JP7220204B2 - Positive electrode active material for fluoride ion secondary battery, positive electrode using said active material, fluoride ion secondary battery, and method for producing said active material - Google Patents

Positive electrode active material for fluoride ion secondary battery, positive electrode using said active material, fluoride ion secondary battery, and method for producing said active material Download PDF

Info

Publication number
JP7220204B2
JP7220204B2 JP2020510483A JP2020510483A JP7220204B2 JP 7220204 B2 JP7220204 B2 JP 7220204B2 JP 2020510483 A JP2020510483 A JP 2020510483A JP 2020510483 A JP2020510483 A JP 2020510483A JP 7220204 B2 JP7220204 B2 JP 7220204B2
Authority
JP
Japan
Prior art keywords
fluoride
ion secondary
positive electrode
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020510483A
Other languages
Japanese (ja)
Other versions
JPWO2019187942A1 (en
Inventor
善幸 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JPWO2019187942A1 publication Critical patent/JPWO2019187942A1/en
Application granted granted Critical
Publication of JP7220204B2 publication Critical patent/JP7220204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、フッ化物イオン二次電池用正極活物質、当該活物質を用いた正極、およびフッ化物イオン二次電池、並びに当該活物質の製造方法に関する。 The present invention relates to a positive electrode active material for a fluoride ion secondary battery, a positive electrode using the active material, a fluoride ion secondary battery, and a method for producing the active material.

従来、高エネルギー密度を有する二次電池として、リチウムイオン二次電池が幅広く普及している。リチウムイオン二次電池は、正極と負極との間にセパレータを存在させ、液体の電解質(電解液)が充填された構造を有する。 Conventionally, lithium ion secondary batteries have been widely used as secondary batteries having high energy density. A lithium ion secondary battery has a structure in which a separator is present between a positive electrode and a negative electrode and filled with a liquid electrolyte (electrolytic solution).

リチウムイオン二次電池の電解液は、通常、可燃性の有機溶媒であるため、特に、熱に対する安全性が問題となる場合があった。そこで、有機系の液体の電解質に代えて、無機系の固体の電解質を用いた固体電池が提案されている(特許文献1参照)。固体電解質による固体電池は、電解液を用いる電池と比較して、熱の問題を解消するとともに、積層により電圧を上昇させることができ、さらに、コンパクト化の要請にも対応することができる。 Since the electrolytic solution of the lithium ion secondary battery is usually a combustible organic solvent, there have been cases where the safety against heat has become a problem. Therefore, a solid battery using an inorganic solid electrolyte instead of an organic liquid electrolyte has been proposed (see Patent Document 1). A solid battery using a solid electrolyte can solve the problem of heat compared to a battery using an electrolytic solution, can increase the voltage by lamination, and can also meet the demand for compactness.

このような固体電解質による電池として、フッ化物イオン二次電池が検討されている。フッ化物イオン二次電池は、フッ化物イオン(F)をキャリアとした二次電池であり、高い理論エネルギーを有することが知られている。そして、その電池特性については、リチウムイオン二次電池を上回る期待がある。A fluoride ion secondary battery is being studied as a battery using such a solid electrolyte. A fluoride ion secondary battery is a secondary battery using fluoride ions (F ) as carriers, and is known to have high theoretical energy. As for the battery characteristics, it is expected to surpass that of lithium-ion secondary batteries.

ここで、フッ化物イオン二次電池の正極活物質としては、BiF、CuF、KBiF等が報告されている(非特許文献1~10参照)。しかしながら、現在報告されているこれら正極活物質を用いたフッ化物イオン二次電池には、作動温度が100℃以下の例は確認されておらず、使用環境に制限があった。BiF 3 , CuF 2 , KBiF 4 and the like have been reported as positive electrode active materials for fluoride ion secondary batteries (see Non-Patent Documents 1 to 10). However, none of the currently reported fluoride ion secondary batteries using these positive electrode active materials has been confirmed to operate at temperatures of 100° C. or less, and there are restrictions on the environment in which they can be used.

特開2000-106154号公報JP-A-2000-106154

M.Anji Reddy,M.Fichtner,J.Mater.Chem.21(2011) 17059-17062M. Anji Reddy, M.; Fichtner, J.; Mater. Chem. 21 (2011) 17059-17062 J.H. Kennedy and J.C.Hunter,J.Electrochem.Soc.123,10(1976).J. H. Kennedy andJ. C. Hunter, J.; Electrochem. Soc. 123, 10 (1976). J.M.Reau and J.Portier,Solid Electrolytes,Ed.by P.Hagenmuller and W.van Gool(Academic,New York,1978),p.313.J. M. Reau andJ. Portier, Solid Electrolytes, Ed. by P. Hagenmuller and W.W. van Gool (Academic, New York, 1978), p. 313. R.N.Zakirov and A.S.Marinin,Proceedings of the IX All-Union Symposium on the Chemistry of Inorganic Fluorides,Cherepovets,1990,p.136;ibid,p.137;ibid,p.138.R. N. Zakirov and A. S. Marinin, Proceedings of the IX All-Union Symposium on the Chemistry of Inorganic Fluorides, Cherepovets, 1990, p. 136; ibid, p. 137; ibid, p. 138. I.Kosacki,Appl.Phys.A49,413(1989).I. Kosacki, Appl. Phys. A49, 413 (1989). I.V.Murin,O.V.Glumov, and I.I.Kozhina,Vestn.Leningr.Univ.,No.22,Issue4,87(1980).I. V. Murin, O.; V. Glumov, and I. I. Kozhina, Vestn. Leningr. Univ. , No. 22, Issue 4, 87 (1980). J.Schoonman and A.Wolfert,Solid State Ionics 3-4,373(1981).J. Schoonman andA. Wolfert, Solid State Ionics 3-4, 373 (1981). I.V.Murin,Doctoral Dissertation(Tech.)(LGU,Leningrad,1984).I. V. Murin, Doctoral Dissertation (Tech.) (LGU, Leningrad, 1984). A.A.Potanin,Russ.Chem.J.45(2001)61-66.A. A. Potanin, Russ. Chem. J. 45 (2001) 61-66. W.Baukal,R.Knodler,W.Kuhn,Chem.Ingenieur Technik 50(1978)245-249.W. Baukal, R.; Knodler, W.; Kuhn, Chem. Ingenieur Technik 50 (1978) 245-249.

本発明は上記の背景技術に鑑みてなされたものであり、その目的は、温度が低い環境であっても十分に作動可能なフッ化物イオン二次電池を実現できる、フッ化物イオン二次電池用正極活物質、当該活物質を用いた正極、およびフッ化物イオン二次電池、並びに当該活物質の製造方法を提供することにある。 The present invention has been made in view of the above background art, and its object is to realize a fluoride ion secondary battery that can sufficiently operate even in a low temperature environment. An object of the present invention is to provide a positive electrode active material, a positive electrode using the active material, a fluoride ion secondary battery, and a method for producing the active material.

本発明者は、フッ化物イオン固体電解質のイオン伝導率は、リチウムイオン固体電解質とほぼ同等レベル(室温で10-3~10-5S/cm)であることに着目した(Solid State Ionics 239 (2013) 41-49参照)。このことから、フッ化物イオン二次電池の作動温度が100℃を超える原因となる、充放電反応の律速段階は、固体電解質中のイオン伝導率ではなく、活物質自体のフッ化/脱フッ化反応活性に大きく依存していると考えた。The present inventors focused on the fact that the ionic conductivity of the fluoride ion solid electrolyte is approximately the same level as that of the lithium ion solid electrolyte (10 −3 to 10 −5 S/cm at room temperature) (Solid State Ionics 239 ( 2013) 41-49). From this, the rate-determining step of the charge-discharge reaction, which causes the operating temperature of the fluoride ion secondary battery to exceed 100 ° C., is not the ion conductivity in the solid electrolyte, but the fluorination/defluorination of the active material itself. I thought that it depends greatly on the reaction activity.

