JP7220904B2 - Glucamine derivative, metal adsorbent comprising glucamine derivative, metal extractor equipped with metal adsorbent comprising glucamine derivative, metal extraction kit - Google Patents

Glucamine derivative, metal adsorbent comprising glucamine derivative, metal extractor equipped with metal adsorbent comprising glucamine derivative, metal extraction kit Download PDF

Info

Publication number
JP7220904B2
JP7220904B2 JP2019037364A JP2019037364A JP7220904B2 JP 7220904 B2 JP7220904 B2 JP 7220904B2 JP 2019037364 A JP2019037364 A JP 2019037364A JP 2019037364 A JP2019037364 A JP 2019037364A JP 7220904 B2 JP7220904 B2 JP 7220904B2
Authority
JP
Japan
Prior art keywords
metal
glucamine
liquid
glucamine derivative
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019037364A
Other languages
Japanese (ja)
Other versions
JP2019156826A (en
Inventor
崇 濱田
宏行 保科
典明 瀬古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL INSTITUTES FOR QUANTUM AND RADIOLOGICALSCIENCE AND TECHNOLOGY
Original Assignee
NATIONAL INSTITUTES FOR QUANTUM AND RADIOLOGICALSCIENCE AND TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL INSTITUTES FOR QUANTUM AND RADIOLOGICALSCIENCE AND TECHNOLOGY filed Critical NATIONAL INSTITUTES FOR QUANTUM AND RADIOLOGICALSCIENCE AND TECHNOLOGY
Publication of JP2019156826A publication Critical patent/JP2019156826A/en
Application granted granted Critical
Publication of JP7220904B2 publication Critical patent/JP7220904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Physical Water Treatments (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、グルカミン誘導体、及び、前記グルカミン誘導体を含む金属吸着剤に関する。更に、本発明は、グルカミン誘導体を含有する金属吸着剤を用いた金属抽出方法、グルカミン誘導体を含有する金属吸着剤を備える金属抽出装置、金属抽出キットに関する。 The present invention relates to a glucamine derivative and a metal adsorbent containing the glucamine derivative. Furthermore, the present invention relates to a metal extraction method using a metal adsorbent containing a glucamine derivative, a metal extraction device equipped with a metal adsorbent containing a glucamine derivative, and a metal extraction kit.

近年、レアメタルなどの金属資源はその需要の高まりから、使用済みの製品をリサイクルする技術や仕組みの構築、更には、回収や製錬工程で極力ロスを少なくする技術開発が精力的に行われている。
レアメタルなどの金属資源を回収する技術としては、吸着剤を用いて回収する吸着法が工業的に適しており、環境水中の水の浄化、都市鉱山からのレアメタル回収や油中からの核燃料物質の抽出など効率的に金属を回収できる吸着剤が必要とされている。
In recent years, due to the increasing demand for metal resources such as rare metals, the construction of technologies and mechanisms for recycling used products, and the development of technologies to minimize losses in the recovery and smelting processes are being vigorously pursued. there is
As a technology for recovering metal resources such as rare metals, the adsorption method using adsorbents is industrially suitable. There is a need for adsorbents that can efficiently recover metals, such as by extraction.

金属の回収に適した吸着材としては、金属吸着能を有するN-メチルグルカミンを高分子樹脂などに固定化した固体吸着剤が知られているが(非特許文献1~3)、水及び有機溶媒に不溶であるため、固液抽出法でしか金属を回収できないといった問題があった。 As an adsorbent suitable for metal recovery, a solid adsorbent in which N-methylglucamine, which has metal adsorption ability, is immobilized on a polymer resin or the like is known (Non-Patent Documents 1 to 3). Since it is insoluble in organic solvents, there is a problem that the metal can only be recovered by solid-liquid extraction.

水に可溶なN-メチルグルカミン誘導体として、長鎖アルキル基を有するN-メチルグルカミン誘導体が知られており、水処理もしくは木材防腐用ホウ素固定剤に用いられることが記載されている(特許文献1)。 As a water-soluble N-methylglucamine derivative, an N-methylglucamine derivative having a long-chain alkyl group is known, and it is described that it is used as a boron fixing agent for water treatment or wood preservative ( Patent document 1).

更に、N-メチルグルカミンに、炭素数12のアルキル基をマイケル付加したグルカミン誘導体についても知られている(特許文献2)。 Furthermore, a glucamine derivative obtained by Michael-addition of an alkyl group having 12 carbon atoms to N-methylglucamine is also known (Patent Document 2).

特表2014-534955号公報Japanese translation of PCT publication No. 2014-534955 国際公開第2003/068377号WO2003/068377

Bruno F. Urbano, “Water-insoluble polymer-clay nanocomposite ion exchange resin based on N-methyl-D-glucamine ligand groups for arsenic removal”, Reactive & Functional Polymers. 2012, 72, p.642-649.Bruno F. Urbano, “Water-insoluble polymer-clay nanocomposite ion exchange resin based on N-methyl-D-glucamine ligand groups for arsenic removal”, Reactive & Functional Polymers. 2012, 72, p.642-649. Xi Zhang, “A spherical N-methyl-D-glucamine-based hybrid adsorbent for highly efficient adsorption of boric acid from water”, Separation and Purification Technology. 2017, 172, p.43-50.Xi Zhang, "A spherical N-methyl-D-glucamine-based hybrid adsorbent for highly efficient adsorption of boric acid from water", Separation and Purification Technology. 2017, 172, p.43-50. Kohsuke Ikeda, “Removal of boron using nylon-based chelating fibers”, Industrial & Engineering Chemistry Research. 2011, 50, p.5727-5732.Kohsuke Ikeda, “Removal of boron using nylon-based chelating fibers”, Industrial & Engineering Chemistry Research. 2011, 50, p.5727-5732.

金属が溶解した液から金属吸着剤により金属を回収する技術では、金属と金属吸着剤との接触効率を向上させるという観点から、金属吸着剤を含む液体を抽出液とし、金属が溶解した液とを接触させる処理方法、いわゆる液液抽出法による処理方法が望ましい。液液抽出による処理方法を行う場合、金属吸着剤は、水又は有機溶媒の一方にのみ可溶である、あるいは、水又は有機溶媒の一方に不溶でありその性状が液状である、という性質が求められる。しかしながら、従来のN-メチルグルカミン誘導体、あるいは、該N-メチルグルカミン誘導体を固定した固体吸着剤は、水、有機溶媒の両方に不溶な固体化合物であるか、その両方に溶解するものであった。 In the technology of recovering metals from liquids in which metals are dissolved using metal adsorbents, from the viewpoint of improving the contact efficiency between metals and metal adsorbents, a liquid containing metal adsorbents is used as an extraction liquid, and the liquid in which metals are dissolved is used as an extraction liquid. is preferably used, that is, a so-called liquid-liquid extraction method. When a treatment method by liquid-liquid extraction is performed, the metal adsorbent has the property that it is soluble in either water or an organic solvent, or insoluble in either water or an organic solvent and is in a liquid state. Desired. However, conventional N-methylglucamine derivatives or solid adsorbents to which the N-methylglucamine derivatives are immobilized are solid compounds insoluble in both water and organic solvents, or dissolve in both. there were.

そこで、本発明の課題は、水又は有機溶媒の一方にのみ可溶である、あるいは、水又は有機溶媒の一方に不溶でありその性状が液状である、グルカミン誘導体であって、液液抽出法に利用可能なグルカミン誘導体を提供することである。 Accordingly, an object of the present invention is to provide a glucamine derivative that is soluble in either water or an organic solvent, or is insoluble in either water or an organic solvent and is in a liquid state, and is characterized by a liquid-liquid extraction method. To provide a glucamine derivative that can be used for

本発明者は、上記の課題について鋭意検討した結果、炭素数9以上の分岐鎖を有するアルキル基を置換基として有するグルカミン誘導体が、水に不溶であり有機溶媒に可溶である、あるいは、水に不溶であり液状である、化合物であることを見出し、本発明を完成した。
すなわち、本発明は、以下のグルカミン誘導体である。
As a result of intensive studies on the above problems, the present inventors have found that a glucamine derivative having an alkyl group having a branched chain of 9 or more carbon atoms as a substituent is insoluble in water and soluble in an organic solvent. The present invention was completed by discovering that it is a compound that is insoluble in and liquid.
That is, the present invention is the following glucamine derivative.

上記課題を解決するための本発明のグルカミン誘導体は、下記式(1)で表されるグルカミン誘導体であることを特徴とする。

Figure 0007220904000001
(式中、Rは、水素原子、メチル基、及び、エチル基から選択される1種を表し、Rは炭素数9以上の分岐アルキル基を表す。) The glucamine derivative of the present invention for solving the above problems is characterized by being a glucamine derivative represented by the following formula (1).
Figure 0007220904000001
(In the formula, R 1 represents one selected from a hydrogen atom, a methyl group, and an ethyl group, and R 2 represents a branched alkyl group having 9 or more carbon atoms.)

このグルカミン誘導体は、水に不溶な液状化合物であるという特性を有する。そのため、このグルカミン誘導体を抽出液体とし、金属が溶解した液から金属を液液抽出法により回収することができる。液液抽出法は、混合することによって、例えば水と有機溶媒または液状化合物の界面の接触効率を高めることができるため、固液抽出法より吸着作用に優れるという効果がある。また、抽出時間も短縮化できるなどの効果もある。
また、このグルカミン誘導体は、水に不溶であり、有機溶媒に可溶である、という特性を有する。この特性によると、このグルカミン誘導体を有機溶媒中に溶解して抽出溶媒とすることができるため、抽出溶媒を低粘度化することが可能となる。低粘度化することにより、金属が溶解した水と混合性能が向上するという効果を奏する。
さらに、このグルカミン誘導体は、金属が溶解した油に対して可溶であることから、油中に溶解することにより、油中の金属を捕捉することが可能である。よって、金属が溶解した油から金属を除去する処理に利用することができる。
This glucamine derivative has the property of being a water-insoluble liquid compound. Therefore, by using this glucamine derivative as an extraction liquid, the metal can be recovered from the liquid in which the metal is dissolved by a liquid-liquid extraction method. The liquid-liquid extraction method has the advantage of being superior to the solid-liquid extraction method in terms of adsorption action because the contact efficiency of the interface between water and the organic solvent or the liquid compound can be enhanced by mixing. There is also an effect that the extraction time can be shortened.
In addition, this glucamine derivative has the property of being insoluble in water and soluble in organic solvents. According to this characteristic, the glucamine derivative can be dissolved in an organic solvent to be used as an extraction solvent, so that the viscosity of the extraction solvent can be reduced. By reducing the viscosity, there is an effect that the mixing performance with water in which the metal is dissolved is improved.
Furthermore, since this glucamine derivative is soluble in the oil in which the metal is dissolved, it is possible to capture the metal in the oil by dissolving it in the oil. Therefore, it can be used for the treatment of removing metals from oil in which metals are dissolved.

