、各一対の画像のうち2番目の画像が取り込まれた時間との間の、前記装置の動きを示す特徴を、第1のニューラルネットワークを用いて抽出するステップと、
    一連の連続した画像について、前記第1のニューラルネットワークによって抽出された特徴から、前記装置の位置を示す特徴を、第2のニューラルネットワークを用いて抽出するステップと、
    一連の連続した画像について、前記第2のニューラルネットワークによって抽出された特徴から、前記装置の位置を特定するステップと、
    テストデータ及び目的関数を提供して、前記第1のニューラルネットワーク及び前記第2のニューラルネットワークを訓練するステップと、
    前記第2のニューラルネットワークによって抽出された特徴から、連続して取り込まれた各一対の画像について、前記装置の相対的な位置及び向きの情報を抽出するステップと、
    連続して取り込まれた各一対の画像について、前記相対的な位置及び向きの情報に対応する不確実性の情報を抽出するステップと、を含み、
    前記目的関数を、前記相対的な位置及び向きの情報の推定に関連する部分と、前記不確実性の情報に関連する部分とで構成することを特徴とする方法。
  2. 前記装置の位置を特定するステップは、前記第2のニューラルネットワークによって抽出された特徴から抽出される、前記相対的な位置及び向きの情報を構成することを含むことを特徴とする請求項記載の方法。
  3. 前記装置の位置に加えて、前記装置の向きを特定することを特徴とする請求項1又は2記載の方法。
  4. 前記一連の画像の画像は、単眼画像であることを特徴とする請求項1からのいずれか1項記載の方法。
  5. 前記第1のニューラルネットワークは、畳み込みニューラルネットワークであることを特徴とする請求項1からのいずれか1項記載の方法。
  6. 前記第2のニューラルネットワークは、リカレントニューラルネットワークであることを特徴とする請求項1からのいずれか1項記載の方法。
  7. 前記第2のニューラルネットワークは、長・短期記憶ニューラルネットワークであることを特徴とする請求項記載の方法。
  8. 前記一連の画像の各画像は、その対応する位置及び向きの情報に関連付けられており、
    前記第1のニューラルネットワーク及び前記第2のニューラルネットワークを訓練するステップは、更に前記対応する位置及び向きの情報を使用することを特徴とする請求項1からのいずれか1項記載の方法。
  9. 前記装置は、自律型ロボットであることを特徴とする請求項1からのいずれか1項記載の方法。
  10. モバイル装置であって、
    メモリ、プロセッサ、及びカメラを含み、
    前記カメラを使用して、一定期間にわたって一連の画像を取り込み、
    前記一連の画像からの、複数の連続した一対の画像について、各一対の画像のうち1番目の画像が取り込まれた時間と、各一対の画像のうち2番目の画像が取り込まれた時間との間の、当該装置の動きを示す特徴を、前記プロセッサにより提供される第1のニューラルネットワークを用いて抽出し、
    一連の連続した画像について、前記第1のニューラルネットワークによって抽出された特徴から、当該装置の位置を示す特徴を、前記プロセッサにより提供される第2のニューラルネットワークを用いて抽出し、
    一連の連続した画像について、前記第2のニューラルネットワークによって抽出された特徴から、当該装置の位置を特定するように構成され、
    前記第1のニューラルネットワーク及び前記第2のニューラルネットワークは、テストデータ及び目的関数が提供されて訓練されたものであり、
    更に、前記第2のニューラルネットワークによって抽出された特徴から、連続して取り込まれた各一対の画像について、当該装置の相対的な位置及び向きの情報を抽出するように構成され、
    更に、連続して取り込まれた各一対の画像について、前記相対的な位置及び向きの情報に対応する不確実性の情報を抽出するように構成され、
    前記目的関数が、前記相対的な位置及び向きの情報の推定に関連する部分と、前記不確実性の情報に関連する部分とで構成されていることを特徴とする装置。
  11. 前記第2のニューラルネットワークによって抽出された特徴から抽出される、前記相対的な位置及び向きの情報を構成することにより、当該装置の位置を特定するように構成されていることを特徴とする請求項10記載の装置。
  12. 当該装置の位置に加えて、当該装置の向きを特定するように構成されていることを特徴とする請求項10又は11記載の装置。
  13. 前記一連の画像の画像は、単眼画像であることを特徴とする請求項10から12のいずれか1項記載の装置。
  14. 前記第1のニューラルネットワークは、畳み込みニューラルネットワークであることを特徴とする請求項10から13のいずれか1項記載の装置。
  15. 前記第2のニューラルネットワークは、リカレントニューラルネットワークであることを特徴とする請求項10から14のいずれか1項記載の装置。
  16. 前記第2のニューラルネットワークは、長・短期記憶ニューラルネットワークであることを特徴とする請求項15記載の装置。
  17. モバイル装置で実行されたときに、請求項1からのいずれか1項記載の方法を実行するように構成されていることを特徴とするコンピュータプログラム。
  18. モバイル装置で実行されたときに、請求項10から16のいずれか1項記載のモバイル装置を提供するように構成されていることを特徴とするコンピュータプログラム。
JP2019539772A 2017-01-23 2018-01-17 モバイル装置の位置特定方法 Active JP7221203B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GR20170100024 2017-01-23
GR20170100024 2017-01-23
GBGB1703005.7A GB201703005D0 (en) 2017-02-24 2017-02-24 Determining the location of a mobile device
GB1703005.7 2017-02-24
PCT/GB2018/050134 WO2018134589A1 (en) 2017-01-23 2018-01-17 Determining the location of a mobile device