ここで、フッ化/脱フッ化反応活性の指標となる物性値の例として、活物質材料のフッ化物イオン伝導率が挙げられる。例えば、CuF正極活物質のフッ化物イオン伝導率は、測定装置(ソーラトロン社:SI126096)の計測レンジを逸脱するほど低いため計測不能となる。そこで、イオン伝導率の温度依存性がアレニウス則に従うものとして25℃まで外挿すると、10-16S/cm程度にしかならない。Here, an example of a physical property value as an index of fluorination/defluorination reaction activity is the fluoride ion conductivity of the active material. For example, the fluoride ion conductivity of the CuF 2 positive electrode active material is so low that it deviates from the measurement range of a measuring device (Solartron: SI126096), so that it cannot be measured. Therefore, if the temperature dependence of the ionic conductivity follows the Arrhenius law and is extrapolated up to 25° C., it is only about 10 −16 S/cm.

上記のように、著しく低いフッ化物イオン伝導性の物質を、正極活物質として使用する場合には、正極活物質中のフッ化物イオンの拡散が律速段階となり、定電流条件で継続的に充電または放電を行うことが不可能となる。 As described above, when a material with extremely low fluoride ion conductivity is used as the positive electrode active material, diffusion of fluoride ions in the positive electrode active material becomes the rate-limiting step, and continuous charging or Discharging becomes impossible.

したがって、様々な温度環境でフッ化物イオン二次電池を作動させるためには、室温(25℃付近)においても、フッ化/脱フッ化反応活性の高い活物質を実現する必要がある。 Therefore, in order to operate a fluoride ion secondary battery in various temperature environments, it is necessary to realize an active material with high fluorination/defluorination reaction activity even at room temperature (around 25° C.).

これに対して、本発明によれば、金属からなる第1成分と、フッ化物イオン伝導性を有するフッ素化合物からなる第2成分と、を含む複合フッ化物である、フッ化物イオン二次電池用正極活物質が提供される。 In contrast, according to the present invention, a compound fluoride for a fluoride ion secondary battery, which is a compound fluoride containing a first component made of a metal and a second component made of a fluorine compound having fluoride ion conductivity A cathode active material is provided.

前記複合フッ化物は、ペロブスカイトフッ化物を含んでいてもよい。 The composite fluoride may contain a perovskite fluoride.

前記複合フッ化物は、前記第1成分によるドメインと、前記第2成分によるドメインとが複合化していてもよい。 The composite fluoride may be a composite of a domain of the first component and a domain of the second component.

前記複合フッ化物の平均粒径は、35nm以下であってもよい。 The average particle size of the composite fluoride may be 35 nm or less.

前記複合フッ化物全体に対する前記第1成分の含有量は、40~70アトミックパーセントであってもよい。 A content of the first component with respect to the entire complex fluoride may be 40 to 70 atomic percent.

前記金属は、Cu、Co、Ag、Biからなる群から選ばれる少なくとも1種であってもよい。 The metal may be at least one selected from the group consisting of Cu, Co, Ag and Bi.

前記フッ素化合物は、フッ化鉛、フッ化スズ、フッ化ビスマス、フッ化ランタン、フッ化セリウム、フッ化ナトリウム、フッ化カリウム、フッ化バリウムからなる群から選ばれる少なくとも1種であってもよい。 The fluorine compound may be at least one selected from the group consisting of lead fluoride, tin fluoride, bismuth fluoride, lanthanum fluoride, cerium fluoride, sodium fluoride, potassium fluoride, and barium fluoride. .

前記フッ素化合物は、フッ化ナトリウム、フッ化カリウム、フッ化バリウムからなる群から選ばれる少なくとも1種であってもよい。 The fluorine compound may be at least one selected from the group consisting of sodium fluoride, potassium fluoride, and barium fluoride.

また別の本発明は、上記のフッ化物イオン二次電池用正極活物質を含む、フッ化物イオン二次電池用正極である。 Another aspect of the present invention is a positive electrode for a fluoride ion secondary battery, comprising the positive electrode active material for a fluoride ion secondary battery.

また別の本発明は、上記のフッ化物イオン二次電池用正極と、固体電解質と、負極と、を備えるフッ化物イオン二次電池である。 Another aspect of the present invention is a fluoride ion secondary battery comprising the positive electrode for a fluoride ion secondary battery, a solid electrolyte, and a negative electrode.

また別の本発明は、上記のフッ化物イオン二次電池用正極活物質を製造する方法であって、前記金属と前記フッ素化合物とを含む原料溶融体を、減圧下で噴霧するエアロゾルプロセスを含む、フッ化物イオン二次電池用正極活物質の製造方法である。 Yet another aspect of the present invention is a method for producing the positive electrode active material for a fluoride ion secondary battery, which includes an aerosol process of spraying a raw material melt containing the metal and the fluorine compound under reduced pressure. , a method for producing a positive electrode active material for a fluoride ion secondary battery.

本発明のフッ化物イオン二次電池用正極活物質によれば、フッ化物イオン二次電池におけるフッ化物イオン伝導性を増大させることが可能となる。また、充放電反応のための有効面積を増大させることができる。その結果、充放電容量の温度特性が向上し、温度が低い環境であっても十分に作動可能なフッ化物イオン二次電池を実現することができる。 According to the positive electrode active material for fluoride ion secondary batteries of the present invention, it is possible to increase the fluoride ion conductivity in fluoride ion secondary batteries. Also, the effective area for charge/discharge reaction can be increased. As a result, the temperature characteristics of charge/discharge capacity are improved, and a fluoride ion secondary battery that can sufficiently operate even in a low temperature environment can be realized.

本発明の複合フッ化物の構造を示す図である。It is a figure which shows the structure of the composite fluoride of this invention. 本発明に用いられる各種フッ素化合物および固体電解質PbSnFのイオン伝導率を示すグラフである。1 is a graph showing ionic conductivity of various fluorine compounds and solid electrolyte PbSnF4 used in the present invention. 本発明の複合フッ化物の製造装置の概略図である。1 is a schematic diagram of an apparatus for producing a composite fluoride of the present invention; FIG. 実施例9の複合フッ化物のXRDチャートである。10 is an XRD chart of the composite fluoride of Example 9. FIG. 比較例1、実施例2、および実施例3の複合フッ化物の各温度における充放電曲線である。It is a charge-discharge curve at each temperature of the composite fluoride of Comparative Example 1, Example 2, and Example 3. 実施例および比較例の複合フッ化物の40℃における充放電曲線である。4 shows charge-discharge curves at 40° C. of composite fluorides of Examples and Comparative Examples. 実施例および比較例の複合フッ化物のCu含有量と充放電容量との関係を示すグラフである。4 is a graph showing the relationship between Cu content and charge/discharge capacity of composite fluorides of Examples and Comparative Examples. 実施例10の複合フッ化物のSTEM-HAADF写真である。10 is a STEM-HAADF photograph of the composite fluoride of Example 10. FIG. 実施例10の複合フッ化物における銅のEELSマッピングある。EELS mapping of copper in the composite fluoride of Example 10. 実施例10の複合フッ化物におけるバリウムのEELSマッピングある。EELS mapping of barium in the composite fluoride of Example 10. 実施例10の複合フッ化物のEELSマッピングある。EELS mapping of compound fluoride of Example 10.

以下、本発明の実施形態について説明する。 Embodiments of the present invention will be described below.

<フッ化物イオン二次電池用正極活物質>
フッ化物イオン二次電池の正極は、充電時にフッ化物イオン(F)を収容し、放電時にフッ化物イオン(F)を放出可能なものである必要がある。
<Positive electrode active material for fluoride ion secondary battery>
The positive electrode of a fluoride ion secondary battery must be able to accommodate fluoride ions (F ) during charging and release fluoride ions (F ) during discharging.

