JP7216080B2 - Redox flow battery and its operation method - Google Patents

Redox flow battery and its operation method Download PDF

Info

Publication number
JP7216080B2
JP7216080B2 JP2020516310A JP2020516310A JP7216080B2 JP 7216080 B2 JP7216080 B2 JP 7216080B2 JP 2020516310 A JP2020516310 A JP 2020516310A JP 2020516310 A JP2020516310 A JP 2020516310A JP 7216080 B2 JP7216080 B2 JP 7216080B2
Authority
JP
Japan
Prior art keywords
redox flow
flow battery
electrolyte
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020516310A
Other languages
Japanese (ja)
Other versions
JPWO2019208431A1 (en
Inventor
賢太郎 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2019208431A1 publication Critical patent/JPWO2019208431A1/en
Application granted granted Critical
Publication of JP7216080B2 publication Critical patent/JP7216080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、正極電解液と負極電解液とに、原子価が変化する同一種の金属元素のイオンを含む電解液が用いられるレドックスフロー電池及びこのレドックスフロー電池の運転方法に関する。 The present invention relates to a redox flow battery in which a positive electrode electrolyte and a negative electrode electrolyte contain ions of the same metal element whose valence changes, and a method of operating the redox flow battery.

レドックスフロー電池は、電力の負荷平準化や瞬間停止対策などとして利用され、新規の電力貯蔵用電池として注目されており、特に、バナジウム塩を活物質にしたレドックスフロー電池が知られている(例えば、特許文献1参照)。 Redox flow batteries are used for load leveling of electric power and countermeasures against momentary shutdown, and are attracting attention as new electric power storage batteries. In particular, redox flow batteries using vanadium salt as an active material are known , see Patent Document 1).

レドックスフロー電池の動作原理を図6に基づいて説明する。
レドックスフロー電池100は、イオン交換膜からなる隔膜101で正極セル100Aと負極セル100Bとに分離された電池セル110と、電解液を貯留する電解液タンク104A,104Bと、電解液タンク104A,104Bから電池セル110に電解液を循環供給する循環配管106A,106Bと、循環配管106A,106Bに接続されて電解液を循環させる循環ポンプ105A,105Bと、を備える。
The principle of operation of the redox flow battery will be explained based on FIG.
The redox flow battery 100 includes a battery cell 110 separated into a positive electrode cell 100A and a negative electrode cell 100B by a diaphragm 101 made of an ion exchange membrane, electrolyte tanks 104A and 104B for storing electrolyte, and electrolyte tanks 104A and 104B. circulation pipes 106A and 106B for circulating and supplying the electrolyte to the battery cells 110; and circulation pumps 105A and 105B connected to the circulation pipes 106A and 106B for circulating the electrolyte.

正極セル100Aには正極電極102が、また、負極セル100Bには負極電極103がそれぞれ内蔵されている。
また、正極セル100Aには、正極電解液を貯留する正極電解液タンク104Aが正極電解液循環配管106Aを介して接続され、負極セル100Bには、負極電解液を貯留する負極電解液タンク104Bが負極電解液循環配管106Bを介して接続されている。循環配管106A,106Bにはそれぞれ、循環ポンプ105A,105Bが設けられており、正極電解液循環配管106A、負極電解液循環配管106Bを介して、各電解液がそれぞれのタンクとセルとの間で循環される。
A positive electrode 102 is incorporated in the positive electrode cell 100A, and a negative electrode 103 is incorporated in the negative electrode cell 100B.
A positive electrode electrolyte tank 104A that stores a positive electrode electrolyte is connected to the positive electrode cell 100A via a positive electrode electrolyte circulation pipe 106A, and a negative electrode electrolyte tank 104B that stores a negative electrode electrolyte is connected to the negative electrode cell 100B. They are connected via a negative electrode electrolyte circulation pipe 106B. Circulation pipes 106A and 106B are provided with circulation pumps 105A and 105B, respectively. circulated.

各極電解液には、活物質としてバナジウムイオンなど原子価が変化するイオンの水溶液が用いられ、ポンプ105A,105Bで電解液を循環させながら、正極電極102、負極電極103におけるイオンの価数変化反応に伴って充放電が行われる。 An aqueous solution of ions whose valence changes, such as vanadium ions, is used as an active material in each electrode electrolyte. Charging and discharging are performed along with the reaction.

例えば、バナジウムイオンを含む電解液を用いた場合、セル内の正極および負極で充放電時に生じる反応は次の通りとなる。なお、実際には、V4+はVO2+で存在し、V5+はVO2+で存在しているものと推定され、それぞれ水和した状態や硫酸根が配位した状態で存在しているものと推定される。
正極:V4+ → V5+ + e-(充電) V4+ ← V5+ + e-(放電)
負極:V3+ + e- → V2+(充電) V3+ + e- ← V2+(放電)
For example, when an electrolytic solution containing vanadium ions is used, reactions that occur during charging and discharging at the positive and negative electrodes in the cell are as follows. In fact, it is presumed that V 4+ exists as VO 2+ and V 5+ exists as VO 2+ , and each exists in a hydrated state or in a state in which a sulfate group is coordinated. presumed to be
Positive electrode: V 4+ → V 5+ + e - (charge) V 4+ ← V 5+ + e - (discharge)
Negative electrode: V 3+ + e - → V 2+ (charge) V 3+ + e - ← V 2+ (discharge)

