JP7215915B2 - Insulation monitoring device and method - Google Patents

Insulation monitoring device and method Download PDF

Info

Publication number
JP7215915B2
JP7215915B2 JP2019014930A JP2019014930A JP7215915B2 JP 7215915 B2 JP7215915 B2 JP 7215915B2 JP 2019014930 A JP2019014930 A JP 2019014930A JP 2019014930 A JP2019014930 A JP 2019014930A JP 7215915 B2 JP7215915 B2 JP 7215915B2
Authority
JP
Japan
Prior art keywords
voltage
time
measurement
monitoring
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019014930A
Other languages
Japanese (ja)
Other versions
JP2020122716A (en
Inventor
宏行 榊原
知司 座馬
英幸 廣井
明 日向野
基材 南方
弘展 山領
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hasegawa Electric Co Ltd
Original Assignee
Hasegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hasegawa Electric Co Ltd filed Critical Hasegawa Electric Co Ltd
Priority to JP2019014930A priority Critical patent/JP7215915B2/en
Publication of JP2020122716A publication Critical patent/JP2020122716A/en
Application granted granted Critical
Publication of JP7215915B2 publication Critical patent/JP7215915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

本発明は、変圧器の二次側電路が非接地配電方式で非接地状態にした回路構成で複数の分岐回路がある電路の絶縁劣化を監視する絶縁監視装置及び方法に関する。 TECHNICAL FIELD The present invention relates to an insulation monitoring apparatus and method for monitoring insulation deterioration in an electric line having a plurality of branch circuits in a circuit configuration in which the secondary electric line of a transformer is ungrounded in an ungrounded power distribution system.

変圧器の二次側を非接地とした非接地配電方式では、一相で絶縁抵抗が低下しても閉回路が形成されない。従って、一相の対地絶縁破壊(地絡)時にも電源の供給を確保できるので、変圧器の二次側電路全体の停電を回避することができる。この非接地配電方式によって一相の地絡時では変圧器の二次側電路全体の停電は防ぐことができるが、二相の地絡時では過電流遮断器が動作するような電流が流れ遮断器が動作し回路が停電してしまう可能性があるので、絶縁監視装置を設置して電路の絶縁低下を監視するようにしている。 In the ungrounded power distribution system in which the secondary side of the transformer is ungrounded, a closed circuit is not formed even if the insulation resistance of one phase decreases. Therefore, power supply can be ensured even in the event of a single-phase dielectric breakdown (ground fault), so power failure of the entire secondary circuit of the transformer can be avoided. This ungrounded power distribution system can prevent a power outage in the entire secondary circuit of the transformer in the event of a single-phase ground fault, but in the event of a two-phase ground fault, a current that will cause an overcurrent circuit breaker to operate will flow and cut off. Since there is a possibility that the equipment will operate and the circuit will lose power, an insulation monitoring device is installed to monitor the deterioration of the insulation of the electric circuit.

絶縁監視装置として、複数のバンクとこれらの各バンクから枝分れしている複数のフィーダとで構成された配電設備の各フィーダの漏れ電流を検出できるようにしたものがある(例えば、特許文献1参照)。また、主回路から分岐した分岐回路のどの分岐回路が絶縁低下したのかを監視できるようにしたものがある(例えば、特許文献2、特許文献3参照)。 As an insulation monitoring device, there is a device capable of detecting leakage current in each feeder of a power distribution facility composed of a plurality of banks and a plurality of feeders branching from each bank (for example, Patent Document 1). In addition, there is a technique that enables monitoring of which branch circuit of the branch circuit branched from the main circuit has deteriorated in insulation (for example, see Patent Document 2 and Patent Document 3).

特開2007-285929号公報JP 2007-285929 A 特開2005-195528号公報JP-A-2005-195528 特開2012-42417号公報JP 2012-42417 A

しかし、従来の非接地配電方式での絶縁監視装置では、変圧器の二次側電路に流れる漏れ電流は例えば0.14mAと非常に小さく、その漏れ電流を検出できる電流センサも高感度なものが必要となる。これは、変圧器の二次側電路の絶縁抵抗の算出には電流センサで検出した漏れ電流を必要とするからである。 However, in conventional insulation monitoring devices for non-grounded power distribution systems, the leakage current flowing in the secondary circuit of a transformer is very small, for example 0.14 mA, and the current sensor capable of detecting this leakage current is highly sensitive. necessary. This is because the leakage current detected by the current sensor is required to calculate the insulation resistance of the secondary circuit of the transformer.

一方、電流センサはフィーダの漏れ電流を電圧値で検出しているが、ノイズに埋もれそうな微弱な信号を増幅して検出しているため、電流センサの出力電圧は時間的に変化する。また、電流センサは構成材料や基板の半導体の特性によりその出力電圧には、周囲温度や周囲磁場の変化による変動分が加えられ,真値に対して誤差として影響する。 On the other hand, the current sensor detects the leakage current of the feeder as a voltage value, but since it detects by amplifying a weak signal that is likely to be buried in noise, the output voltage of the current sensor changes over time. Further, the output voltage of the current sensor is subject to fluctuation due to changes in the ambient temperature and the ambient magnetic field due to the characteristics of the constituent materials and the substrate semiconductor, which affects the true value as an error.

図9は電流センサの計測電圧の測定精度に影響を与える電流センサの出力電圧に含まれる変動分のグラフであり、図9(a)は電流センサの出力電圧に含まれる時間的な変動分のグラフ、図9(b)は電流センサの出力電圧に含まれる周囲温度の影響よる変動分のグラフ、図9(c)は電流センサの出力電圧に含まれる周囲磁場の影響よる変動分のグラフである。 FIG. 9 is a graph of the variation included in the output voltage of the current sensor that affects the measurement accuracy of the measured voltage of the current sensor, and FIG. Graph, FIG. 9(b) is a graph of the variation due to the influence of the ambient temperature contained in the output voltage of the current sensor, and FIG. 9(c) is a graph of the variation due to the influence of the ambient magnetic field contained in the output voltage of the current sensor. be.

図9(a)に示すように、電流センサの出力電圧はノイズに埋もれそうな微弱な信号を増幅して検出しているため、電流センサの出力電圧は常に変化し、また時間的にも変動する。図9(a)ではその変動幅は0.39Vである場合を示している。また、図9(b)に示すように、電流センサの出力電圧には周囲温度の影響よる変動分が含まれる。図9(b)ではその変動幅は1.63Vである場合を示している。さらに、図9(c)に示すように、電流センサの出力電圧には周囲磁場の影響よる変動分が含まれる。図9(c)中の「通電前」は二次側電路に負荷電流を通電する前の電流センサの出力電圧、図9(c)中の「通電中」は二次側電路に負荷電流を通電しているときの電流センサの出力電圧、図9(c)中の「通電後」は二次側電路に通電した後に負荷電流を止めた場合の電流センサの出力電圧である。図9(c)ではその変動幅は0.38Vである場合を示している。 As shown in FIG. 9(a), the output voltage of the current sensor amplifies and detects weak signals that are likely to be buried in noise, so the output voltage of the current sensor constantly changes and fluctuates over time. do. FIG. 9(a) shows a case where the variation width is 0.39V. Further, as shown in FIG. 9(b), the output voltage of the current sensor includes fluctuation due to the ambient temperature. FIG. 9(b) shows a case where the variation width is 1.63V. Furthermore, as shown in FIG. 9(c), the output voltage of the current sensor includes fluctuation due to the influence of the surrounding magnetic field. "Before energization" in Fig. 9(c) is the output voltage of the current sensor before the load current is energized to the secondary circuit, and "During energization" in Fig. 9(c) is the load current to the secondary circuit. The output voltage of the current sensor when energized, and "after energization" in FIG. 9(c) is the output voltage of the current sensor when the load current is stopped after energizing the secondary electric circuit. FIG. 9(c) shows a case where the variation width is 0.38V.

以上述べたように、変圧器の二次側電路に流れる漏れ電流は非常に小さく、また、電流センサの出力電圧に含まれる時間的な変動分、周囲温度や周囲磁場の変化よる変動分が電流センサの出力電圧に影響し、漏れ電流の測定精度を低下させている。従って、精度よく漏れ電流を検出することができず、絶縁抵抗の算出や絶縁劣化箇所の特定など精度向上が難しい。電流センサの出力電圧に含まれる時間的な変動分、周囲温度や周囲磁場の変化よる変動分は、経過時間が長くなると真値に対して誤差が大きくなる。 As described above, the leakage current flowing in the secondary circuit of the transformer is very small, and the temporal fluctuations contained in the output voltage of the current sensor and the fluctuations due to changes in the ambient temperature and magnetic field It affects the output voltage of the sensor and reduces the measurement accuracy of leakage current. Therefore, the leakage current cannot be detected with high accuracy, and it is difficult to improve the accuracy of calculating the insulation resistance and identifying the location of insulation deterioration. As the elapsed time increases, errors in the output voltage of the current sensor from the true value increase due to temporal fluctuations and fluctuations due to changes in ambient temperature and magnetic field.

本発明の目的は、非接地配電方式の変圧器の二次側電路の絶縁劣化箇所を精度よく特定でき、絶縁劣化箇所の絶縁抵抗を高精度に検出することができる絶縁監視装置及び方法を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide an insulation monitoring device and method that can accurately identify the location of insulation deterioration in the secondary circuit of a transformer of an ungrounded distribution system and can detect the insulation resistance of the insulation deterioration location with high accuracy. It is to be.

請求項1の発明に係る絶縁監視装置は、非接地配電方式の変圧器の二次側から引き出された主回路に複数のフィーダがある電路に対して重畳電圧を印加する重畳計測ユニットと重畳電圧により生じるフィーダの漏れ電流を計測して変圧器の二次側電路の絶縁劣化を監視する電流計測ユニットとを有した監視計測ユニットと、フィーダの分岐点の下流側に設けられフィーダの漏れ電流を電圧値で検出し監視計測ユニットに入力する電流センサと、監視計測ユニットの操作制御や監視計測ユニットからのデータを記録表示するとともに中央監視装置とのデータの送受信を行うパネルコンピュータとを備え、重畳計測ユニットは、電路の絶縁抵抗の計測監視を行う実施時間と計測監視を行わない停止時間とが予め周期的に設定され、実施時間中に電路に重畳電圧を印加し、所定の計測時間毎に電路の漏れ電流を検出して計測時間毎の絶縁抵抗を算出し、絶縁抵抗が閾値以下のときは絶縁劣化の発報を行い、停止時間中には重畳電圧の校正を行い、電流計測ユニットは、停止時間中に所定の零調整時間だけ電流センサの出力電圧を電流センサの計測電圧の基準値である零調整電圧として計測し、零調整電圧を計測した後の実施時間中に計測時間毎に電流センサの出力電圧を計測電圧として計測し、零調整電圧と計測時間毎の計測電圧との電圧差を求め差電圧が閾値より大きい電流センサの設置箇所を絶縁劣化箇所として特定することを特徴とする。 The insulation monitoring device according to the first aspect of the invention comprises a superimposed measurement unit that applies a superimposed voltage to an electric circuit having a plurality of feeders in a main circuit drawn from the secondary side of a transformer of an ungrounded distribution system, and a superimposed voltage. A monitoring and measuring unit that measures the leakage current of the feeder caused by the Equipped with a current sensor that detects the voltage value and inputs it to the monitoring and measuring unit, and a panel computer that controls the operation of the monitoring and measuring unit, records and displays data from the monitoring and measuring unit, and transmits and receives data to and from the central monitoring device. In the measurement unit, the implementation time for measuring and monitoring the insulation resistance of the electric circuit and the stop time for not performing measurement and monitoring are periodically set in advance, and the superimposed voltage is applied to the electric circuit during the implementation time, and at each predetermined measurement time Detects the leakage current of the electric circuit and calculates the insulation resistance for each measurement time. When the insulation resistance is below the threshold value, the insulation deterioration is reported, the superimposed voltage is calibrated during the stop time, and the current measurement unit During the stop time, the output voltage of the current sensor is measured as the zero adjustment voltage, which is the reference value of the measurement voltage of the current sensor, for a predetermined zero adjustment time. The output voltage of the current sensor is measured as the measured voltage, the voltage difference between the zero adjustment voltage and the measured voltage for each measurement time is obtained, and the installation location of the current sensor where the difference voltage is greater than the threshold is specified as the insulation deterioration location. do.