また、本発明のグルカミン誘導体の一実施態様としては、R1がメチル基であることを特徴とする。
この特徴によれば、吸着能に優れるという本発明の効果をより一層発揮することができる。
Moreover, one embodiment of the glucamine derivative of the present invention is characterized in that R 1 is a methyl group.
According to this feature, the effect of the present invention, which is excellent in adsorption capacity, can be further exhibited.

また、本発明のグルカミン誘導体の一実施態様としては、Rが炭素数24以下の分岐アルキル基であることを特徴とする。
この特徴によれば、吸着能に優れるという本発明の効果をより一層発揮することができる。
Moreover, one embodiment of the glucamine derivative of the present invention is characterized in that R 2 is a branched alkyl group having 24 or less carbon atoms.
According to this feature, the effect of the present invention, which is excellent in adsorption capacity, can be further exhibited.

上記課題を解決するための本発明の金属吸着剤は、上記の本発明のグルカミン誘導体を含むことを特徴とする。
この特徴によれば、水に不溶であり有機溶媒に可溶である、あるいは、水に不溶な液状のグルカミン誘導体を用いていることから、液液抽出法に使用可能な金属吸着剤を提供することができる。
The metal adsorbent of the present invention for solving the above problems is characterized by containing the above glucamine derivative of the present invention.
According to this feature, a metal adsorbent that can be used in a liquid-liquid extraction method is provided by using a liquid glucamine derivative that is insoluble in water and soluble in an organic solvent, or that is insoluble in water. be able to.

上記課題を解決するための本発明の金属抽出方法は、上記の本発明の金属吸着剤と、金属が溶解した液とを接触させる工程を含むことを特徴とする。
この特徴によれば、金属が溶解した液から金属を効率的に吸着、抽出することができる。
The metal extraction method of the present invention for solving the above-mentioned problems is characterized by including the step of contacting the metal adsorbent of the present invention with a liquid in which metal is dissolved.
According to this feature, the metal can be efficiently adsorbed and extracted from the liquid in which the metal is dissolved.

本発明の金属抽出方法の一実施態様としては、金属溶解水溶液と、前記金属吸着剤と、有機溶媒とを用いた液液抽出工程を含むことを特徴とする。
この特徴によれば、金属が溶解した水溶液と、本発明の金属吸着剤との界面の接触効率を高めることができるため、金属が溶解した水溶液から金属を、短時間で効率的に抽出、回収することができる。
An embodiment of the metal extraction method of the present invention is characterized by including a liquid-liquid extraction step using a metal-dissolved aqueous solution, the metal adsorbent, and an organic solvent.
According to this feature, since the contact efficiency of the interface between the aqueous solution in which the metal is dissolved and the metal adsorbent of the present invention can be improved, the metal can be efficiently extracted and recovered from the aqueous solution in which the metal is dissolved in a short time. can do.

上記課題を解決するための本発明の金属抽出装置は、前記金属吸着剤を備えることを特徴とする。
この特徴によれば、金属が溶解した液から金属を効率的に吸着、抽出することができる金属抽出装置を提供することができる。
A metal extractor of the present invention for solving the above problems is characterized by comprising the metal adsorbent.
According to this feature, it is possible to provide a metal extractor capable of efficiently adsorbing and extracting metals from a liquid in which metals are dissolved.

上記課題を解決するための本発明の金属抽出キットは、前記金属吸着剤と、前記金属吸着剤を溶解する有機溶媒とを備えることを特徴とする。
この特徴によれば、金属が溶解した液から金属を簡易的に吸着、抽出することができるキットを提供することができる。
The metal extraction kit of the present invention for solving the above problems is characterized by comprising the metal adsorbent and an organic solvent that dissolves the metal adsorbent.
According to this feature, it is possible to provide a kit capable of easily adsorbing and extracting a metal from a liquid in which the metal is dissolved.

本発明によれば、水又は有機溶媒の一方にのみ可溶である、あるいは、水又は有機溶媒の一方に不溶でありその性状が液状である、グルカミン誘導体であって、液液抽出法に利用可能なグルカミン誘導体を提供することができる。 According to the present invention, a glucamine derivative that is soluble in either water or an organic solvent, or is insoluble in either water or an organic solvent and is in a liquid state, is used in a liquid-liquid extraction method. A possible glucamine derivative can be provided.

[グルカミン誘導体]
本発明のグルカミン誘導体は、下記式(1)で表されるグルカミンの窒素に対して、アルキル基等が付加された化合物である。

Figure 0007220904000002
(式中、Rは、水素原子、メチル基、及び、エチル基を表し、Rは炭素数9以上の分岐アルキル基を表す。) [Glucamine derivative]
The glucamine derivative of the present invention is a compound in which an alkyl group or the like is added to the nitrogen of glucamine represented by the following formula (1).
Figure 0007220904000002
(In the formula, R 1 represents a hydrogen atom, a methyl group and an ethyl group, and R 2 represents a branched alkyl group having 9 or more carbon atoms.)

は、水素原子、メチル基、及び、エチル基を表し、好ましくはメチル基である。Rがメチル基であると、グルカミン誘導体が金属と錯形成しやすくなるため、金属吸着能が向上する。 R 1 represents a hydrogen atom, a methyl group and an ethyl group, preferably a methyl group. When R 1 is a methyl group, the glucamine derivative easily forms a complex with a metal, thereby improving the metal adsorption ability.

の炭素数9以上の分岐アルキル基としては、特に限定されないが、下限値としては、好ましくは炭素数9以上、より好ましくは炭素数12以上、特に好ましくは炭素数16以上である。上限値としては、有機溶媒に溶解可能な限り特に限定されないが、好ましくは30以下、より好ましくは24以下、特に好ましくは18以下である。
の分岐アルキル基の炭素数が小さすぎると有機溶媒に溶解するが、水にも溶解してしまう。また、Rの分岐アルキル基の炭素数が大きすぎると、単位重量当たりのグルカミン誘導体に吸着される金属吸着量が小さくなる。
また、Rが炭素数9以上の分岐アルキル基であることで、水に不溶であり、有機溶媒に可溶な液状のグルカミン誘導体を得ることができる。
The branched alkyl group having 9 or more carbon atoms for R 2 is not particularly limited, but the lower limit thereof is preferably 9 or more carbon atoms, more preferably 12 or more carbon atoms, and particularly preferably 16 or more carbon atoms. The upper limit is not particularly limited as long as it can be dissolved in an organic solvent, but is preferably 30 or less, more preferably 24 or less, and particularly preferably 18 or less.
If the number of carbon atoms in the branched alkyl group of R2 is too small, it dissolves in organic solvents, but it also dissolves in water. Also, if the number of carbon atoms in the branched alkyl group of R2 is too large, the amount of metal adsorbed by the glucamine derivative per unit weight becomes small.
In addition, when R 2 is a branched alkyl group having 9 or more carbon atoms, it is possible to obtain a liquid glucamine derivative that is insoluble in water and soluble in organic solvents.

炭素数9以上の分岐アルキル基としては、具体的には、例えば、2,3-ジメチルヘプチル基、2,4-ジメチルヘプチル基、2,5-ジメチルヘプチル基、3,3-ジメチルヘプチル基、3,4-ジメチルヘプチル基、3,5-ジメチルヘプチル基、2-メチルオクチル基、2,6-ジメチルオクチル基、2,2,4,6,6-ペンタメチルヘプチル基、4-メチルドデシル基、3,7-ジメチルオクチル基、2-ブチルオクチル基、3,3-ジメチルオクチル基、3,5-ジメチルオクチル基、4,4-ジメチルオクチル基、3,5-トリメチルヘキシル基、2-ヘキシルオクチル基、2-ブチルオクチル基、2-メチルノニル基、3-メチルノニル基、4-メチルノニル基、5-メチルノニル基、4-エチル-2-メチルヘプチル基、イソノニル基、イソデシル基、7-メチルペンチル基、2-ヘキシルデシル基、イソステアリル基、3-ヘキシルウンデシル基、3-オクチルトリデシル基、3-デシルペンタデシル基等が挙げられ、好ましくは、イソステアリル基である。 Specific examples of branched alkyl groups having 9 or more carbon atoms include, for example, 2,3-dimethylheptyl group, 2,4-dimethylheptyl group, 2,5-dimethylheptyl group, 3,3-dimethylheptyl group, 3,4-dimethylheptyl group, 3,5-dimethylheptyl group, 2-methyloctyl group, 2,6-dimethyloctyl group, 2,2,4,6,6-pentamethylheptyl group, 4-methyldodecyl group , 3,7-dimethyloctyl group, 2-butyloctyl group, 3,3-dimethyloctyl group, 3,5-dimethyloctyl group, 4,4-dimethyloctyl group, 3,5-trimethylhexyl group, 2-hexyl Octyl group, 2-butyloctyl group, 2-methylnonyl group, 3-methylnonyl group, 4-methylnonyl group, 5-methylnonyl group, 4-ethyl-2-methylheptyl group, isononyl group, isodecyl group, 7-methylpentyl group , 2-hexyldecyl group, isostearyl group, 3-hexylundecyl group, 3-octyltridecyl group, 3-decylpentadecyl group and the like, preferably isostearyl group.

本発明のグルカミン誘導体を溶解することができる有機溶媒としては、ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン、ヘキサデカン等の直鎖または分岐型の炭化水素系溶媒、シクロヘキサン、シクロオクタン等の環式炭化水素系溶媒、オクタノール、2-エチルヘキサノール等のアルコール系溶媒、塩化メチレン、クロロホルム、四塩化炭素、テトラクロロエタン、ヘキサクロロエタン等のハロゲン系溶媒、メチルエチルケトン、フェニルメチルケトン、等の溶媒が挙げられる。その中でも金属吸着能を高めるには、直鎖や分岐型の炭化水素であるヘキサン、オクタン、デカン、ドデカン、ヘキサデカンなどの直鎖もしくはイソオクタンなどの分岐型の炭化水素溶媒が好ましい。 Organic solvents capable of dissolving the glucamine derivative of the present invention include linear or branched hydrocarbon solvents such as hexane, heptane, octane, isooctane, decane, dodecane and hexadecane; Examples include hydrocarbon solvents, alcohol solvents such as octanol and 2-ethylhexanol, halogen solvents such as methylene chloride, chloroform, carbon tetrachloride, tetrachloroethane and hexachloroethane, and solvents such as methyl ethyl ketone and phenyl methyl ketone. Among them, linear or branched hydrocarbon solvents such as hexane, octane, decane, dodecane, and hexadecane or branched hydrocarbon solvents such as isooctane are preferred for enhancing metal adsorption ability.