充電時に正極で生成される水素イオン(H+)は、隔膜101を通って負極側に移動し、電解液の電気的中性が保たれる。発電部(例えば、発電所など)から供給された電力は、価数の異なるバナジウムイオンの価数変化として電解液タンクに貯蔵される。
一方、放電時には、充電時とは逆の反応によって貯蔵した電力を取り出し、負荷(需要家など)に供給することができる。
Hydrogen ions (H + ) generated at the positive electrode during charging move through the diaphragm 101 to the negative electrode side, and the electrical neutrality of the electrolyte is maintained. Electric power supplied from a power generation unit (for example, a power plant) is stored in an electrolyte tank as valence changes of vanadium ions with different valences.
On the other hand, during discharging, the stored power can be extracted by a reaction opposite to that during charging, and supplied to a load (such as a consumer).

レドックスフロー電池では、電解液の充電状態(SOC:State Of Charge)は、電解液中のイオン価数の比率によって決まる。例えば、バナジウム系レドックスフロー電池の場合、正極電解液では、正極電解液中のバナジウムイオン(V4+/V5+)におけるV5+の比率、負極電解液では、負極電解液中のバナジウムイオン(V2+/V3+)におけるV2+の比率で表される。充電時の電池反応は、電池セル内で正極ではV4+がV5+に酸化され、負極ではV3+がV2+に還元される。放電時の電池反応は、充電時と逆の反応になる。In the redox flow battery, the state of charge (SOC) of the electrolyte is determined by the ratio of ionic valences in the electrolyte. For example, in the case of a vanadium-based redox flow battery, the ratio of V 5+ in the vanadium ions (V 4+ /V 5+ ) in the positive electrode electrolyte in the positive electrode electrolyte, and the vanadium ion in the negative electrode electrolyte in the negative electrode electrolyte It is expressed by the ratio of V 2+ in (V 2+ /V 3+ ). In the battery reaction during charging, V 4+ is oxidized to V 5+ at the positive electrode in the battery cell, and V 3+ is reduced to V 2+ at the negative electrode. The battery reaction during discharging is the opposite reaction to that during charging.

バナジウム系レドックスフロー電池においては、劣化抑制や充電効率等の観点から満充電電圧(充電満了電圧、充電終了電圧)と放電末電圧が予め設定されており、電池の通常の運転時には、充電状態が放電末(例えば、充電状態:20%)から満充電(例えば、充電状態:80%)の充放電可能範囲内で充放電が行われる。ここで、満充電電圧は電力系統からの充電を停止するように設定された電圧であり、放電末電圧は電力系統への放電を停止するように設定された電圧である。 In vanadium redox flow batteries, the full charge voltage (charge completion voltage, charge end voltage) and discharge end voltage are set in advance from the viewpoint of deterioration suppression and charging efficiency. Charging and discharging are performed within a chargeable/dischargeable range from the end of discharge (for example, state of charge: 20%) to full charge (for example, state of charge: 80%). Here, the full charge voltage is a voltage set to stop charging from the power system, and the end-of-discharge voltage is a voltage set to stop discharge to the power system.

特開昭62-186473号公報JP-A-62-186473 特開2006-147375号公報JP 2006-147375 A 特開平11-204124号公報JP-A-11-204124 特開2001-43884号公報JP-A-2001-43884 米国特許出願公開第2014/0193673号明細書U.S. Patent Application Publication No. 2014/0193673

バナジウム系レドックスフロー電池は電解液中の活物質が単一元素系であるため、正極電解液と負極電解液とが混合しても充電によって再生することができるという利点がある。しかしながら、レドックスフロー電池でも、充放電を繰り返すと隔膜を通して電解液中の各種イオンや溶媒が移動し、正極及び負極の電解液量の増減が生じる。これによって正極電解液と負極電解液の活物質イオンのバランスが崩れ、充電状態の低いセルに合わせて電池容量が決定され、電池容量が低下してしまうという問題がある。 Since the active material in the electrolyte of the vanadium-based redox flow battery is a single-element system, there is an advantage that even if the positive electrode electrolyte and the negative electrode electrolyte are mixed, they can be regenerated by charging. However, even in a redox flow battery, when charging and discharging are repeated, various ions and solvents in the electrolytic solution move through the diaphragm, causing an increase or decrease in the amount of the electrolytic solution in the positive electrode and the negative electrode. As a result, the balance between the active material ions of the positive electrode electrolyte and the negative electrode electrolyte is lost, and the battery capacity is determined according to the cell in a low state of charge, resulting in a decrease in battery capacity.

このような活物質イオンのバランス崩れを解消するリバランスの方法としては、例えば、特許文献2~4に開示されるように、正極電解液タンクと負極電解液タンクとを連通管によって連通させ、この連通管にバルブを設け、タンク内の電解液量が減少したときにバルブを開いて、連通管を介して正極電解液と負極電解液とを混合する構成が提案されている。 As a method of rebalancing to eliminate such imbalance of active material ions, for example, as disclosed in Patent Documents 2 to 4, the positive electrode electrolyte tank and the negative electrode electrolyte tank are communicated by a communication pipe, A configuration has been proposed in which a valve is provided in this communicating pipe, and the valve is opened when the amount of electrolytic solution in the tank decreases to mix the positive electrode electrolyte and the negative electrode electrolyte through the communicating pipe.