本発明のフッ化物イオン二次電池用正極活物質は、金属からなる第1成分と、フッ化物イオン伝導性を有するフッ素化合物からなる第2成分と、を含む複合フッ化物である。 A positive electrode active material for a fluoride ion secondary battery of the present invention is a composite fluoride containing a first component made of metal and a second component made of a fluorine compound having fluoride ion conductivity.

従来のフッ化物イオン二次電池用正極活物質は、おもに単一組成の金属または金属フッ化物が使用されていた。一方で、本発明のフッ化物イオン二次電池用正極活物質は、単一組成ではなく、2種類以上の成分(原料)から構成される複合フッ化物であることを特徴とする。 Conventional positive electrode active materials for fluoride ion secondary batteries have mainly used single-composition metals or metal fluorides. On the other hand, the positive electrode active material for fluoride ion secondary batteries of the present invention is characterized in that it is not a single composition but a composite fluoride composed of two or more components (raw materials).

本発明のフッ化物イオン二次電池用正極活物質である複合フッ化物は、フッ化物イオン二次電池におけるフッ化物イオン伝導性を増大させることが可能となる。また、充放電反応のための有効面積を増大させることができる。その結果、充放電容量の温度特性が向上し、温度が低い環境であっても十分に作動可能なフッ化物イオン二次電池を実現することができる。 The composite fluoride, which is the positive electrode active material for fluoride ion secondary batteries of the present invention, can increase the fluoride ion conductivity in fluoride ion secondary batteries. Also, the effective area for charge/discharge reaction can be increased. As a result, the temperature characteristics of charge/discharge capacity are improved, and a fluoride ion secondary battery that can sufficiently operate even in a low temperature environment can be realized.

[第1成分(金属)]
本発明のフッ化物イオン二次電池用正極活物質である複合フッ化物を構成する第1成分は、金属である。例えば、銀(Ag)、銅(Cu)、ニッケル(Ni)、コバルト(Co)、鉛(Pb)、セリウム(Ce)、マンガン(Mn)、金(Au)、白金(Pt)、ロジウム(Rh)、バナジウム(V)、オスミウム(Os)、ルテニウム(Ru)、ビスマス(Bi)、および鉄(Fe)等を挙げることができ、本発明においては、これらの1種類以上を用いることができる。
[First component (metal)]
The first component constituting the composite fluoride, which is the positive electrode active material for fluoride ion secondary batteries of the present invention, is a metal. For example, silver (Ag), copper (Cu), nickel (Ni), cobalt (Co), lead (Pb), cerium (Ce), manganese (Mn), gold (Au), platinum (Pt), rhodium (Rh ), vanadium (V), osmium (Os), ruthenium (Ru), bismuth (Bi), and iron (Fe), and one or more of these can be used in the present invention.

本発明においては、これら金属の中でも、銅(Cu)、コバルト(Co)、銀(Ag)、ビスマス(Bi)からなる群から選ばれる少なくとも1種であることが好ましい。これらであれば、単電池において起電力0.6V以上4.0V以下の電池が作製可能となる。 In the present invention, among these metals, at least one selected from the group consisting of copper (Cu), cobalt (Co), silver (Ag), and bismuth (Bi) is preferable. With these materials, a battery having an electromotive force of 0.6 V or more and 4.0 V or less can be produced.

[第2成分(フッ素化合物)]
本発明のフッ化物イオン二次電池用正極活物質となる複合フッ化物を構成する第2成分は、フッ化物イオン伝導性を有するフッ化物である。フッ化物イオン伝導性を有するフッ素化合物であれば、特に限定されるものではない。
[Second component (fluorine compound)]
The second component constituting the composite fluoride that serves as the positive electrode active material for fluoride ion secondary batteries of the present invention is a fluoride having fluoride ion conductivity. There is no particular limitation as long as it is a fluorine compound having fluoride ion conductivity.

本発明においては、特に高いイオン伝導率を有することから、フッ化鉛(PbF)、フッ化スズ(SnF)、フッ化ビスマス(BiF)、フッ化ランタン(LaF)、フッ化セリウム(CeF)、フッ化ナトリウム(NaF)、フッ化カリウム(KF)、フッ化バリウム(BaF)からなる群から選ばれる少なくとも1種であることが好ましい。In the present invention, lead fluoride (PbF 2 ), tin fluoride (SnF 2 ), bismuth fluoride (BiF 3 ), lanthanum fluoride (LaF 3 ), and cerium fluoride have particularly high ionic conductivity. It is preferably at least one selected from the group consisting of (CeF 3 ), sodium fluoride (NaF), potassium fluoride (KF), and barium fluoride (BaF 2 ).

本発明においては、さらに、フッ化ナトリウム(NaF)、フッ化カリウム(KF)、フッ化バリウム(BaF)からなる群から選ばれる少なくとも1種であることが好ましい。これらであれば、充電反応後の生成物(つまりフッ化反応後の生成物)として、イオン伝導性を有する化合物を形成するため、後続のフッ化反応および脱フッ化反応が容易に進行し、大きい容量を得ることができる。In the present invention, it is preferably at least one selected from the group consisting of sodium fluoride (NaF), potassium fluoride (KF), and barium fluoride (BaF 2 ). With these, a compound having ion conductivity is formed as a product after the charging reaction (that is, a product after the fluorination reaction), so that the subsequent fluorination reaction and defluorination reaction proceed easily, You can get big capacity.

[第1成分の含有量]
本発明のフッ化物イオン二次電池用正極活物質となる複合フッ化物においては、複合フッ化物全体に対する上記の第1成分の含有量が、40~70アトミックパーセントであることが好ましい。40~70アトミックパーセントの範囲であれば、フッ化物イオン二次電池の充放電容量を、特に増加させることができる。
[Content of first component]
In the composite fluoride serving as the positive electrode active material for fluoride ion secondary batteries of the present invention, the content of the first component with respect to the entire composite fluoride is preferably 40 to 70 atomic percent. If it is in the range of 40 to 70 atomic percent, the charge/discharge capacity of the fluoride ion secondary battery can be particularly increased.

複合フッ化物全体に対する第1成分の含有量は、40~60アトミックパーセントであることがさらに好ましく、50~60アトミックパーセントであることが最も好ましい。 The content of the first component relative to the entire composite fluoride is more preferably 40-60 atomic percent, most preferably 50-60 atomic percent.

[ペロブスカイトフッ化物]
本発明のフッ化物イオン二次電池用正極活物質となる複合フッ化物は、ペロブスカイトフッ化物を含むことが好ましい。
[Perovskite fluoride]
It is preferable that the composite fluoride that serves as the positive electrode active material for a fluoride ion secondary battery of the present invention contains a perovskite fluoride.

図2に、各種フッ素化合物および固体電解質PbSnFのイオン伝導率を示す。図2に示されるように、ペロブスカイトフッ化物は、CuFと比較して、1000~100000倍も高いイオン伝導率を示す。したがって、本発明のフッ化物イオン二次電池用正極活物質となる複合フッ化物が、充電過程においてペロブスカイトフッ化物となることで、後続するフッ化反応が容易に進行する。その結果、充放電容量の温度特性が向上し、100℃以下という低温においても多くの容量を得ることができる。Figure 2 shows the ionic conductivity of various fluorine compounds and the solid electrolyte PbSnF4 . As shown in FIG. 2, perovskite fluorides exhibit 1000-100000 times higher ionic conductivity compared to CuF2 . Therefore, the compound fluoride that serves as the positive electrode active material for a fluoride ion secondary battery of the present invention becomes a perovskite fluoride in the charging process, thereby facilitating the subsequent fluorination reaction. As a result, the temperature characteristics of the charge/discharge capacity are improved, and a large capacity can be obtained even at a low temperature of 100° C. or lower.

例えば、第1成分を銅(Cu)とし、第2成分をフッ化カリウム(KF)とした複合フッ化物の場合には、Cu-KF複合フッ化物からなる正極活物質となるが、Cu-KF複合フッ化物は、充電反応(フッ化反応)の進行により、KCuFやKCuF等のペロブスカイトフッ化物を形成する。For example, in the case of a composite fluoride in which the first component is copper (Cu) and the second component is potassium fluoride (KF), the positive electrode active material is made of Cu—KF composite fluoride, but Cu—KF Complex fluorides form perovskite fluorides such as KCuF 3 and K 2 CuF 4 as the charging reaction (fluorination reaction) progresses.