水に不溶とは、室温下(25℃)、サンプル瓶に、本発明のグルカミン誘導体と水(蒸留水)を加えて、蓋をして激しく振とうさせた後に静置させた状態において、目視により、水が白濁している、または残存物を確認できる状態をいう。定量的には、水に対する溶解度が10g/L未満、好ましくは5g/L未満、より好ましくは1g/L未満であることをいう。 “Insoluble in water” means that the glucamine derivative of the present invention and water (distilled water) are added to a sample bottle at room temperature (25° C.), the sample bottle is capped, vigorously shaken, and left to stand. means that the water is cloudy or that residual substances can be confirmed. Quantitatively, it means that the solubility in water is less than 10 g/L, preferably less than 5 g/L, and more preferably less than 1 g/L.

有機溶媒に可溶とは、室温下(25℃)、サンプル瓶に、本発明のグルカミン誘導体とイソオクタンを加えて、蓋をして激しく振とうさせた後に静置させた状態において、目視により、イソオクタンが白濁していない、または残存物が確認できない状態をいう。定量的には、イソオクタンに対する溶解度が、1g/L以上、好ましくは5g/L以上、より好ましくは10g/L以上であることをいう。 "Soluble in an organic solvent" means that the glucamine derivative of the present invention and isooctane are added to a sample bottle at room temperature (25°C), and the sample bottle is capped, shaken vigorously, and allowed to stand still. It refers to the state where isooctane is not cloudy or no residue can be confirmed. Quantitatively, it means that the solubility in isooctane is 1 g/L or more, preferably 5 g/L or more, more preferably 10 g/L or more.

液状化合物とは、室温(25℃)、常圧において、粉末状でない粘性の状態である化合物のことをいう。液状化合物の粘度については特に限定されないが、25℃での粘度が0.1~100mPa・sが好ましく、1~50mPa・sがより好ましく、10~20mPa・sが特に好ましい。液状化合物の粘度が上記範囲であると、金属が溶解した液との界面での接触効率を高くすることができる。
前記粘度の測定方法は、Brookfield回転粘度計(英弘世紀精機株式会社製)やTV25/35粘度計(東機産業株式会社製)、超音波卓上粘度計FCV-100(富士工業株式会社製)を用いて測定することができる。
A liquid compound means a compound that is not powdery but viscous at room temperature (25° C.) and normal pressure. Although the viscosity of the liquid compound is not particularly limited, the viscosity at 25° C. is preferably 0.1 to 100 mPa·s, more preferably 1 to 50 mPa·s, and particularly preferably 10 to 20 mPa·s. When the viscosity of the liquid compound is within the above range, the contact efficiency at the interface with the liquid in which the metal is dissolved can be increased.
The method for measuring the viscosity includes a Brookfield rotational viscometer (manufactured by Eiko Seiki Seiki Co., Ltd.), a TV25/35 viscometer (manufactured by Toki Sangyo Co., Ltd.), and an ultrasonic desktop viscometer FCV-100 (manufactured by Fuji Kogyo Co., Ltd.). can be measured using

本発明のグルカミン誘導体は、グルカミンのN位に分岐型アルキル基を有するアクリロイル基を導入することにより得ることができる。
グルカミンのN位に分岐型アルキル基を有するアクリロイル基を導入する方法としては、例えば、下記式で示すように、N-メチルグルカミンに対して、分岐型アルキル基を有するアクリル化合物をマイケル付加反応させることで得ることができる。

Figure 0007220904000003
(式中、Rは炭素数9以上の分岐アルキル基を表す。) The glucamine derivative of the present invention can be obtained by introducing an acryloyl group having a branched alkyl group to the N-position of glucamine.
As a method for introducing an acryloyl group having a branched alkyl group at the N-position of glucamine, for example, as shown in the following formula, an acrylic compound having a branched alkyl group is subjected to a Michael addition reaction to N-methylglucamine. can be obtained by letting
Figure 0007220904000003
(In the formula, R2 represents a branched alkyl group having 9 or more carbon atoms.)

前記反応において、反応溶媒は特に限定されないが、グルカミン及び分岐型アルキル基を有するアクリル化合物が溶解する溶媒が好ましい。前記溶媒としては、テトラヒドロフラン(THF)、テトラヒドロピラン、ジオキサン、等のエーテル系溶媒、メタノール、エタノール、n-プロパノール、iso-プロパノール等のアルコール系溶媒、ホルムアミド、N,N-ジメチルホルムアミド(DMF)、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド(DMAc)等のアミド系溶媒、アセトン、メチルエチルケトン、フェニルメチルケトン、ジメチルスルホキシド(DMSO)、水等の溶媒等が挙げられる。なお、溶媒は、1種類に限られず、2種類以上を組み合わせてもよい。
また、反応溶媒として、生成物が不溶な溶媒を用いると、後の精製操作が簡単になる。
In the reaction, the reaction solvent is not particularly limited, but a solvent in which glucamine and an acrylic compound having a branched alkyl group are dissolved is preferable. Examples of the solvent include ether solvents such as tetrahydrofuran (THF), tetrahydropyran, and dioxane; alcohol solvents such as methanol, ethanol, n-propanol, and iso-propanol; formamide, N,N-dimethylformamide (DMF); Amide solvents such as acetamide, N-methylacetamide and N,N-dimethylacetamide (DMAc); solvents such as acetone, methyl ethyl ketone, phenyl methyl ketone, dimethyl sulfoxide (DMSO) and water; In addition, the solvent is not limited to one type, and two or more types may be combined.
Further, if a solvent in which the product is insoluble is used as the reaction solvent, the subsequent purification operation can be simplified.

前記反応における溶媒の使用量は、グルカミン及び分岐型アルキル基を有するアクリル化合物の濃度が、通常0.01mol/L以上となる量、好ましくは0.1mol/L以上となる量、より好ましくは1mol/L以上となる量である。上記の濃度であると、効率良くグルカミン誘導体を製造し易くなる。 The amount of the solvent used in the reaction is an amount such that the concentration of the glucamine and the acrylic compound having a branched alkyl group is usually 0.01 mol/L or more, preferably 0.1 mol/L or more, more preferably 1 mol. /L or more. The above concentration facilitates efficient production of the glucamine derivative.

反応温度は、通常-80℃以上、好ましくは0℃以上、より好ましくは20℃以上であり、通常200℃以下、好ましくは70℃以下、より好ましくは60℃以下、特に好ましくは50℃である。
反応時間は、通常48時間以下、好ましくは24時間以下、より好ましくは12時間以下、特に好ましくは8時間以下である。
反応温度が、上記範囲内であると、効率良くグルカミン誘導体を製造し易くなる。
The reaction temperature is generally −80° C. or higher, preferably 0° C. or higher, more preferably 20° C. or higher, and generally 200° C. or lower, preferably 70° C. or lower, more preferably 60° C. or lower, and particularly preferably 50° C. .
The reaction time is usually 48 hours or less, preferably 24 hours or less, more preferably 12 hours or less, particularly preferably 8 hours or less.
When the reaction temperature is within the above range, it becomes easier to efficiently produce a glucamine derivative.

前記反応で得られたグルカミン誘導体は、常法により単離精製することができる。例えば、反応終了後の溶液について、デカンテーション、分液、ろ過、乾燥等の操作を行うことで精製をすることができる。 The glucamine derivative obtained by the above reaction can be isolated and purified by a conventional method. For example, the solution after completion of the reaction can be purified by performing operations such as decantation, liquid separation, filtration, and drying.

本発明のグルカミン誘導体は、金属吸着能を有していることを特徴とする。
吸着対象金属は、本発明のグルカミン誘導体に特異的(選択的)に結合可能な金属に限定されず、非特異的に結合可能な金属であってもよい。本発明の金属吸着剤の吸着対象金属としては、例えば、ホウ素、ヒ素、セレン、ベリリウム、金、銀、銅、白金、亜鉛、パラジウム、コバルト、クロム、ニッケル、マンガン、セシウム、ウラン、プルトニウム、チタン、ジルコニウムなどが挙げられる。
The glucamine derivative of the present invention is characterized by having metal adsorption ability.
The metal to be adsorbed is not limited to a metal capable of specifically (selectively) binding to the glucamine derivative of the present invention, and may be a metal capable of non-specific binding. Metals to be adsorbed by the metal adsorbent of the present invention include, for example, boron, arsenic, selenium, beryllium, gold, silver, copper, platinum, zinc, palladium, cobalt, chromium, nickel, manganese, cesium, uranium, plutonium, and titanium. , zirconium and the like.

本発明のグルカミン誘導体を、金属が溶解した液と接触させることにより、グルカミン誘導体の水酸基部分が液中の金属と結合(吸着)することができる。金属が結合(吸着)したグルカミン誘導体から、金属を抽出することで、回収することができる。また、本発明のグルカミン誘導体は、ホウ素を含む金属と特異的(選択的)に結合することができるので、回収対象金属としては上記に例示したものが好ましいが、ホウ素がより好ましい。 By bringing the glucamine derivative of the present invention into contact with a liquid in which a metal is dissolved, the hydroxyl group portion of the glucamine derivative can bind (adsorb) to the metal in the liquid. The metal can be recovered by extracting it from the glucamine derivative to which the metal is bound (adsorbed). In addition, the glucamine derivative of the present invention can specifically (selectively) bind to metals containing boron, so the metals to be recovered are preferably those exemplified above, but boron is more preferable.

[グルカミン誘導体を用いた金属抽出方法]
本発明の金属抽出方法は、本発明のグルカミン誘導体を金属吸着剤として用い、該金属吸着剤と、金属が溶解した液(以下、「被処理液」という。)とを接触させる工程を含むことを特徴とする。ここで、被処理液は、特に制限されず、金属が溶解した水、金属が溶解した油、金属が溶解した有機溶媒等が挙げられる。
[Metal extraction method using glucamine derivative]
The metal extraction method of the present invention comprises the step of using the glucamine derivative of the present invention as a metal adsorbent and bringing the metal adsorbent into contact with a liquid in which metals are dissolved (hereinafter referred to as "liquid to be treated"). characterized by Here, the liquid to be treated is not particularly limited, and examples thereof include water in which metal is dissolved, oil in which metal is dissolved, and organic solvent in which metal is dissolved.