しかしながら、このように正極電解液と負極電解液とを混合する場合には、連通管やポンプなどの設備が必要となってくる。特に、タンクが多いと、そのペア数だけ連通管やポンプなどが必要となるため、大規模なレドックスフロー電池とする場合には、配管が複雑になってしまう。 However, in the case of mixing the positive electrode electrolyte and the negative electrode electrolyte in this way, facilities such as a communication pipe and a pump are required. In particular, when there are many tanks, communication pipes and pumps are required for the number of pairs.

また、連通管を介して正極電解液と負極電解液とを混合する場合、連通管の太さやポンプの性能などにも依るが、正極電解液と負極電解液とを充分に混合させるのに長い時間を要してしまう。このように正極電解液と負極電解液とを混合させるのに要する時間は、すなわち、レドックスフロー電池を使用できない時間であり、このような時間は短い方が好ましい。 Further, when the positive electrode electrolyte and the negative electrode electrolyte are mixed through the communicating pipe, it takes a long time to sufficiently mix the positive electrode electrolyte and the negative electrode electrolyte, depending on the diameter of the communicating pipe and the performance of the pump. It takes time. The time required for mixing the positive electrode electrolyte and the negative electrode electrolyte is the time during which the redox flow battery cannot be used, and the shorter the time, the better.

本発明では、このような現状に鑑み、リバランスを行うために正極電解液と負極電解液とを混合させるにあたり連通管やポンプなどの設備が不要で、かつ、迅速に正極電解液と負極電解液とを混合させリバンランスが可能なレドックスフロー電池を提供することを目的とする。 In view of the current situation, the present invention eliminates the need for facilities such as communication pipes and pumps when mixing the positive electrode electrolyte and the negative electrode electrolyte for rebalancing, and rapidly mixes the positive electrode electrolyte and the negative electrode electrolyte. An object of the present invention is to provide a redox flow battery capable of rebalancing by mixing with a liquid.

本発明は、前述するような従来技術における課題を解決するために発明されたものであって、本発明は、例えば、以下の態様を含む。 The present invention was invented to solve the problems in the prior art as described above, and the present invention includes, for example, the following aspects.

[1] 正極電解液と負極電解液とに、原子価が変化する同一種の金属元素のイオンを含む電解液が用いられるレドックスフロー電池であって、前記電解液が貯留される電解液槽を備え、前記電解液槽が、隔壁によって、電池セルの正極セルと循環配管により接続された正極電解液槽と、電池セルの負極セルと循環配管により接続された負極電解液槽とに隔てられ、前記隔壁が開閉可能に構成されるレドックスフロー電池。 [1] A redox flow battery in which a positive electrode electrolyte and a negative electrode electrolyte contain ions of the same metal element whose valence changes, wherein the electrolyte is stored in an electrolyte tank. The electrolyte bath is separated by a partition wall into a positive electrode electrolyte bath connected to the positive electrode cell of the battery cell by a circulation pipe and a negative electrode electrolyte bath connected to the negative electrode cell of the battery cell by a circulation pipe, A redox flow battery in which the partition wall is configured to be openable and closable.

[2] 前記隔壁が、開閉部を備え、前記開閉部が昇降可能に構成される項[1]に記載のレドックスフロー電池。 [2] The redox flow battery according to item [1], wherein the partition includes an opening/closing portion, and the opening/closing portion is configured to be movable up and down.

[3] 前記開閉部が回動可能に構成される項[2]に記載のレドックスフロー電池。 [3] The redox flow battery according to item [2], wherein the opening/closing portion is configured to be rotatable.

[4] 前記隔壁が、孔を備え、前記開閉部の昇降により、前記孔の開閉が行われる項[2]に記載のレドックスフロー電池。 [4] The redox flow battery according to item [2], wherein the partition has a hole, and the hole is opened and closed by moving up and down the opening and closing section.

[5] 前記隔壁が、開閉部を備え、前記開閉部が水平方向に開閉可能に構成される項[1]に記載のレドックスフロー電池。 [5] The redox flow battery according to item [1], wherein the partition includes an opening/closing portion, and the opening/closing portion is horizontally openable and closable.

[6] 前記隔壁が、開閉部を備え、
前記開閉部が水平軸周りに回動可能に構成される項[1]に記載のレドックスフロー電池。
[6] The partition includes an opening and closing part,
The redox flow battery according to item [1], wherein the opening/closing part is configured to be rotatable about a horizontal axis.

[7] 前記電解液槽内に、攪拌装置を備える項[1]から項[6]のいずれかに記載のレドックスフロー電池。 [7] The redox flow battery according to any one of items [1] to [6], which includes a stirring device in the electrolyte bath.

[8] 前記正極電解液槽と接続された正極セルと、前記負極電解液槽と接続された負極セルと、を有する電池セルと、
前記電解液槽に貯留され、前記正極セル及び前記負極セルに供給される電解液と、を備える項[1]から項[7]のいずれかに記載のレドックスフロー電池。
[8] A battery cell having a positive electrode cell connected to the positive electrode electrolyte bath and a negative electrode cell connected to the negative electrode electrolyte bath;
The redox flow battery according to any one of items [1] to [7], further comprising an electrolytic solution stored in the electrolytic solution tank and supplied to the positive electrode cell and the negative electrode cell.