同様に、第1成分を銅(Cu)とし、第2成分をフッ化バリウム(BaF)とした複合フッ化物の場合には、Cu-BaF複合フッ化物からなる正極活物質となるが、Cu-BaF複合ナノ粒子活物質では、充電反応(フッ化反応)の進行により、BaCuFやBaCuF等のペロブスカイトフッ化物を形成する。Similarly, in the case of a composite fluoride in which the first component is copper (Cu) and the second component is barium fluoride (BaF 2 ), the positive electrode active material is a Cu—BaF 2 composite fluoride. The Cu—BaF 2 composite nanoparticle active material forms perovskite fluorides such as BaCuF 4 and Ba 2 CuF 6 as the charging reaction (fluorination reaction) progresses.

[ドメイン構造]
本発明のフッ化物イオン二次電池用正極活物質となる複合フッ化物は、第1成分によるドメインと、第2成分によるドメインとを有する微細なドメイン構造を有する。
[Domain structure]
The composite fluoride that serves as the positive electrode active material for fluoride ion secondary batteries of the present invention has a fine domain structure having domains of the first component and domains of the second component.

図1は、本発明の複合フッ化物の構造を示す図である。図1に示されるように、本発明の複合フッ化物は、1つの粒子において、第1成分のドメイン1と、第2成分のドメイン2とを有する。このような微細なドメイン構造が構築されることにより、電極反応に寄与する有効面積を増加させ、その結果、充放電容量の温度特性が向上し、温度が低い環境であっても十分に作動可能なフッ化物イオン二次電池を実現することができる。 FIG. 1 is a diagram showing the structure of the composite fluoride of the present invention. As shown in FIG. 1, the composite fluoride of the present invention has a first component domain 1 and a second component domain 2 in one particle. By constructing such a fine domain structure, the effective area that contributes to the electrode reaction is increased, and as a result, the temperature characteristics of the charge/discharge capacity are improved, enabling sufficient operation even in a low temperature environment. A fluoride ion secondary battery can be realized.

[平均粒径]
本発明のフッ化物イオン二次電池用正極活物質となる複合フッ化物の平均粒径は、35nm以下であることが好ましい。25nm以下であることがさらに好ましく、20nm以下であることが最も好ましい。ナノサイズの粒子であることにより、電極反応に寄与する有効面積を増加させ、その結果、充放電容量の温度特性が向上し、温度が低い環境であっても十分に作動可能なフッ化物イオン二次電池を実現することができる。
[Average particle size]
The average particle diameter of the composite fluoride that serves as the positive electrode active material for fluoride ion secondary batteries of the present invention is preferably 35 nm or less. It is more preferably 25 nm or less, most preferably 20 nm or less. The nano-sized particles increase the effective area that contributes to the electrode reaction. The following battery can be realized.

ここで、平均粒径とは、定容量式ガス吸着法による比表面積から算出した複合フッ化物の一次粒子のサイズを意味しており、上記の通り、本発明の複合フッ化物は、単粒子の中に、第1成分のドメインと第2成分のドメインとを有する。すなわち、本発明の複合フッ化物は、ナノサイズの一次粒子の中に、微細なドメインを有しており、場合によっては、それら一次粒子が凝集して二次粒子を形成している。 Here, the average particle size means the size of the primary particles of the composite fluoride calculated from the specific surface area by the constant volume gas adsorption method. It has a domain of the first component and a domain of the second component therein. That is, the composite fluoride of the present invention has fine domains in the nano-sized primary particles, and in some cases, the primary particles aggregate to form secondary particles.

充放電反応の有効面積を増大させるためには、電池の活物質として、ナノサイズの粒子を用いることが効果的である。しかしながら、ナノ粒子は、作製上の制約および作業工程上の制約があり、一般に、20nm程度が限界といわれている。本発明の複合フッ化物は、単粒子そのものがドメイン構造を有していることから、平均粒径を限界まで小さくしなくとも、十分に有効面積を増大させることが可能となる。 In order to increase the effective area for charge-discharge reactions, it is effective to use nano-sized particles as the active material of the battery. However, nanoparticles have limitations in terms of manufacturing and working processes, and generally about 20 nm is said to be the limit. In the composite fluoride of the present invention, since the single particles themselves have a domain structure, it is possible to sufficiently increase the effective area without reducing the average particle size to the limit.

<フッ化物イオン二次電池用正極>
本発明のフッ化物イオン二次電池用正極は、本発明のフッ化物イオン二次電池用正極活物質を含むことを特徴とする。本発明のフッ化物イオン二次電池用正極活物質を含んでいれば、その他の構成は特に限定されるものではない。
<Positive electrode for fluoride ion secondary battery>
The positive electrode for fluoride ion secondary batteries of the present invention is characterized by including the positive electrode active material for fluoride ion secondary batteries of the present invention. Other configurations are not particularly limited as long as the positive electrode active material for fluoride ion secondary batteries of the present invention is included.

フッ化物イオン二次電池の電気化学反応効率を高めるためには、正極を構成する材料の表面積を拡大することが有効である。そこで、本発明のフッ化物イオン二次電池用正極は、多孔質構造等、その表面積が高い構造として、固体電解質との接触面積を増加させる構造を有することが好ましい。 In order to increase the electrochemical reaction efficiency of a fluoride ion secondary battery, it is effective to increase the surface area of the material forming the positive electrode. Therefore, the positive electrode for a fluoride ion secondary battery of the present invention preferably has a structure having a large surface area, such as a porous structure, which increases the contact area with the solid electrolyte.

また、本発明のフッ化物イオン二次電池用正極は、本発明のフッ化物イオン二次電池用正極活物質以外に、他の成分を含んでいてもよい。他の成分としては、例えば、導電助剤やバインダー等が挙げられる。 Moreover, the positive electrode for fluoride ion secondary batteries of the present invention may contain other components in addition to the positive electrode active material for fluoride ion secondary batteries of the present invention. Other components include, for example, conductive aids and binders.

本発明のフッ化物イオン二次電池用正極は、例えば、本発明のフッ化物イオン二次電池用正極活物質と、導電助剤と、バインダーとを含む混合物を、集電体上に塗布して乾燥することにより得ることができる。 The positive electrode for a fluoride ion secondary battery of the present invention is obtained by applying, for example, a mixture containing the positive electrode active material for a fluoride ion secondary battery of the present invention, a conductive aid, and a binder onto a current collector. It can be obtained by drying.

<フッ化物イオン二次電池>
本発明のフッ化物イオン二次電池は、本発明のフッ化物イオン二次電池用正極活物質を含むフッ化物イオン二次電池用正極と、固体電解質と、負極と、を備える。本発明のフッ化物イオン二次電池は、本発明のフッ化物イオン二次電池用正極活物質を含む正極を用いていれば、その他の構成は特に限定されるものではない。
<Fluoride ion secondary battery>
A fluoride ion secondary battery of the present invention includes a positive electrode for a fluoride ion secondary battery containing the positive electrode active material for a fluoride ion secondary battery of the present invention, a solid electrolyte, and a negative electrode. Other configurations of the fluoride ion secondary battery of the present invention are not particularly limited as long as the positive electrode containing the positive electrode active material for a fluoride ion secondary battery of the present invention is used.

本発明においては、本発明のフッ化物イオン二次電池用正極活物質を含むフッ化物イオン二次電池用正極の標準電極電位に対して、十分に低い標準電極電位を提供する負極材料を選択することにより、フッ化物イオン二次電池としての特性が高く、また、所望の電池電圧を実現することが可能となる。 In the present invention, a negative electrode material that provides a sufficiently low standard electrode potential with respect to the standard electrode potential of a positive electrode for fluoride ion secondary batteries containing the positive electrode active material for fluoride ion secondary batteries of the present invention is selected. As a result, the characteristics as a fluoride ion secondary battery are high, and a desired battery voltage can be realized.