金属抽出方法としては、本発明のグルカミン誘導体と被処理液とが接触する方法であれば特に制限されず、例えば、液状のグルカミン誘導体又はグルカミン誘導体を含有する液体を抽出液として使用する液液抽出法や、グルカミン誘導体を固体化した吸着剤を使用する固液抽出法などが挙げられる。液液抽出法は、混合することによって、例えば水と有機溶媒または液状化合物の界面の接触効率を高めることができるため、固液抽出法より吸着作用に優れるという効果がある。また、抽出時間も短縮化できるなどの効果もある。 The metal extraction method is not particularly limited as long as it is a method in which the glucamine derivative of the present invention and the liquid to be treated are brought into contact with each other. and a solid-liquid extraction method using an adsorbent in which a glucamine derivative is solidified. The liquid-liquid extraction method has the advantage of being superior to the solid-liquid extraction method in terms of adsorption action because the contact efficiency of the interface between water and the organic solvent or the liquid compound can be enhanced by mixing. There is also an effect that the extraction time can be shortened.

(液液抽出法)
本発明における液液抽出法とは、金属が溶解した被処理液から、前記グルカミン誘導体を介して、抽出液に金属を移動、分離させる方法である。例えば、被処理液に、液状のグルカミン誘導体又はグルカミン誘導体を含有する液体などの抽出液を加えて攪拌等を行うことにより、液液界面の面積を増大し、効率的に金属を抽出液に移動、分離させることができる。この場合、被処理液と抽出液は、共に混ざり合わない液体である必要がある。
ここで、本発明のグルカミン誘導体は、水に不溶であり、有機溶媒に溶解する性質を有しているため、液液抽出法を用いる場合には、被処理液としては、水などの有機溶媒と混ざり合わない液体が用いられる。
(Liquid-liquid extraction method)
The liquid-liquid extraction method in the present invention is a method of transferring and separating metals from a liquid to be treated in which metals are dissolved into an extraction liquid via the glucamine derivative. For example, by adding an extract such as a liquid glucamine derivative or a liquid containing a glucamine derivative to the liquid to be treated and stirring the liquid, the area of the liquid-liquid interface is increased and the metal is efficiently transferred to the extract. , can be separated. In this case, the liquid to be treated and the extraction liquid must be liquids that do not mix together.
Here, the glucamine derivative of the present invention is insoluble in water and has the property of being dissolved in an organic solvent. A liquid that is immiscible with

抽出液は、液状のグルカミン誘導体をそのまま使用してもよいし、液状のグルカミン誘導体を有機溶媒に溶解して使用してもよい。液状のグルカミン誘導体を抽出液としてそのまま使用する場合、高濃度のグルカミン誘導体からなる抽出液となるため、抽出性能に優れた抽出液となる。また、液状のグルカミン誘導体を有機溶媒に溶解して抽出溶媒として使用する場合、抽出液の粘度を低下することができるため、混合の際に、分散性に優れるという効果がある。
抽出液の粘度は特に限定されないが、混合の際の分散性等を考慮して、0.1~100mPa・sが好ましく、1~50mPa・sがより好ましく、10~20mPa・sが特に好ましい。抽出液の粘度が上記範囲であると、金属が溶解した液との界面での接触効率を高くすることができる。
As the extract, a liquid glucamine derivative may be used as it is, or a liquid glucamine derivative dissolved in an organic solvent may be used. When a liquid glucamine derivative is used as an extract solution as it is, the extract solution is composed of a high-concentration glucamine derivative, and thus the extract solution has excellent extraction performance. In addition, when a liquid glucamine derivative is dissolved in an organic solvent and used as an extraction solvent, the viscosity of the extract can be reduced, so there is an effect of excellent dispersibility during mixing.
The viscosity of the extract is not particularly limited, but is preferably 0.1 to 100 mPa·s, more preferably 1 to 50 mPa·s, particularly preferably 10 to 20 mPa·s, in consideration of dispersibility during mixing. When the viscosity of the extraction liquid is within the above range, the contact efficiency at the interface with the liquid in which the metal is dissolved can be increased.

グルカミン誘導体を溶解するための有機溶媒としては、水と分離可能であれば特に制限されず、例えば、ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン、ヘキサデカン等の直鎖または分岐型の炭化水素系溶媒、シクロヘキサン、シクロオクタン等の環式炭化水素系溶媒、オクタノール、2-エチルヘキサノール等のアルコール系溶媒、塩化メチレン、クロロホルム、四塩化炭素、テトラクロロエタン、ヘキサクロロエタン等のハロゲン系溶媒、メチルエチルケトン、フェニルメチルケトン、等の溶媒が挙げられる。また、本発明のグルカミン誘導体は有機溶媒以外にも、食用油や鉱物油等に溶解することもできる。その中でも金属吸着能を高めるには、直鎖や分岐型の炭化水素であるヘキサン、オクタン、デカン、ドデカン、ヘキサデカンなどの直鎖もしくはイソオクタンなどの分岐型の炭化水素溶媒が好ましい。 The organic solvent for dissolving the glucamine derivative is not particularly limited as long as it can be separated from water. Solvents, cyclic hydrocarbon solvents such as cyclohexane and cyclooctane, alcohol solvents such as octanol and 2-ethylhexanol, halogen solvents such as methylene chloride, chloroform, carbon tetrachloride, tetrachloroethane, and hexachloroethane, methyl ethyl ketone, phenyl Examples include solvents such as methyl ketone. In addition, the glucamine derivative of the present invention can be dissolved in edible oil, mineral oil, etc., in addition to the organic solvent. Among them, linear or branched hydrocarbon solvents such as hexane, octane, decane, dodecane, and hexadecane or branched hydrocarbon solvents such as isooctane are preferred for enhancing metal adsorption ability.

本発明における液液抽出法の抽出温度としては、特に限定されないが、好ましくは0℃以上100℃未満であり、より好ましくは20℃以上40℃以下であり、特に好ましくは25℃以上30℃以下である。
また、抽出液のpHは特に限定されないが、好ましくは3~12であり、より好ましくは3~10であり、更に好ましくは4~8である、特に好ましくは4~6である。
The extraction temperature of the liquid-liquid extraction method in the present invention is not particularly limited, but is preferably 0° C. or higher and lower than 100° C., more preferably 20° C. or higher and 40° C. or lower, and particularly preferably 25° C. or higher and 30° C. or lower. is.
The pH of the extract is not particularly limited, but is preferably 3-12, more preferably 3-10, still more preferably 4-8, and particularly preferably 4-6.

前記液液抽出方法で抽出した金属は単離、回収することが可能である。例えば、金属を抽出した抽出液を乾燥又は燃焼することにより、金属を単離、回収する方法や、金属を抽出した抽出液にエタノールなどの極性の高い有機溶媒を溶解してグルカミン誘導体を析出させることにより金属を単離、回収する方法や、金属を抽出した抽出液と水を混合して、水に金属を再溶解させることにより金属を単離、回収する方法などが挙げられる。水としては、好ましくは酸性または塩基性の水溶液であり、より好ましくは硝酸水溶液である。 The metal extracted by the liquid-liquid extraction method can be isolated and recovered. For example, a method of isolating and recovering metals by drying or burning an extract obtained by extracting metals, or a method of dissolving a highly polar organic solvent such as ethanol in an extract obtained by extracting metals to precipitate a glucamine derivative. A method of isolating and recovering a metal by a method of isolating and recovering a metal, a method of isolating and recovering a metal by mixing an extract obtained by extracting the metal with water and re-dissolving the metal in the water, and the like are exemplified. Water is preferably an acidic or basic aqueous solution, more preferably an aqueous nitric acid solution.

(固液抽出法)
本発明における固液抽出法とは、金属が溶解した被処理液を、固体状のグルカミン誘導体と直接接触させることで、グルカミン誘導体に金属を吸着させて、前記被処理液から金属を分離、抽出させる方法である。被処理液を固体のグルカミン誘導体と接触させる方法としては、被処理液に固体のグルカミン誘導体を添加して接触させてもよく、また、固体のグルカミン誘導体が固定されたカラム等に被処理液を通過させて接触させる方法でもよい。
(Solid-liquid extraction method)
The solid-liquid extraction method in the present invention involves bringing a liquid to be treated in which a metal is dissolved directly into contact with a solid glucamine derivative to cause the glucamine derivative to adsorb the metal, thereby separating and extracting the metal from the liquid to be treated. It is a method to let As a method of bringing the liquid to be treated into contact with the solid glucamine derivative, the solid glucamine derivative may be added to the liquid to be treated and brought into contact, or the liquid to be treated may be placed in a column or the like in which the solid glucamine derivative is immobilized. A method of passing through and contacting may also be used.

なお、本発明のグルカミン誘導体が液状化合物である場合には、固体化させることにより、前記固液抽出法に用いることができる。固体化の方法としては、例えば、ゼオライトや活性炭に担持させる方法や、高融点油脂と混合して固体化する方法等がある。グルカミン誘導体を固体化すると、ハンドリング性が向上するという効果もある。 When the glucamine derivative of the present invention is a liquid compound, it can be used in the solid-liquid extraction method by solidifying it. As a method of solidification, for example, there is a method of supporting zeolite or activated carbon, a method of mixing with high-melting fat and oil to solidify, and the like. Solidifying the glucamine derivative also has the effect of improving handling properties.

固体状のグルタミン誘導体の形状は特に制限されず、例えば、板状、ブロック状、フレーク状、粉末状などの形状が例示される。被処理液との接触効率を高めるという観点から、粉末状であることが好ましい。 The shape of the solid glutamine derivative is not particularly limited, and examples thereof include plate-like, block-like, flake-like, and powder-like shapes. From the viewpoint of increasing the efficiency of contact with the liquid to be treated, it is preferably in the form of powder.