請求項2の発明に係る絶縁監視装置は、非接地配電方式の変圧器の二次側から引き出された主回路に複数のフィーダがある電路に対して重畳電圧を印加する重畳計測ユニットと重畳電圧により生じるフィーダの漏れ電流を計測して変圧器の二次側電路の絶縁劣化を監視する電流計測ユニットとを有した監視計測ユニットと、フィーダの分岐点の下流側に設けられフィーダの漏れ電流を電圧値で検出し監視計測ユニットに入力する電流センサと、監視計測ユニットの操作制御や監視計測ユニットからのデータを記録表示するとともに中央監視装置とのデータの送受信を行うパネルコンピュータとを備え、重畳計測ユニットは、電路の絶縁抵抗の計測監視を行う実施時間と計測監視を行わない停止時間とが予め周期的に設定され、さらに実施時間中に計測監視を休止する休止時間が設定され、停止時間及び休止時間以外の実施時間中に電路に重畳電圧を印加し、所定の計測時間毎に電路の漏れ電流を検出して計測時間毎の絶縁抵抗を算出し、絶縁抵抗が閾値以下のときは絶縁劣化の発報を行い、絶縁劣化の発報があったとき計測監視を休止時間だけ休止し、停止時間中には重畳電圧の校正を行い、電流計測ユニットは、停止時間及び休止時間中に所定の零調整時間だけ電流センサの出力電圧を電流センサの計測電圧の基準値である零調整電圧として測定し、零調整電圧を検出した後に1回めの計測時間においてのみ電流センサの出力電圧を計測電圧として計測し、零調整電圧と1回めの計測時間においてのみ計測した1個の計測電圧との電圧差を求め、差電圧が閾値より大きい電流センサの設置箇所を絶縁劣化箇所として特定することを特徴とする。 The insulation monitoring device according to the invention of claim 2 comprises a superimposed measurement unit for applying a superimposed voltage to an electric circuit having a plurality of feeders in a main circuit drawn from the secondary side of a transformer of an ungrounded distribution system, and a superimposed voltage. A monitoring and measuring unit that measures the leakage current of the feeder caused by the Equipped with a current sensor that detects the voltage value and inputs it to the monitoring and measuring unit, and a panel computer that controls the operation of the monitoring and measuring unit, records and displays data from the monitoring and measuring unit, and transmits and receives data to and from the central monitoring device. In the measurement unit, an implementation time for measuring and monitoring the insulation resistance of the electric circuit and a stop time for not performing measurement monitoring are periodically set in advance, and a break time for stopping measurement monitoring during the implementation time is set. And during the implementation time other than the rest time, apply a superimposed voltage to the electric circuit, detect the leakage current of the electric circuit for each predetermined measurement time, calculate the insulation resistance for each measurement time, and insulate when the insulation resistance is less than the threshold Deterioration is reported, measurement monitoring is suspended for the suspension time when insulation deterioration is reported, superimposed voltage is calibrated during the suspension time, and the current measurement unit performs a predetermined Measure the output voltage of the current sensor as the zero adjustment voltage, which is the reference value of the measurement voltage of the current sensor, for the zero adjustment time of , and measure the output voltage of the current sensor only during the first measurement time after detecting the zero adjustment voltage. Measure as voltage, find the voltage difference between the zero adjustment voltage and one measurement voltage measured only during the first measurement time, and specify the installation location of the current sensor where the difference voltage is greater than the threshold as the insulation deterioration location characterized by

請求項3の発明に係る絶縁監視装置は、零調整電圧は、停止時間のうち、電流センサの計測電圧の測定精度に影響を与える電流センサの出力電圧に含まれる変動分の影響が少ない時間帯の停止時間中に計測することを特徴とする。 In the insulation monitoring device according to the third aspect of the present invention, the zero adjustment voltage is set during the stop time, during which the influence of fluctuations included in the output voltage of the current sensor that affects the measurement accuracy of the voltage measured by the current sensor is small. It is characterized by measuring during the stop time of

請求項4の発明に係る絶縁監視装置は、電流センサの計測電圧の測定精度に影響を与える電流センサの出力電圧に含まれる変動分の影響が大きい時間帯の実施時間は、変動分の影響が少ない時間帯の実施時間より長くすることを特徴とする請求項2に記載の絶縁監視装置。 In the insulation monitoring device according to the invention of claim 4, the influence of the fluctuation included in the output voltage of the current sensor that affects the measurement accuracy of the voltage measured by the current sensor is large. 3. The insulation monitoring device according to claim 2, wherein the execution time is set longer than that of the short time period.

請求項5の発明に係る絶縁監視方法は、非接地配電方式の変圧器の二次側から引き出された主回路に複数のフィーダがある電路に対して重畳電圧を印加する重畳計測ユニットと重畳電圧により生じるフィーダの漏れ電流を計測して変圧器の二次側電路の絶縁劣化を監視する電流計測ユニットとを有した監視計測ユニットと、フィーダの分岐点の下流側に設けられフィーダの漏れ電流を電圧値で検出し監視計測ユニットに入力する電流センサと、監視計測ユニットの操作制御や監視計測ユニットからのデータを記録表示するとともに中央監視装置とのデータの送受信を行うパネルコンピュータとを備えた絶縁監視装置を用いて電路の絶縁劣化を監視する絶縁監視方法において、重畳計測ユニットは、周期的に予め設定された電路の絶縁抵抗の計測監視を行わない停止時間のときは重畳電圧の校正を行い、周期的に予め設定された電路の絶縁抵抗の計測監視を行う実施時間が来たときまたは電流計測ユニットから重畳電圧の印加指令あったときに電路に重畳電圧を印加し、所定の計測時間毎に電路の漏れ電流を検出して重畳電圧及び漏れ電流に基づいて計測時間毎の絶縁抵抗を算出し、絶縁抵抗が閾値以下のときは絶縁劣化を発報し、電流計測ユニットは、実施時間の開始前に零調整時間だけ電流センサの出力電圧を電流センサの計測電圧の基準値である零調整電圧として計測し、零調整電圧を計測した後の実施時間中に重畳計測ユニットに重畳電圧の印加指令を出力し、電路に重畳電圧が印加されている状態で計測時間毎に電流センサの出力電圧を計測電圧として計測し、零調整電圧と計測時間毎の計測電圧との電圧差を求め、差電圧が閾値より大きい電流センサの設置箇所を絶縁劣化箇所として特定することを特徴とする。 The insulation monitoring method according to the invention of claim 5 comprises a superimposed measurement unit for applying a superimposed voltage to an electric circuit having a plurality of feeders in a main circuit drawn from the secondary side of a transformer of an ungrounded distribution system, and a superimposed voltage. A monitoring and measuring unit that measures the leakage current of the feeder caused by the Isolation equipped with a current sensor that detects voltage values and inputs them to the monitoring and measuring unit, and a panel computer that controls the operation of the monitoring and measuring unit, records and displays data from the monitoring and measuring unit, and transmits and receives data to and from the central monitoring device. In the insulation monitoring method for monitoring insulation deterioration of an electric circuit using a monitoring device, the superimposed measurement unit calibrates the superimposed voltage during a stop time during which measurement and monitoring of the insulation resistance of the electric circuit is not performed periodically. , When the execution time for measuring and monitoring the insulation resistance of the electric circuit set in advance periodically or when there is a command to apply the superimposed voltage from the current measurement unit, the superimposed voltage is applied to the electric circuit, and every predetermined measurement time Then, the leakage current of the electric circuit is detected, and the insulation resistance is calculated for each measurement time based on the superimposed voltage and leakage current. When the insulation resistance is less than the threshold value, the insulation deterioration is reported, and the current measurement unit Before the start, the output voltage of the current sensor is measured for the zero adjustment time as the zero adjustment voltage, which is the reference value of the measurement voltage of the current sensor. Output the command, measure the output voltage of the current sensor as the measurement voltage for each measurement time in a state where the superimposed voltage is applied to the electric circuit, obtain the voltage difference between the zero adjustment voltage and the measurement voltage for each measurement time, and calculate the difference The method is characterized in that a location where a current sensor having a voltage higher than a threshold value is specified as an insulation deterioration location.

請求項6の発明に係る絶縁監視方法は、非接地配電方式の変圧器の二次側から引き出された主回路に複数のフィーダがある電路に対して重畳電圧を印加する重畳計測ユニットと重畳電圧により生じるフィーダの漏れ電流を計測して変圧器の二次側電路の絶縁劣化を監視する電流計測ユニットとを有した監視計測ユニットと、フィーダの分岐点の下流側に設けられフィーダの漏れ電流を電圧値で検出し監視計測ユニットに入力する電流センサと、監視計測ユニットの操作制御や監視計測ユニットからのデータを記録表示するとともに中央監視装置とのデータの送受信を行うパネルコンピュータとを備えた絶縁監視装置を用いて電路の絶縁劣化を監視する絶縁監視方法において、重畳計測ユニットは、周期的に予め設定された電路の絶縁抵抗の計測監視を行わない停止時間のときは重畳電圧の校正を行い、周期的に予め設定された電路の絶縁抵抗の計測監視を行う実施時間が来たときまたは電流計測ユニットから重畳電圧の印加指令あったときに電路に重畳電圧を印加し、所定の計測時間毎に電路の漏れ電流を検出して重畳電圧及び漏れ電流に基づいて計測時間毎の絶縁抵抗を算出し、絶縁抵抗が閾値以下のときは絶縁劣化を発報し、絶縁劣化の発報があったとき計測監視を予め設定された休止時間だけ休止し、電流計測ユニットは、実施時間の開始の所定の零調整時間前または重畳計測ユニットから絶縁劣化の発報があったときに所定の零調整時間だけ電流センサの出力電圧を電流センサの計測電圧の基準値である零調整電圧として計測し、零調整電圧を計測した後の実施時間中に重畳計測ユニットに重畳電圧の印加指令を出力し、電路に重畳電圧が印加されている状態で1回めの計測時間においてのみ電流センサの出力電圧を計測電圧として計測し、零調整電圧と1回めの計測時間においてのみ計測した1個の計測電圧との電圧差を求め、差電圧が閾値より大きい電流センサの設置箇所を絶縁劣化箇所として特定することを特徴とする。 The insulation monitoring method according to the invention of claim 6 includes a superimposed measurement unit for applying a superimposed voltage to an electric circuit having a plurality of feeders in a main circuit drawn from the secondary side of a transformer of an ungrounded distribution system, and a superimposed voltage. A monitoring and measuring unit that measures the leakage current of the feeder caused by the Isolation equipped with a current sensor that detects voltage values and inputs them to the monitoring and measuring unit, and a panel computer that controls the operation of the monitoring and measuring unit, records and displays data from the monitoring and measuring unit, and transmits and receives data to and from the central monitoring device. In the insulation monitoring method for monitoring insulation deterioration of an electric circuit using a monitoring device, the superimposed measurement unit calibrates the superimposed voltage during a stop time during which measurement and monitoring of the insulation resistance of the electric circuit is not performed periodically. , When the execution time for measuring and monitoring the insulation resistance of the electric circuit set in advance periodically or when there is a command to apply the superimposed voltage from the current measurement unit, the superimposed voltage is applied to the electric circuit, and every predetermined measurement time Then, the leakage current of the circuit is detected, and the insulation resistance is calculated for each measurement time based on the superimposed voltage and leakage current. When measurement monitoring is paused for a preset rest time , the current measurement unit performs the predetermined zero adjustment time before the start of the implementation time or when there is an insulation deterioration report from the superimposition measurement unit. The output voltage of the current sensor is measured as the zero adjustment voltage, which is the reference value of the measurement voltage of the current sensor, and the superimposition voltage application command is output to the superimposition measurement unit during the implementation time after measuring the zero adjustment voltage, and the electric circuit The output voltage of the current sensor is measured as the measurement voltage only at the first measurement time in a state where the superimposed voltage is applied to the zero adjustment voltage and the one measurement voltage measured only at the first measurement time. is obtained, and the location where the current sensor is installed where the differential voltage is greater than the threshold is specified as the insulation deterioration location.

請求項1の発明によれば、実施時間において重畳電圧と漏れ電流に基づいて電路の絶縁抵抗を算出し、絶縁抵抗が閾値以下であるときは絶縁劣化であることを発報するので、変圧器の二次側電路で絶縁劣化が発生していることを検出できる。また、停止時間において重畳電圧の補正を行うので、漏れ電流を高精度に検出でき絶縁抵抗の算出の精度を向上できる。停止時間中には所定の零調整時間だけ電流センサの出力電圧を電流センサの計測電圧の基準値である零調整電圧として測定し、この零調整電圧とその後の計測時間毎に計測した計測電圧との電圧差が閾値より大きい電流センサの設置箇所を絶縁劣化箇所として特定する。従って、電流センサの計測電圧の基準値である零調整電圧は停止時間の度に更新され、電流センサの計測電圧の測定精度に影響する電流センサの出力電圧に含まれる時間的な変動分、周囲温度や周囲磁場の変化よる変動分の影響を少なくした計測電圧で絶縁劣化箇所を特定できる。これにより、変圧器の二次側電路の停電範囲を絞り込むことが可能となり、停電復旧作業を大幅に短縮できる。 According to the invention of claim 1, the insulation resistance of the electric circuit is calculated based on the superimposed voltage and the leakage current during the execution time, and when the insulation resistance is equal to or less than the threshold value, the insulation deterioration is reported. It is possible to detect that insulation deterioration has occurred in the secondary side electric circuit. Moreover, since the superimposed voltage is corrected during the stop time, the leakage current can be detected with high accuracy, and the accuracy of calculation of the insulation resistance can be improved. During the stop time, the output voltage of the current sensor is measured for a predetermined zero adjustment time as the zero adjustment voltage, which is the reference value of the measurement voltage of the current sensor, and this zero adjustment voltage and the measurement voltage measured at each subsequent measurement time are combined. The installation location of the current sensor where the voltage difference between is greater than the threshold is specified as the insulation deterioration location. Therefore, the zero adjustment voltage, which is the reference value of the voltage measured by the current sensor, is updated each time the stop time is reached. It is possible to identify the location of insulation deterioration with a measured voltage that is less affected by fluctuations due to changes in temperature and the surrounding magnetic field. As a result, it becomes possible to narrow down the range of power outages in the secondary circuit of the transformer, and to greatly shorten the power outage recovery work.

