JP7219564B2 - tubular furnace equipment - Google Patents

tubular furnace equipment Download PDF

Info

Publication number
JP7219564B2
JP7219564B2 JP2018155970A JP2018155970A JP7219564B2 JP 7219564 B2 JP7219564 B2 JP 7219564B2 JP 2018155970 A JP2018155970 A JP 2018155970A JP 2018155970 A JP2018155970 A JP 2018155970A JP 7219564 B2 JP7219564 B2 JP 7219564B2
Authority
JP
Japan
Prior art keywords
tubular furnace
furnace apparatus
sample support
tube
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018155970A
Other languages
Japanese (ja)
Other versions
JP2019039919A (en
Inventor
ラルフ ゲルトナー
ルドルフ ヴェック
Original Assignee
シュンク・コーレンストッフテヒニーク・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シュンク・コーレンストッフテヒニーク・ゲーエムベーハー filed Critical シュンク・コーレンストッフテヒニーク・ゲーエムベーハー
Publication of JP2019039919A publication Critical patent/JP2019039919A/en
Application granted granted Critical
Publication of JP7219564B2 publication Critical patent/JP7219564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/02Furnaces of a kind not covered by any preceding group specially designed for laboratory use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は原子化炉用の管状炉装置及び原子化炉、特に原子吸光分光用の原子化炉に関する。管状炉装置は、試料支持装置と試料支持具とを含む。試料支持装置は、管形の収容空間を形成する収容管を有する。試料支持具は被分析物を収容する役割をし、収容空間内に配置されている。試料支持装置は、管状炉装置を原子化炉に保持しかつ電気的に接触させる役割をする2つの支承延長部を収容管に有する。支承延長部は、収容炉の長手軸に対して横手方向に、好ましくは直交して延びている。試料支持具は支え突子を有し、試料支持具はその支え突子を用いて収容管の収容管壁と接合されている。 The present invention relates to a tubular furnace apparatus for a nuclear reactor and a nuclear reactor, in particular for atomic absorption spectroscopy. A tube furnace apparatus includes a sample support and a sample support. The sample support device has a receiving tube that forms a tubular receiving space. The sample support serves to contain the analyte and is arranged within the containing space. The sample support device has two bearing extensions on the containment tube which serve to hold and electrically contact the tubular reactor device to the nuclear reactor. The bearing extension extends transversely, preferably perpendicularly, to the longitudinal axis of the containment furnace. The sample support has a support projection, and the sample support is joined with the storage tube wall of the storage tube using the support projection.

被分析物を原子化するために黒鉛炉又は黒鉛管が電熱処理で温められる、原子吸入分光(AAS)用原子化炉、特に黒鉛炉原子吸光分光(GF-AAS)用の原子化炉は十分に知られている。黒鉛炉又は管状炉装置は、一般的に、管形状に形成されている収容空間を備えた試料支持装置を有する。管形の収容空間の内部では、被分析物が直接的に収容空間内で、又は収容空間内の例えば皿形の台又は試料支持具上で原子化され得る。光スペクトル分析のために、管形の収容空間の長手端は常時開いて形成されている。管形の収容空間は、黒鉛製の試料支持装置の収容管により形成されている。収容空間又は収容管は、長手方向に加熱されてもよいし、横手方向に加熱されてもよい。すなわち、加熱のための電流は、収容管の長手端から収容管の長手方向にわたり流れてもよく、収容管が、その外装で向き合っている支承延長部を介して電気的に接触されて、電流が収容管の長手軸に対して横手方向にこの収容管を通って流れてもよい。支承延長部は、それぞれ、原子化炉の収容体に保持され、電気的に接触されている。収容管の長手方向の加熱とは異なり、横手方向の加熱の場合は比較的良好な温度恒常性が収容空間の全長にわたり得られる。 Atomic absorption spectroscopy (AAS) reactors, particularly graphite furnace atomic absorption spectroscopy (GF-AAS) reactors, in which a graphite furnace or graphite tube is warmed by electrothermal treatment to atomize the analyte are sufficient. known to Graphite furnaces or tube furnace devices generally have a sample support device with a receiving space which is formed in the shape of a tube. Inside the tubular receiving space, the analyte can be atomized directly in the receiving space or on, for example, a dish-shaped table or sample support within the receiving space. For optical spectrum analysis, the longitudinal end of the tubular receiving space is always open. The tubular receiving space is formed by the receiving tube of the sample support device made of graphite. The receiving space or receiving tube may be heated longitudinally or transversely. That is, the electrical current for heating may flow from the longitudinal end of the encasing tube to the longitudinal direction of the encasing tube, the encasing tube being electrically contacted via bearing extensions facing each other on its exterior to provide an electric current. may flow through the containment tube in a direction transverse to the longitudinal axis of the containment tube. The bearing extensions are each retained and electrically contacted to the reactor housing. In contrast to longitudinal heating of the receiving tube, transverse heating results in relatively good temperature constancy over the entire length of the receiving space.