(その他の抽出法)
その他の抽出法として、金属が溶解した油、金属が溶解した有機溶媒等の被処理液に対して、本発明のグルカミン誘導体を溶解させることにより、被処理液中の金属をグルカミン誘導体で捕捉してもよい。捕捉された金属の分離方法としては、特に制限されないが、例えば、グルカミン誘導体を溶解した被処理液にエタノールなどの極性の高い有機溶媒を溶解して金属と共にグルカミン誘導体を析出させることにより金属を分離する方法などが挙げられる。
(Other extraction methods)
As another extraction method, the glucamine derivative of the present invention is dissolved in a liquid to be treated such as an oil in which a metal is dissolved or an organic solvent in which a metal is dissolved, so that the metal in the liquid to be treated is captured by the glucamine derivative. may The method for separating the captured metal is not particularly limited, but for example, the metal is separated by dissolving a highly polar organic solvent such as ethanol in the liquid to be treated in which the glucamine derivative is dissolved to precipitate the glucamine derivative together with the metal. and methods to do so.

[金属吸着剤]
本発明の金属吸着剤は、上記のグルカミン誘導体を含有することを特徴とする。
本発明の金属吸着剤は、上記のグルカミン誘導体のみからなるものでもよいが、上記のグルカミン誘導体以外のものを含んでもよい。グルカミン誘導体以外のものとしては、例えば、金属吸着能を有するクラウンエーテルやカリックスアレーン等が挙げられる。また、上記のグルカミン誘導体が適当な担体に担持された形態の金属吸着剤であってもよい。担体の材質は、グルカミン誘導体を担持可能なものであれば特に限定されず、例えば、木材、紙、樹脂等が挙げられる。また、担体の形状も特に限定されず、例えば、平板状、球状、糸状等が挙げられる。
[Metal adsorbent]
The metal adsorbent of the present invention is characterized by containing the glucamine derivative described above.
The metal adsorbent of the present invention may consist solely of the glucamine derivative described above, or may contain a material other than the glucamine derivative described above. Examples of substances other than glucamine derivatives include crown ethers and calixarenes having metal adsorption ability. Alternatively, the metal adsorbent may be in the form of the glucamine derivative supported on a suitable carrier. The material of the carrier is not particularly limited as long as it can support the glucamine derivative, and examples thereof include wood, paper, and resin. Moreover, the shape of the carrier is not particularly limited, and examples thereof include a plate shape, a spherical shape, a thread shape, and the like.

[金属吸着装置]
本発明における金属吸着装置とは、前記グルカミン誘導体を含む金属吸着剤を備えてなることを特徴とする装置である。
本発明における金属吸着装置は、河川の浄水装置やレアメタル等の回収等に用いることができる。
また、前記金属吸着装置に金属が吸着したことを検出できるセンサ等を組み合わせることで、水質測定装置等に応用することも可能である。
[Metal adsorption device]
The metal adsorbing device in the present invention is a device characterized by comprising a metal adsorbent containing the glucamine derivative.
The metal adsorption device of the present invention can be used for river water purifiers, recovery of rare metals and the like.
Further, by combining the metal adsorption device with a sensor or the like capable of detecting metal adsorption, the device can be applied to a water quality measuring device or the like.

[金属吸着キット]
本発明における金属吸着キットとは、前記グルカミン誘導体を含む金属吸着剤と、前記金属吸着剤を溶解する有機溶媒とを備えてなることを特徴とするキットである。
本発明の金属吸着キットは、記グルカミン誘導体を含む金属吸着剤と、前記金属吸着剤を溶解する有機溶媒とを備えてなることから、簡易的な溶液の溶解金属調査等に用いることができる。
本発明における金属吸着キットとしては、本発明のグルカミン誘導体を含む金属吸着剤と、金属吸着能を有するその他の金属吸着剤とを含んでいてもよい。
[Metal adsorption kit]
The metal adsorption kit according to the present invention is a kit comprising a metal adsorbent containing the glucamine derivative and an organic solvent that dissolves the metal adsorbent.
Since the metal adsorption kit of the present invention comprises a metal adsorbent containing the glucamine derivative and an organic solvent that dissolves the metal adsorbent, it can be used for simple investigation of dissolved metals in solutions.
The metal adsorption kit in the present invention may contain a metal adsorbent containing the glucamine derivative of the present invention and other metal adsorbents having metal adsorption ability.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The present invention will be described in more detail with reference to examples below, but modifications can be made as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the specific examples shown below.

<合成例1>(炭素数18の分岐型アルキル基含有グルカミン誘導体)
30mLフラスコにN-メチルグルカミン1.1723g(6mmol)をはかり取り、1,4-ジオキサン4mLと水1mLを加え、懸濁させた。アクリル酸ステアリル(新中村化学工業株式会社:S-1800A)1.6240g(5mmol)を加えた後、50℃に加熱して5時間撹拌した。反応溶媒を室温に戻した後、水50mLに加えて粘性物を沈殿させた。デカンテーションにより粘性物を単離し、水でよく洗浄した後、減圧乾燥することで粘度の高い粘性物を得た。
収率: 98%
<Synthesis Example 1> (C18 branched alkyl group-containing glucamine derivative)
1.1723 g (6 mmol) of N-methylglucamine was weighed into a 30 mL flask, and 4 mL of 1,4-dioxane and 1 mL of water were added and suspended. After adding 1.6240 g (5 mmol) of stearyl acrylate (Shin-Nakamura Chemical Co., Ltd.: S-1800A), the mixture was heated to 50° C. and stirred for 5 hours. After the reaction solvent was returned to room temperature, it was added to 50 mL of water to precipitate a viscous substance. The viscous material was isolated by decantation, washed well with water, and dried under reduced pressure to obtain a highly viscous material.
Yield: 98%

<比較合成例1>(炭素数6の直鎖アルキル基含有グルカミン誘導体)
30mLフラスコにN-メチルグルカミン1.1711g(6mmol)をはかり取り、1,4-ジオキサン4mLと水1mLを加え、懸濁させた。アクリル酸ヘキシル0.879mL(5mmol)を加えた後、50℃に加熱して5時間撹拌した。溶媒を減圧下で留去してジクロロメタン30mLに溶解させ、水10mLで洗浄した後、有機層を減圧下で留去し、減圧乾燥することで白色固体を得た。
収率: 86%
<Comparative Synthesis Example 1> (glucamine derivative containing a linear alkyl group having 6 carbon atoms)
1.1711 g (6 mmol) of N-methylglucamine was weighed into a 30 mL flask, and 4 mL of 1,4-dioxane and 1 mL of water were added and suspended. After adding 0.879 mL (5 mmol) of hexyl acrylate, the mixture was heated to 50° C. and stirred for 5 hours. The solvent was distilled off under reduced pressure, dissolved in 30 mL of dichloromethane, washed with 10 mL of water, then the organic layer was distilled off under reduced pressure and dried under reduced pressure to obtain a white solid.
Yield: 86%

<比較合成例2>(炭素数8の直鎖アルキル基含有グルカミン誘導体)
30mLフラスコにN-メチルグルカミン1.1721g(6mmol)をはかり取り、1,4-ジオキサン4mLと水1mLを加え、懸濁させた。アクリル酸オクチル1.044mL(5mmol)を加えた後、50℃に加熱して5時間撹拌した。溶媒を減圧下で留去してジクロロメタン30mLに溶解させ、水10mLで洗浄した後、有機層を減圧下で留去し、減圧乾燥することで白色固体を得た。
収率: 66%
<Comparative Synthesis Example 2> (Glucamine Derivative Containing a Linear Alkyl Group with 8 Carbon Atoms)
1.1721 g (6 mmol) of N-methylglucamine was weighed into a 30 mL flask, and 4 mL of 1,4-dioxane and 1 mL of water were added and suspended. After adding 1.044 mL (5 mmol) of octyl acrylate, the mixture was heated to 50° C. and stirred for 5 hours. The solvent was distilled off under reduced pressure, dissolved in 30 mL of dichloromethane, washed with 10 mL of water, then the organic layer was distilled off under reduced pressure and dried under reduced pressure to obtain a white solid.
Yield: 66%

<比較合成例3>(炭素数12の直鎖アルキル基含有グルカミン誘導体)
30mLフラスコにN-メチルグルカミン1.1714g(6mmol)をはかり取り、1,4-ジオキサン4mLと水1mLを加え、懸濁させた。アクリル酸ドデシル1.374mL(5mmol)を加えた後、50℃に加熱して5時間撹拌した。反応溶媒を室温に戻した後、水100mLに加えて沈殿させた。沈殿物をろ過、水でよく洗浄した後、減圧乾燥することで白色固体を得た。
収率: 91%
<Comparative Synthesis Example 3> (glucamine derivative containing linear alkyl group having 12 carbon atoms)
1.1714 g (6 mmol) of N-methylglucamine was weighed into a 30 mL flask, and 4 mL of 1,4-dioxane and 1 mL of water were added and suspended. After adding 1.374 mL (5 mmol) of dodecyl acrylate, the mixture was heated to 50° C. and stirred for 5 hours. After returning the reaction solvent to room temperature, it was added to 100 mL of water for precipitation. The precipitate was filtered, washed well with water, and dried under reduced pressure to obtain a white solid.
Yield: 91%

<比較合成例4>(炭素数16の直鎖アルキル基含有グルカミン誘導体)
30mLフラスコにN-メチルグルカミン1.1713g(6mmol)をはかり取り、1,4-ジオキサン4mLと水1mLを加え、懸濁させた。アクリル酸ヘキサデシル1.4825g(5mmol)を加えた後、50℃に加熱して5時間撹拌した。反応溶媒を室温に戻した後、水100mLに加えて沈殿させた。沈殿物をろ過、水でよく洗浄した後、減圧乾燥することで白色固体を得た。
収率: 78%
<Comparative Synthesis Example 4> (glucamine derivative containing linear alkyl group having 16 carbon atoms)
1.1713 g (6 mmol) of N-methylglucamine was weighed into a 30 mL flask, and 4 mL of 1,4-dioxane and 1 mL of water were added and suspended. After adding 1.4825 g (5 mmol) of hexadecyl acrylate, the mixture was heated to 50° C. and stirred for 5 hours. After returning the reaction solvent to room temperature, it was added to 100 mL of water for precipitation. The precipitate was filtered, washed well with water, and dried under reduced pressure to obtain a white solid.
Yield: 78%