Publications (2)

Publication Number Publication Date
JP2020506471A JP2020506471A (ja) 2020-02-27
JP7221203B2 true JP7221203B2 (ja) 2023-02-13

Family

ID=61028084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019539772A Active JP7221203B2 (ja) 2017-01-23 2018-01-17 モバイル装置の位置特定方法

Country Status (6)

Country Link
US (1) US11436749B2 (ja)
EP (1) EP3571665B1 (ja)
JP (1) JP7221203B2 (ja)
CN (1) CN110785777B (ja)
AU (1) AU2018208816B2 (ja)
WO (1) WO2018134589A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201804079D0 (en) 2018-01-10 2018-04-25 Univ Oxford Innovation Ltd Determining the location of a mobile device
CN110349185B (zh) * 2019-07-12 2022-10-11 安徽大学 一种rgbt目标跟踪模型的训练方法及装置
CN110503152B (zh) * 2019-08-26 2022-08-26 北京迈格威科技有限公司 用于目标检测的双路神经网络训练方法及图像处理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009296A (ja) 2007-06-27 2009-01-15 Noritsu Koki Co Ltd 顔画像変形方法とこの方法を実施する顔画像変形装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419925A1 (de) 1994-06-08 1995-12-14 Bodenseewerk Geraetetech Inertialsensor-Einheit
JP3655033B2 (ja) 1996-12-10 2005-06-02 株式会社リコー 携帯型情報処理装置及び携帯型情報処理装置の場所識別方法
JPH11110542A (ja) 1997-09-30 1999-04-23 Toshiba Corp パターン抽出方法および装置、そのプログラムを記録した媒体
US6704621B1 (en) * 1999-11-26 2004-03-09 Gideon P. Stein System and method for estimating ego-motion of a moving vehicle using successive images recorded along the vehicle's path of motion
WO2006084385A1 (en) 2005-02-11 2006-08-17 Macdonald Dettwiler & Associates Inc. 3d imaging system
US7925049B2 (en) 2006-08-15 2011-04-12 Sri International Stereo-based visual odometry method and system
US20080195316A1 (en) 2007-02-12 2008-08-14 Honeywell International Inc. System and method for motion estimation using vision sensors
US9766074B2 (en) 2008-03-28 2017-09-19 Regents Of The University Of Minnesota Vision-aided inertial navigation
US8213706B2 (en) 2008-04-22 2012-07-03 Honeywell International Inc. Method and system for real-time visual odometry
US8259994B1 (en) 2010-09-14 2012-09-04 Google Inc. Using image and laser constraints to obtain consistent and improved pose estimates in vehicle pose databases
US8761439B1 (en) 2011-08-24 2014-06-24 Sri International Method and apparatus for generating three-dimensional pose using monocular visual sensor and inertial measurement unit
US9148650B2 (en) 2012-09-17 2015-09-29 Nec Laboratories America, Inc. Real-time monocular visual odometry
US9576183B2 (en) 2012-11-02 2017-02-21 Qualcomm Incorporated Fast initialization for monocular visual SLAM
US10254118B2 (en) 2013-02-21 2019-04-09 Regents Of The University Of Minnesota Extrinsic parameter calibration of a vision-aided inertial navigation system
US9674507B2 (en) 2013-04-30 2017-06-06 Qualcomm Incorporated Monocular visual SLAM with general and panorama camera movements
US20140341465A1 (en) 2013-05-16 2014-11-20 The Regents Of The University Of California Real-time pose estimation system using inertial and feature measurements
WO2015013418A2 (en) 2013-07-23 2015-01-29 The Regents Of The University Of California Method for processing feature measurements in vision-aided inertial navigation
US10306206B2 (en) 2013-07-23 2019-05-28 The Regents Of The University Of California 3-D motion estimation and online temporal calibration for camera-IMU systems
EP3025275A4 (en) 2013-07-24 2017-02-15 The Regents Of The University Of California Method for camera motion estimation and correction
EP2854104A1 (en) 2013-09-25 2015-04-01 Technische Universität München Semi-dense simultaneous localization and mapping
US9243915B2 (en) 2013-10-16 2016-01-26 Physical Devices, Llc Devices and methods for passive navigation
US9390344B2 (en) 2014-01-09 2016-07-12 Qualcomm Incorporated Sensor-based camera motion detection for unconstrained slam
CN103983263A (zh) 2014-05-30 2014-08-13 东南大学 一种采用迭代扩展卡尔曼滤波与神经网络的惯性/视觉组合导航方法
US9430847B2 (en) 2014-06-12 2016-08-30 Mitsubishi Electric Research Laboratories, Inc. Method for stereo visual odometry using points, lines and planes
US10113910B2 (en) * 2014-08-26 2018-10-30 Digimarc Corporation Sensor-synchronized spectrally-structured-light imaging
US9709404B2 (en) 2015-04-17 2017-07-18 Regents Of The University Of Minnesota Iterative Kalman Smoother for robust 3D localization for vision-aided inertial navigation
US9902401B2 (en) 2015-05-10 2018-02-27 Mobileye Vision Technologies Ltd. Road profile along a predicted path
EP3158293B1 (en) 2015-05-23 2019-01-23 SZ DJI Technology Co., Ltd. Sensor fusion using inertial and image sensors
US9965705B2 (en) * 2015-11-03 2018-05-08 Baidu Usa Llc Systems and methods for attention-based configurable convolutional neural networks (ABC-CNN) for visual question answering
CN105374043B (zh) * 2015-12-02 2017-04-05 福州华鹰重工机械有限公司 视觉里程计背景过滤方法及装置
EP3182373B1 (en) 2015-12-17 2019-06-19 STMicroelectronics S.A. Improvements in determination of an ego-motion of a video apparatus in a slam type algorithm
CN105911518A (zh) * 2016-03-31 2016-08-31 山东大学 机器人定位方法
CN106017458B (zh) 2016-05-18 2019-08-27 宁波华狮智能科技有限公司 移动机器人组合式导航方法及装置
CN106097391B (zh) * 2016-06-13 2018-11-16 浙江工商大学 一种基于深度神经网络的识别辅助的多目标跟踪方法
GB201616097D0 (en) * 2016-09-21 2016-11-02 Univ Oxford Innovation Ltd Segmentation of path proposals
WO2018212538A1 (en) * 2017-05-16 2018-11-22 Samsung Electronics Co., Ltd. Electronic device and method of detecting driving event of vehicle
EP3495992A1 (en) * 2017-12-07 2019-06-12 IMRA Europe SAS Danger ranking using end to end deep neural network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009296A (ja) 2007-06-27 2009-01-15 Noritsu Koki Co Ltd 顔画像変形方法とこの方法を実施する顔画像変形装置