<フッ化物イオン二次電池用正極活物質の製造方法>
本発明のフッ化物イオン二次電池用正極活物質の製造方法は、第1成分となる金属と第2成分となるフッ素化合物とを含む原料溶融体を、減圧下で噴霧するエアロゾルプロセスを含む。
<Method for producing positive electrode active material for fluoride ion secondary battery>
The method for producing a positive electrode active material for fluoride ion secondary batteries of the present invention includes an aerosol process in which a raw material melt containing a metal as a first component and a fluorine compound as a second component is sprayed under reduced pressure.

ナノ粒子を作製する方法としては、例えば、ボールミルに代表されるような機械的粉砕力を用いる方法や、例えば電気炉による直接加熱、レーザー照射、プラズマ、火炎等の何らかの熱源により気化させた原料蒸気を、物理的な冷却もしくは化学反応で凝縮させるエアロゾルプロセス等がある。本発明においては、粒子径の制御が容易であり、機械的粉砕法で問題となる不純物の混入を防止できる観点から、エアロゾルプロセスを用いる。 As a method for producing nanoparticles, for example, a method using a mechanical crushing force represented by a ball mill, a raw material vapor vaporized by some heat source such as direct heating by an electric furnace, laser irradiation, plasma, flame, etc. is condensed by physical cooling or chemical reaction, such as an aerosol process. In the present invention, the aerosol process is used from the viewpoint of easy control of the particle size and prevention of contamination with impurities, which is a problem in the mechanical pulverization method.

本発明のフッ化物イオン二次電池用正極活物質の製造方法においては、まず、複合フッ化物の原料となる金属からなる第1成分と、フッ素化合物からなる第2成分と、を、必要量秤量し、予備混合を実施して、原料混合粉末を得る。 In the method for producing a positive electrode active material for a fluoride ion secondary battery of the present invention, first, a first component made of a metal that serves as a raw material for a composite fluoride and a second component made of a fluorine compound are weighed in required amounts. Then, premixing is performed to obtain a raw material mixed powder.

続いて、得られた原料混合粉末に対して、分級処理を実施することが好ましい。 Subsequently, it is preferable to classify the raw material mixed powder thus obtained.

続いて、必要に応じて分級処理を実施した原料混合粉末を、熱プラズマ等により溶解させて原料溶融体とするとともに、減圧環境のチャンバー内に原料溶融体を噴霧する。その後、冷却工程を経ることにより原料溶融体はナノ粒子化され、本発明のフッ化物イオン二次電池用正極活物質となる複合フッ化物粒子を得ることができる。 Subsequently, the raw material mixed powder, which has been subjected to classification treatment as necessary, is melted by thermal plasma or the like to obtain a raw material melt, and the raw material melt is sprayed into a chamber in a reduced pressure environment. After that, the raw material melt is converted into nanoparticles by going through a cooling step, and composite fluoride particles that serve as a positive electrode active material for a fluoride ion secondary battery of the present invention can be obtained.

次に、本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Next, examples of the present invention will be described, but the present invention is not limited to these examples.

<実施例1~5>
実施例1~5においては、第1成分として銅(Cu)、第2成分としてフッ化カリウム(KF)を用いて、Cu-KF複合フッ化物を作製した。
<Examples 1 to 5>
In Examples 1 to 5, copper (Cu) was used as the first component and potassium fluoride (KF) was used as the second component to prepare Cu—KF composite fluorides.

[複合フッ化物の製造]
(原料の秤量・予備混合)
Cu金属粉((株)高純度化学研究所製、平均粒径:1um、純度:99.99%)、およびフッ化カリウム((株)高純度化学研究所製、無水、純度:99%)を、表1に示す割合で全量400グラムとなるように秤量し、メノウ製の乳鉢と乳棒を用いて、約1時間、予備混合して、原料混合粉末を得た。
[Production of composite fluoride]
(Weighing and pre-mixing of raw materials)
Cu metal powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., average particle size: 1 um, purity: 99.99%) and potassium fluoride (manufactured by Kojundo Chemical Laboratory Co., Ltd., anhydrous, purity: 99%) were weighed at a ratio shown in Table 1 so that the total amount was 400 g, and premixed for about 1 hour using an agate mortar and pestle to obtain a raw material mixed powder.

なお、原料の秤量および予備混合は、フッ化物の吸湿および金属粒子の酸化を防止するため、グローブボックス((株)美和製作所製、型式DBO-1.5BNK-SQ1)にて実施した。 The weighing and pre-mixing of the raw materials were carried out in a glove box (manufactured by Miwa Seisakusho Co., Ltd., model DBO-1.5BNK-SQ1) in order to prevent moisture absorption of fluoride and oxidation of metal particles.

(分級処理)
得られた原料混合粉末に対して、ステンレス製メッシュ(目開き:200umもしくは500um)を用いて、分級処理を実施した。メッシュを通過しなかった原料混合粉末は、再び、メノウ製の乳鉢と乳棒によって混合した後に分級処理を実施し、全ての原料混合粉末がメッシュを通過するまで繰り返した。
(classification process)
The raw material mixed powder thus obtained was classified using a stainless steel mesh (opening: 200 μm or 500 μm). The raw material mixed powder that did not pass through the mesh was again mixed with an agate mortar and pestle, and then classified, and this was repeated until all the raw material mixed powder passed through the mesh.

(エアロゾルプロセス)
図3に、エアロゾルプロセスで用いた複合フッ化物の製造装置の概略図を示す。実施例においては、高周波熱プラズマを用いて、複合フッ化物を作製した。
(aerosol process)
FIG. 3 shows a schematic diagram of a composite fluoride production apparatus used in the aerosol process. In the examples, high-frequency thermal plasma was used to prepare composite fluorides.

グローブボックスから、分級処理後の原料混合粉末が封入された密閉式パウダーホッパーを取り出し、高周波誘導熱プラズマナノ粒子合成装置(日本電子(株)、TP-40020NPS)に接続した。 From the glove box, a closed powder hopper in which the mixed raw material powder after the classification treatment was enclosed was taken out and connected to a high-frequency induction thermal plasma nanoparticle synthesis apparatus (JEOL Ltd., TP-40020NPS).

プラズマトーチにアルゴンガスを供給し、熱プラズマにより原料混合粉末を溶解させて原料溶融体とするとともに、減圧環境のチャンバー内に原料溶融体を噴霧した。チャンバー内に噴霧された原料溶融体は、冷却工程を経て、ナノ粒子化されたCu-KF複合フッ化物となった。続いて、Cu-KF複合フッ化物を、装置下流の排気フィルターにて捕集し、フィルター捕集部の上下流をバルブで遮断してグローブボックス内へ搬送した後、複合フッ化物ナノ粒子を回収することにより、最終的なCu-KF複合フッ化物を得た。 Argon gas was supplied to the plasma torch, and the raw material mixed powder was melted by thermal plasma to obtain a raw material melt, and the raw material melt was sprayed into a chamber in a reduced pressure environment. The raw material melt sprayed into the chamber was turned into nanoparticulate Cu—KF composite fluoride through a cooling process. Subsequently, the Cu-KF composite fluoride is collected by the exhaust filter downstream of the device, and the upstream and downstream of the filter collection section are blocked with a valve and conveyed into the glove box, and then the composite fluoride nanoparticles are collected. By doing so, the final Cu—KF composite fluoride was obtained.

<実施例6~11>
実施例6~11においては、第1成分として銅(Cu)、第2成分としてフッ化バリウム(BaF)を用いて、Cu-BaF複合フッ化物を作製した。
<Examples 6 to 11>
In Examples 6 to 11, copper (Cu) was used as the first component and barium fluoride (BaF 2 ) was used as the second component to prepare Cu—BaF 2 composite fluorides.