計測結果の再現性を保証するためには、被分析物の加熱が収容管を介して間接的に行われることが重要である。このため、被分析物の直接的な加熱を生じさせ得る試料支持具を介した電流の流れを可能な限り防止しなければならない。このため、従来技術で周知の横手方向加熱式の管状炉装置では、試料支持具が常に単一の支え突子でもって収容管の収容管壁に固定されているか、又はこの収容管壁と接合されている。このように、試料支持具の単一の支え突子が挿入される穴が収容管壁に形成されている管状炉装置が知られている。支え突子は、試料支持具での中央でかつ下側に、穴に挿入されるように形成されている。この場合、収容管内で試料支持具を正確に配列するために、その穴を長穴形状に形成する必要がある。これにより、守られるべき公差に従う長穴及び支え突子を整合するように形作るのが難しくなるという欠点がある。加えて支え突子の領域において、収容管から試料支持具へ直接的に熱が伝わり、そのために、一般的に試料支持具上の中央に配置される被分析物は望まれずに直接的に加熱される。 In order to ensure the reproducibility of the measurement results, it is important that the heating of the analyte is performed indirectly via the containing tube. For this reason, current flow through the sample support that could result in direct heating of the analyte should be prevented as much as possible. For this reason, in the transversely heated tubular furnace devices known in the prior art, the sample support is always fixed to the containment tube wall of the containment tube by means of a single support prong, or is joined to the containment tube wall. It is Thus, tubular furnace devices are known in which a hole is formed in the containing tube wall into which a single support projection of the sample support is inserted. A support barb is formed to be inserted into the hole centrally and on the underside of the sample support. In this case, the holes must be elongated in order to correctly align the sample supports within the receiving tube. This has the disadvantage that it is difficult to form matching slots and support projections according to the tolerances to be observed. In addition, in the region of the support stem, heat is conducted directly from the containment tube to the sample support, thereby undesirably directly heating the analyte, which is typically centrally located on the sample support. be done.

さらに、試料支持具が皿形状に形成されている管状炉装置が知られている。この場合、試料支持具は、試料支持具の長手縁に沿って収容管壁に保持されている。これにより、試料支持具は、その長手縁でもって、収容管壁に形成される単一の支え突子に、試料支持装置と一体的に接合されている。このため、試料支持具は、切削加工で試料支持装置と一体的に形成されている。これは比較的高価であるため、費用高を招く。また、この場合、被分析物の望まれない直接的な加熱が、支え突子を介して試料支持具の長手縁で行われてしまう。 Furthermore, tubular furnace devices are known in which the sample support is of dish-shaped design. In this case, the sample support is held on the receiving tube wall along the longitudinal edges of the sample support. Thereby, the sample support is integrally joined with the sample support device with its longitudinal edges to a single supporting projection formed on the wall of the receiving tube. For this reason, the sample support is integrally formed with the sample support device by cutting. This is relatively expensive and thus incurs high costs. Also in this case an undesired direct heating of the analyte takes place at the longitudinal edges of the sample support via the support lugs.

故に本発明の課題は、より正確な計測結果をより少ない作製費用でそれぞれ提供する管状炉装置と分析機器とを提供するということにある。 SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a tube furnace apparatus and an analytical instrument which respectively provide more accurate measurement results at lower production costs.

本課題は、請求項1の特徴を有する管状炉装置と請求項17の特徴を有する分析機器とにより解決される。 This task is solved by a tubular furnace apparatus having the features of claim 1 and an analytical instrument having the features of claim 17 .

原子化炉用の本発明による管状炉装置、特に原子吸光分光用の管状炉装置は、試料支持装置と試料支持具とを含む。試料支持装置は、管形の収容空間を形成する収容管を有する。試料支持具は被分析物を収容する役割をし、収容空間内に配置されている。試料支持装置は、管状炉装置を原子化炉に保持しかつ電気的に接触させる役割をする2つの支承延長部を収容管に有する。支承延長部は収容炉の長手軸に対して横手方向に、好ましくは長手軸に対して直交して延びている。試料支持具は支え突子を有し、その支え突子を用いて試料支持具が収容管の収容管壁と接合されている。試料支持具は2つの支え突子を有し、それらの支え突子は、試料支持具の対向する長手端にそれぞれ形成されている。 A tubular furnace apparatus according to the invention for a nuclear reactor, in particular for atomic absorption spectroscopy, comprises a sample support device and a sample support. The sample support device has a receiving tube that forms a tubular receiving space. The sample support serves to contain the analyte and is arranged within the containing space. The sample support device has two bearing extensions on the containment tube which serve to hold and electrically contact the tubular reactor device to the nuclear reactor. The bearing extension extends transversely to the longitudinal axis of the containment furnace, preferably perpendicular to the longitudinal axis. The sample support has a support projection with which the sample support is joined to the receiving tube wall of the receiving tube. The sample support has two support lugs formed on opposite longitudinal ends of the sample support.