請求項2の発明によれば、請求項1の発明に対し絶縁劣化の発報があったとき計測監視を休止時間だけ休止し、停止時間及び休止時間中に零調整電圧を測定し、零調整電圧を検出した後に1回めの計測時間においてのみ電流センサの出力電圧を計測電圧として計測し、零調整電圧と1回めの計測時間においてのみ計測した1個の計測電圧との電圧差を求め、その差電圧が閾値より大きい電流センサの設置箇所を絶縁劣化箇所として特定する。従って、電流センサの計測電圧の基準値である零調整電圧は停止時間及び休止時間の度に更新され、零調整電圧を更新した直後の電流センサの計測電圧を用いるので、電流センサの計測電圧の測定精度に影響する電流センサの出力電圧に含まれる時間的な変動分、周囲温度や周囲磁場の変化よる変動分の影響を少なくした計測電圧で絶縁劣化箇所を特定できる。これにより、変圧器の二次側電路の停電範囲を絞り込むことが可能となり、停電復旧作業を大幅に短縮できる。 According to the invention of claim 2, when there is an alarm of insulation deterioration in the invention of claim 1, the measurement and monitoring are suspended for the suspension time, the zero adjustment voltage is measured during the suspension time and the suspension time, and the zero adjustment is performed. After detecting the voltage, measure the output voltage of the current sensor as the measured voltage only at the first measurement time, and obtain the voltage difference between the zero adjustment voltage and the one measurement voltage measured only at the first measurement time. , the installation location of the current sensor whose differential voltage is greater than the threshold is specified as the insulation deterioration location. Therefore, the zero adjustment voltage, which is the reference value of the voltage measured by the current sensor, is updated every stop time and rest time, and the voltage measured by the current sensor immediately after updating the zero adjustment voltage is used. It is possible to specify the location of insulation deterioration with a measured voltage that reduces the effects of temporal fluctuations contained in the output voltage of the current sensor that affect measurement accuracy and fluctuations due to changes in the ambient temperature and magnetic field. As a result, it becomes possible to narrow down the range of power outages in the secondary circuit of the transformer, and to greatly shorten the power outage recovery work.

請求項3の発明によれば、請求項2の発明の効果に加え、停止時間のうち、電流センサの計測電圧の測定精度に影響を与える電流センサの出力電圧に含まれる変動分の影響が少ない時間帯の停止時間中に零調整電圧を計測するので、電流センサの計測電圧の基準値である零調整電圧の精度をより向上させることができる。 According to the invention of claim 3, in addition to the effect of the invention of claim 2, the influence of fluctuations included in the output voltage of the current sensor that affects the measurement accuracy of the voltage measured by the current sensor during the stop time is small. Since the zero adjustment voltage is measured during the stop time of the time slot, it is possible to further improve the accuracy of the zero adjustment voltage, which is the reference value of the voltage measured by the current sensor.

請求項4の発明によれば、請求項2の発明の効果に加え、電流センサの計測電圧の測定精度に影響を与える電流センサの出力電圧に含まれる変動分の影響が大きい時間帯の実施時間は、変動分の影響が少ない時間帯の実施時間より長くするので、変動分の影響が大きい時間帯での零調整電圧の更新を避けることができる。 According to the invention of claim 4, in addition to the effect of the invention of claim 2, the execution time of the time period when the influence of the fluctuation included in the output voltage of the current sensor that affects the measurement accuracy of the measured voltage of the current sensor is large. is set to be longer than the execution time in the time period when the influence of the fluctuation is small, it is possible to avoid updating the zero adjustment voltage in the time period when the influence of the fluctuation is large.

請求項5の発明によれば、重畳計測ユニットは、周期的に予め設定された電路の絶縁抵抗の計測監視を行わない停止時間のときは重畳電圧の校正を行うので、漏れ電流を高精度に検出でき絶縁抵抗の算出の精度を向上できる。また、実施時間が来たときまたは電流計測ユニットから重畳電圧の印加指令あったときに電路に重畳電圧を印加し、所定の計測時間毎に電路の漏れ電流を検出して重畳電圧及び漏れ電流に基づいて計測時間毎の絶縁抵抗を算出し、絶縁抵抗が閾値以下のときは絶縁低下を発報するので、変圧器の二次側電路で絶縁劣化が発生していることを検出できる。 According to the fifth aspect of the invention, the superimposed measurement unit calibrates the superimposed voltage during a period of stop time during which the measurement and monitoring of the insulation resistance of the electric circuit is not performed periodically. Therefore, the leakage current can be accurately measured. It can be detected and the accuracy of calculation of insulation resistance can be improved. In addition, when the execution time comes or when there is a command to apply the superimposed voltage from the current measurement unit, the superimposed voltage is applied to the electric circuit, and the leakage current of the electric circuit is detected at each predetermined measurement time to detect the superimposed voltage and the leakage current. Based on this, the insulation resistance is calculated for each measurement time, and when the insulation resistance is equal to or less than the threshold value, the insulation deterioration is reported, so it is possible to detect that the insulation deterioration has occurred in the secondary circuit of the transformer.

また、電流計測ユニットは実施時間の開始前に零調整時間だけ電流センサの出力電圧を電流センサの計測電圧の基準値である零調整電圧として計測し、電路に重畳電圧が印加されている状態で計測時間毎に電流センサの出力電圧を計測電圧として計測し、零調整電圧と計測時間毎の計測電圧との電圧差が閾値より大きい電流センサの設置箇所を絶縁劣化箇所として特定する。従って、零調整電圧は停止時間の度に更新されるので、電流センサの計測電圧の測定精度に影響する電流センサの出力電圧に含まれる時間的な変動分、周囲温度や周囲磁場の変化よる変動分の影響を少なくした計測電圧で絶縁劣化箇所を特定できる。これにより、変圧器の二次側電路の停電範囲を絞り込むことが可能となり、停電復旧作業を大幅に短縮できる。 In addition, the current measurement unit measures the output voltage of the current sensor for the zero adjustment time before the start of the implementation time as the zero adjustment voltage which is the reference value of the measurement voltage of the current sensor, and in the state where the superimposed voltage is applied to the electric circuit The output voltage of the current sensor is measured as the measurement voltage for each measurement time, and the installation location of the current sensor where the voltage difference between the zero adjustment voltage and the measurement voltage for each measurement time is greater than the threshold is specified as the insulation deterioration location. Therefore, since the zero-adjustment voltage is updated each time the stop time is reached, the temporal fluctuations included in the output voltage of the current sensor that affect the measurement accuracy of the voltage measured by the current sensor, fluctuations due to changes in the ambient temperature and magnetic field, etc. It is possible to identify the location of insulation deterioration with the measured voltage that reduces the influence of the minute. As a result, it becomes possible to narrow down the range of power outages in the secondary circuit of the transformer, and to greatly shorten the power outage recovery work.

請求項6の発明によれば、重畳計測ユニットは、周期的に予め設定された電路の絶縁抵抗の計測監視を行わない停止時間のときは重畳電圧の校正を行うので、漏れ電流を高精度に検出でき絶縁抵抗の算出の精度を向上できる。周期的に予め設定された電路の絶縁抵抗の計測監視を行う実施時間が来たときまたは電流計測ユニットから重畳電圧の印加指令あったときに電路に重畳電圧を印加し、所定の計測時間毎に電路の漏れ電流を検出して重畳電圧及び漏れ電流に基づいて計測時間毎の絶縁抵抗を算出し、絶縁抵抗が閾値以下のときは絶縁低下を発報するので、変圧器の二次側電路で絶縁劣化が発生していることを検出できる。 According to the sixth aspect of the invention, the superimposed measurement unit calibrates the superimposed voltage during a period of stop time during which the measurement and monitoring of the insulation resistance of the electric circuit is not performed. It can be detected and the accuracy of calculation of insulation resistance can be improved. When the execution time for measuring and monitoring the insulation resistance of the electric circuit set in advance periodically or when there is a command to apply the superimposed voltage from the current measurement unit, the superimposed voltage is applied to the electric circuit, and at each predetermined measurement time It detects the leakage current in the circuit and calculates the insulation resistance for each measurement time based on the superimposed voltage and leakage current. It can detect the occurrence of insulation deterioration.

また、電流計測ユニットは絶縁劣化の発報があったとき計測監視を休止時間だけ休止し、実施時間の開始の所定の零調整時間前または重畳計測ユニットから絶縁劣化の発報があったときに所定の零調整時間だけ電流センサの出力電圧を電流センサの計測電圧の基準値である零調整電圧として計測し、電路に重畳電圧が印加されている状態で1回めの計測時間においてのみ電流センサの出力電圧を計測電圧として計測し、零調整電圧と1回めの計測時間においてのみ計測した1個の計測電圧との差電圧が閾値より大きい電流センサの設置箇所を絶縁劣化箇所として特定する。従って、零調整電圧は停止時間及び休止時間の度に更新され、零調整電圧を更新した直後の電流センサの計測電圧を用いるので、電流センサの計測電圧の測定精度に影響する電流センサの出力電圧に含まれる時間的な変動分、周囲温度や周囲磁場の変化よる変動分の影響を少なくした計測電圧で絶縁劣化箇所を特定できる。これにより、変圧器の二次側電路の停電範囲を絞り込むことが可能となり、停電復旧作業を大幅に短縮できる。 In addition, the current measurement unit pauses measurement monitoring for the pause time when there is an insulation deterioration report, and before the predetermined zero adjustment time before the start of the implementation time or when the superimposition measurement unit issues an insulation deterioration report. The output voltage of the current sensor is measured for a predetermined zero adjustment time as the zero adjustment voltage, which is the reference value of the measured voltage of the current sensor. is measured as the measured voltage, and the installation location of the current sensor where the difference voltage between the zero adjustment voltage and one measured voltage measured only in the first measurement time is greater than the threshold is specified as the insulation deterioration location. Therefore, the zero adjustment voltage is updated every stop time and rest time, and the measured voltage of the current sensor immediately after updating the zero adjustment voltage is used. It is possible to specify the location of insulation deterioration with the measured voltage that reduces the influence of the temporal fluctuations contained in , and the fluctuations due to changes in the ambient temperature and the surrounding magnetic field. As a result, it becomes possible to narrow down the range of power outages in the secondary circuit of the transformer, and to greatly shorten the power outage recovery work.

本発明の第1実施形態に係る絶縁監視装置の構成図。1 is a configuration diagram of an insulation monitoring device according to a first embodiment of the present invention; FIG. 図1に示した本発明の第1実施形態の絶縁監視装置の監視計測ユニットの動作に一例を示すタイムチャート。4 is a time chart showing an example of the operation of the monitoring and measuring unit of the insulation monitoring device according to the first embodiment of the present invention shown in FIG. 1; 電流計測ユニットでの電流センサの漏れ電流の検出の仕方の説明図。FIG. 4 is an explanatory diagram of how to detect a leakage current of a current sensor in a current measuring unit; 本発明の第2実施形態に係る絶縁監視装置の構成図。The block diagram of the insulation monitoring apparatus which concerns on 2nd Embodiment of this invention. 図4に示した本発明の第2実施形態の絶縁監視装置の監視計測ユニット16の動作の一例を示すタイムチャート。5 is a time chart showing an example of the operation of the monitoring and measuring unit 16 of the insulation monitoring device according to the second embodiment of the present invention shown in FIG. 4; 図4に示した本発明の第2実施形態の絶縁監視装置の監視計測ユニット16の動作の他の一例を示すタイムチャート。5 is a time chart showing another example of the operation of the monitoring and measuring unit 16 of the insulation monitoring device according to the second embodiment of the present invention shown in FIG. 4; 本発明の第3実施形態に係る絶縁監視方法の処理内容を示すフローチャート。FIG. 11 is a flow chart showing processing contents of an insulation monitoring method according to a third embodiment of the present invention; FIG. 本発明の第4実施形態に係る絶縁監視方法の処理内容を示すフローチャート。The flowchart which shows the processing content of the insulation monitoring method which concerns on 4th Embodiment of this invention. 電流センサの計測電圧の測定精度に影響を与える電流センサの出力電圧に含まれる変動分のグラフ。Graph of variation included in the output voltage of the current sensor that affects the measurement accuracy of the measured voltage of the current sensor.

以下、本発明の実施形態を説明する。図1は本発明の第1実施形態に係る絶縁監視装置の構成図である。非接地配電方式の絶縁監視装置には、監視対象の電路に交流(低周波数)を重畳する方式と直流を重畳する方式との二つの方式がある。図1では監視対象である変圧器11の二次側電路に対地静電容量の影響を受けない直流を重畳して二次側電路の絶縁劣化箇所を監視する絶縁監視装置の一例を示している。 Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of an insulation monitoring device according to a first embodiment of the present invention. There are two types of insulation monitoring devices for non-grounded distribution systems: one that superimposes alternating current (low frequency) on the electric circuit to be monitored, and the other that superimposes direct current. FIG. 1 shows an example of an insulation monitoring device that superimposes a direct current, which is not affected by ground capacitance, on the secondary-side electric line of a transformer 11 to be monitored and monitors the location of insulation deterioration in the secondary-side electric line. .