<比較合成例5>(炭素数18の直鎖アルキル基含有グルカミン誘導体)
30mLフラスコにN-メチルグルカミン1.1708g(6mmol)をはかり取り、1,4-ジオキサン4mLと水1mLを加え、懸濁させた。アクリル酸オクタデシル1.6220g(5mmol)を加えた後、50℃に加熱して5時間撹拌した。反応溶媒を室温に戻した後、水100mLに加えて沈殿させた。沈殿物をろ過、水でよく洗浄した後、減圧乾燥することで白色固体を得た。
収率: 94%
<Comparative Synthesis Example 5> (Glucamine Derivative Containing Linear Alkyl Group with 18 Carbon Atoms)
1.1708 g (6 mmol) of N-methylglucamine was weighed into a 30 mL flask, and 4 mL of 1,4-dioxane and 1 mL of water were added and suspended. After adding 1.6220 g (5 mmol) of octadecyl acrylate, the mixture was heated to 50° C. and stirred for 5 hours. After returning the reaction solvent to room temperature, it was added to 100 mL of water for precipitation. The precipitate was filtered, washed well with water, and dried under reduced pressure to obtain a white solid.
Yield: 94%

(グルカミン誘導体の溶解性調査1(定性評価))
上記で合成した各種グルカミン誘導体に対して、水(蒸留水)及び有機溶媒(イソオクタン)に対する溶解性の評価を行った。室温下(25℃)において、直径3.5cmのサンプル瓶に、それぞれ濃度が20mmol/Lとなるように加え、蓋をして激しく振とうさせた。振とう後、静置させて目視に溶解性を確認した結果を表1に示す。ここで、溶解しているとは、目視において、溶液が白濁していない、または残存物が確認できない状態をいう。
(Solubility investigation of glucamine derivatives 1 (qualitative evaluation))
Various glucamine derivatives synthesized above were evaluated for solubility in water (distilled water) and an organic solvent (isooctane). At room temperature (25° C.), each solution was added to a sample bottle with a diameter of 3.5 cm so as to have a concentration of 20 mmol/L, and was vigorously shaken with a lid. Table 1 shows the results of visually confirming the solubility after shaking and allowing to stand still. Here, "dissolved" refers to a state in which the solution is not cloudy or no residue can be visually confirmed.

Figure 0007220904000004
Figure 0007220904000004

表1の結果から、直鎖アルキル基を有するグルカミン誘導体は水、及び、有機溶媒に可溶なもの、水にも有機溶媒にも不溶なものが得られた。一方、分岐のアルキル基を有する本発明のグルカミン誘導体は、水には不溶であり、有機溶媒に可溶であることがわかった。 From the results in Table 1, the glucamine derivatives having linear alkyl groups were soluble in water and organic solvents, and insoluble in both water and organic solvents. On the other hand, it was found that the glucamine derivative of the present invention having a branched alkyl group is insoluble in water but soluble in organic solvents.

(グルカミン誘導体の溶解性調査2(定量評価))
合成例1のグルカミン誘導体に対して、各種有機溶媒(オクタン、デカン、ドデカン、イソオクタン)に対する溶解性の評価を行った。室温下(25℃)において、直径3.5cmのサンプル瓶に各種濃度となるように加え、蓋をして激しく振とうさせた。振とう後、静置させて目視にて、溶液の状態を確認した結果を表2に示す。
(Solubility investigation of glucamine derivatives 2 (quantitative evaluation))
The solubility of the glucamine derivative of Synthesis Example 1 in various organic solvents (octane, decane, dodecane, isooctane) was evaluated. At room temperature (25° C.), various concentrations were added to sample bottles with a diameter of 3.5 cm, and the samples were capped and vigorously shaken. After shaking, the solution was allowed to stand still, and the state of the solution was visually confirmed. Table 2 shows the results.

Figure 0007220904000005
Figure 0007220904000005

表2をみると、本発明のグルカミン誘導体は、オクタン、デカン、ドデカン、イソオクタン、オクタノールに対して、溶解性を示すことがわかった。 Table 2 shows that the glucamine derivative of the present invention exhibits solubility in octane, decane, dodecane, isooctane and octanol.

(ホウ素吸着実験1)
サンプル瓶に10ppmのホウ素水溶液20mlを加え、合成例1のグルカミン誘導体0.1mol(52.0mg)を加え、室温で24時間撹拌した後、静置した。上澄みのホウ素濃度を誘導結合プラズマ発光分析装置(ICP)を用いて測定し、下記式を用いてホウ素の吸着率を算出した(実施例1-1)。また、ホウ素水溶液の濃度を20ppmとして、同様の評価を行い、ホウ素の吸着率を算出した(実施例1-2)。
また、比較例として、比較合成例1~5のグルカミン誘導体についても同様の評価を行った(比較例1-1~1-6)。結果を表2に示す。
表3等において、例えば、meqはグルカミン誘導体1g当たりのホウ素の吸着に関する官能基量であって、1meq(mmol/g)であれば、グルカミン誘導体1gで1mmolのホウ素を吸着することができる官能基量を有しているという意味である。
(Boron adsorption experiment 1)
20 ml of a 10 ppm boron aqueous solution was added to the sample bottle, 0.1 mol (52.0 mg) of the glucamine derivative of Synthesis Example 1 was added, and the mixture was stirred at room temperature for 24 hours and then allowed to stand. The boron concentration in the supernatant was measured using an inductively coupled plasma emission spectrometer (ICP), and the boron adsorption rate was calculated using the following formula (Example 1-1). Further, the same evaluation was performed with the concentration of the boron aqueous solution set to 20 ppm, and the adsorption rate of boron was calculated (Example 1-2).
In addition, as comparative examples, the same evaluation was performed on the glucamine derivatives of Comparative Synthesis Examples 1 to 5 (Comparative Examples 1-1 to 1-6). Table 2 shows the results.
In Table 3 and the like, for example, meq is the amount of functional groups related to boron adsorption per 1 g of the glucamine derivative, and if 1 meq (mmol/g), 1 g of the glucamine derivative is a functional group capable of adsorbing 1 mmol of boron. It means having quantity.

(吸着率の測定方法)
吸着前後におけるホウ素(金属)濃度は、スペクトロ社製ICP発光分光分析装置 SPECTRO ARCOSを用いて測定した後、下記の式からホウ素の吸着率を算出した。C0はホウ素(金属)吸着実験前のホウ素(金属)水溶液中のホウ素(金属)濃度(10ppm又は20ppm)であり、Cはグルカミン誘導体によるホウ素(金属)吸着後の上澄み液のホウ素(金属)濃度である。

Figure 0007220904000006
(Method for measuring adsorption rate)
The boron (metal) concentration before and after adsorption was measured using an ICP emission spectrometer SPECTRO ARCOS manufactured by Spectro, and then the adsorption rate of boron was calculated from the following formula. C0 is the boron (metal) concentration (10 ppm or 20 ppm) in the boron (metal) aqueous solution before the boron (metal) adsorption experiment, and C is the boron (metal) concentration in the supernatant after boron (metal) adsorption by the glucamine derivative. is.
Figure 0007220904000006

Figure 0007220904000007
Figure 0007220904000007

表3の結果より、ホウ素吸着実験において、比較合成例1~5のグルカミン誘導体に比べて、合成例1のグルカミン誘導体は高いホウ素吸着率を示した。合成例1のグルカミン誘導体は粘性物であることから、比較合成例1~5の固形状のグルカミン誘導体に比べて被処理水との接触効率に優れており、高い金属吸着能を示すことがわかった。 From the results in Table 3, in the boron adsorption experiment, the glucamine derivative of Synthesis Example 1 showed a higher boron adsorption rate than the glucamine derivatives of Comparative Synthesis Examples 1-5. Since the glucamine derivative of Synthesis Example 1 is a viscous substance, it is superior to the solid glucamine derivatives of Comparative Synthesis Examples 1 to 5 in contact efficiency with the water to be treated, and exhibits high metal adsorption capacity. rice field.

(ホウ素吸着実験2)
サンプル瓶に合成例1のグルカミン誘導体208mg(0.4mmol)をはかり取り、有機溶媒としてオクタン20mLを加え、溶解させた。100ppmのホウ素水溶液20mLを加え、室温で24時間撹拌した後、静置した。水層のホウ素濃度を誘導結合プラズマ発光分析装置(ICP)を用いて測定することで、ホウ素の吸着率を算出した(実施例2-1)。また、上記オクタンに変えて各種溶媒にて同様の実験を行い、各種溶媒におけるホウ素吸着率を算出した(実施例2-2~2-6)。使用したICP発光分光分析装置およびホウ素吸着率の算出式は、上記ホウ素吸着実験1と同様である。結果を表4に示す。
(Boron adsorption experiment 2)
208 mg (0.4 mmol) of the glucamine derivative of Synthesis Example 1 was weighed into a sample bottle, and 20 mL of octane was added as an organic solvent and dissolved. After adding 20 mL of a 100 ppm boron aqueous solution and stirring at room temperature for 24 hours, the mixture was allowed to stand. By measuring the boron concentration in the water layer using an inductively coupled plasma emission spectrometer (ICP), the boron adsorption rate was calculated (Example 2-1). Further, similar experiments were performed using various solvents instead of octane, and the boron adsorption rates in various solvents were calculated (Examples 2-2 to 2-6). The ICP emission spectrometer used and the formula for calculating the boron adsorption rate are the same as those in the boron adsorption experiment 1 above. Table 4 shows the results.

Figure 0007220904000008
Figure 0007220904000008

表4の結果より、本発明のグルカミン誘導体は様々な有機溶媒を用いた液液抽出法を適用できることがわかった。この結果より、被処理液の濃度にあわせて有機溶媒を適宜選択することができ、幅広い粘度の液に対して適用できることがわかった。また、実施例2-1~2-4と、実施例2-5~2-6を比較すると、有機溶媒としてアルコール系溶媒に比べて炭化水素溶媒を用いた場合に、より優れた抽出性能を示すことがわかった。 From the results in Table 4, it was found that the glucamine derivatives of the present invention can be applied to liquid-liquid extraction methods using various organic solvents. From these results, it was found that the organic solvent can be appropriately selected according to the concentration of the liquid to be treated, and that the method can be applied to liquids with a wide range of viscosities. Further, when comparing Examples 2-1 to 2-4 with Examples 2-5 to 2-6, when a hydrocarbon solvent is used as an organic solvent compared to an alcohol solvent, better extraction performance is obtained. found to show.