特に2つの支え突子が、試料支持具の対向する長手端に形成されていることにより、試料支持具を二点支えで収容管壁に配置することが可能になる。収容管に対して2つの支承延長部を配置することにより、収容管を加熱するための電流は、収容管に対して横手方向のみにこの収容管を介して流れ得るため、試料支持具は、電位なしで収容管内に配置される。これにより、試料支持具の間接的な加熱が確保される。2つの支え突子に基づいた、又は試料支持具を収容管壁の2点で支えることに基づいた試料支持具を通る電流の流れは、試料支持具の各々の長手端での支え突子の相対間隔が比較的大きいことによっても防止され得る。これから得られる電気抵抗は、試料支持具を通る電流の流れを、すなわち、被分析物の直接的な加熱を防止する。同時に収容管壁から試料支持具への直接的な熱伝導がその長手端でのみ行われ、試料支持具の中央に通常配置される被分析物は、実際には、この熱伝導により影響を受けない。さらに、試料支持具の長手端に2つの支え突子を備えた試料支持具又は管状炉装置は、とりわけ容易に、すなわち費用面で有利に作製されうるものである。 In particular, two support projections are formed at opposite longitudinal ends of the sample support, which makes it possible to arrange the sample support with two points on the receiving tube wall. By arranging two bearing extensions to the receiving tube, the current for heating the receiving tube can flow through this receiving tube only transversely to the receiving tube, so that the sample support: Placed in a containment tube without potential. This ensures indirect heating of the sample support. Current flow through a sample support based on two support lugs, or based on supporting the sample support at two points on the containment tube wall, is determined by the number of support lugs at each longitudinal end of the sample support. A relatively large relative spacing can also prevent this. The resulting electrical resistance prevents current flow through the sample support, ie direct heating of the analyte. At the same time there is direct heat conduction from the containment tube wall to the sample support only at its longitudinal ends, and the analyte, which is usually placed in the center of the sample support, is actually affected by this heat conduction. do not have. Furthermore, a sample support or a tubular furnace apparatus with two support lugs at the longitudinal ends of the sample support can be produced particularly easily, ie cost-effectively.

試料支持具は支え突子を2つのみ有する。試料支持具が3つ以上の支え突子を有していない場合、被分析物の間接的な加熱の向上により、取得され得る計測結果の質を高めることができる。同時に試料支持具を容易に収容管の内部に配置する又は配列することも可能である。したがって、試料支持装置とは独立して試料支持具を形成し、その後に試料支持装置と共に試料支持具を管状炉装置に容易に備え付けることができる。 The sample support has only two support prongs. If the sample support does not have more than two support prongs, the improved indirect heating of the analyte can improve the quality of the measurements that can be obtained. At the same time, it is also possible to easily arrange or arrange the sample support inside the receiving tube. It is therefore possible to form the sample support independently of the sample support and then easily install the sample support together with the sample support to the tube furnace apparatus.

その際、管状炉装置が完全に黒鉛から構成されていることは特に有利である。この際、試料支持装置と試料支持具とをそれぞれ切削加工により互いに分けて作製することができる。さらに、管状炉装置全体又はその個別の部分は、熱分解処理で被覆されてもよい。これにより、管状炉装置の寿命を長くすることができる。 It is particularly advantageous here that the tubular furnace apparatus consists entirely of graphite. At this time, the sample support device and the sample support can be manufactured separately from each other by cutting. Furthermore, the entire tubular furnace apparatus or individual parts thereof may be coated with a pyrolytic treatment. Thereby, the life of the tubular furnace apparatus can be extended.

特に、収容管は、支承延長部を介して横手方向に電気的に加熱できるように形成されてもよい。このように、収容管全長にわたり温度恒常性を確保することができる。 In particular, the receiving tube may be formed so that it can be electrically heated in the transverse direction via the bearing extension. In this way, temperature constancy can be ensured over the entire length of the containment tube.

支承延長部は、支承体と保持ブリッジとから構成されてもよく、その際、保持ブリッジは支承体を収容管と接合し得る。保持ブリッジを収容管に成形し、支承体を保持ブリッジに成形してもよい。つまり、収容管は、2つの支承延長部と一体的に構成されてもよい。このように構成される試料支持装置の作製は、黒鉛体を切削加工することにより行われ得る。各支承体及び保持ブリッジが収容管の長手軸の方向に連続形鋼のように形成されている場合、例えば、収容管に成形される試料支持具のような特殊な幾何学形状の輪郭を形成する必要がないので、試料支持装置をとりわけ容易に作製することができる。 The bearing extension may consist of a bearing body and a retaining bridge, wherein the retaining bridge may join the bearing body with the receiving tube. The retaining bridge can be molded into the receiving tube and the bearing can be molded into the retaining bridge. That is, the receiving tube may be constructed integrally with the two bearing extensions. The sample support device configured in this manner can be manufactured by cutting a graphite body. If each bearing and retaining bridge is formed like a continuous section in the direction of the longitudinal axis of the receiving tube, it forms a contour of special geometric shape, for example a specimen support molded into the receiving tube. The sample support device can be produced particularly easily, since there is no need to

支え突子は試料支持具の対称面に配置されてもよい。つまり、試料支持具は対称的に形成されてもよい。 The support prongs may be arranged in the plane of symmetry of the sample support. That is, the sample support may be symmetrically formed.