図1において、非接地配電方式の変圧器11の一次側の交流電源12から二次側電路の主回路13に電力が供給される。主回路13から複数のフィーダ14が引き出されるが、図1では2個のフィーダ14a、14bが引き出され、それぞれのフィーダ14a、14bにそれぞれ負荷15a、15bが接続されているものを示している。 In FIG. 1, power is supplied from an AC power supply 12 on the primary side of a transformer 11 of an ungrounded power distribution system to a main circuit 13 on the secondary side electric circuit. A plurality of feeders 14 are drawn from the main circuit 13, and FIG. 1 shows that two feeders 14a and 14b are drawn and loads 15a and 15b are connected to the feeders 14a and 14b, respectively.

絶縁監視装置は、電路の絶縁劣化を監視する監視計測ユニット16と、フィーダ14a、14bの漏れ電流をそれぞれ検出する電流センサ17a、17bと、監視計測ユニット16の操作制御やデータを記録表示するパネルコンピュータ18とから構成されている。監視計測ユニット16は重畳計測ユニット19と電流計測ユニット20とを有し、重畳計測ユニット19から二次側電路に重畳電圧Vtを印加し、漏れ電流Igより二次側電路全体の絶縁抵抗Rgを求め絶縁劣化を監視する。一方、電流センサ17a、17bは漏れ電流Igを電圧値で検出し、電流計測ユニット20は電流流センサ17a、17bで検出されるフィーダ14の漏れ電流Igに基づいて絶縁劣化を監視する。 The insulation monitoring device includes a monitoring and measuring unit 16 for monitoring insulation deterioration of the electric circuit, current sensors 17a and 17b for detecting leak currents in the feeders 14a and 14b, respectively, and a panel for recording and displaying operation control and data of the monitoring and measuring unit 16. computer 18. The monitoring and measuring unit 16 has a superimposed measurement unit 19 and a current measurement unit 20. A superimposed voltage Vt is applied from the superimposed measurement unit 19 to the secondary electric circuit, and the insulation resistance Rg of the entire secondary electric circuit is measured from the leakage current Ig. Monitor the required insulation deterioration. On the other hand, the current sensors 17a and 17b detect the leak current Ig as a voltage value, and the current measurement unit 20 monitors insulation deterioration based on the leak current Ig of the feeder 14 detected by the current sensors 17a and 17b.

監視計測ユニット16の重畳計測ユニット19は、二次側電路に直流の重畳電圧Vtを印加するための直流電源22と、直流電源22を大地に接地するためのスイッチ23aと、内部抵抗Roに並列に接続され重畳電圧Vtの印加に伴って二次側電路に流れる漏れ電流Igを電圧に変換して検出する電圧計24と、直流電源22と内部抵抗Roとの直列回路に基準抵抗Rrとスイッチ23bとの直列回路が並列に接続されて構成された重畳電圧校正部32と、重畳電圧Vtと電圧計24で検出された電圧値の漏れ電流Igに基づいて二次側電路の絶縁抵抗Rgを算出する絶縁抵抗算出部25と、絶縁抵抗算出部25で算出した絶縁抵抗Rgが閾値RL以下であるときは絶縁劣化であることを発報する絶縁劣化発報部26とを有している。 The superimposed measurement unit 19 of the monitoring and measurement unit 16 includes a DC power supply 22 for applying a DC superimposed voltage Vt to the secondary electric circuit, a switch 23a for grounding the DC power supply 22, and an internal resistor Ro. A voltmeter 24 that is connected to and detects a leakage current Ig flowing in the secondary electric circuit with the application of the superimposed voltage Vt by converting it into a voltage, and a series circuit of a DC power supply 22 and an internal resistor Ro, a reference resistor Rr and a switch 23b are connected in parallel, and the insulation resistance Rg of the secondary electric circuit is adjusted based on the superimposed voltage Vt and the leakage current Ig of the voltage value detected by the voltmeter 24. and an insulation deterioration alarm unit 26 that alarms insulation deterioration when the insulation resistance Rg calculated by the insulation resistance calculator 25 is equal to or less than a threshold value RL.

絶縁抵抗算出部25は、周期的に予め設定された二次側電路の絶縁抵抗Rgの計測監視を行う実施時間T1と計測監視を行わない停止時間T2とを有する。そして、絶縁抵抗算出部25は、実施時間T1においてスイッチ23aを閉じて直流電源22から二次側電路に重畳電圧Vtを印加する。つまり、絶縁抵抗算出部25は、実施時間T1において、重畳電圧Vtと電圧計24で検出された電圧値の漏れ電流Igに基づいて二次側電路の絶縁抵抗Rgを算出することになる。二次側電路の絶縁抵抗Rgはパネルコンピュータ18に出力される。また、スイッチ23aの開閉状態は絶縁抵抗算出部25から監視計測ユニット16の電流計測ユニット20の零調整電圧検出部27に出力される。絶縁劣化発報部26は、実施時間T1中において絶縁抵抗算出部25で算出した絶縁抵抗Rgが閾値RL以下であるときは絶縁劣化であることを発報し、絶縁抵抗Rgが閾値RLを越えたときは発報を停止する。絶縁劣化発報部26の発報はパネルコンピュータ18に出力される。 The insulation resistance calculation unit 25 has an execution time T1 for measuring and monitoring the insulation resistance Rg of the secondary electric circuit and a stop time T2 for not performing measurement and monitoring, which are set periodically in advance. Then, the insulation resistance calculator 25 closes the switch 23a at the implementation time T1 to apply the superimposed voltage Vt from the DC power supply 22 to the secondary electric circuit. That is, the insulation resistance calculation unit 25 calculates the insulation resistance Rg of the secondary electric circuit based on the superimposed voltage Vt and the leakage current Ig of the voltage value detected by the voltmeter 24 at the implementation time T1. The insulation resistance Rg of the secondary electric circuit is output to the panel computer 18 . The open/closed state of the switch 23 a is output from the insulation resistance calculation section 25 to the zero adjustment voltage detection section 27 of the current measurement unit 20 of the monitoring measurement unit 16 . The insulation deterioration alarm unit 26 alarms insulation deterioration when the insulation resistance Rg calculated by the insulation resistance calculation unit 25 is equal to or less than the threshold RL during the execution time T1, and the insulation resistance Rg exceeds the threshold RL. Stops the alarm when The alarm issued by the insulation deterioration alarm unit 26 is output to the panel computer 18 .

重畳電圧校正部32のスイッチ23bはスイッチ23aが開いているときに閉じ、スイッチ23aが閉じているときに開く。つまり、重畳電圧校正部32は絶縁抵抗Rgの計測監視を行わない停止時間T2中に重畳電圧Vtの校正を行うものであり、重畳電圧校正部32のスイッチ23bが閉じると、直流電源22と内部抵抗Roと基準抵抗Rrとの直列回路が形成される。絶縁抵抗算出部25は、このときの内部抵抗Roの電圧値を漏れ電流Igの基準値電圧として記憶しておき、実際に検出した漏れ電流Igに対して基準値電圧を基準として補正を行う。 The switch 23b of the superimposed voltage calibration unit 32 is closed when the switch 23a is open, and is opened when the switch 23a is closed. In other words, the superimposed voltage calibration unit 32 calibrates the superimposed voltage Vt during the stop time T2 during which the measurement and monitoring of the insulation resistance Rg are not performed. A series circuit of the resistor Ro and the reference resistor Rr is formed. The insulation resistance calculator 25 stores the voltage value of the internal resistance Ro at this time as a reference value voltage of the leakage current Ig, and corrects the actually detected leakage current Ig based on the reference value voltage.

次に、監視計測ユニット16の電流計測ユニット20は、電流センサ17a、17bの出力電圧を電流センサ17a、17bの計測電圧Vsの基準値である零調整電圧V0として計測する零調整電圧検出部27と、重畳計測ユニット19の直流電源22に対し二次側電路への重畳電圧Vtの印加指令を出力する重畳電圧印加部28と、電流センサ17a、17bの出力電圧を所定の計測時間毎に計測電圧Vsとして計測する連続的電圧計測部29と、絶縁劣化箇所を特定する絶縁劣化箇所判定部30とを有する。 Next, the current measurement unit 20 of the monitoring measurement unit 16 measures the output voltages of the current sensors 17a and 17b as the zero adjustment voltage V0 which is the reference value of the measurement voltage Vs of the current sensors 17a and 17b. A superimposed voltage application unit 28 that outputs a command to apply a superimposed voltage Vt to the secondary electric circuit to the DC power supply 22 of the superimposed measurement unit 19, and the output voltages of the current sensors 17a and 17b are measured every predetermined measurement time. It has a continuous voltage measuring unit 29 that measures the voltage Vs and an insulation deterioration point determination unit 30 that identifies an insulation deterioration point.

零調整電圧検出部27は絶縁抵抗算出部25から重畳計測ユニット19のスイッチ23aが開いている停止時間T2を取得する。そして、零調整電圧検出部27は、重畳計測ユニット19のスイッチ23aが開いている停止時間T2中に所定の零調整時間T3だけ電流センサ17a、17bの出力電圧を電流センサ17a、17bの計測電圧Vsの基準値である零調整電圧V0として計測し絶縁劣化箇所判定部30に出力する。重畳電圧印加部28は零調整電圧検出部27が零調整電圧V0を検出した後に、重畳計測ユニット19の直流電源22に対し二次側電路への重畳電圧Vtの印加指令(重畳計測ユニット19のスイッチ23aの閉指令)を出力する。 The zero adjustment voltage detector 27 acquires from the insulation resistance calculator 25 the stop time T2 during which the switch 23a of the superposition measurement unit 19 is open. Then, the zero adjustment voltage detection section 27 detects the output voltages of the current sensors 17a and 17b for a predetermined zero adjustment time T3 during the stop time T2 during which the switch 23a of the superposition measurement unit 19 is open. It is measured as a zero adjustment voltage V0, which is a reference value of Vs, and is output to the insulation deterioration point determination section 30. FIG. After the zero adjustment voltage detection unit 27 detects the zero adjustment voltage V0, the superimposed voltage application unit 28 instructs the DC power supply 22 of the superimposed measurement unit 19 to apply the superimposed voltage Vt to the secondary electric circuit ( command to close the switch 23a).

連続的電圧計測部29は重畳計測ユニット19の直流電源22が二次側電路に重畳電圧Vtを印加している状態で所定の計測時間毎に電流センサ17a、17bの出力電圧を計測電圧Vsとして計測する。絶縁劣化箇所判定部30は、零調整電圧V0と計測電圧Vsとの電圧差ΔVを算出し、その電圧差ΔVが閾値VLより大きい電流センサ17a、17bの設置箇所を絶縁劣化箇所として特定する。この電圧差ΔVは漏れ電流Igを電圧値で表したものである。これは、電流センサ17a、17bの計測電圧Vsの基準値である零調整電圧V0は、重畳電圧Vtを印加していないときの電流センサ17a、17bの出力電圧の計測電圧Vsであるからである。つまり、重畳電圧Vtを印加しているときの計測電圧Vsと零調整電圧V0との電圧差ΔVは漏れ電流Igを電圧値で表したものとなる。絶縁劣化箇所判定部30で特定された絶縁劣化箇所はパネルコンピュータ18に出力される。 The continuous voltage measurement unit 29 measures the output voltage of the current sensors 17a and 17b as the measurement voltage Vs every predetermined measurement time while the DC power supply 22 of the superimposition measurement unit 19 is applying the superimposition voltage Vt to the secondary electric circuit. measure. The insulation deterioration point determination unit 30 calculates the voltage difference ΔV between the zero adjustment voltage V0 and the measured voltage Vs, and specifies the installation points of the current sensors 17a and 17b where the voltage difference ΔV is greater than the threshold value VL as the insulation deterioration point. This voltage difference ΔV represents the leakage current Ig as a voltage value. This is because the zero adjustment voltage V0, which is the reference value of the measured voltage Vs of the current sensors 17a and 17b, is the measured voltage Vs of the output voltages of the current sensors 17a and 17b when the superimposed voltage Vt is not applied. . That is, the voltage difference ΔV between the measured voltage Vs and the zero adjustment voltage V0 when the superimposed voltage Vt is applied is the leakage current Ig represented by a voltage value. The insulation deterioration location specified by the insulation deterioration location determination unit 30 is output to the panel computer 18 .