(原料の秤量)
フッ化カリウムに代えて、フッ化バリウム((株)高純度化学研究所製、純度:99.9%)を、表2に示す割合で用いた以外は、実施例1~5と同様にて、Cu-BaF複合フッ化物を得た。
(Weighing of raw materials)
In the same manner as in Examples 1 to 5, except that barium fluoride (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity: 99.9%) was used in the proportion shown in Table 2 instead of potassium fluoride. , to obtain a Cu—BaF 2 composite fluoride.

<比較例1>
第2成分となるフッ素化合物を用いず、原料として銅(Cu)のみを用いて、実施例と同様の操作を実施し、Cuナノ粒子を得た。
<Comparative Example 1>
Cu nanoparticles were obtained by performing the same operation as in the example using only copper (Cu) as a raw material without using a fluorine compound as a second component.

<複合フッ化物の評価>
[元素組成]
(株)日立ハイテクノロジー社、FE-SEM:SE6600、および(株)堀場製作所製、エネルギー分散型X線元素分析装置(EMAX x-act検出器、Model067-H)を用いて、元素分析を行った。結果を、表1および表2に示す。
<Evaluation of composite fluoride>
[Elemental composition]
Hitachi High Technology Co., Ltd., FE-SEM: SE6600, and Horiba, Ltd., energy dispersive X-ray elemental analyzer (EMAX x-act detector, Model067-H) was used for elemental analysis. rice field. Results are shown in Tables 1 and 2.

[粉体真密度]
マイクロメリティックス社製、乾式自動密度計(AccuPyc II1340)を用いて、ピクノメーター理論に基づく気相置換法により、粉体真密度を求めた。
[Powder true density]
The true density of the powder was obtained by a gas phase replacement method based on pycnometer theory using a dry automatic density meter (AccuPyc II1340) manufactured by Micromeritics.

[平均粒径]
自動比表面積/細孔径分布測定装置(日本ベル(株)製、BELSORP-miniII)を用いて比表面積を測定した後、粒子を球体と仮定した下記の算出式から、平均粒径を算出した。算出結果を、表1および表2に示す。
d=6000/(S・ρ)
(式中、dは粒径(nm)、Sは比表面積(m2/g)、ρは上記で求めた紛体真密度(g/cc)を示す。)
[Average particle size]
After measuring the specific surface area using an automatic specific surface area/pore size distribution measuring device (BEL Japan Co., Ltd., BELSORP-miniII), the average particle size was calculated from the following formula assuming that the particles are spherical. The calculation results are shown in Tables 1 and 2.
d=6000/(S・ρ)
(In the formula, d is the particle size (nm), S is the specific surface area (m / g), and ρ is the powder true density (g / cc) obtained above.)

[結晶構造]
XRD(リガク社製、SmartLaB、Cu-Kα線源、λ=1.5418Å)を用いて、実施例9についての結晶構造を解析した。結果を図4に示す。
[Crystal structure]
The crystal structure of Example 9 was analyzed using XRD (manufactured by Rigaku, SmartLaB, Cu-Kα radiation source, λ=1.5418 Å). The results are shown in FIG.

[ドメイン構造]
ドメイン構造の観察には、試料の薄片作製用装置として、集束イオンビーム加工観察装置:FIB((株)日立ハイテクノロジーズ製、FB-2100)(大気非開放、冷却)、および精密イオンポリシングシステム(Gatan製、Model695(PIPSII))(大気非開放、冷却)を用いた。
[Domain structure]
For observation of the domain structure, a focused ion beam processing observation device: FIB (manufactured by Hitachi High-Technologies Corporation, FB-2100) (not open to the atmosphere, cooling) and a precision ion polishing system ( Model 695 (PIPS II) manufactured by Gatan (not open to the atmosphere, cooled) was used.

試料の観察には球面収差補正機能付き走査透過型電子顕微鏡:Cs-(S)TEM(日本電子株式会社製、JEM-ARM200F(cold-FEG))(大気非開放、冷却)、およびCCDカメラ(Gatan製、GIF Quantum-ER(EELS用))を用いて、複合フッ化物子粒のCu-L端およびBa-M端のマッピング像、並びにSTEM-HAADF像を取得した。 For observation of the sample, a scanning transmission electron microscope with a spherical aberration correction function: Cs-(S) TEM (manufactured by JEOL Ltd., JEM-ARM200F (cold-FEG)) (not open to the atmosphere, cooled), and a CCD camera ( Using Gatan's GIF Quantum-ER (for EELS), mapping images of the Cu—L and Ba—M ends of the composite fluoride particles and STEM-HAADF images were acquired.

実施例10の複合フッ化物のSTEM-HAADF写真を図8に、銅のEELSマッピングを図9に、バリウムのEELSマッピングを図10に、Cu-BaF複合フッ化物全体のEELSマッピングを図11に示す。The STEM-HAADF photograph of the composite fluoride of Example 10 is shown in FIG. 8, the EELS mapping of copper in FIG. 9, the EELS mapping of barium in FIG. 10, and the EELS mapping of the entire Cu—BaF 2 composite fluoride in FIG. show.

Figure 0007220204000001
Figure 0007220204000001

Figure 0007220204000002
Figure 0007220204000002

表1および表2より、いずれの実施例においても、第2成分を構成する元素が検出され、その平均粒径は35nm以下であることが確認された。 From Tables 1 and 2, it was confirmed that the elements constituting the second component were detected in all examples, and the average particle size was 35 nm or less.

また、図4に示す実施例9のXRDチャートより、複合フッ化物ナノ粒子中に、第1成分であるCu金属に帰属する結晶構造と、第2成分であるBaFに帰属する結晶構造とが、混在していることが分かる。Further, from the XRD chart of Example 9 shown in FIG. 4, the composite fluoride nanoparticles have a crystal structure attributed to Cu metal as the first component and a crystal structure attributed to BaF 2 as the second component. , are mixed.

<フッ化物イオン二次電池の作製>
以下の材料を用いて、以下の方法で、フッ化物イオン二次電池を作製した。
<Production of fluoride ion secondary battery>
A fluoride ion secondary battery was produced by the following method using the following materials.

(固体電解質)
蛍石型の固体電解質であるPbSnF(以下PSFと呼ぶ)を用いた。PbSnFは、公知の化合物(文献[11]-[13])であり、文献[12]に記載の方法で作製した。
文献11:Journal of Solid State Chemistry 253(2017)287-293
文献12:J.Phys.chem. C121(2017)2627-2634
文献13:Solid State Ionics 86-88(1996)77-82
(solid electrolyte)
PbSnF 4 (hereinafter referred to as PSF), which is a fluorite-type solid electrolyte, was used. PbSnF 4 is a known compound (references [11]-[13]) and was prepared by the method described in reference [12].
Reference 11: Journal of Solid State Chemistry 253 (2017) 287-293
Reference 12: J.P. Phys. chem. C121 (2017) 2627-2634
Literature 13: Solid State Ionics 86-88 (1996) 77-82

(正極合剤粉末)
実施例で作製した複合フッ化物または比較例1のCuナノ粒子、イオン伝導経路を付与するための固体電解質(PSF)、および電子伝導経路を付与するためのアセチレンブラック(電気化学工業製)を、30:65:5の質量量比で十分に混合し、正極合剤粉末とした。
(Positive electrode mixture powder)
The composite fluoride prepared in Example or the Cu nanoparticles of Comparative Example 1, a solid electrolyte (PSF) for imparting an ion conduction path, and acetylene black (manufactured by Denki Kagaku Kogyo) for imparting an electron conduction path, They were thoroughly mixed at a mass ratio of 30:65:5 to obtain a positive electrode mixture powder.

(負極)
鉛箔((株)ニラコ製、純度:99.99%、厚さ:200um)を、直径10mmに加工し、負極として用いた。
(negative electrode)
A lead foil (manufactured by The Nilaco Corporation, purity: 99.99%, thickness: 200 μm) was processed into a diameter of 10 mm and used as a negative electrode.