[9] 前記電解液が、バナジウムイオンを含む水溶液である項[8]に記載のレドックスフロー電池。 [9] The redox flow battery according to item [8], wherein the electrolytic solution is an aqueous solution containing vanadium ions.

[10] 項[1]から項[9]のいずれかに記載のレドックスフロー電池の運転方法であって、前記レドックスフロー電池の充放電を行う場合には、前記隔壁を閉めた状態で使用し、前記レドックスフロー電池のリバンランスを行う場合には、前記隔壁を開けた状態で使用するレドックスフロー電池の運転方法。 [10] The method of operating a redox flow battery according to any one of [1] to [9], wherein the partition is closed when the redox flow battery is charged and discharged. and a method of operating a redox flow battery in which the partition wall is opened when the redox flow battery is rebalanced.

本発明によれば、電解液が貯留される電解液槽に開閉可能な隔壁を設けることによって、レドックスフロー電池の充放電を行う場合には、隔壁を閉めて正極電解液槽と負極電解液槽とを隔て、一方で、リバンランスを行う場合には、隔壁を開けて電解液を迅速に混合することができる。 According to the present invention, by providing an openable and closable partition in the electrolytic solution tank in which the electrolytic solution is stored, when the redox flow battery is charged and discharged, the partition is closed and the positive electrode electrolytic solution tank and the negative electrode electrolytic solution tank are closed. On the other hand, when performing rebalancing, the partition can be opened to quickly mix the electrolyte.

図1は、本実施例におけるレドックスフロー電池の構成を説明する模式図である。FIG. 1 is a schematic diagram illustrating the configuration of the redox flow battery in this example. 図2は、図1に示すレドックスフロー電池の電解液槽の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of an electrolytic solution tank of the redox flow battery shown in FIG. 図3は、電解液槽の隔壁の変形例を示す模式図である。FIG. 3 is a schematic diagram showing a modification of the partition wall of the electrolyte bath. 図4は、電解液槽の隔壁の別の変形例を示す模式図である。FIG. 4 is a schematic diagram showing another modification of the partition wall of the electrolyte bath. 図5は、電解液槽の隔壁のさらに別の変形例を示す模式図である。FIG. 5 is a schematic diagram showing still another modification of the partition wall of the electrolyte bath. 図6は、従来のレドックスフロー電池を説明するための模式図である。FIG. 6 is a schematic diagram for explaining a conventional redox flow battery.

以下、本発明の実施の形態(実施例)を図面に基づいてより詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments (examples) of the present invention will be described in more detail with reference to the drawings. In the drawings used in the following description, there are cases where characteristic portions are enlarged for convenience in order to make it easier to understand the features of the present invention, and the dimensional ratios of each component may differ from the actual ones. be. In addition, the materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited to them.

図1は、本実施例におけるレドックスフロー電池の構成を説明する模式図である。
図1に示すように、レドックスフロー電池10は、イオン交換膜からなる隔膜11で正極セル10Aと負極セル10Bとに分離された電池セル20と、電解液31を貯留する電解液槽30と、電解液槽30から電池セル20に電解液31を循環供給する循環配管16A,16Bと、循環配管16A,16Bに接続されて電解液31を循環させる循環ポンプ15A,15Bと、を備える。正極セル10Aには正極電極12が、また、負極セル10Bには負極電極13がそれぞれ内蔵されている。
FIG. 1 is a schematic diagram illustrating the configuration of the redox flow battery in this example.
As shown in FIG. 1, the redox flow battery 10 includes a battery cell 20 separated into a positive electrode cell 10A and a negative electrode cell 10B by a diaphragm 11 made of an ion exchange membrane, an electrolytic solution tank 30 storing an electrolytic solution 31, Circulation pipes 16A and 16B for circulating and supplying the electrolyte 31 from the electrolyte bath 30 to the battery cells 20, and circulation pumps 15A and 15B connected to the circulation pipes 16A and 16B for circulating the electrolyte 31 are provided. A positive electrode 12 is contained in the positive electrode cell 10A, and a negative electrode 13 is contained in the negative electrode cell 10B.

なお、本発明における電池セル20としては、公知の構成を採用することができる。 A known configuration can be adopted as the battery cell 20 in the present invention.

電解液槽30は、隔壁32によって、正極電解液槽34Aと負極電解液槽34Bとに隔てられている。正極電解液槽34Aは、正極電解液循環配管16Aを介して、正極セル10Aと接続され、負極電解液槽34Bは、負極電解液循環配管16Bを介して、負極セル10Bと接続されている。 The electrolyte bath 30 is separated by a partition wall 32 into a positive electrode electrolyte bath 34A and a negative electrode electrolyte bath 34B. The positive electrode electrolyte bath 34A is connected to the positive electrode cell 10A through the positive electrode electrolyte circulation pipe 16A, and the negative electrode electrolyte bath 34B is connected to the negative electrode cell 10B through the negative electrode electrolyte circulation pipe 16B.

循環配管16A,16Bにはそれぞれ、循環ポンプ15A,15Bが設けられており、正極電解液循環配管16A、負極電解液循環配管16Bを介して、各電解液がそれぞれの電解液槽34A,34Bとセル10A,10Bとの間で循環される。 The circulation pipes 16A and 16B are provided with circulation pumps 15A and 15B, respectively. It is circulated between the cells 10A and 10B.