1つの支え突子が浮動支承を形成し、1つの支え突子が固定支承を形成することがあり得る、又は2つの支え突子が固定支承を形成することがあり得る。すなわち、一方の支え突子は、収容管の収容管壁と固く接合されてもよい。その際、他方の支え突子は、収容管の収容管壁に緩く接しているか又は載っている。このように、温度差又は作製に起因し得る試料支持具内の起こり得る応力を確実に回避することができる。このような応力による試料支持具の破壊を可能な限り取り除くことができる。代わりに2つの支え突子は収容管と固く接合されてもよい。これにより、試料支持具を収容管内に特に安定的に保持し、正確に配置することを確保することができる。 One bearing projection can form a floating bearing and one bearing projection can form a fixed bearing, or two bearing projections can form a fixed bearing. That is, one of the supporting prongs may be rigidly joined to the receiving tube wall of the receiving tube. The other support projection then rests loosely on or rests on the receiving tube wall of the receiving tube. In this way possible stresses in the sample support which may be due to temperature differences or fabrication can be reliably avoided. Breakage of the sample support due to such stress can be eliminated as much as possible. Alternatively, the two support prongs may be rigidly joined with the receiving tube. This makes it possible to ensure that the sample support is held particularly stably in the receiving tube and positioned precisely.

また、試料支持具が被分析物用の槽形収容体を形成してもよい。収容体が被分析物用の槽形収容空間であってもよい。このように、被分析物が試料支持具から容易には落ち得ないことを保証することができる。 Alternatively, the sample support may form a reservoir for the analyte. The containment body may be a tank-shaped containment space for the analyte. In this way it can be ensured that the analyte cannot easily fall off the sample support.

支え突子が四角形の幾何学形状を有し、それぞれ、収容体で軸方向に突き出てもよい。試料支持具の生材を機械加工することにより、このような支え突子の形を容易に彫り出すことができ、これは、試料支持具の作製を容易にする。したがって、支え突子は、試料支持具の槽形収容体で軸方向に突き出ることにより、試料支持具の長さを増加させることができる。これにより、試料支持具の電気的な接触抵抗が高まる。 The bearing prongs may have a square geometry and each protrude axially at the receptacle. By machining the raw material of the sample support, the shape of such support projections can be easily carved out, which facilitates the fabrication of the sample support. Thus, the supporting prongs project axially in the trough-shaped receptacle of the sample support, thereby increasing the length of the sample support. This increases the electrical contact resistance of the sample support.

また、試料支持具の断面は円形状に形成されてもよい。この際、支え突子は、試料支持具の半径方向に突き出てもよい。このように、隙間を形成することにより、試料支持具を又は被分析物用の槽形収容空間を収容管壁から隔てることができる。したがって、被分析物の均一で間接的な加熱を確保することができる。試料支持具自体は、円形断面に基づいて原理上は管形にも形成されてもよい。しかしながら、好ましくは、試料支持具をその断面に関して円弧形状に形成するように設定してもよい。 Moreover, the cross section of the sample support may be formed in a circular shape. In this case, the support projections may protrude in the radial direction of the sample support. Thus, by forming a gap, the sample support or the trough-shaped receiving space for the analyte can be separated from the receiving tube wall. Uniform and indirect heating of the analyte can thus be ensured. The sample support itself can in principle also be made tubular due to the circular cross-section. Preferably, however, the sample support may also be configured to be arc-shaped with respect to its cross-section.

試料支持具を収容管壁に固定するために、収容管壁内に形成された収容間隙内に少なくとも1つの支え突子を挿入してもよい。収容間隙を、例えば、鋸挽き又はフライス加工により収容管壁内に容易に形成することができるので、試料支持具と試料支持装置との接合を特に費用面で有利に作製することができる。支え突子を収容間隙内に固定するためには、収容間隙と支え突子又はその平行な側面との間の嵌合を成すことのみが必要である。好ましくは、2つの支え突子をそれぞれ収容間隙内に挿入してもよい。 At least one support peg may be inserted into a receiving gap formed in the receiving tube wall to secure the sample support to the receiving tube wall. Since the receiving gap can be easily produced in the wall of the receiving tube, for example by sawing or milling, the connection between the sample support and the sample support device can be produced particularly cost-effectively. In order to secure the support lugs in the receiving gaps, it is only necessary to establish a fit between the receiving gaps and the support lugs or their parallel sides. Preferably, two support lugs can be inserted into each receiving gap.

その際、支え突子が収容間隙内に挟まれていると有利である。例えば、収容間隙と支え突子又はその平行な側面との間の圧嵌が容易に行われ得る。試料支持具には大きな力が作用しないので、支え突子(単数)又は支え突子(複数)を、収容間隙(単数)又は収容間隙(複数)内に単に差し込んで、挟み込むことにより、試料支持具を試料支持装置に備え付けることができる。 In this case, it is advantageous if the support lugs are clamped in the receiving gaps. For example, a press fit between the receiving gap and the support lugs or their parallel sides can easily take place. Since a large force does not act on the sample support, the sample support can be achieved by simply inserting the support projection (singular) or support projections (plurality) into the accommodation gap (singular) or accommodation gap (plurality) and sandwiching them. A tool can be attached to the sample support device.

収容間隙が収容管の長手端に形成されている場合、管状炉装置はさらに容易に作製可能になる。収容間隙を鋸挽き又はフライス加工によりとりわけ容易に長手端に形成することができる。 If the receiving gap is formed at the longitudinal end of the receiving tube, the tubular furnace apparatus can be manufactured even more easily. The receiving gap can be produced particularly easily at the longitudinal ends by sawing or milling.