(フッ化物イオン二次電池)
上記のように準備した正極合剤粉末(20mg)、固体電解質(400mg)、負極を、直径10mmΦの金型中で4ton/cmの圧力で一体成形し、フッ化物イオン二次電池となる成型体を得た。得られた成型体の正/負極面に、カーボンペーストにより、充放電測定に使用する端子として用いるための金線を接着した。
(Fluoride ion secondary battery)
The positive electrode mixture powder (20 mg), the solid electrolyte (400 mg), and the negative electrode prepared as described above are integrally molded in a mold with a diameter of 10 mmΦ at a pressure of 4 ton/cm 2 to form a fluoride ion secondary battery. got a body A gold wire for use as a terminal for charge/discharge measurement was adhered to the positive/negative surfaces of the obtained molding with a carbon paste.

<フッ化物イオン二次電池の評価>
25℃~140℃の温度範囲で、定電流充放電試験を実施した。
<Evaluation of fluoride ion secondary battery>
A constant current charge/discharge test was performed in the temperature range of 25°C to 140°C.

(初回充放電容量の測定)
ポテンショガルバノスタット装置(ソーラトロン社、SI1287/1255B)を用いて、充電0.02mA、放電0.01mAの電流にて、上限電圧1.25V、下限電圧0.40Vにて、定電流充放電試験を実施した。このとき、充放電測定時の周辺温度を制御するために、作製したフッ化物イオン二次電池は、熱風循環式恒温槽(エスペック社、SU261)の中に入れて測定をおこなった。
(Measurement of initial charge/discharge capacity)
Using a potentiogalvanostat device (SI1287/1255B, Solartron), a constant current charge/discharge test was performed at a current of 0.02 mA for charging and 0.01 mA for discharging, with an upper limit voltage of 1.25 V and a lower limit voltage of 0.40 V. carried out. At this time, in order to control the ambient temperature during charge/discharge measurement, the produced fluoride ion secondary battery was placed in a hot air circulating constant temperature bath (SU261, Espec Co., Ltd.) for measurement.

25℃から140℃までの各温度における充放電曲線を、図5に示す。図5(a)は、比較例1のCuナノ粒子を用いたフッ化物イオン二次電池、図5(b)は実施例2、図5(c)は実施例3の複合フッ化物を用いたフッ化物イオン二次電池の充放電曲線である。 FIG. 5 shows charge-discharge curves at temperatures from 25° C. to 140° C. FIG. FIG. 5(a) shows a fluoride ion secondary battery using Cu nanoparticles of Comparative Example 1, FIG. 5(b) shows Example 2, and FIG. 5(c) shows Example 3 using the composite fluoride. It is a charge-discharge curve of a fluoride ion secondary battery.

図5より、第2成分としてKFを添加したCu-KF複合フッ化物を正極活物質とした実施例2および実施例3は、すべての温度において比較例1よりも放電容量が増加していることが確認できる。 From FIG. 5, in Examples 2 and 3 in which the Cu—KF composite fluoride to which KF was added as the second component was used as the positive electrode active material, the discharge capacity was increased more than Comparative Example 1 at all temperatures. can be confirmed.

(40℃における充放電曲線)
実施例1~11、および比較例1について、40℃における充放電曲線を、図6に示す。図6(a)は、比較例1および実施例1~5(Cu-KF複合フッ化物)の充放電曲線、図6(b)は、比較例1および実施例8~10(Cu-BaF複合フッ化物)の充放電曲線、図6(c)は、実施例6および7(Cu-BaF複合フッ化物)の充放電曲線である。全ての実施例について、比較例1よりも充放電容量が増加していることが確認できる。
(Charge/discharge curve at 40°C)
Charge-discharge curves at 40° C. for Examples 1 to 11 and Comparative Example 1 are shown in FIG. FIG. 6(a) shows charge-discharge curves of Comparative Example 1 and Examples 1 to 5 (Cu—KF composite fluoride), FIG. 6(b) shows Comparative Example 1 and Examples 8 to 10 (Cu—BaF 2 Figure 6(c) is the charge/discharge curve of Examples 6 and 7 (Cu—BaF 2 compound fluoride). It can be confirmed that the charge/discharge capacity is higher than that of Comparative Example 1 in all the examples.

(Cu比率(at%)と充放電容量との関係)
図7に、実施例1~11について、第1成分となる銅(Cu)の比率(アトミックパーセント:at%)と充放電容量との関係を示す。
(Relationship between Cu ratio (at%) and charge/discharge capacity)
FIG. 7 shows the relationship between the ratio (atomic percentage: at %) of copper (Cu) as the first component and the charge/discharge capacity in Examples 1 to 11. In FIG.

図7より、第2成分の種類によらず、複合フッ化物全体に対する第1成分の含有量が40~70アトミックパーセント(at%)の範囲において、充放電容量が特に顕著に増加することが確認できる。 From FIG. 7, regardless of the type of the second component, when the content of the first component with respect to the entire composite fluoride is in the range of 40 to 70 atomic percent (at%), it is confirmed that the charge / discharge capacity increases particularly significantly. can.

1 第1成分のドメイン
2 第2成分のドメイン
3 原料投入口
4 複合フッ素化合物
1 domain of the first component 2 domain of the second component 3 raw material inlet 4 composite fluorine compound

Claims (10)

金属からなる第1成分と、
フッ化物イオン伝導性を有するフッ素化合物からなる第2成分と、を含む複合フッ化物であり、
前記複合フッ化物は、ペロブスカイトフッ化物を含む、フッ化物イオン二次電池用正極活物質。
a first component made of metal;
A composite fluoride containing a second component made of a fluorine compound having fluoride ion conductivity ,
The composite fluoride is a positive electrode active material for a fluoride ion secondary battery, containing a perovskite fluoride .
金属からなる第1成分と、a first component made of metal;
フッ化物イオン伝導性を有するフッ素化合物からなる第2成分と、を含む複合フッ化物であり、A composite fluoride containing a second component made of a fluorine compound having fluoride ion conductivity,
前記複合フッ化物全体に対する前記第1成分の含有量は、40~70アトミックパーセントである、フッ化物イオン二次電池用正極活物質。A positive electrode active material for a fluoride ion secondary battery, wherein the content of the first component with respect to the entire composite fluoride is 40 to 70 atomic percent.
金属からなる第1成分と、a first component made of metal;
フッ化物イオン伝導性を有するフッ素化合物からなる第2成分と、を含む複合フッ化物であり、A composite fluoride containing a second component made of a fluorine compound having fluoride ion conductivity,
前記フッ素化合物は、フッ化ナトリウム、フッ化カリウム、フッ化バリウムからなる群から選ばれる少なくとも1種である、フッ化物イオン二次電池用正極活物質。The positive electrode active material for a fluoride ion secondary battery, wherein the fluorine compound is at least one selected from the group consisting of sodium fluoride, potassium fluoride, and barium fluoride.
前記複合フッ化物は、前記第1成分によるドメインと、前記第2成分によるドメインとが複合化している、請求項1~3いずれか記載のフッ化物イオン二次電池用正極活物質。 The positive electrode active material for a fluoride ion secondary battery according to any one of claims 1 to 3 , wherein said composite fluoride is a composite of a domain of said first component and a domain of said second component. 前記複合フッ化物の平均粒径は、35nm以下である、請求項1~4いずれか記載のフッ化物イオン二次電池用正極活物質。 5. The positive electrode active material for a fluoride ion secondary battery in accordance with claim 1 , wherein said composite fluoride has an average particle size of 35 nm or less. 前記金属は、Cu、Co、Ag、Biからなる群から選ばれる少なくとも1種である、請求項1~5いずれか記載のフッ化物イオン二次電池用正極活物質。 6. The positive electrode active material for a fluoride ion secondary battery in accordance with claim 1, wherein said metal is at least one selected from the group consisting of Cu, Co, Ag and Bi. 前記フッ素化合物は、フッ化鉛、フッ化スズ、フッ化ビスマス、フッ化ランタン、フッ化セリウム、フッ化ナトリウム、フッ化カリウム、フッ化バリウムからなる群から選ばれる少なくとも1種である、請求項1~6いずれか記載のフッ化物イオン二次電池用正極活物質。 The fluorine compound is at least one selected from the group consisting of lead fluoride, tin fluoride, bismuth fluoride, lanthanum fluoride, cerium fluoride, sodium fluoride, potassium fluoride, and barium fluoride. 7. The positive electrode active material for fluoride ion secondary batteries according to any one of 1 to 6. 請求項1~いずれか記載のフッ化物イオン二次電池用正極活物質を含む、フッ化物イオン二次電池用正極。 A positive electrode for a fluoride ion secondary battery, comprising the positive electrode active material for a fluoride ion secondary battery according to any one of claims 1 to 7 . 請求項に記載のフッ化物イオン二次電池用正極と、固体電解質と、負極と、を備えるフッ化物イオン二次電池。 A fluoride ion secondary battery comprising the positive electrode for a fluoride ion secondary battery according to claim 8 , a solid electrolyte, and a negative electrode. 金属からなる第1成分と、a first component made of metal;
フッ化物イオン伝導性を有するフッ素化合物からなる第2成分と、を含む複合フッ化物である、フッ化物イオン二次電池用正極活物質を製造する方法であって、A method for producing a positive electrode active material for a fluoride ion secondary battery, which is a composite fluoride containing a second component made of a fluorine compound having fluoride ion conductivity,
前記金属と前記フッ素化合物とを含む原料溶融体を、減圧下で噴霧するエアロゾルプロセスを含む、フッ化物イオン二次電池用正極活物質の製造方法。A method for producing a positive electrode active material for a fluoride ion secondary battery, comprising an aerosol process of spraying a raw material melt containing the metal and the fluorine compound under reduced pressure.
JP2020510483A 2018-03-27 2019-02-27 Positive electrode active material for fluoride ion secondary battery, positive electrode using said active material, fluoride ion secondary battery, and method for producing said active material Active JP7220204B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018059702 2018-03-27
JP2018059702 2018-03-27
PCT/JP2019/007698 WO2019187942A1 (en) 2018-03-27 2019-02-27 Positive electrode active material for fluoride ion secondary batteries, positive electrode using said active material, fluoride ion secondary battery, and method for producing said active material