いま、図1のフィーダ14bの絶縁劣化箇所21で絶縁劣化が発生しているとする。重畳計測ユニット19は変圧器11の二次側電路の絶縁抵抗Rgの計測監視を実施するにあたって、重畳計測ユニット19の絶縁抵抗算出部25は、計測監視の実施時間T1においてスイッチ23aを閉じ、内部抵抗Ro(例えば40kΩ)に直列接続された直流電源22から電路に重畳電圧Vt(例えば20V)印加することにより行う。重畳計測ユニット19が変圧器11の二次側電路に重畳電圧Vtを印加すると、重畳計測ユニット19→接地(大地)→絶縁劣化箇所21→フィーダ14b→主回路13→変圧器11→重畳計測ユニット19の閉回路が形成される。フィーダ14bの絶縁劣化箇所21で例えば100kΩまで絶縁が劣化していると、漏れ電流Igは、重畳電圧Vt(例えば20V)を内部抵抗Ro(40kΩ)と絶縁抵抗100kΩとを加えた抵抗値140kΩで除算して求められる。このときの漏れ電流Igは0.14mAとなる。この漏れ電流Igは電流センサ17bで検出され電流計測ユニット20に入力される。電流計測ユニット20はこの漏れ電流Igに基づいて絶縁劣化を判定する。 Assume now that insulation deterioration has occurred at the insulation deterioration location 21 of the feeder 14b in FIG. When the superimposed measurement unit 19 measures and monitors the insulation resistance Rg of the secondary circuit of the transformer 11, the insulation resistance calculator 25 of the superimposed measurement unit 19 closes the switch 23a at the measurement and monitoring implementation time T1, and the internal This is done by applying a superimposed voltage Vt (eg, 20 V) to the electric circuit from a DC power source 22 connected in series with a resistor Ro (eg, 40 kΩ). When the superimposed measurement unit 19 applies the superimposed voltage Vt to the secondary electric path of the transformer 11, the superimposed measurement unit 19→ground (earth)→insulation degradation point 21→feeder 14b→main circuit 13→transformer 11→superimposed measurement unit. Nineteen closed circuits are formed. If the insulation deteriorates to, for example, 100 kΩ at the insulation deterioration point 21 of the feeder 14b, the leakage current Ig is obtained by adding the superimposed voltage Vt (for example, 20 V) to the internal resistance Ro (40 kΩ) and the insulation resistance of 100 kΩ at a resistance value of 140 kΩ. Calculated by division. The leak current Ig at this time is 0.14 mA. This leakage current Ig is detected by the current sensor 17b and input to the current measurement unit 20. FIG. The current measurement unit 20 determines insulation deterioration based on this leakage current Ig.

図2は図1に示した第1実施形態に係る絶縁監視装置の監視計測ユニット16の動作に一例を示すタイムチャートである。監視計測ユニット16の重畳計測ユニット19は、変圧器11の二次側電路の絶縁抵抗Rgの計測監視を所定の時間間隔で行う。すなわち、計測監視の実施時間T1と停止時間T2とを周期的(例えば30分毎)に繰り返す。いま、時点t1で計測監視の停止時間T2の開始となると、重畳計測ユニット19の絶縁抵抗算出部25はスイッチ23aを開いて変圧器11の二次側電路への重畳電圧Vtの印加を停止するとともに計測監視も停止する。一方、スイッチ23aを開いたことに伴いスイッチ23bが閉じ重畳電圧校正部32が動作し、停止時間T2中において重畳電圧Vtの補正動作を行う。 FIG. 2 is a time chart showing an example of the operation of the monitoring and measuring unit 16 of the insulation monitoring device according to the first embodiment shown in FIG. The superimposition measurement unit 19 of the monitoring measurement unit 16 performs measurement monitoring of the insulation resistance Rg of the secondary side electric circuit of the transformer 11 at predetermined time intervals. That is, the measurement monitoring implementation time T1 and the stop time T2 are repeated periodically (for example, every 30 minutes). Now, when the measurement monitoring stop time T2 starts at time t1, the insulation resistance calculator 25 of the superimposed measurement unit 19 opens the switch 23a to stop applying the superimposed voltage Vt to the secondary circuit of the transformer 11. At the same time, measurement monitoring also stops. On the other hand, as the switch 23a is opened, the switch 23b is closed and the superimposed voltage calibrator 32 operates to correct the superimposed voltage Vt during the stop time T2.

電流計測ユニット20の零調整電圧検出部27は、停止時間T2において実施時間T1の開始の所定時間前の時点t2となると、時点t2から時点t3との間の所定の零調整時間T3だけ電流センサ17a、17bの出力電圧を零調整電圧V01として計測し、いわゆる電流センサ17a、17bの零調整を行う。零調整電圧V01は重畳電圧Vtを印加していないときの電流センサ17a、17bの出力電圧の計測電圧Vsであり、電流センサ17a、17bの計測電圧Vsの基準値である。 At time t2, which is a predetermined time before the start of the implementation time T1 during the stop time T2, the zero adjustment voltage detection section 27 of the current measurement unit 20 operates the current sensor for a predetermined zero adjustment time T3 from time t2 to time t3. The output voltages of 17a and 17b are measured as a zero adjustment voltage V01 to perform so-called zero adjustment of the current sensors 17a and 17b. The zero adjustment voltage V01 is the measured voltage Vs of the output voltages of the current sensors 17a and 17b when the superimposed voltage Vt is not applied, and is the reference value of the measured voltage Vs of the current sensors 17a and 17b.

時点t3にて、電流センサ17a、17bの零調整が終了すると、重畳電圧印加部28は重畳計測ユニット19の直流電源22に対し二次側電路への重畳電圧Vtの印加指令(重畳計測ユニット19のスイッチ23aの閉指令)を出力する。これにより、変圧器11の二次側電路に重畳電圧Vtが印加され、連続的電圧計測部29は時点t3から所定時間T4の経過後の時点t4以降において一定周期(サンプリング周期)で電流センサ17a、17bの出力電圧を計測電圧Vsとして計測する。所定時間T4は重畳電圧Vtを印加した後に電路の漏れ電流Igを安定して計測可能となるまでの時間である。 At time t3, when the zero adjustment of the current sensors 17a and 17b is completed, the superimposed voltage applying section 28 instructs the DC power supply 22 of the superimposed measurement unit 19 to apply the superimposed voltage Vt to the secondary electric circuit (superimposition measurement unit 19 command to close the switch 23a). As a result, the superimposed voltage Vt is applied to the secondary electric path of the transformer 11, and the continuous voltage measurement unit 29 detects the current sensor 17a at a constant cycle (sampling cycle) after time t4 after a predetermined time T4 has elapsed from time t3. , 17b is measured as the measurement voltage Vs. The predetermined time T4 is the time from the application of the superimposed voltage Vt until the leakage current Ig of the electric circuit can be stably measured.

すなわち、連続的電圧計測部29は重畳計測ユニット19の直流電源22が二次側電路に重畳電圧Vtを印加している状態で所定の計測時間毎に電流センサ17a、17bの出力電圧を計測電圧Vsとして計測する。例えば、所定の計測時間を1sとした場合、その1s間に得られた複数個の計測電圧データの平均値を所定期間の計測電圧とする。実施時間が20分である場合には、60×20(=1200)個の計測電圧Vsが得られることになる。 That is, the continuous voltage measurement unit 29 measures the output voltages of the current sensors 17a and 17b every predetermined measurement time while the DC power supply 22 of the superimposition measurement unit 19 is applying the superimposed voltage Vt to the secondary electric circuit. Measure as Vs. For example, when the predetermined measurement time is 1 s, the average value of a plurality of measured voltage data obtained during the 1 s is used as the measured voltage for the predetermined period. If the execution time is 20 minutes, 60×20 (=1200) measured voltages Vs are obtained.

重畳電圧により生じる二次側電路の漏れ電流Igは、重畳電圧Vtを印加して計測した計測電圧Vsから電流センサ17a、17bの計測電圧Vsの基準値である零調整電圧V01を減じて求められる。これは、前述したように、電流センサ17a、17bの計測電圧Vsの基準値である零調整電圧V01は重畳電圧Vtが印加していないときの電流センサ17a、17bの出力電圧であるからである。これにより、電流センサ17a、17bの出力電圧に含まれる時間的な変動分、周囲温度や周囲磁場の変化よる変動分による影響を少なくしている。 The leakage current Ig in the secondary circuit caused by the superimposed voltage is obtained by subtracting the zero adjustment voltage V01, which is the reference value of the measured voltage Vs of the current sensors 17a and 17b, from the measured voltage Vs measured by applying the superimposed voltage Vt. . This is because, as described above, the zero adjustment voltage V01, which is the reference value of the voltage Vs measured by the current sensors 17a and 17b, is the output voltage of the current sensors 17a and 17b when the superimposed voltage Vt is not applied. . As a result, the influence of temporal fluctuations included in the output voltages of the current sensors 17a and 17b and fluctuations due to changes in the ambient temperature and the ambient magnetic field are reduced.

次に、重畳計測ユニット19の絶縁抵抗算出部25は、実施時間T1の開始の時点t3から所定時間T4の経過後の時点t4以降において、所定の計測時間毎に重畳電圧Vtと電圧計24で検出された電圧値の漏れ電流Igとに基づいて、下記(1)式で二次側電路の絶縁抵抗Rgを算出する。Roは電圧計24に並列に接続された内部抵抗である。 Next, the insulation resistance calculator 25 of the superimposed measurement unit 19 calculates the superimposed voltage Vt and the voltmeter 24 at every predetermined measurement time after the time t4 after a predetermined time T4 has elapsed from the time t3 when the implementation time T1 starts. Based on the leakage current Ig of the detected voltage value, the insulation resistance Rg of the secondary electric circuit is calculated by the following equation (1). Ro is an internal resistance connected in parallel with the voltmeter 24 .

Rg=Vt/Ig-Ro …(1)
絶縁抵抗算出部25で算出した絶縁抵抗Rgは前述したようにパネルコンピュータ18に出力され記録表示される。
Rg=Vt/Ig−Ro (1)
The insulation resistance Rg calculated by the insulation resistance calculator 25 is output to the panel computer 18 and recorded and displayed as described above.

また、重畳計測ユニット19の絶縁劣化発報部26は、算出した絶縁抵抗Rgと予め定めた閾値RLとを比較し、算出した絶縁抵抗Rgが予め定めた閾値RL以下となったときは、所定時限後の時点taで変圧器11の二次側電路が絶縁劣化であることを発報し、算出した絶縁抵抗Rgが予め定めた閾値RLを越えたときは、所定時限後の時点tbで発報を停止する。所定時限を持たせたのは発報が開始停止を繰り返すのを防止するためである。 In addition, the insulation deterioration alarm unit 26 of the superimposition measurement unit 19 compares the calculated insulation resistance Rg with a predetermined threshold RL, and when the calculated insulation resistance Rg becomes equal to or less than the predetermined threshold RL, a predetermined At a time ta after the time limit, an alarm is issued that the secondary circuit of the transformer 11 has insulation deterioration. stop reporting. The reason why the predetermined time limit is given is to prevent repeated start and stop of the alarm.

一方、電流計測ユニット20の絶縁劣化箇所判定部30は、時点t3から所定時間T4経過後の時点t4以降において、零調整電圧V01と計測電圧Vsとの電圧差ΔVを算出し、その電圧差ΔVが閾値VLより大きい電流センサ17a、17bの設置箇所を絶縁劣化箇所として特定する。絶縁劣化箇所判定部30で特定された絶縁劣化箇所はパネルコンピュータ18に出力される
そして、時点t11で計測監視の実施時間T1が終了し、停止時間T2の開始となると、時点t11~時点t14では、前述した時点t1~時点t4までと同様な動作の繰り返しとなる。なお、時点t3で検出した零調整電圧V01と時点t13で検出した零調整電圧V02とは、時点t3と時点t13とでは時間的な変動、周囲温度や周囲磁場が変化しているので異なった値となる。
On the other hand, the insulation deterioration point determining section 30 of the current measuring unit 20 calculates the voltage difference ΔV between the zero adjustment voltage V01 and the measured voltage Vs after the time t4 after a predetermined time T4 has elapsed from the time t3, and calculates the voltage difference ΔV. is larger than the threshold value VL, the installation locations of the current sensors 17a and 17b are specified as insulation deterioration locations. The insulation deterioration location specified by the insulation deterioration location determination unit 30 is output to the panel computer 18. Then, when the measurement monitoring implementation time T1 ends at time t11 and the stop time T2 starts, from time t11 to time t14 , the same operations as those from time t1 to time t4 described above are repeated. Note that the zero adjustment voltage V01 detected at time t3 and the zero adjustment voltage V02 detected at time t13 are different values between time t3 and time t13 due to temporal fluctuations, ambient temperature, and ambient magnetic field. becomes.

このように、図1に示した本発明の第1実施形態に係る絶縁監視装置では、重畳計測ユニット19で行う変圧器11の二次側電路の絶縁抵抗Rgの計測監視は実施時間T1に行い、停止時間T2には変圧器11の二次側電路への重畳電圧Vtの印加を停止させ停止時間T2中に重畳電圧Vtの校正を行う。一方、電流計測ユニット20では、重畳電圧Vtを停止した停止時間T2において電流センサ17a、17bの零調整を行って零調整電圧V01を取得し、実施時間T1では電流センサ17a、17bの計測電圧Vsと零調整電圧V0との電圧差ΔVから漏れ電流Igに基づいて二次側電路の絶縁劣化箇所の特定を行う。 As described above, in the insulation monitoring device according to the first embodiment of the present invention shown in FIG. During the stop time T2, the application of the superimposed voltage Vt to the secondary-side electric circuit of the transformer 11 is stopped, and the superimposed voltage Vt is calibrated during the stop time T2. On the other hand, in the current measurement unit 20, the current sensors 17a and 17b are zero-adjusted during the stop time T2 when the superimposed voltage Vt is stopped, and the zero-adjustment voltage V01 is obtained. and the zero adjustment voltage V0.