少なくとも1つの支え突子が、収容管の内面に接する段を形成することも有利である。このように、試料支持具が収容管の内面までの所定の間隔に配置されていることを常時保証することができる。好ましくは、2つの支え突子は、それぞれ、試料支持具が内面に対して平行に収容管内に配置されているような段を形成してもよい。そして、段を止め具のように形成してもよい。 It is also advantageous if the at least one bearing projection forms a step that rests against the inner surface of the receiving tube. In this way, it can always be ensured that the sample support is arranged at a predetermined distance to the inner surface of the receiving tube. Preferably, the two support prongs each form a step such that the sample support is arranged in the receiving tube parallel to the inner surface. The step may then be formed like a stop.

試料支持具は、熱分解性被膜により収容管に固定されてもよい。管状炉装置を作製する際、試料支持具を収容管内において所定位置に配置することができる。その後、管状炉装置の表面に塗布された熱分解性被膜は、2つの部品を材料接着で互いに接合することができる。 The sample support may be secured to the containment tube by a thermally decomposable coating. When fabricating the tube furnace apparatus, the sample support can be placed in position within the containment tube. A pyrolytic coating applied to the surface of the tubular furnace apparatus can then join the two parts together with material adhesion.

さらに管状炉装置は、支承延長部と収容管とを通り抜け得る貫通孔を有することができる。貫通孔は、特に、被分析物を試料支持具上の中央にとりわけ容易に配置することを可能にする被分析物投入口のように形成されてもよい。 Furthermore, the tube furnace device can have a through hole through which the bearing extension and the receiving tube can pass. The through-hole may in particular be shaped like an analyte input port which allows particularly easy central placement of the analyte on the sample support.

本発明に係る分析機器、特に原子吸光分光用の分析機器は原子化炉を含み、その原子化炉は本発明に係る管状炉装置を有する。分析機器の追加の実施形態は、管状炉装置に関する請求項1を典拠とする従属請求項から明らかになる。 An analytical instrument according to the invention, in particular an analytical instrument for atomic absorption spectroscopy, comprises a nuclear reactor, which comprises a tubular reactor apparatus according to the invention. Additional embodiments of the analytical instrument emerge from the dependent claims originating from Claim 1 relating to the tubular furnace apparatus.

以下に本発明の好ましい実施形態を付属の図面を参照しつつ説明する。 Preferred embodiments of the present invention will now be described with reference to the accompanying drawings.

管状炉装置の斜視図である。1 is a perspective view of a tubular furnace apparatus; FIG. 管状炉装置の側面図である。1 is a side view of a tubular furnace apparatus; FIG. 図2の線III-IIIに沿った管状炉の断面図である。Figure 3 is a cross-sectional view of the tubular furnace along line III-III in Figure 2; 管状炉装置の試料支持装置の斜視図である。1 is a perspective view of a sample support device of a tubular furnace apparatus; FIG. 管状炉装置の試料支持具の斜視図である。Fig. 2 is a perspective view of a sample support of the tube furnace apparatus;

図1~5は、管状炉装置10及びその部品を様々な見方で示す。管状炉装置10は、完全に黒鉛から構成されており、原子化炉内での使用のために、特に原子吸光分光用に構成されている。管状炉装置10は、不図示の被分析物を収容するための試料支持装置11と、試料支持具12とを含む。試料支持装置11は、さらに収容管13を有し、該収容管13は、試料支持具12がその内部に配置されている管形の収容空間14を形成する。試料支持装置11は、管状炉装置10をここに図示されていない原子化炉に保持しかつ電気的に接触させる役割をする2つの支承延長部15を収容管13に有する。支承延長部15は、収容管13の長手軸16に対して横手方向に、又は長手軸16に対して直交して形成されている。各支承延長部15は、支承体17と保持ブリッジ18とから構成されており、保持ブリッジ18は、支承体17をそれぞれ収容管13に接合する。このため、収容管13は、支承延長部15を介して前記横手方向に電気的に加熱できるように構成されている。 1-5 show the tubular furnace apparatus 10 and its components in various views. The tube furnace apparatus 10 is constructed entirely of graphite and is specifically configured for atomic absorption spectroscopy for use in nuclear reactors. The tubular furnace device 10 includes a sample support device 11 for containing an analyte (not shown) and a sample support 12 . The sample support device 11 furthermore has a receiving tube 13 which forms a tubular receiving space 14 in which the sample support 12 is arranged. The sample support device 11 has two bearing extensions 15 on the receiving tube 13 which serve to hold and electrically contact the tube furnace device 10 to a nuclear reactor not shown here. The bearing extension 15 is formed transversely or perpendicularly to the longitudinal axis 16 of the receiving tube 13 . Each bearing extension 15 consists of a bearing 17 and a retaining bridge 18 , which joins the bearing 17 respectively to the receiving tube 13 . For this purpose, the receiving tube 13 is configured to be electrically heatable in the lateral direction via the bearing extension 15 .