(ホウ素溶離実験)
ホウ素を吸着した本発明のグルカミン誘導体から、ホウ素溶離の可否を調べた。
上記実施例2-4及び2-5で使用した有機層の溶液に同量の1M硝酸水溶液を加え、24時間撹拌した後、静置した。水層を誘導結合プラズマ発光分析装置(ICP)を用いて測定することで、本発明のグルカミン誘導体からのホウ素の溶離率を算出した。結果を表5に示す。
(Boron elution experiment)
Whether or not boron can be eluted from the glucamine derivative of the present invention to which boron has been adsorbed was investigated.
The same amount of 1M nitric acid aqueous solution was added to the organic layer solution used in Examples 2-4 and 2-5 above, and the mixture was stirred for 24 hours and allowed to stand. The elution rate of boron from the glucamine derivative of the present invention was calculated by measuring the water layer using an inductively coupled plasma emission spectrometer (ICP). Table 5 shows the results.

(溶離率の測定方法)
溶離前後におけるホウ素濃度を測定した後、下記の式からホウ素の溶離率を算出した。Cは実施例2-4及び2-5で使用したグルカミン誘導体によるホウ素吸着後の有機層のホウ素濃度であり、C1は1M硝酸水溶液に溶離した水溶液中のホウ素濃度である。

Figure 0007220904000009
(Measurement method of elution rate)
After measuring the boron concentration before and after elution, the elution rate of boron was calculated from the following formula. C is the boron concentration in the organic layer after boron adsorption by the glucamine derivatives used in Examples 2-4 and 2-5, and C1 is the boron concentration in the aqueous solution eluted in the 1M nitric acid aqueous solution.
Figure 0007220904000009

Figure 0007220904000010
Figure 0007220904000010

表5の結果より、本発明のグルカミン誘導体は、ホウ素を吸着した後、水溶液と接触させることによりホウ素を溶離できることがわかった。特に、有機溶媒としてイソオクタン、水溶液として1M硝酸水溶液を利用することで、高い溶離率を示すことがわかった。 From the results in Table 5, it was found that the glucamine derivative of the present invention can elute boron by contacting it with an aqueous solution after adsorbing boron. In particular, it was found that a high elution rate was obtained by using isooctane as the organic solvent and 1M nitric acid aqueous solution as the aqueous solution.

(ホウ素吸着実験3)
サンプル瓶に合成例1のグルカミン誘導体52mg(0.1mmol)をはかり取り、有機溶媒としてイソオクタン20mLを加え、溶解させた。25ppmのホウ素水溶液20mLを加え、室温で24時間撹拌した後、静置した。水層のホウ素濃度を誘導結合プラズマ発光分析装置(ICP)を用いて測定することで、ホウ素の吸着率を算出した(実施例3-1)。また、同様の実験において、吸着剤の濃度及びホウ素濃度を変化させて、各種条件におけるホウ素吸着率を算出した(実施例3-2~3-10)。使用したICP発光分光分析装置およびホウ素吸着率の算出式は、上記ホウ素吸着実験1と同様である。結果を表6に示す。
(Boron adsorption experiment 3)
52 mg (0.1 mmol) of the glucamine derivative of Synthesis Example 1 was weighed into a sample bottle, and 20 mL of isooctane was added as an organic solvent and dissolved. 20 mL of a 25 ppm boron aqueous solution was added, and the mixture was stirred at room temperature for 24 hours and then allowed to stand. By measuring the boron concentration in the water layer using an inductively coupled plasma emission spectrometer (ICP), the boron adsorption rate was calculated (Example 3-1). Further, in a similar experiment, the boron adsorption rate under various conditions was calculated by changing the concentration of the adsorbent and the boron concentration (Examples 3-2 to 3-10). The ICP emission spectrometer used and the formula for calculating the boron adsorption rate are the same as those in the boron adsorption experiment 1 above. Table 6 shows the results.

Figure 0007220904000011
Figure 0007220904000011

表6の結果より、本発明のグルカミン誘導体は、幅広い濃度範囲における被処理液に対して吸着能を発揮できることがわかった。 From the results in Table 6, it was found that the glucamine derivative of the present invention can exhibit adsorption ability to the liquid to be treated in a wide concentration range.

(金属吸着実験1)
サンプル瓶に10ppmのチタン、10ppmのジルコニウム混合水溶液20mlを加え、合成例1のグルカミン誘導体0.1mol(52.0mg)を加え、室温で24時間撹拌した後、静置した。上澄みのチタンとジルコニウム濃度を誘導結合プラズマ発光分析装置(ICP)を用いて測定し、上記ホウ素吸着率の算出式と同様の式を用いてチタンとジルコニウムの吸着率を算出した(実施例4-1~4-2)。結果を表7に示す。
(Metal adsorption experiment 1)
20 ml of a mixed aqueous solution of 10 ppm titanium and 10 ppm zirconium was added to the sample bottle, 0.1 mol (52.0 mg) of the glucamine derivative of Synthesis Example 1 was added, and the mixture was stirred at room temperature for 24 hours and then allowed to stand. The concentrations of titanium and zirconium in the supernatant were measured using an inductively coupled plasma emission spectrometer (ICP), and the adsorption rates of titanium and zirconium were calculated using the same formula as the above formula for calculating the boron adsorption rate (Example 4- 1 to 4-2). Table 7 shows the results.

サンプル瓶に10ppmの銅水溶液20mlを加え、合成例1のグルカミン誘導体0.1mol(52.0mg)を加え、室温で24時間撹拌した後、静置した。上澄みの銅濃度を誘導結合プラズマ発光分析装置(ICP)を用いて測定し、上記ホウ素吸着率の算出式と同様の式を用いて銅の吸着率を算出した(実施例4-3)。結果を表7に示す。 20 ml of a 10 ppm copper aqueous solution was added to the sample bottle, 0.1 mol (52.0 mg) of the glucamine derivative of Synthesis Example 1 was added, and the mixture was stirred at room temperature for 24 hours and then allowed to stand. The copper concentration of the supernatant was measured using an inductively coupled plasma emission spectrometer (ICP), and the adsorption rate of copper was calculated using the same formula as the above formula for calculating the boron adsorption rate (Example 4-3). Table 7 shows the results.

サンプル瓶に10ppmのベリリウム水溶液20mlを加え、合成例1のグルカミン誘導体0.1mol(52.0mg)を加え、室温で24時間撹拌した後、静置した。上澄みのベリリウム濃度を誘導結合プラズマ発光分析装置(ICP)を用いて測定し、上記ホウ素吸着率の算出式と同様の式を用いてベリリウムの吸着率を算出した(実施例4-4)。結果を表7に示す。 20 ml of a 10 ppm beryllium aqueous solution was added to the sample bottle, 0.1 mol (52.0 mg) of the glucamine derivative of Synthesis Example 1 was added, and the mixture was stirred at room temperature for 24 hours and then allowed to stand. The concentration of beryllium in the supernatant was measured using an inductively coupled plasma emission spectrometer (ICP), and the adsorption rate of beryllium was calculated using the same formula as the above formula for calculating the boron adsorption rate (Example 4-4). Table 7 shows the results.

サンプル瓶に10ppmの三価もしくは五価のヒ素水溶液20mlを加え、合成例1のグルカミン誘導体0.1mol(52.0mg)を加え、室温で24時間撹拌した後、静置した。上澄みのヒ素濃度を誘導結合プラズマ発光分析装置(ICP)を用いて測定し、上記ホウ素吸着率の算出式と同様の式を用いてヒ素の吸着率を算出した(実施例4-5~4-6)。結果を表7に示す。 20 ml of a 10 ppm trivalent or pentavalent arsenic aqueous solution was added to the sample bottle, 0.1 mol (52.0 mg) of the glucamine derivative of Synthesis Example 1 was added, and the mixture was stirred at room temperature for 24 hours and allowed to stand. The arsenic concentration of the supernatant was measured using an inductively coupled plasma emission spectrometer (ICP), and the arsenic adsorption rate was calculated using the same formula as the above-mentioned boron adsorption rate calculation formula (Examples 4-5 to 4- 6). Table 7 shows the results.

Figure 0007220904000012
Figure 0007220904000012

表7の結果より、本発明のグルカミン誘導体は、チタン、ジルコニウム、銅、ベリリウム、ヒ素に対して吸着できることがわかった。
特に、チタン及びジルコニウムに対して、高い吸着率を示すことがわかった。
From the results in Table 7, it was found that the glucamine derivative of the present invention can adsorb titanium, zirconium, copper, beryllium and arsenic.
In particular, it was found that titanium and zirconium exhibit high adsorption rates.

(金属吸着実験2)
サンプル瓶に合成例1のグルカミン誘導体208mg(0.4mmol)をはかり取り、有機溶媒としてイソオクタン20mLを加え、溶解させた。100ppmの三価もしくは五価のヒ素水溶液20mLを加え、室温で24時間撹拌した後、静置した。水層のヒ素濃度を誘導結合プラズマ発光分析装置(ICP)を用いて測定することで、ヒ素の吸着率を算出した(実施例5-1~5-2)。ヒ素吸着率の算出式は、上記ホウ素吸着実験1と同様である。結果を表8に示す。
(Metal adsorption experiment 2)
208 mg (0.4 mmol) of the glucamine derivative of Synthesis Example 1 was weighed into a sample bottle, and 20 mL of isooctane was added as an organic solvent and dissolved. 20 mL of a 100 ppm trivalent or pentavalent arsenic aqueous solution was added, stirred at room temperature for 24 hours, and allowed to stand. The arsenic adsorption rate was calculated by measuring the arsenic concentration in the water layer using an inductively coupled plasma emission spectrometer (ICP) (Examples 5-1 and 5-2). The formula for calculating the arsenic adsorption rate is the same as in the boron adsorption experiment 1 above. Table 8 shows the results.

Figure 0007220904000013
Figure 0007220904000013

表8の結果より、本発明のグルカミン誘導体は、ヒ素に対しても吸着能を有することがわかった。また、五価のヒ素に比べて、三価のヒ素に対してより優れた吸着能を有することがわかった。 From the results in Table 8, it was found that the glucamine derivatives of the present invention also have an ability to adsorb arsenic. In addition, it was found to have superior adsorption ability to trivalent arsenic compared to pentavalent arsenic.

本発明のグルカミン誘導体は、水又は有機溶媒の一方にのみ可溶である、あるいは、水又は有機溶媒の一方に不溶でありその性状が液状であることから、液液抽出法に利用可能である。 The glucamine derivative of the present invention is soluble only in either water or an organic solvent, or is insoluble in either water or an organic solvent and is in a liquid state, and thus can be used in a liquid-liquid extraction method. .