図3は、電流計測ユニット20での電流センサ17a、17bの漏れ電流Igの検出の仕方の説明図である。電流センサ17a、17bの零調整時の出力電圧、すなわち、電流計測ユニット20は、重畳計測ユニット19が二次側電路に重畳電圧Vtを印加していないときの電流センサ17a、17bの出力電圧を電流センサの計測電圧Vsの基準値である零調整電圧V0として計測し、二次側電路に重畳電圧Vtを印加したときの電流センサ17a、17bの出力電圧を計測電圧Vsとして計測する。そして、零調整電圧V0と二次側電路に重畳電圧Vtを印加したときの電流センサ17a、17bの計測電圧Vsとの電圧差ΔV(=Vs-V0)を二次側電路に流れる漏れ電流Igとして検出する。 FIG. 3 is an explanatory diagram of how the leakage current Ig of the current sensors 17a and 17b in the current measurement unit 20 is detected. The output voltages of the current sensors 17a and 17b during zero adjustment, that is, the current measurement unit 20 measures the output voltages of the current sensors 17a and 17b when the superimposition measurement unit 19 does not apply the superimposed voltage Vt to the secondary electric circuit. Measured as the zero adjustment voltage V0, which is the reference value of the measured voltage Vs of the current sensor, and measured as the measured voltage Vs is the output voltage of the current sensors 17a and 17b when the superimposed voltage Vt is applied to the secondary electric circuit. Then, the voltage difference ΔV (=Vs−V0) between the zero adjustment voltage V0 and the voltage Vs measured by the current sensors 17a and 17b when the superimposed voltage Vt is applied to the secondary electric circuit is the leakage current Ig flowing through the secondary electric circuit. Detect as

第1の実施形態によれば、変圧器11の二次側電路に重畳電圧Vtを印加し、変圧器11の二次側電路に流れる漏れ電流Igを電圧に変換して重畳計測ユニット19の電圧計24で検出し、重畳電圧Vtと漏れ電流Igに基づいて電路の絶縁抵抗Rgを算出し、絶縁抵抗Rgが閾値RL以下であるときは絶縁劣化であることを発報するので、変圧器11の二次側電路で絶縁劣化が発生していることを検出できる。また、停止時間T2において重畳電圧Vtの補正を行うので、漏れ電流Igを高精度に検出でき絶縁抵抗Rgの算出の精度を向上できる。計測監視を行わない停止時間T2中に所定の零調整時間T3だけ電流センサ17a、17bの出力電圧を電流センサ17a、17bの計測電圧Vsの基準値である零調整電圧V0として測定し、この零調整電圧V0とその後の計測時間毎に計測した計測電圧Vsとの電圧差ΔVを求め、その電圧差ΔVが閾値VLより大きい電流センサ17a、17bの設置箇所を絶縁劣化箇所として特定する。
従って、電流センサ17a、17bの計測電圧Vsの基準値である零調整電圧V0は停止時間T2の度に更新されるので、電流センサ17a、17bの計測電圧Vsの測定精度に影響する電流センサ17a、17bの出力電圧に含まれる時間的な変動分、周囲温度や周囲磁場の変化よる変動分の影響を少なくした計測電圧Vsで絶縁劣化箇所を特定できる。これにより、変圧器11の二次側電路の停電範囲を絞り込むことが可能となり、停電復旧作業を大幅に短縮できる。
According to the first embodiment, the superimposed voltage Vt is applied to the secondary circuit of the transformer 11, the leakage current Ig flowing in the secondary circuit of the transformer 11 is converted into a voltage, and the voltage of the superimposed measurement unit 19 is Detected by the total 24, the insulation resistance Rg of the electric circuit is calculated based on the superimposed voltage Vt and the leakage current Ig. It is possible to detect that insulation deterioration has occurred in the secondary side electric circuit. Further, since the superimposed voltage Vt is corrected during the stop time T2, the leakage current Ig can be detected with high accuracy, and the accuracy of calculation of the insulation resistance Rg can be improved. The output voltages of the current sensors 17a and 17b are measured as the zero adjustment voltage V0, which is the reference value of the measured voltage Vs of the current sensors 17a and 17b, for a predetermined zero adjustment time T3 during the stop time T2 during which measurement monitoring is not performed. A voltage difference ΔV between the adjusted voltage V0 and the measured voltage Vs measured at each subsequent measurement time is obtained, and the installation locations of the current sensors 17a and 17b where the voltage difference ΔV is greater than the threshold value VL are identified as insulation deterioration locations.
Therefore, the zero adjustment voltage V0, which is the reference value of the voltage Vs measured by the current sensors 17a and 17b, is updated every stop time T2. , 17b, and the measurement voltage Vs that reduces the influence of the fluctuation due to changes in the ambient temperature and the ambient magnetic field. As a result, it becomes possible to narrow down the power failure range of the secondary electric circuit of the transformer 11, and the power failure restoration work can be greatly shortened.

次に、本発明の第2実施形態を説明する。図4は本発明の第2実施形態に係る絶縁監視装置の構成図である。この第2実施形態は、図1に示した第1実施形態に対し、実施時間T1及び停止時間T2に加え実施時間T1中に計測監視を休止する休止時間Txを設け、連続的電圧計測部29に代えて間欠的電圧計測部31を設けたものである。すなわち、絶縁抵抗算出部25は、停止時間T2及び休止時間Tx以外の実施時間T1中に所定の計測時間毎に電路の漏れ電流Igを検出して計測時間毎の絶縁抵抗Rgを算出し、零調整電圧検出部27は、停止時間T2と休止時間Tx中に所定の零調整時間T3だけ電流センサ17a、17bの出力電圧を電流センサ17a、17bの計測電圧Vsの基準値である零調整電圧V0として測定し、間欠的電圧計測部31は、零調整電圧V0を検出した後に1回めの計測時間T5においてのみ電流センサ17a、17bの出力電圧を計測電圧Vsとして計測し、絶縁劣化箇所判定部30は、零調整電圧V0と1回めの計測時間T5においてのみ計測した1個の計測電圧Vsとの電圧差ΔVが閾値VLより大きい電流センサ17a、17bの設置箇所を絶縁劣化箇所として特定するようにしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。 Next, a second embodiment of the invention will be described. FIG. 4 is a configuration diagram of an insulation monitoring device according to a second embodiment of the present invention. This second embodiment is different from the first embodiment shown in FIG. An intermittent voltage measurement unit 31 is provided instead of the . That is, the insulation resistance calculation unit 25 detects the leakage current Ig of the electric circuit for each predetermined measurement time during the execution time T1 other than the stop time T2 and the rest time Tx, calculates the insulation resistance Rg for each measurement time, The adjustment voltage detection unit 27 adjusts the output voltages of the current sensors 17a and 17b to the zero adjustment voltage V0 which is the reference value of the measured voltage Vs of the current sensors 17a and 17b for a predetermined zero adjustment time T3 during the stop time T2 and the rest time Tx. , the intermittent voltage measurement unit 31 measures the output voltages of the current sensors 17a and 17b as the measurement voltage Vs only at the first measurement time T5 after detecting the zero adjustment voltage V0, and the insulation deterioration location determination unit A reference numeral 30 specifies, as an insulation deterioration location, the installation locations of the current sensors 17a and 17b where the voltage difference ΔV between the zero adjustment voltage V0 and one measurement voltage Vs measured only at the first measurement time T5 is greater than the threshold value VL. It is designed to The same elements as those in FIG. 1 are denoted by the same reference numerals, and overlapping descriptions are omitted.

図4において、監視計測ユニット16の絶縁抵抗算出部25は、周期的に予め設定された二次側電路の絶縁抵抗Rgの計測監視を行う実施時間T1と計測監視を行わない停止時間T2とを有し、さらに実施時間T1中に計測監視を休止する休止時間Txを有する。そして、絶縁抵抗算出部25は、停止時間T2または休止時間Tx以外の実施時間T1においてスイッチ23を閉じて直流電源22から二次側電路に重畳電圧Vtを印加する。つまり、絶縁抵抗算出部25は、停止時間T2または休止時間Tx以外の実施時間T1において、重畳電圧Vtと電圧計24で検出された電圧値の漏れ電流Igに基づいて二次側電路の絶縁抵抗Rgを算出することになる。 In FIG. 4, the insulation resistance calculation unit 25 of the monitoring and measuring unit 16 calculates an execution time T1 for performing measurement monitoring of the insulation resistance Rg of the secondary electric circuit preset periodically and a stop time T2 for not performing measurement monitoring. and further has a pause time Tx for pausing measurement monitoring during the implementation time T1. Then, the insulation resistance calculator 25 closes the switch 23 and applies the superimposed voltage Vt from the DC power supply 22 to the secondary electric circuit during the stop time T2 or the execution time T1 other than the rest time Tx. That is, the insulation resistance calculation unit 25 calculates the insulation resistance of the secondary electric circuit based on the superimposed voltage Vt and the leakage current Ig of the voltage value detected by the voltmeter 24 during the execution time T1 other than the stop time T2 or the rest time Tx. Rg will be calculated.

絶縁劣化発報部26は、実施時間T1中において絶縁抵抗算出部25で算出した絶縁抵抗Rgが閾値RL以下であるときは絶縁劣化であることを発報するとともに、絶縁抵抗算出部25を介してスイッチ23aを開き計測監視の休止時間Txとする。絶縁抵抗Rgが閾値RLを越えたときは発報を停止する。休止時間Txは予め定められた時間である。絶縁劣化発報部26の発報はパネルコンピュータ18に出力される。重畳電圧校正部32はスイッチ23bが閉じた停止時間T2中に重畳電圧Vtの校正を行う。絶縁抵抗算出部25は、このときの内部抵抗Roの電圧値を漏れ電流Igの基準値電圧として記憶しておき、実際に検出した漏れ電流Igに対して基準値電圧を基準として補正を行う。
When the insulation resistance Rg calculated by the insulation resistance calculator 25 is equal to or less than the threshold value RL during the execution time T1, the insulation deterioration alarm unit 26 notifies that the insulation is deteriorated. Then, the switch 23a is opened to set the pause time Tx for measurement and monitoring. The alarm is stopped when the insulation resistance Rg exceeds the threshold RL. The pause time Tx is a predetermined time. The alarm issued by the insulation deterioration alarm unit 26 is output to the panel computer 18 . The superimposed voltage calibration unit 32 calibrates the superimposed voltage Vt during the stop time T2 when the switch 23b is closed. The insulation resistance calculator 25 stores the voltage value of the internal resistance Ro at this time as a reference value voltage of the leakage current Ig, and corrects the actually detected leakage current Ig based on the reference value voltage.

電流計測ユニット20の零調整電圧検出部27は絶縁抵抗算出部25から重畳計測ユニット19のスイッチ23aが開いている停止時間T2または休止時間Txを取得し、スイッチ23aが開いている停止時間T2及び休止時間Tx中に所定の零調整時間T3だけ電流センサ17a、17bの出力電圧を電流センサ17a、17bの計測電圧Vsの基準値である零調整電圧V0として測定し絶縁劣化箇所判定部30に出力する。 The zero adjustment voltage detection unit 27 of the current measurement unit 20 acquires the stop time T2 or the pause time Tx during which the switch 23a of the superposition measurement unit 19 is open from the insulation resistance calculation unit 25, and determines the stop time T2 during which the switch 23a is open and The output voltage of the current sensors 17a and 17b is measured as the reference value of the measured voltage Vs of the current sensors 17a and 17b for a predetermined zero adjustment time T3 during the pause time Tx as the zero adjustment voltage V0, and is output to the insulation deterioration point determination unit 30. do.

重畳電圧印加部28は零調整電圧検出部27が零調整電圧V0を検出した後に、重畳計測ユニット19の直流電源22に対し二次側電路への重畳電圧Vtの印加指令(重畳計測ユニット19のスイッチ23の閉指令)を出力する。これにより、間欠的電圧計測部31は、零調整電圧V0を検出した後に重畳計測ユニット19の直流電源22が二次側電路に重畳電圧Vtを印加している状態で、1回めの計測時間T5においてのみ電流センサ17a、17bの出力電圧を計測電圧Vsとして計測する。絶縁劣化箇所判定部30は、零調整電圧V0と1回めの計測時間T5においてのみ計測した1個の計測電圧Vsとの電圧差ΔVを求め、差電圧ΔVが閾値VLより大きい電流センサ17a、17bの設置箇所を絶縁劣化箇所として特定する。絶縁劣化箇所判定部30で特定された絶縁劣化箇所はパネルコンピュータ18に出力される。 After the zero adjustment voltage detection unit 27 detects the zero adjustment voltage V0, the superimposed voltage application unit 28 instructs the DC power supply 22 of the superimposed measurement unit 19 to apply the superimposed voltage Vt to the secondary electric circuit ( command to close the switch 23). As a result, the intermittent voltage measurement unit 31 detects the zero adjustment voltage V0, and the DC power supply 22 of the superposition measurement unit 19 is applying the superposition voltage Vt to the secondary electric circuit. Only at T5, the output voltages of the current sensors 17a and 17b are measured as the measurement voltage Vs. The insulation deterioration point determination unit 30 obtains the voltage difference ΔV between the zero adjustment voltage V0 and one measurement voltage Vs measured only at the first measurement time T5, and the current sensor 17a, 17b is specified as an insulation deterioration location. The insulation deterioration location specified by the insulation deterioration location determination unit 30 is output to the panel computer 18 .