試料支持具12は、さらに支え突子19を2つのみを有し、これらの支え突子19は、試料支持具12の対向する長手端20にそれぞれ形成されている。さらに試料支持具12は、被分析物用の槽形収容体21を形成する。この被分析物は、ここでは、収容管13及び支承延長部15内の貫通孔22を介して収容体21上の中央に配置され得る。収容管13の長手軸16に関して、ここでは、四角形の幾何学形状で形成されている支え突子19は、収容体21から離れる軸方向に延びている。同時に支え突子19は、試料支持具12が収容管13の内面23から又は収容管壁30から間隙24を介して隔てられているように、試料支持具12の半径方向に突き出ている。これにより、収容体21内の被分析物の間接的な電位なしの加熱が可能になる。 The sample support 12 furthermore has only two support lugs 19 , which are formed on opposite longitudinal ends 20 of the sample support 12 . Furthermore, the sample support 12 forms a trough-shaped container 21 for the analyte. The analyte can here be placed centrally on the receiving body 21 via the through hole 22 in the receiving tube 13 and the bearing extension 15 . With respect to the longitudinal axis 16 of the receiving tube 13 , the bearing projection 19 , here formed with a square geometry, extends axially away from the receiving body 21 . At the same time, the support projections 19 protrude radially of the sample support 12 such that the sample support 12 is separated from the inner surface 23 of the receiving tube 13 or from the receiving tube wall 30 via a gap 24 . This allows for indirect, potential-free heating of the analyte in container 21 .

支え突子19の末端25は、それぞれ、収容管13内に形成された収容間隙26内に挿入されている。末端25には、各支え突子19が内面23に止め具28のように接するのを可能にする段27が形成されている。このように、間隙24は、収容管壁30までの所望の均一な間隔を有することを容易に保証することができる。収容間隙26は、それぞれ収容管の長手端29に形成されている。収容間隙26は、例えば、鋸挽き及びフライス加工により容易に形成され得る。また、収容間隙26と各支え突子19の末端25との間の所望の嵌合を容易に成すことが可能になる。その理由は、収容間隙26の幅及び末端25のみが対応する公差で構成されるべきであるからである。また、長手軸16の方向での試料支持具12の正確な位置決めは、既に比較的互いに遠くに隔てられた支え突子19によってのみ得られるので、ここでは半径方向において試料支持具12と収容間隙26との間の遊合を容易に成すことができる。 The ends 25 of the bearing prongs 19 are each inserted into a receiving gap 26 formed in the receiving tube 13 . The distal end 25 is formed with a step 27 that allows each support projection 19 to abut the inner surface 23 like a stop 28 . In this way, it can be easily ensured that the gap 24 has the desired uniform spacing to the containment tube wall 30 . Receiving gaps 26 are each formed at the longitudinal ends 29 of the receiving tubes. Receiving gap 26 can be easily formed, for example, by sawing and milling. Also, the desired fit between the receiving gap 26 and the end 25 of each support projection 19 can be easily achieved. The reason is that only the width of the receiving gap 26 and the end 25 should be configured with corresponding tolerances. Also, since a precise positioning of the sample support 12 in the direction of the longitudinal axis 16 can only be obtained by means of the bearing prongs 19 which are already relatively far apart from each other, the sample support 12 and the receiving gap in the radial direction here are 26 can be easily made.

Claims (16)