正極電解液槽34Aの排出口16A1と吸引口16A2は、正極電解液槽34Aにおいて、なるべく離間した位置に配置することが好ましい。また、負極電解液槽34Bの排出口16B1と吸引口16B2は、負極電解液槽34Bにおいて、なるべく離間した位置に配置することが好ましい。 The discharge port 16A1 and the suction port 16A2 of the positive electrode electrolyte bath 34A are preferably arranged at positions as far apart as possible in the positive electrode electrolyte bath 34A. Moreover, it is preferable that the discharge port 16B1 and the suction port 16B2 of the negative electrode electrolyte bath 34B are arranged at positions as far apart as possible in the negative electrode electrolyte bath 34B.

本実施例において、電解液31としては、バナジウムイオンを含む水溶液が用いられるが、原子価が変化する金属元素のイオンを含む電解液であれば、特に限定されるものではない。また、正極電解液(正極電解液槽34Aから正極セル10Aへと供給される電解液31)と、負極電解液(負極電解液槽34Bから負極セル10Bへと供給される電解液31)とは、同一種の金属元素のイオンが含まれている。なお、正極電解液と負極電解液は、イオンとして含まれる元素が同一種であればよく、イオンや化合物としては必ずしも同一である必要はない。また、正極電解液と負極電解液とは、リバランスの際に混合後から充電前までは、同一組成の電解液となる。 In this embodiment, an aqueous solution containing vanadium ions is used as the electrolytic solution 31, but the electrolytic solution is not particularly limited as long as it contains ions of metal elements whose valence changes. Also, the positive electrode electrolyte (the electrolyte 31 supplied from the positive electrode electrolyte tank 34A to the positive electrode cell 10A) and the negative electrode electrolyte (the electrolyte 31 supplied from the negative electrode electrolyte tank 34B to the negative electrode cell 10B) are different. , contain ions of the same metal element. The positive electrode electrolyte and the negative electrode electrolyte need only contain the same element as ions, and do not necessarily have the same ions or compounds. In addition, the positive electrode electrolyte and the negative electrode electrolyte have the same composition from after mixing during rebalancing to before charging.

なお、電解液槽30としては、耐酸性を有する材料により形成するか、もしくは、その内部について耐酸処理を施すことが好ましい。製造コストの観点から、電解液槽30は耐酸処理を施したコンクリート製とすることが好ましい。 It should be noted that the electrolytic solution tank 30 is preferably made of an acid-resistant material, or the inside thereof is preferably subjected to an acid-resistant treatment. From the viewpoint of manufacturing cost, it is preferable that the electrolytic solution tank 30 is made of concrete subjected to acid-resistant treatment.

また、隔壁32としては、耐酸性を有する材料により形成するか、もしくは、その表面について耐酸処理を施すことが好ましい。また、後述するように、開閉部32Aを設け、隔壁32の開閉を行うことから、加工性が高く、軽量で、強度の高い材料を用いることが好ましく、例えば、繊維強化プラスチック(FRP)を用いることができる。 Moreover, it is preferable that the partition wall 32 is formed of an acid-resistant material, or the surface thereof is subjected to an acid-resistant treatment. In addition, as will be described later, since the opening and closing part 32A is provided to open and close the partition wall 32, it is preferable to use a material with high workability, light weight, and high strength. For example, fiber reinforced plastic (FRP) is used. be able to.

本実施例において、電解液槽30の隔壁32は、図2に示すように、その一部が開閉可能に構成されている。
図2に示す電解液槽30では、隔壁32には、開閉部32Aが設けられており、図示しない昇降手段により、開閉部32Aを昇降させることで、隔壁32の開閉を行っている。
In this embodiment, as shown in FIG. 2, the partition wall 32 of the electrolyte bath 30 is partially openable and closable.
In the electrolytic solution bath 30 shown in FIG. 2, the partition wall 32 is provided with an opening/closing portion 32A, and the opening/closing portion 32A is opened and closed by raising and lowering the opening/closing portion 32A by a lifting means (not shown).

レドックスフロー電池10の充放電を行う場合には、開閉部32Aを下降させ、隔壁32は閉められた状態で使用される。一方で、リバランスを行う場合には、開閉部32Aを上昇させ、隔壁32を開いた状態とする。これにより、正極電解液槽34Aに貯留された電解液と、負極電解液槽34Bに貯留された電解液とが混合されることになる。 When the redox flow battery 10 is charged and discharged, the opening/closing part 32A is lowered and the partition wall 32 is closed. On the other hand, when performing rebalancing, the opening/closing portion 32A is raised to open the partition wall 32 . As a result, the electrolyte stored in the positive electrode electrolyte bath 34A and the electrolyte stored in the negative electrode electrolyte bath 34B are mixed.

また、本実施例においては、開閉部32Aは、図示しない回動手段により、鉛直軸周りに回動可能に構成されている。このように構成し、リバンランスを行う場合に、開閉部32Aを回動させることによって、電解液槽30内の電解液31を流動させることができ、より迅速にリバランスを行うことができる。この場合、開閉部32Aが電解液31中により多く浸かるように、開閉部32Aを自由に回動できる程度に上昇させることが、電解液31を攪拌しやすくなり好ましい。 Further, in this embodiment, the opening/closing portion 32A is configured to be rotatable about a vertical axis by a rotating means (not shown). With this configuration, by rotating the opening/closing portion 32A, the electrolyte solution 31 in the electrolyte solution tank 30 can be made to flow, and rebalance can be performed more quickly. In this case, it is preferable to raise the opening/closing part 32A to a degree that allows the opening/closing part 32A to be freely rotated so that the opening/closing part 32A is more immersed in the electrolytic solution 31, because the electrolytic solution 31 is easily agitated.