図5は図4に示した本発明の第2実施形態の絶縁監視装置の監視計測ユニット16の動作の一例を示すタイムチャートである。監視計測ユニット16の重畳計測ユニット19は、変圧器11の二次側電路の絶縁抵抗Rgの計測監視を実施時間T1と停止時間T2とを周期的に繰り返して行う。実施時間T1中に、絶縁劣化発報部26による絶縁劣化の発報があったときは、変圧器11の二次側電路の絶縁抵抗Rgの計測監視を休止する休止時間Txが設けられている。 FIG. 5 is a time chart showing an example of the operation of the monitoring and measuring unit 16 of the insulation monitoring device according to the second embodiment of the invention shown in FIG. The superimposed measurement unit 19 of the monitoring measurement unit 16 periodically repeats measurement monitoring of the insulation resistance Rg of the secondary side electric circuit of the transformer 11 between the execution time T1 and the stop time T2. When the insulation deterioration reporting unit 26 issues an insulation deterioration report during the execution time T1, a suspension time Tx is provided during which measurement and monitoring of the insulation resistance Rg of the secondary circuit of the transformer 11 is suspended. .

図5において、いま、時点t1で計測監視の停止時間T2の開始となると、重畳計測ユニット19の絶縁抵抗算出部25はスイッチ23aを開き、変圧器11の二次側電路への重畳電圧Vtの印加を停止するとともに計測監視も停止する。一方、スイッチ23aを開いたことに伴いスイッチ23bが閉じ重畳電圧校正部32が動作し、停止時間T2中において重畳電圧Vtの補正動作を行う。 In FIG. 5, when the measurement monitoring stop time T2 starts at time t1, the insulation resistance calculator 25 of the superimposed measurement unit 19 opens the switch 23a, and the superimposed voltage Vt to the secondary circuit of the transformer 11 When the application is stopped, measurement monitoring is also stopped. On the other hand, as the switch 23a is opened, the switch 23b is closed and the superimposed voltage calibrator 32 operates to correct the superimposed voltage Vt during the stop time T2.

電流計測ユニット20の零調整電圧検出部27は、停止時間T2において実施時間T1の開始の所定時間前の時点t2となると、時点t2から時点t3との間の所定の零調整時間T3だけ電流センサ17a、17bの出力電圧を零調整電圧V01として計測し、いわゆる電流センサ17a、17bの零調整を行う。零調整電圧V01は重畳電圧Vtを印加していないときの電流センサ17a、17bの出力電圧であり、電流センサ17a、17bの計測電圧Vsの基準値である。零調整電圧検出部27で検出された零調整電圧V01は電流計測ユニット20の絶縁劣化箇所判定部30に入力される。 At time t2, which is a predetermined time before the start of the implementation time T1 during the stop time T2, the zero adjustment voltage detection section 27 of the current measurement unit 20 operates the current sensor for a predetermined zero adjustment time T3 from time t2 to time t3. The output voltages of 17a and 17b are measured as a zero adjustment voltage V01 to perform so-called zero adjustment of the current sensors 17a and 17b. The zero adjustment voltage V01 is the output voltage of the current sensors 17a and 17b when the superimposed voltage Vt is not applied, and is the reference value of the measured voltage Vs of the current sensors 17a and 17b. The zero adjustment voltage V01 detected by the zero adjustment voltage detection section 27 is input to the insulation deterioration point determination section 30 of the current measurement unit 20. FIG.

時点t3にて、電流計測ユニット20の零調整電圧検出部27による電流センサ17a、17bの零調整が終了すると、電流計測ユニット20の重畳電圧印加部28は、重畳計測ユニット19の直流電源22に対し二次側電路への重畳電圧Vtの印加指令(重畳計測ユニット19のスイッチ23の閉指令)を出力する。これにより、変圧器11の二次側電路に重畳電圧Vtが印加され実施時間T1の開始となる。実施時間T1の開始の時点t3から所定時間T4の経過後の時点t4以降において、重畳計測ユニット19の絶縁抵抗算出部25は、一定周期ごとに重畳電圧Vtと電圧計24で検出された電圧値の漏れ電流Igとに基づいて、前述の(1)式で二次側電路の絶縁抵抗Rgを算出する。絶縁抵抗算出部25で算出した絶縁抵抗Rgはパネルコンピュータ18に出力され記録表示される。 At time t3, when the zero adjustment of the current sensors 17a and 17b by the zero adjustment voltage detection unit 27 of the current measurement unit 20 is completed, the superimposed voltage application unit 28 of the current measurement unit 20 causes the DC power supply 22 of the superimposition measurement unit 19 to In response, a command to apply the superimposed voltage Vt to the secondary electric circuit (a command to close the switch 23 of the superimposed measurement unit 19) is output. As a result, the superimposed voltage Vt is applied to the secondary circuit of the transformer 11, and the implementation time T1 starts. After time t4 after a predetermined time T4 has elapsed from time t3 when the execution time T1 starts, the insulation resistance calculator 25 of the superposition measurement unit 19 calculates the superimposition voltage Vt and the voltage value detected by the voltmeter 24 at regular intervals. The insulation resistance Rg of the secondary-side electric circuit is calculated by the above-described equation (1) based on the leakage current Ig. The insulation resistance Rg calculated by the insulation resistance calculator 25 is output to the panel computer 18 and recorded and displayed.

一方、時点t3から所定時間T4の経過後の時点t4以降において、電流計測ユニット20の間欠的電圧計測部31は、二次側電路に重畳電圧Vtが印加されている状態で時点t4から時点t5との間の所定の計測時間T5だけ電流センサ17a、17bの出力電圧を計測電圧Vsとして計測する。計測電圧Vsは漏れ電流Igに相当する電圧値である。間欠的電圧計測部31は、所定の計測時間T5だけ電流センサ17a、17bの出力電圧を計測電圧Vsとして計測するので、電流センサ17a、17bの計測電圧Vsの測定精度に影響する電流センサ17a、17bの出力電圧に含まれる時間的な変動分、周囲温度や周囲磁場の変化による変動分の影響を少なくできる。 On the other hand, after time t4 after the lapse of the predetermined time T4 from time t3, the intermittent voltage measurement section 31 of the current measurement unit 20 detects the voltage from time t4 to time t5 while the superimposed voltage Vt is being applied to the secondary electric circuit. The output voltages of the current sensors 17a and 17b are measured as the measurement voltage Vs for a predetermined measurement time T5 between . The measured voltage Vs is a voltage value corresponding to the leakage current Ig. Since the intermittent voltage measurement unit 31 measures the output voltages of the current sensors 17a and 17b as the measurement voltage Vs for the predetermined measurement time T5, the current sensors 17a and 17b affect the measurement accuracy of the measurement voltage Vs of the current sensors 17a and 17b. It is possible to reduce the influence of temporal fluctuations included in the output voltage of 17b and fluctuations due to changes in ambient temperature and ambient magnetic field.

間欠的電圧計測部31にて所定の計測時間T5だけ計測した計測電圧Vsは電流計測ユニット20の絶縁劣化箇所判定部30に入力される。絶縁劣化箇所判定部30は零調整電圧V01と計測電圧Vsとの電圧差ΔVを算出し、その電圧差ΔVが閾値VLより大きい電流センサ17a、17bの設置箇所を絶縁劣化箇所として特定する。絶縁劣化箇所判定部30では測定精度が向上した計測電圧Vsの電圧差ΔVから漏れ電流Igを計測し絶縁劣化を判定するので絶縁劣化箇所の測定精度が向上する。 A measured voltage Vs measured by the intermittent voltage measuring unit 31 for a predetermined measuring time T5 is input to the insulation deterioration point determining unit 30 of the current measuring unit 20 . The insulation deterioration point determination unit 30 calculates the voltage difference ΔV between the zero adjustment voltage V01 and the measured voltage Vs, and specifies the installation points of the current sensors 17a and 17b where the voltage difference ΔV is greater than the threshold value VL as the insulation deterioration point. Since the insulation deterioration portion determination unit 30 measures the leakage current Ig from the voltage difference ΔV of the measured voltage Vs with improved measurement accuracy and determines the insulation deterioration, the measurement accuracy of the insulation deterioration portion is improved.

ここで、実施時間T1中において重畳計測ユニット19の絶縁劣化発報部26が絶縁劣化であることを発報したとすると、重畳計測ユニット19の絶縁抵抗算出部25は計測監視を休止する。すなわち、実施時間T1中において重畳計測ユニット19の絶縁抵抗算出部25で算出した絶縁抵抗Rgが閾値RL以下であるときは、重畳計測ユニット19の絶縁劣化発報部26は絶縁劣化であることを発報するとともに、絶縁抵抗算出部25を介してスイッチ23aを開き計測監視を休止し計測監視の休止時間Txとする。 Here, if the insulation deterioration reporting unit 26 of the superimposed measurement unit 19 issues an insulation deterioration report during the implementation time T1, the insulation resistance calculation unit 25 of the superimposed measurement unit 19 suspends measurement monitoring. That is, when the insulation resistance Rg calculated by the insulation resistance calculator 25 of the superimposed measurement unit 19 is equal to or less than the threshold value RL during the execution time T1, the insulation deterioration alarm unit 26 of the superimposed measurement unit 19 indicates that the insulation is deteriorated. At the same time, the switch 23a is opened via the insulation resistance calculator 25 to suspend the measurement and monitoring, and the measurement and monitoring is set to the suspension time Tx.

いま、図5の時点taで重畳計測ユニット19の絶縁劣化発報部26からの絶縁劣化の発報があったとする。図5の発報時点ta及び発報停止時点tbは、図2に示した第1実施形態の場合と同じである。絶縁劣化の発報があると、絶縁抵抗算出部25は、時点t21でスイッチ23aを開き重畳電圧Vtの二次側電路への印加を停止し計測監視も休止する。電流計測ユニット20の零調整電圧検出部27は、重畳計測ユニット19の絶縁劣化発報部26から絶縁劣化の発報があり、休止時間Txの終了の所定時間前の時点t22となると、時点t22から時点t23との間の所定の零調整時間T3だけ電流センサ17a、17bの出力電圧を零調整電圧V0aとして測定し、絶縁劣化箇所判定部30に出力する。重畳電圧印加部28は、零調整電圧検出部27が零調整電圧V0aを検出した後に、重畳計測ユニット19のスイッチ23に閉指令を出力する。 Suppose now that the insulation deterioration notification unit 26 of the superposition measurement unit 19 issues an insulation deterioration notification at time ta in FIG. The alerting time ta and the alerting stop time tb in FIG. 5 are the same as in the first embodiment shown in FIG. When the insulation deterioration is reported, the insulation resistance calculator 25 opens the switch 23a at time t21, stops applying the superimposed voltage Vt to the secondary electric circuit, and stops measurement and monitoring. The zero adjustment voltage detection unit 27 of the current measurement unit 20 receives an insulation deterioration notification from the insulation deterioration notification unit 26 of the superimposition measurement unit 19, and at time t22, which is a predetermined time before the end of the pause time Tx, reaches time t22. The output voltages of the current sensors 17a and 17b are measured as the zero adjustment voltage V0a for a predetermined zero adjustment time T3 from the time t23 to the point of time t23, and the result is output to the insulation deterioration point determining section 30. FIG. The superimposed voltage applying section 28 outputs a close command to the switch 23 of the superimposed measurement unit 19 after the zero adjustment voltage detection section 27 detects the zero adjustment voltage V0a.

時点t23から所定時間T4の経過後の時点t24以降において、電流計測ユニット20の間欠的電圧計測部31は、二次側電路に重畳電圧Vtが印加されている状態で時点t24から時点t25との間の所定の計測時間T5だけ電流センサ17a、17bの出力電圧を計測電圧Vsとして計測する。 After time t24 after the lapse of a predetermined time T4 from time t23, the intermittent voltage measurement unit 31 of the current measurement unit 20 measures the time from time t24 to time t25 while the superimposed voltage Vt is being applied to the secondary electric circuit. The output voltages of the current sensors 17a and 17b are measured as the measurement voltage Vs for a predetermined measurement time T5.

このように、絶縁劣化の発報があった場合も、間欠的電圧計測部31は所定の計測時間T5だけ電流センサ17a、17bの出力電圧を計測電圧Vsとして計測するので、電流センサ17a、17bの計測電圧Vsの測定精度に影響する電流センサ17a、17bの出力電圧に含まれる時間的な変動分、周囲温度や周囲磁場の変化よる変動分の影響を少なくできる。また、絶縁劣化箇所判定部30は零調整電圧V0aと計測電圧Vsとの電圧差ΔVを算出し、その電圧差ΔVが閾値VLより大きい電流センサ17a、17bの設置箇所を絶縁劣化箇所として特定するので、絶縁劣化箇所判定部30では測定精度が向上した計測電圧Vsの電圧差ΔVから漏れ電流Igを計測し絶縁劣化を判定するので絶縁劣化箇所の測定精度も向上する。 In this way, even when insulation deterioration is reported, the intermittent voltage measurement unit 31 measures the output voltages of the current sensors 17a and 17b as the measurement voltage Vs for the predetermined measurement time T5. It is possible to reduce the effects of temporal fluctuations included in the output voltages of the current sensors 17a and 17b and fluctuations due to changes in the ambient temperature and the ambient magnetic field that affect the measurement accuracy of the measured voltage Vs. Further, the insulation deterioration point determination unit 30 calculates the voltage difference ΔV between the zero adjustment voltage V0a and the measured voltage Vs, and specifies the installation points of the current sensors 17a and 17b where the voltage difference ΔV is greater than the threshold value VL as the insulation deterioration point. Therefore, since the insulation deterioration point determination unit 30 measures the leakage current Ig from the voltage difference ΔV of the measured voltage Vs with improved measurement accuracy and determines the insulation deterioration, the measurement accuracy of the insulation deterioration point is also improved.