原子化炉用、特に原子吸光分光用の管状炉装置(10)において、前記管状炉装置が試料支持装置(11)と試料支持具(12)とを含み、前記試料支持装置は、管形の収容空間(14)を形成する収容管(13)を有し、前記試料支持具は、被分析物を収容しかつ前記収容空間内に配置されており、前記試料支持装置は、前記管状炉装置を原子化炉に保持しかつ電気的に接触させる役割をする2つの支承延長部(15)を前記収容管に有し、前記支承延長部は、前記収容管の長手軸(16)に対して横手方向に、好ましくは長手軸(16)に対して直交して延びており、前記試料支持具は、支え突子(19)を有し、前記支え突子により前記試料支持具が前記収容管の収容管壁(30)と接合されている、管状炉装置であって、
前記試料支持具は、前記支え突子(19)を2つのみ有し、
前記支え突子は、前記試料支持具の対向する長手端(20)にそれぞれ形成されており、
前記収容管壁は、黒鉛製であり、
さらに前記試料支持具は、電位なしで前記収容管内に配置されるように、前記2つの支え突子により、前記収容管壁に二点支えで支持されていることを特徴とする管状炉装置。
A tubular furnace apparatus (10) for a nuclear reactor, in particular for atomic absorption spectroscopy, wherein said tubular furnace apparatus comprises a sample support device (11) and a sample support (12), said sample support device having a tubular shape. a storage tube (13) forming a storage space (14), wherein the sample support accommodates an analyte and is disposed in the storage space; and the sample support device is the tubular furnace device. with respect to the longitudinal axis (16) of the containment tube, the containment tube having two bearing extensions (15) serving to hold and electrically contact the Extending in the transverse direction, preferably perpendicular to the longitudinal axis (16), the sample support comprises a support lug (19) by means of which the sample support extends into the receiving tube. a tubular furnace apparatus joined with a containment tube wall (30) of
said sample support has only two of said support projections (19),
said support prongs are respectively formed on opposite longitudinal ends (20) of said sample support ,
The containing tube wall is made of graphite,
Further, the tube-shaped furnace apparatus is characterized in that the sample support is supported by the two support projections on the wall of the storage tube at two points so that it can be placed in the storage tube without an electric potential.
請求項1に記載の管状炉装置において、
前記管状炉装置(10)は、完全に黒鉛から構成されていることを特徴とする管状炉装置。
The tubular furnace apparatus of claim 1 , wherein
A tube furnace apparatus (10), characterized in that the tube furnace apparatus (10) consists entirely of graphite.
請求項1又は2に記載の管状炉装置において、
前記収容管(13)は、前記支承延長部(15)を介して横手方向で電気的に加熱できるように構成されていることを特徴とする管状炉装置。
In the tubular furnace apparatus according to claim 1 or 2 ,
Tubular furnace apparatus, characterized in that said receiving tube (13) is configured to be electrically heatable in transverse direction via said bearing extension (15).
請求項1~のいずれか1つに記載の管状炉装置において、
前記支承延長部(15)は、支承体(17)と保持ブリッジ(18)とから構成されており、
前記保持ブリッジは、前記支承体を前記収容管(13)と接合することを特徴とする管状炉装置。
In the tubular furnace apparatus according to any one of claims 1 to 3 ,
said bearing extension (15) consists of a bearing (17) and a retaining bridge (18),
Tubular furnace installation, characterized in that said retaining bridge joins said bearing body with said receiving tube (13).
請求項1~のいずれか1つに記載の管状炉装置において、
前記支え突子(19)は、前記試料支持具(12)の対称平面内に配置されていることを特徴とする管状炉装置。
In the tubular furnace apparatus according to any one of claims 1 to 4 ,
A tubular furnace apparatus, characterized in that said support prongs (19) are arranged in a plane of symmetry of said sample support (12).
請求項1~のいずれか1つに記載の管状炉装置において、
一方の前記支え突子(19)が浮動支承を形成し、他方の前記支え突子(19)が固定支承を形成するか、又は2つの前記支え突子(19)が固定支承を形成することを特徴とする管状炉装置。
In the tubular furnace apparatus according to any one of claims 1 to 5 ,
one of said support lugs (19) forming a floating bearing and the other of said supporting lugs (19) forming a fixed bearing or two said supporting lugs (19) forming a fixed bearing. A tubular furnace apparatus characterized by:
請求項1~のいずれか1つに記載の管状炉装置において、
前記試料支持具(12)は、被分析物用の槽形収容体(21)を形成することを特徴とする管状炉装置。
In the tubular furnace apparatus according to any one of claims 1 to 6 ,
A tubular furnace apparatus, characterized in that said sample support (12) forms a vessel-shaped receptacle (21) for the analyte.
請求項1~のいずれか1つに記載の管状炉装置において、
前記支え突子(19)は、四角形の幾何学形状を有しかつ収容体(21)で軸方向にそれぞれ突き出ていることを特徴とする管状炉装置。
In the tubular furnace apparatus according to any one of claims 1 to 7 ,
Tubular furnace installation, characterized in that said support lugs (19) have a square geometry and each protrude axially at the receptacle (21).
請求項1~のいずれか1つに記載の管状炉装置において、
前記試料支持具(12)の断面は円形状に形成されており、
前記支え突子(19)は、前記試料支持具の半径方向に突き出ていることを特徴とする管状炉装置。
In the tubular furnace apparatus according to any one of claims 1 to 8 ,
The sample support (12) has a circular cross section,
A tubular furnace apparatus, characterized in that said supporting prongs (19) protrude in the radial direction of said sample support.
請求項1~のいずれか1つに記載の管状炉装置において、
少なくとも1つの前記支え突子(19)は、前記収容管壁(30)内に形成された収容間隙(26)内に挿入されていることを特徴とする管状炉装置。
In the tubular furnace apparatus according to any one of claims 1 to 9 ,
Tubular furnace installation, characterized in that at least one support lug (19) is inserted into a receiving gap (26) formed in the receiving tube wall (30).
請求項10に記載の管状炉装置において、
前記支え突子(19)は、前記収容間隙(26)内に挟まれていることを特徴とする管状炉装置。
A tubular furnace apparatus according to claim 10 , wherein
A tubular furnace apparatus, characterized in that said supporting prongs (19) are sandwiched in said receiving gaps (26).
請求項10又は11に記載の管状炉装置において、
前記収容間隙(26)は、前記収容管(13)の長手端(29)に形成されていることを特徴とする管状炉装置。
In the tubular furnace apparatus according to claim 10 or 11 ,
A tubular furnace apparatus, characterized in that said receiving gap (26) is formed at a longitudinal end (29) of said receiving tube (13).
請求項1~12のいずれか1つに記載の管状炉装置において、
少なくとも1つの前記支え突子(19)は、前記収容管(13)の内面(23)に接する段(27)を形成することを特徴とする管状炉装置。
In the tubular furnace apparatus according to any one of claims 1-12 ,
Tubular furnace apparatus, characterized in that at least one of said support lugs (19) forms a step (27) that abuts the inner surface (23) of said receiving tube (13).
請求項1~13のいずれか1つに記載の管状炉装置において、
前記試料支持具(12)は、熱分解性被膜により前記収容管(13)に固定されていることを特徴とする管状炉装置。
In the tubular furnace apparatus according to any one of claims 1 to 13 ,
A tubular furnace apparatus characterized in that said sample support (12) is fixed to said storage tube (13) by means of a thermally decomposable coating.
請求項1~14のいずれか1つに記載の管状炉装置において、
前記管状炉装置(10)は、前記支承延長部(15)と前記収容管(13)とを通り抜ける貫通孔(22)を有することを特徴とする管状炉装置。
In the tubular furnace apparatus according to any one of claims 1-14 ,
A tubular furnace arrangement (10) characterized in that it has a through hole (22) passing through said bearing extension (15) and said receiving tube (13).
原子化炉を含む分析機器、特に原子吸光分光用の分析機器であって、
前記原子化炉は、請求項1~15のいずれか1つに記載の管状炉装置(10)を有することを特徴とする分析機器。
An analytical instrument comprising a nuclear reactor, in particular an analytical instrument for atomic absorption spectroscopy,
An analytical instrument, characterized in that said nuclear reactor comprises a tubular reactor apparatus (10) according to any one of claims 1-15 .
JP2018155970A 2017-08-24 2018-08-23 tubular furnace equipment Active JP7219564B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017214861.6 2017-08-24
DE102017214861.6A DE102017214861B4 (en) 2017-08-24 2017-08-24 tube furnace device