また、リバンランスを行う場合に、循環配管16A,16Bに設けられた循環ポンプ15A,15Bを動作させるようにしてもよい。これにより、各セル10A,10Bや循環配管16A,16Bに滞留していた電解液31についても混合させ、より均一にリバンランスを行うことができる。また、循環ポンプ15A,15Bを動作させることにより、電解液槽30内の電解液31を流動させる効果も得られる。 Further, when performing rebalance, the circulation pumps 15A and 15B provided in the circulation pipes 16A and 16B may be operated. As a result, the electrolytic solution 31 remaining in each of the cells 10A and 10B and the circulation pipes 16A and 16B is also mixed, and rebalance can be performed more uniformly. Further, by operating the circulation pumps 15A and 15B, the effect of flowing the electrolytic solution 31 in the electrolytic solution tank 30 can also be obtained.

なお、電解液槽30内に、例えば、インペラやポンプなどを用いた攪拌装置を設け、攪拌装置により電解液31を攪拌するようにしてもよい。 For example, a stirring device using an impeller, a pump, or the like may be provided in the electrolyte bath 30 to stir the electrolyte 31 .

図3は、電解液槽の隔壁の変形例を示す模式図である。
図3に示すように、開閉部32Aを水平方向に開閉するように構成し、図示しない移動手段により開閉部32Aを動作させている。
FIG. 3 is a schematic diagram showing a modification of the partition wall of the electrolyte bath.
As shown in FIG. 3, the opening/closing portion 32A is configured to open and close in the horizontal direction, and is operated by a moving means (not shown).

このように構成した場合、電解液槽30内の電解液31を流動させるためには、上述するように、循環配管16A,16Bに設けられた循環ポンプ15A,15Bを動作させることにより行うことができる。もしくは、電解液槽30内に、例えば、インペラやポンプなどを用いた攪拌装置を設けるようにすることもできる。 In this configuration, the electrolyte 31 in the electrolyte bath 30 can be caused to flow by operating the circulation pumps 15A and 15B provided in the circulation pipes 16A and 16B as described above. can. Alternatively, a stirring device using an impeller, a pump, or the like, for example, may be provided in the electrolyte bath 30 .

図4は、電解液槽の隔壁の別の変形例を示す模式図である。
図4に示すように、隔壁32の一部に孔32Bを設け、図示しない昇降手段により、開閉部32Aを昇降させることで、孔32Bの開閉、すなわち、開閉部32Aの開閉を行うことができる。
FIG. 4 is a schematic diagram showing another modification of the partition wall of the electrolyte bath.
As shown in FIG. 4, a hole 32B is provided in a part of the partition wall 32, and the opening/closing portion 32A can be opened/closed by raising and lowering the opening/closing portion 32A by means of an elevating means (not shown). .

このように構成した場合、電解液槽30内の電解液31を流動させるためには、上述するように、循環配管16A,16Bに設けられた循環ポンプ15A,15Bを動作させることにより行うことができる。もしくは、電解液槽30内に、例えば、インペラやポンプなどを用いた攪拌装置を設けるようにすることもできる。 In this configuration, the electrolyte 31 in the electrolyte bath 30 can be caused to flow by operating the circulation pumps 15A and 15B provided in the circulation pipes 16A and 16B as described above. can. Alternatively, a stirring device using an impeller, a pump, or the like, for example, may be provided in the electrolyte bath 30 .

図5は、電解液槽の隔壁のさらに別の変形例を示す模式図である。
図5に示すように、隔壁32全体を開閉部32Aとして、図示しない回動手段により、水平軸周りに回動可能に構成されている。
FIG. 5 is a schematic diagram showing still another modification of the partition wall of the electrolyte bath.
As shown in FIG. 5, the partition wall 32 as a whole serves as an opening/closing portion 32A, and is configured to be rotatable about a horizontal axis by a rotating means (not shown).

このように構成した場合、開閉部32Aを回動させることにより、電解液槽30内の電解液31を流動させ、電解液31を攪拌することができる。
なお、図5に示す例では、隔壁32全体を開閉部32Aとしているが、隔壁32の一部を開閉部32Aとしても構わない。
With this configuration, by rotating the opening/closing part 32A, the electrolytic solution 31 in the electrolytic solution tank 30 can be made to flow and the electrolytic solution 31 can be stirred.
In the example shown in FIG. 5, the entire partition 32 serves as the opening/closing portion 32A, but a portion of the partition 32 may serve as the opening/closing portion 32A.

また、上述するように、循環配管16A,16Bに設けられた循環ポンプ15A,15Bを動作させることにより行うことで、電解液槽30内の電解液31を流動させるようにしてもよい。また、電解液槽30内に、例えば、インペラやポンプなどを用いた攪拌装置を設けるようにすることもできる。 Further, as described above, the electrolyte solution 31 in the electrolyte solution bath 30 may be caused to flow by operating the circulation pumps 15A and 15B provided in the circulation pipes 16A and 16B. Further, a stirring device using an impeller, a pump, or the like, for example, may be provided in the electrolyte bath 30 .