本発明の金属吸着剤は、被処理液中の溶解した金属を吸着することができるため、水の浄化、放射性金属の回収やレアメタルの回収等に応用することができる。
更に、本発明の金属吸着装置や金属吸着キットは、河川等の浄水装置やレアメタル等の回収等に応用することができる。


Since the metal adsorbent of the present invention can adsorb metals dissolved in the liquid to be treated, it can be applied to purification of water, recovery of radioactive metals, recovery of rare metals, and the like.
Furthermore, the metal adsorption device and the metal adsorption kit of the present invention can be applied to water purifiers for rivers and the like, recovery of rare metals and the like.


Claims (7)

下記式(1)で示されることを特徴とする、グルカミン誘導体。
Figure 0007220904000014

(式中、Rは、水素原子、メチル基、及び、エチル基から選択される1種を表し、Rは炭素数18の分岐アルキル基を表す。)
A glucamine derivative characterized by being represented by the following formula (1).
Figure 0007220904000014

(In the formula, R 1 represents one selected from a hydrogen atom, a methyl group, and an ethyl group, and R 2 represents a branched alkyl group having 18 carbon atoms.)
前記グルカミン誘導体において、Rがメチル基であることを特徴とする、請求項1に記載のグルカミン誘導体。 Glucamine derivative according to claim 1, characterized in that in said glucamine derivative R1 is a methyl group. 請求項1又は2に記載のグルカミン誘導体を含むことを特徴とする、金属吸着剤。 A metal adsorbent comprising the glucamine derivative according to claim 1 or 2 . 請求項に記載の金属吸着剤と金属が溶解した液とを接触させる工程を含むことを特徴とする、金属抽出方法。 A method for extracting metals, comprising the step of bringing the metal adsorbent according to claim 3 into contact with a liquid in which metals are dissolved. 前記金属抽出方法が、金属溶解水溶液と、前記金属吸着剤と、有機溶媒とを用いた液液抽出工程を含む方法であることを特徴とする、請求項に記載の金属抽出方法。 5. The metal extraction method according to claim 4 , wherein the metal extraction method is a method including a liquid-liquid extraction step using a metal-dissolved aqueous solution, the metal adsorbent, and an organic solvent. 請求項に記載の金属吸着剤を備えてなることを特徴とする、金属抽出装置。 A metal extractor comprising the metal adsorbent according to claim 3 . 請求項に記載の金属吸着剤と、前記金属吸着剤を溶解する有機溶媒とを備えてなることを特徴とする、金属抽出キット。 A metal extraction kit comprising the metal adsorbent according to claim 3 and an organic solvent that dissolves the metal adsorbent.
JP2019037364A 2018-03-07 2019-03-01 Glucamine derivative, metal adsorbent comprising glucamine derivative, metal extractor equipped with metal adsorbent comprising glucamine derivative, metal extraction kit Active JP7220904B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018040662 2018-03-07
JP2018040662 2018-03-07

Publications (2)

Publication Number Publication Date
JP2019156826A JP2019156826A (en) 2019-09-19
JP7220904B2 true JP7220904B2 (en) 2023-02-13

Family

ID=67994521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037364A Active JP7220904B2 (en) 2018-03-07 2019-03-01 Glucamine derivative, metal adsorbent comprising glucamine derivative, metal extractor equipped with metal adsorbent comprising glucamine derivative, metal extraction kit

Country Status (1)

Country Link
JP (1) JP7220904B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173665A (en) 2000-12-05 2002-06-21 Mitsubishi Rayon Co Ltd Chelating agent, method for treating the same, chelate resin, fiber, method for complex formation and method for recovering boron and heavy metal
JP2003119032A (en) 2001-10-17 2003-04-23 Japan Science & Technology Corp Noble metal extraction agent consisting of thioaniline derivative, and method of separating noble metal using the extraction agent
PL207346B1 (en) 2005-08-05 2010-12-31 Politechnika Wroclawska New quaternary ammonium bromides and method for their manufacture
PL207345B1 (en) 2005-05-20 2010-12-31 Politechnika Wroclawska New N-[2-(alkoxy carbonyl) ethyl]-N-alkyl-1-amine-1-desoxy-D-glucitoles and method for their manufacture
PL210896B1 (en) 2008-05-19 2012-03-30 Politechnika Wroclawska New N-[2-(alkoxycarbonyl)ethyl]-N-methyl-1-amine-1-deoxy-D-glucitola salts and method of their manufacturing
JP2014534955A (en) 2011-10-05 2014-12-25 アルケマ フランス Polyhydroxyl-substituted amino compounds, polymers containing the compounds, and uses thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789976A (en) * 1953-09-09 1957-04-23 Atlas Powder Co Nu-carboxyalkyl hexityl amines
US4254087A (en) * 1979-07-25 1981-03-03 The Dow Chemical Company Extraction of copper, nickel and cobalt using alkylaromatic sulfonic acids and chelating amines
DE3174885D1 (en) * 1981-02-03 1986-07-31 Ici Plc Process for the extraction of metal values and novel metal extractants
US4581220A (en) * 1982-11-04 1986-04-08 Imperial Chemical Industries, Plc Process for the extraction of metal values and novel metal extractants
GB8330715D0 (en) * 1983-11-17 1983-12-29 Ici Plc Extraction of metal values
GB8504819D0 (en) * 1985-02-25 1985-03-27 Ici Plc Extraction of metal values
JPS62121689A (en) * 1985-11-19 1987-06-02 Kurita Water Ind Ltd Method for treating boron-containing water
DE3700326A1 (en) * 1987-01-08 1988-07-21 Henkel Kgaa USE OF PHOSPHONOALCAN CARBON ACID PARTIAL ESTERS FOR METAL EXTRACTION
DE3705721A1 (en) * 1987-02-23 1988-09-01 Henkel Kgaa USE OF CITRONIC ACID PARTIAL ESTERS AND THEIR MIXTURES FOR IRON EXTRACTION
EP0299169A3 (en) * 1987-07-13 1989-04-19 American Cyanamid Company Selective recovery of tin by solvent extraction using branched tertiary phosphine oxides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173665A (en) 2000-12-05 2002-06-21 Mitsubishi Rayon Co Ltd Chelating agent, method for treating the same, chelate resin, fiber, method for complex formation and method for recovering boron and heavy metal
JP2003119032A (en) 2001-10-17 2003-04-23 Japan Science & Technology Corp Noble metal extraction agent consisting of thioaniline derivative, and method of separating noble metal using the extraction agent
PL207345B1 (en) 2005-05-20 2010-12-31 Politechnika Wroclawska New N-[2-(alkoxy carbonyl) ethyl]-N-alkyl-1-amine-1-desoxy-D-glucitoles and method for their manufacture
PL207346B1 (en) 2005-08-05 2010-12-31 Politechnika Wroclawska New quaternary ammonium bromides and method for their manufacture
PL210896B1 (en) 2008-05-19 2012-03-30 Politechnika Wroclawska New N-[2-(alkoxycarbonyl)ethyl]-N-methyl-1-amine-1-deoxy-D-glucitola salts and method of their manufacturing
JP2014534955A (en) 2011-10-05 2014-12-25 アルケマ フランス Polyhydroxyl-substituted amino compounds, polymers containing the compounds, and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
REGISTRY(STN)[online],Entered STN: 2012年8月12日,検索日:2022年5月24日,CAS登録番号1389441-59-1
Shkrob, Ilya A. et al.,Magnetic Extraction, Detection, and Isotope Analysis of Metal Ions Using Surface Modified Microspheres for Lab-on-a-Chip Applications,Separation Science and Technology,2010年,45(2),pp. 186-197

Also Published As

Publication number Publication date
JP2019156826A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
Ramasamy et al. N-and O-ligand doped mesoporous silica-chitosan hybrid beads for the efficient, sustainable and selective recovery of rare earth elements (REE) from acid mine drainage (AMD): understanding the significance of physical modification and conditioning of the polymer
Cui et al. Preparation and application of Aliquat 336 functionalized chitosan adsorbent for the removal of Pb (II)
Rao et al. Preconcentration techniques for uranium (VI) and thorium (IV) prior to analytical determination—an overview
Bai et al. Highly selective recovery of palladium by a new silica-based adsorbent functionalized with macrocyclic ligand
Tolba et al. Synthesis and characterization of poly (carboxymethyl)-cellulose for enhanced La (III) sorption
Xiong et al. Adsorption behavior of Hg2+ in aqueous solutions on a novel chelating cross-linked chitosan microsphere
Wu et al. Synergistic adsorption behavior of a silica-based adsorbent toward palladium, molybdenum, and zirconium from simulated high-level liquid waste
Behbahani et al. Application of a tailor-made polymer as a selective and sensitive colorimetric sensor for reliable detection of trace levels of uranyl ions in complex matrices
Hovey et al. Sorption of rare-earth elements onto a ligand-associated media for pH-dependent extraction and recovery of critical materials
Li et al. Practical applications of supramolecular extraction with macrocycles
Urban et al. Functionalized paramagnetic nanoparticles for waste water treatment
Soleimani et al. Highly selective solid phase extraction of mercury ion based on novel ion imprinted polymer and its application to water and fish samples
Adhikari et al. Recovery of precious metals by using chemically modified waste paper
Shyam Sunder et al. Synthesis and characterization of poly (pyrrole-1-carboxylic acid) for preconcentration and determination of rare earth elements and heavy metals in water matrices
Cui et al. High‐performance polymer‐supported extractants with phosphonate ligands for scandium (III) separation
Amuanyena et al. Magnetic iron oxide nanoparticles modified with Moringa seed proteins for recovery of precious metal ions
Kırkan et al. Solid phase extraction using silica gel modified with azo-dyes derivative for preconcentration and separation of Th (IV) ions from aqueous solutions
US6576590B2 (en) Materials for the separation of copper ions and ferric iron in liquid solutions
CN100448526C (en) Synthesis of ion imprinted polymer particles
JP7220904B2 (en) Glucamine derivative, metal adsorbent comprising glucamine derivative, metal extractor equipped with metal adsorbent comprising glucamine derivative, metal extraction kit
Li et al. Novel magnetic pillar [5] arene polymer as adsorbent for rapid removal of organic pollutants in water or air
Dolak Ion imprinted affinity Cryogels for the selective adsorption uranium in real samples
Wang et al. Efficient separation of palladium from nitric acid solution by a novel silica-based ion exchanger with ultrahigh adsorption selectivity
Whitty-Léveillé et al. Selective removal of uranium from rare earth leachates via magnetic solid-phase extraction using Schiff base ligands
Khajeh et al. Imprinted polymer particles for iron uptake: synthesis, characterization and analytical applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230125

R150 Certificate of patent or registration of utility model

Ref document number: 7220904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150