Publications (2)

Publication Number Publication Date
JPWO2019187942A1 JPWO2019187942A1 (en) 2021-03-18
JP7220204B2 true JP7220204B2 (en) 2023-02-09

Family

ID=68058687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510483A Active JP7220204B2 (en) 2018-03-27 2019-02-27 Positive electrode active material for fluoride ion secondary battery, positive electrode using said active material, fluoride ion secondary battery, and method for producing said active material

Country Status (3)

Country Link
JP (1) JP7220204B2 (en)
DE (1) DE112019001561T5 (en)
WO (1) WO2019187942A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240088384A1 (en) * 2019-10-09 2024-03-14 Honda Motor Co., Ltd. Negative electrode mixture composite for fluoride ion secondary battery, negative electrode and secondary battery for fluoride ion secondary battery using said composite, and method for producing said composite
US20230261253A1 (en) * 2019-10-09 2023-08-17 Honda Motor Co., Ltd. Fluoride ion secondary battery
JP7192811B2 (en) * 2020-03-06 2022-12-20 トヨタ自動車株式会社 Positive electrode active material and fluoride ion battery
JP2022134566A (en) 2021-03-03 2022-09-15 本田技研工業株式会社 Fluoride ion secondary battery
CN113078312B (en) * 2021-03-26 2022-04-22 南京工业大学 Bismuth chloride @ porous carbon composite chloride ion battery positive electrode material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206755A (en) 2017-06-01 2018-12-27 トヨタ自動車株式会社 Positive electrode active material and fluoride ion battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2674451T3 (en) * 2012-02-21 2018-06-29 Merck Patent Gmbh 8-substituted 2-amino- [1,2,4] triazolo [1,5-a] pyrazines as SYK tyrosine kinase inhibitors and GCN2 serine kinase inhibitors
JP6578130B2 (en) * 2015-05-14 2019-09-18 株式会社ブリヂストン tire
JP2018041672A (en) * 2016-09-08 2018-03-15 トヨタ自動車株式会社 Fluoride ion conductor
JP6702142B2 (en) * 2016-11-02 2020-05-27 トヨタ自動車株式会社 Fluoride ion battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206755A (en) 2017-06-01 2018-12-27 トヨタ自動車株式会社 Positive electrode active material and fluoride ion battery

Also Published As

Publication number Publication date
DE112019001561T5 (en) 2020-12-10
JPWO2019187942A1 (en) 2021-03-18
WO2019187942A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP7220204B2 (en) Positive electrode active material for fluoride ion secondary battery, positive electrode using said active material, fluoride ion secondary battery, and method for producing said active material
Wang et al. Engineering the interface between LiCoO 2 and Li 10 GeP 2 S 12 solid electrolytes with an ultrathin Li 2 CoTi 3 O 8 interlayer to boost the performance of all-solid-state batteries
JP6892815B2 (en) Sulfide-based solid electrolyte for lithium secondary batteries
Xiong et al. Enhanced electrochemical properties of lithium-reactive V 2 O 5 coated on the LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material for lithium ion batteries at 60 C
JP6505232B2 (en) Composite powder for use in lithium ion battery anodes, method of preparing such composite powder, and method of analyzing such composite powder
US8168329B2 (en) Electrochemical composition and associated technology
KR102151511B1 (en) Sulfide-based solid electrolyte particles
Hao et al. Electrospun single crystalline fork-like K2V8O21 as high-performance cathode materials for lithium-ion batteries
JP2012155994A (en) Electrode for solid-state battery
JP2024050822A (en) Method for producing sulfide solid electrolyte, sulfide solid electrolyte, all-solid-state battery, and method for selecting raw material compound for use in producing sulfide solid electrolyte
Sun et al. Hierarchical waxberry-like LiNi 0.5 Mn 1.5 O 4 as an advanced cathode material for lithium-ion batteries with a superior rate capability and long-term cyclability
Wood et al. Exploring the relationship between solvent-assisted ball milling, particle size, and sintering temperature in garnet-type solid electrolytes
Wang et al. Synergistic effect of cation ordered structure and grain boundary engineering on long-term cycling of Li0. 35La0. 55TiO3-based solid batteries
JP2015138741A (en) Composite solid electrolyte and all-solid-state battery
JP2018063905A (en) Fluoride ion battery
Guo et al. High cathode utilization efficiency through interface engineering in all-solid-state lithium-metal batteries
Wang et al. Effects of Na+ doping on crystalline structure and electrochemical performances of LiNi0. 5Mn1. 5O4 cathode material
Hong et al. Superior Na-storage performance of Na3V2 (PO4) 3/C-Ag composites as cathode material for Na-ion battery
CN114303267A (en) Lithium ion conductive oxide
Chong et al. High performance LiNi 0.5 Mn 1.5 O 4 cathode material with a bi-functional coating for lithium ion batteries
CN116057009A (en) Active material, method for producing same, electrode mixture, and battery
CN113937347A (en) Oxide, method for preparing the same, solid electrolyte comprising the oxide, and electrochemical device comprising the oxide
Zhao et al. Lithium zirconate coated LiNi0. 8Co0. 15Al0. 05O2 as a high-performance electrode material for advanced fuel cells
Li et al. Performance of Nano-3YSZ toughened β’’-Alumina solid electrolyte prepared by EDTA-Zr (IV)/Y (III) complex as surface modifier
JP2008311224A (en) Composition using for electrochemical redox reaction, electrode, electrochemical battery, and process for preparing composition used for electrochemical redox reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R150 Certificate of patent or registration of utility model

Ref document number: 7220204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150