以上、本発明の好ましい実施形態を説明したが、本発明はこれに限定されることはなく、上記実施例では、隔壁の一部が開閉可能となる構成として説明したが、隔壁全体が開閉可能となる構成としてもよいなど、本発明の目的を逸脱しない範囲で種々の変更が可能である。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to this. In the above embodiment, a configuration in which a part of the partition wall can be opened and closed has been described, but the entire partition wall can be opened and closed. Various modifications are possible without departing from the object of the present invention.

10 レドックスフロー電池
10A 正極セル
10B 負極セル
11 隔膜
12 正極電極
13 負極電極
15A 循環ポンプ
15B 循環ポンプ
16A 正極電解液循環配管
16B 負極電解液循環配管
16A1 排出口
16A2 吸引口
16B1 排出口
16B2 吸引口
20 電池セル
30 電解液槽
31 電解液
32 隔壁
32A 開閉部
32B 孔
34A 正極電解液槽
34B 負極電解液槽
100 レドックスフロー電池
100A 正極セル
100B 負極セル
101 隔膜
102 正極電極
103 負極電極
104A 正極電解液タンク
104B 負極電解液タンク
105A 循環ポンプ
105B 循環ポンプ
106A 正極電解液循環配管
106B 負極電解液循環配管
110 電池セル
10 Redox flow battery 10A Positive electrode cell 10B Negative electrode cell 11 Diaphragm 12 Positive electrode 13 Negative electrode 15A Circulation pump 15B Circulation pump 16A Positive electrode electrolyte circulation pipe 16B Negative electrode electrolyte circulation pipe 16A1 Outlet 16A2 Suction port 16B1 Outlet 16B2 Suction port 20 Battery Cell 30 Electrolyte bath 31 Electrolyte 32 Separation wall 32A Open/close part 32B Hole 34A Positive electrode electrolyte bath 34B Negative electrode electrolyte bath 100 Redox flow battery 100A Positive electrode cell 100B Negative electrode cell 101 Diaphragm 102 Positive electrode 103 Negative electrode 104A Positive electrode electrolyte tank 104B Negative electrode Electrolyte tank 105A Circulation pump 105B Circulation pump 106A Positive electrode electrolyte circulation pipe 106B Negative electrode electrolyte circulation pipe 110 Battery cell

Claims (10)

正極電解液と負極電解液とに、原子価が変化する同一種の金属元素のイオンを含む電解液が用いられるレドックスフロー電池であって、
前記電解液が貯留される電解液槽を備え、
前記電解液槽が、隔壁によって、電池セルの正極セルと循環配管により接続された正極電解液槽と、電池セルの負極セルと循環配管により接続された負極電解液槽とに隔てられ、
前記隔壁が開閉可能に構成されるレドックスフロー電池。
A redox flow battery in which an electrolyte solution containing ions of the same metal element whose valence changes is used for the positive electrode electrolyte and the negative electrode electrolyte,
An electrolytic solution tank in which the electrolytic solution is stored,
The electrolytic solution tank is separated by a partition into a positive electrode electrolytic solution tank connected to the positive electrode cell of the battery cell by a circulation pipe and a negative electrode electrolytic solution tank connected to the negative electrode cell of the battery cell by a circulation pipe,
A redox flow battery in which the partition wall is configured to be openable and closable.
前記隔壁が、開閉部を備え、
前記開閉部が昇降可能に構成される請求項1に記載のレドックスフロー電池。
the partition comprises an opening and closing part,
The redox flow battery according to claim 1, wherein the opening/closing part is configured to be movable up and down.
前記開閉部が鉛直軸周りに回動可能に構成される請求項2に記載のレドックスフロー電池。 The redox flow battery according to claim 2, wherein the opening/closing part is configured to be rotatable around a vertical axis. 前記隔壁が、孔を備え、
前記開閉部の昇降により、前記孔の開閉が行われる請求項2に記載のレドックスフロー電池。
the partition comprises a hole;
The redox flow battery according to claim 2, wherein the hole is opened and closed by moving up and down the opening and closing portion.
前記隔壁が、開閉部を備え、
前記開閉部が水平方向に開閉可能に構成される請求項1に記載のレドックスフロー電池。
the partition comprises an opening and closing part,
The redox flow battery according to claim 1, wherein the opening/closing portion is configured to be horizontally openable and closable.
前記隔壁が、開閉部を備え、
前記開閉部が水平軸周りに回動可能に構成される請求項1に記載のレドックスフロー電池。
the partition comprises an opening and closing part,
The redox flow battery according to claim 1, wherein the opening/closing part is configured to be rotatable around a horizontal axis.
前記電解液槽内に、攪拌装置を備える請求項1から6のいずれかに記載のレドックスフロー電池。 The redox flow battery according to any one of claims 1 to 6, wherein a stirring device is provided in said electrolyte bath. 前記正極電解液槽と接続された正極セルと、前記負極電解液槽と接続された負極セルと、を有する電池セルと、
前記電解液槽に貯留され、前記正極セル及び前記負極セルに供給される電解液と、を備え、
前記電解液が、原子価が変化する金属原子のイオンを含む請求項1から7のいずれかに記載のレドックスフロー電池。
a battery cell having a positive electrode cell connected to the positive electrode electrolyte bath and a negative electrode cell connected to the negative electrode electrolyte bath;
an electrolytic solution stored in the electrolytic solution tank and supplied to the positive electrode cell and the negative electrode cell,
The redox flow battery according to any one of claims 1 to 7, wherein the electrolyte contains ions of metal atoms with varying valences.
前記電解液が、バナジウムイオンを含む水溶液である請求項8に記載のレドックスフロー電池。 The redox flow battery according to claim 8, wherein the electrolytic solution is an aqueous solution containing vanadium ions. 請求項1から9のいずれかに記載のレドックスフロー電池の運転方法であって、
前記レドックスフロー電池の充放電を行う場合には、前記隔壁を閉めた状態で使用し、
前記レドックスフロー電池のリバンランスを行う場合には、前記隔壁を開けた状態で使用するレドックスフロー電池の運転方法。
A method for operating the redox flow battery according to any one of claims 1 to 9,
When charging and discharging the redox flow battery, the partition is closed and used,
A method of operating a redox flow battery in which the partition wall is opened when the redox flow battery is rebalanced.
JP2020516310A 2018-04-24 2019-04-19 Redox flow battery and its operation method Active JP7216080B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018083035 2018-04-24
JP2018083035 2018-04-24
PCT/JP2019/016816 WO2019208431A1 (en) 2018-04-24 2019-04-19 Redox flow battery and operation method thereof