Also Published As

Publication number Publication date
JP2020506471A (ja) 2020-02-27
AU2018208816A1 (en) 2019-08-15
CN110785777A (zh) 2020-02-11
US11436749B2 (en) 2022-09-06
WO2018134589A1 (en) 2018-07-26
CN110785777B (zh) 2024-04-02
US20210350563A1 (en) 2021-11-11
EP3571665B1 (en) 2023-06-07
AU2018208816B2 (en) 2022-06-16
EP3571665A1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP7121017B2 (ja) モバイル装置の位置特定方法
Teed et al. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras
Kim et al. Transfer learning for automated optical inspection
JP7153090B2 (ja) 目標オブジェクト検出方法、及び装置、電子機器、並びに記憶媒体
US10885659B2 (en) Object pose estimating method and apparatus
Iyer et al. Geometric consistency for self-supervised end-to-end visual odometry
Peretroukhin et al. Reducing drift in visual odometry by inferring sun direction using a bayesian convolutional neural network
Varma et al. Transformers in self-supervised monocular depth estimation with unknown camera intrinsics
US11138742B2 (en) Event-based feature tracking
JP7221203B2 (ja) モバイル装置の位置特定方法
EP3588129A1 (en) Apparatus and method with ego motion estimation
CN114565655B (zh) 一种基于金字塔分割注意力的深度估计方法及装置
CN111914878B (zh) 特征点跟踪训练及跟踪方法、装置、电子设备及存储介质
Shamwell et al. Vision-aided absolute trajectory estimation using an unsupervised deep network with online error correction
CN109544632B (zh) 一种基于层次主题模型的语义slam对象关联方法
Forechi et al. Visual global localization with a hybrid WNN-CNN approach
Zhou et al. Learned monocular depth priors in visual-inertial initialization
Cassinis et al. Leveraging neural network uncertainty in adaptive unscented Kalman Filter for spacecraft pose estimation
Gaspar et al. Comparative study of visual odometry and slam techniques
Tiefenbacher et al. Off-the-shelf sensor integration for mono-SLAM on smart devices
CN109297469A (zh) 估算无人机所观测场景的位移及地速的电子装置和方法
Hashimoto et al. Self-localization from a 360-Degree Camera Based on the Deep Neural Network
Zeng et al. SF-VIO: a visual-inertial odometry based on selective feature sample using attention mechanism
JP2009053080A (ja) 3次元位置情報復元装置およびその方法
Ke Efficient and Accurate Visual-Inertial Localization and Mapping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230201

R150 Certificate of patent or registration of utility model

Ref document number: 7221203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150