Publications (2)

Publication Number Publication Date
JP2019039919A JP2019039919A (en) 2019-03-14
JP7219564B2 true JP7219564B2 (en) 2023-02-08

Family

ID=65321339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018155970A Active JP7219564B2 (en) 2017-08-24 2018-08-23 tubular furnace equipment

Country Status (3)

Country Link
JP (1) JP7219564B2 (en)
CN (1) CN109425227A (en)
DE (1) DE102017214861B4 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8714925U1 (en) 1987-11-10 1988-02-04 Ringsdorff-Werke Gmbh, 5300 Bonn, De
DE19940095A1 (en) 1999-08-24 2001-03-01 Analytik Jena Ag Zeeman atomizer for dissolved and solid samples

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2225421C2 (en) * 1972-05-25 1982-05-06 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Sample atomiser for flameless atom absorption spectroscopy - has electrically heated porous body heating sample holder indirectly
DD233190A1 (en) * 1984-09-28 1986-02-19 Adw Der Ddr Zi F Optik U Spekt ATOMIZER FOR SAMPLE SUPPLIERS
DD252249B5 (en) * 1986-09-01 1994-01-27 Zeiss Carl Jena Gmbh DEVICE FOR ELECTROTHERMIC ATOMIZATION
DE8713503U1 (en) * 1987-10-08 1987-12-17 Ringsdorff-Werke Gmbh, 5300 Bonn, De
DE8803144U1 (en) 1988-03-09 1988-04-21 Ringsdorff-Werke Gmbh, 5300 Bonn, De
DE4243767C2 (en) 1992-12-23 1996-06-05 Zeiss Carl Jena Gmbh Platform for a cross-heated, electrothermal atomizing furnace for atomic absorption spectroscopy
US5949538A (en) * 1996-07-11 1999-09-07 Sgl Carbon Ag Longitudinally or transversely heated tubular atomizing furnace
CN106033053A (en) * 2015-03-11 2016-10-19 北京普析通用仪器有限责任公司 A graphite furnace atomizer
DE102016219492A1 (en) 2016-10-07 2018-04-12 Schunk Kohlenstofftechnik Gmbh Sample carrier for an atomizing furnace and method of manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8714925U1 (en) 1987-11-10 1988-02-04 Ringsdorff-Werke Gmbh, 5300 Bonn, De
DE19940095A1 (en) 1999-08-24 2001-03-01 Analytik Jena Ag Zeeman atomizer for dissolved and solid samples

Also Published As

Publication number Publication date
JP2019039919A (en) 2019-03-14
DE102017214861A1 (en) 2019-02-28
CN109425227A (en) 2019-03-05
DE102017214861B4 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
JPH07104331B2 (en) Gas transfer pipe mounting device
CN103808709B (en) Atomizing furnace
JP7219564B2 (en) tubular furnace equipment
CN107643308B (en) Sample holder for X-rays
GB2195766A (en) A device for electrothermal atomisation
US3893769A (en) Graphite tube furnace
CN108351171B (en) Heating chamber, heating furnace, analysis device and method for analyzing impurity content in sample
US11268889B2 (en) Thermogravimetric analysis components
US20150219578A1 (en) Thermal conductivity detector
WO2007021482A3 (en) Disposable integrated heater and tube assembly for thermally-driven chemical reactions
CN211402121U (en) Sample carrier device and analysis apparatus
US4953977A (en) Electrothermal atomization furnace
US20080083712A1 (en) Inductively-coupled plasma torch
CN215931894U (en) Test tube heating device and drug trace analyzer
JP2010217078A (en) Gas chromatograph and gas chromatograph mass spectrometer
JP2020515838A (en) Tubular furnace equipment for atomizing furnace
US11391607B2 (en) Column oven and chromatography
US20220032308A1 (en) A device for conducting biological amplification reactions
US4961645A (en) Electrothermal atomization furnace
DE102012102210A1 (en) Heating system for a vacuum deposition source and vacuum separation device
FR2634021A1 (en) GRAPHITE TUBE OVEN WITH SAMPLE SUPPORT FOR ATOMIC ABSORPTION SPECTROSCOPY
US9562845B2 (en) Technique for temperature controlling polarimeter sample cells
JP3134096U (en) Column insertion jig
JP5112206B2 (en) Heat pipe attachment / detachment jig
US5083864A (en) Graphite tube furnace with stationary specimen support for atomic absorption spectoscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230127

R150 Certificate of patent or registration of utility model

Ref document number: 7219564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150