Publications (2)

Publication Number Publication Date
JPWO2019208431A1 JPWO2019208431A1 (en) 2021-05-13
JP7216080B2 true JP7216080B2 (en) 2023-01-31

Family

ID=68295305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020516310A Active JP7216080B2 (en) 2018-04-24 2019-04-19 Redox flow battery and its operation method

Country Status (2)

Country Link
JP (1) JP7216080B2 (en)
WO (1) WO2019208431A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551934A (en) * 2020-11-24 2022-05-27 中国科学院大连化学物理研究所 Flow battery electrolyte storage tank and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188729A (en) 2006-01-12 2007-07-26 Sumitomo Electric Ind Ltd Method of regenerating vanadium redox flow battery
JP2012502445A (en) 2009-10-29 2012-01-26 ペキン プルーデント センチュリー テクノロジー カンパニーリミテッド Redox flow battery and method for operating the battery continuously for a long time
JP2014137946A (en) 2013-01-18 2014-07-28 Sumitomo Electric Ind Ltd Method for operating redox flow cell
CN104143649A (en) 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 Integrated electrolyte storage tank for flow cells
JP2016119258A (en) 2014-12-22 2016-06-30 住友電気工業株式会社 Operation method for redox flow cell, and redox flow cell system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558081B1 (en) * 2014-02-24 2015-10-06 오씨아이 주식회사 Redox flow battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188729A (en) 2006-01-12 2007-07-26 Sumitomo Electric Ind Ltd Method of regenerating vanadium redox flow battery
JP2012502445A (en) 2009-10-29 2012-01-26 ペキン プルーデント センチュリー テクノロジー カンパニーリミテッド Redox flow battery and method for operating the battery continuously for a long time
JP2014137946A (en) 2013-01-18 2014-07-28 Sumitomo Electric Ind Ltd Method for operating redox flow cell
CN104143649A (en) 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 Integrated electrolyte storage tank for flow cells
JP2016119258A (en) 2014-12-22 2016-06-30 住友電気工業株式会社 Operation method for redox flow cell, and redox flow cell system

Also Published As

Publication number Publication date
JPWO2019208431A1 (en) 2021-05-13
WO2019208431A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US9531028B2 (en) Redox flow battery
JP5007849B1 (en) Redox flow battery and operation method thereof
US9118064B2 (en) Redox flow battery
KR101809332B1 (en) Regenerating module for electrolyte of flow battery and regenerating method for electrolyte of flow battery using the same
JP5769070B2 (en) Redox flow battery
CN105680083B (en) The charging/discharging thereof of flow battery system and flow battery system
JP7145883B2 (en) Redox flow battery and its operation method
JP7216080B2 (en) Redox flow battery and its operation method
JP2014137946A (en) Method for operating redox flow cell
US11362347B2 (en) Advanced electrolyte mixing method for all vanadium flow batteries
KR20160085113A (en) Module for mixing of electrolyte and method for mixing of electrolyte for flow battery using the same
JP5769010B2 (en) Redox flow battery
WO2020130014A1 (en) Redox flow battery, method for operating same, and redox flow battery system
JPH07502370A (en) How to perform suitable electrochemical transformations with rechargeable batteries
WO2020122183A1 (en) Redox flow battery and method for operating same
KR101736539B1 (en) Module for regulating concentration of electrolyte and method for regulating concentration of electrolyte for flow battery using the same
JPH07153477A (en) Electrolyte flow type battery
JP2020107415A (en) Redox flow battery
WO2020130013A1 (en) Redox flow battery and operation method thereof
TW201931657A (en) Redox flow battery and operating method thereof
JPH01146267A (en) Operation of redox-flow cell
CN115275293A (en) Flow battery and control method thereof
KR20200086921A (en) Redox flow battery
JPH03147278A (en) Zinc-bromine battery
JPH0582034B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230119

R150 Certificate of patent or registration of utility model

Ref document number: 7216080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350