次に、時点t11で計測監視の実施時間T1が終了し、停止時間T2の開始となると、時点t11~時点t15では、前述した時点t1~時点t5までと同様な動作の繰り返しとなる。なお、時点t3で検出した零調整電圧V01、時点t23で検出した零調整電圧V0a、時点t13で検出した零調整電圧V02は、時点t3、時点t23、時点t13では時間的な変動、周囲温度や周囲磁場が変化しているので異なった値となる。 Next, when the execution time T1 for measurement and monitoring ends at time t11 and the stop time T2 starts, the same operations as those from time t1 to time t5 described above are repeated from time t11 to time t15. It should be noted that the zero adjustment voltage V01 detected at time t3, the zero adjustment voltage V0a detected at time t23, and the zero adjustment voltage V02 detected at time t13 vary with time at time t3, time t23, and time t13. The values are different because the surrounding magnetic field is changing.

本発明の第2実施形態の絶縁監視装置によれば、重畳計測ユニット19で行う変圧器11の二次側電路の絶縁抵抗Rgの測定監視において、絶縁抵抗Rgが閾値RL以下となり絶縁劣化の発報があった場合、休止時間Txおいて停止時間T2と同じ処理(電流センサ17a、17bの零調整、電流センサ17a、17bの出力電圧の測定)を行うようにしたので、電流計測ユニット20では定期的に行う実施時間T1においてだけでなく絶縁劣化の発報があった場合にも早期に絶縁劣化箇所の特定が精度よく行える。 According to the insulation monitoring device of the second embodiment of the present invention, when the insulation resistance Rg of the secondary circuit of the transformer 11 is measured and monitored by the superposition measurement unit 19, the insulation resistance Rg becomes equal to or less than the threshold value RL, and insulation deterioration occurs. When there is information, the same processing (zero adjustment of the current sensors 17a and 17b, measurement of the output voltage of the current sensors 17a and 17b) is performed during the pause time Tx as during the stop time T2. Not only at the time T1, which is performed periodically, but also when insulation deterioration is reported, the location of insulation deterioration can be identified at an early stage with high accuracy.

また、電流計測ユニット20では、零調整から電流センサ17a、17bの出力電圧の測定までの所定時間T4を短くし、また、電流センサ17a、17bの出力電圧の所定の計測時間T5も短くすることで、零調整の後の電流センサ17a、17bの出力電圧の測定を短時間だけ行う間欠方式に改めたので、電流センサ17a、17bの出力電圧に含まれる時間的な変動、周囲温度や周囲磁場の変化による変動分の影響を少なくできる。 In the current measurement unit 20, the predetermined time T4 from zero adjustment to measurement of the output voltages of the current sensors 17a and 17b should be shortened, and the predetermined measurement time T5 of the output voltages of the current sensors 17a and 17b should also be shortened. Therefore, the output voltage of the current sensors 17a and 17b after zero adjustment is measured intermittently for a short period of time. It is possible to reduce the influence of fluctuation due to changes in

さらには、重畳計測ユニット19で絶縁劣化を発報した際に、電流計測ユニット20と電流センサ17a、17bによる測定で絶縁劣化箇所を特定するようにしたので、重畳計測ユニット19で行う変圧器11の二次側電路の常時監視(絶縁抵抗測定と監視)の役割と、電流計測ユニット20と電流センサ17a、17bとで行う絶縁劣化箇所の探査(間欠監視)の役割とを区分して行える。 Furthermore, when the insulation deterioration is reported by the superimposed measurement unit 19, the insulation deterioration location is specified by the measurement by the current measurement unit 20 and the current sensors 17a and 17b. The role of constant monitoring (insulation resistance measurement and monitoring) of the secondary electric circuit and the role of searching (intermittent monitoring) of insulation deterioration locations performed by the current measurement unit 20 and the current sensors 17a and 17b can be divided.

図6は、図4に示した本発明の第2実施形態の絶縁監視装置の監視計測ユニット16の動作の他の一例を示すタイムチャートである。図5に示した動作の一例に対し、停止時間T2中において行う零調整電圧V0を計測は、電流センサ17a、17bの計測電圧Vsの測定精度に影響を与える電流センサ17a、17bの出力電圧に含まれる時間的な変動、周囲温度や周囲磁場の変化による変動分の影響が少ない時間帯の停止時間T2において行うようにしたものである。 FIG. 6 is a time chart showing another example of the operation of the monitoring and measuring unit 16 of the insulation monitoring device according to the second embodiment of the invention shown in FIG. For the example of the operation shown in FIG. 5, the measurement of the zero adjustment voltage V0 performed during the stop time T2 affects the output voltage of the current sensors 17a and 17b, which affects the measurement accuracy of the measured voltage Vs of the current sensors 17a and 17b. This is done during the stop time T2 in the time zone where the effects of fluctuations due to changes in the ambient temperature and the surrounding magnetic field are small.

図6において、計測監視の停止時間T2の開始の時点t31の後における実施時間T1の開始の所定時間前の時点t32から実施時間T1の開始の時点33までの間は本来なら零調整時間T3である。同様に、計測監視の停止時間T2の開始の時点t41の後における実施時間T1の開始の所定時間前の時点t42から実施時間T1の開始の時点43までの間は本来なら零調整時間T3である。これらの零調整時間T3においては、本来なら、零調整電圧V0の計測を行う時間帯であるが、図6では、電流センサ17a、17bの出力電圧に含まれる時間的な変動、周囲温度や周囲磁場の変化による変動分の影響が大きい時間帯であるので、零調整電圧V0の計測を省略した場合を示している。また、図6では、電流センサ17a、17bの出力電圧に含まれる時間的な変動、周囲温度や周囲磁場の変化による変動分の影響が少ない時間帯(時点t11~t13)で零調整電圧V0の計測した場合を示している。なお、休止時間Txにおいては、電流センサ17a、17bの出力電圧に含まれる時間的な変動、周囲温度や周囲磁場の変化による変動分の影響の時間帯に関係なく、零調整電圧V0の計測は行う。これにより、電流センサ17a、17bの計測電圧Vsの基準値である零調整電圧V0の精度をより向上させることができる。なお、電流センサ17a、17bの出力電圧に含まれる時間的な変動、周囲温度や周囲磁場の変化による変動分の影響が少ない時間帯は例えば夜間であり、変動分の影響が大きい時間帯は例えば昼間である。 In FIG. 6, the period from time t32, which is a predetermined time before the start of the implementation time T1 after the time t31 when the measurement and monitoring stop time T2 starts, to time 33 when the implementation time T1 starts, should be the zero adjustment time T3. be. Similarly, the period from time t42, which is a predetermined time before the start of the implementation time T1 after the time t41 when the stop time T2 of the measurement and monitoring is started, to time 43 when the implementation time T1 starts is essentially the zero adjustment time T3. . In these zero adjustment times T3, the zero adjustment voltage V0 is originally measured, but in FIG. Since it is a time period in which the influence of fluctuations due to changes in the magnetic field is large, the measurement of the zero adjustment voltage V0 is omitted. Further, in FIG. 6, the zero adjustment voltage V0 is less affected by temporal fluctuations in the output voltages of the current sensors 17a and 17b and fluctuations due to changes in the ambient temperature and the ambient magnetic field (time points t11 to t13). The case of measurement is shown. It should be noted that during the rest time Tx, the zero adjustment voltage V0 cannot be measured regardless of the influence of temporal fluctuations contained in the output voltages of the current sensors 17a and 17b and fluctuations due to changes in the ambient temperature and the ambient magnetic field. conduct. Thereby, the accuracy of the zero adjustment voltage V0, which is the reference value of the voltage Vs measured by the current sensors 17a and 17b, can be further improved. A time period in which the effects of temporal fluctuations contained in the output voltages of the current sensors 17a and 17b and fluctuations due to changes in the ambient temperature and the surrounding magnetic field are less affected is, for example, nighttime. It is daytime.

また、零調整電圧V0を計測は、電流センサ17a、17bの出力電圧に含まれる時間的な変動、周囲温度や周囲磁場の変化による変動分の影響が少ない時間帯の停止時間T2において行うことに代えて、電流センサ17a、17bの計測電圧Vsの測定精度に影響を与える電流センサ17a、17bの出力電圧に含まれる変動分の影響が大きい時間帯の実施時間T1は、変動分の影響が少ない時間帯の実施時間T1より長くするようにしても良い。これにより、変動分の影響が少ない時間帯において、より多く零調整電圧V0を計測できるので、電流センサ17a、17bの計測電圧Vsの基準値である零調整電圧V0の精度をより向上させることができる。 In addition, the zero adjustment voltage V0 is measured during the stop time T2, which is a time period in which the effects of temporal fluctuations contained in the output voltages of the current sensors 17a and 17b and fluctuations due to changes in the ambient temperature and magnetic field are small. Instead, the execution time T1 in the time period when the influence of the fluctuation included in the output voltage of the current sensors 17a and 17b that affects the measurement accuracy of the measured voltage Vs of the current sensors 17a and 17b is large has less influence of the fluctuation. It may be made longer than the execution time T1 of the time slot. As a result, more zero adjustment voltage V0 can be measured in a time period when the influence of fluctuations is small, so that the accuracy of the zero adjustment voltage V0, which is the reference value of the voltage Vs measured by the current sensors 17a and 17b, can be further improved. can.

次に本発明の第3実施形態に係る絶縁監視方法について説明する。図7は本発明の第3実施形態に係る絶縁監視方法の処理内容を示すフローチャートである。図7(a)は図1に示した重畳計測ユニット19の処理内容を示すフローチャート、図7(b)は図1に示した電流計測ユニット20の処理内容を示すフローチャートである。 Next, an insulation monitoring method according to a third embodiment of the invention will be described. FIG. 7 is a flow chart showing the processing contents of the insulation monitoring method according to the third embodiment of the present invention. 7A is a flow chart showing the processing contents of the superposition measurement unit 19 shown in FIG. 1, and FIG. 7B is a flow chart showing the processing contents of the current measurement unit 20 shown in FIG.

本発明の第3実施形態に係る絶縁監視方法は、非接地配電方式の変圧器11の二次側から引き出された主回路13に複数のフィーダ14がある電路に対して重畳電圧Vtを印加する重畳計測ユニット19と重畳電圧Vtにより生じるフィーダ14の漏れ電流Igを計測して変圧器11の二次側電路の絶縁劣化を監視する電流計測ユニット20とを有した監視計測ユニット16と、フィーダ14の分岐点の下流側に設けられフィーダ14の漏れ電流Igを電圧値で検出し監視計測ユニット16に入力する電流センサ17a、17bと、監視計測ユニット16の操作制御や監視計測ユニット16からのデータを記録表示するとともに中央監視装置とのデータの送受信を行うパネルコンピュータ18とを備えた絶縁監視装置を用いて電路の絶縁劣化を監視する絶縁監視方法である。 In the insulation monitoring method according to the third embodiment of the present invention, a superimposed voltage Vt is applied to an electric line having a plurality of feeders 14 in a main circuit 13 drawn from the secondary side of a transformer 11 of an ungrounded distribution system. A monitoring and measuring unit 16 having a superimposed measurement unit 19 and a current measurement unit 20 that measures leakage current Ig of the feeder 14 caused by the superimposed voltage Vt and monitors insulation deterioration of the secondary side circuit of the transformer 11; current sensors 17a and 17b provided downstream of the branch point of the feeder 14 to detect the leakage current Ig of the feeder 14 as a voltage value and input to the monitoring and measuring unit 16; is recorded and displayed, and the insulation deterioration of the electric circuit is monitored using an insulation monitoring device provided with a panel computer 18 that transmits and receives data to and from the central monitoring device.

図7(a)に示すように、重畳計測ユニット19は、まず、計測監視の停止時間T2が来たか否かを判定する(S1)。停止時間T2が来たか否かは、例えば図2に示した予め設定された停止時間T2の開始時点t1になったか否かで判定される。停止時間T2の開始時点t1になっているときは重畳電圧校正部32は重畳電圧Vtを校正する(S2)。ステップS1の判定で停止時間T2の開始時点t1になっていないとき、または重畳電圧Vtを校正したときは、実施時間T1が来たか否かを判定する(S3)。実施時間T1が来ていないときは電流計測ユニット20から重畳電圧Vtの印加指令があったか否かを判定する(S4)。電流計測ユニット20から重畳電圧Vtの印加指令がないときはステップ(S1)に戻る。 As shown in FIG. 7A, the superimposed measurement unit 19 first determines whether or not the stop time T2 of measurement monitoring has come (S1). Whether or not the stop time T2 has come is determined, for example, by whether or not the start time t1 of the preset stop time T2 shown in FIG. 2 has come. When the stop time T2 starts at time t1, the superimposed voltage calibration unit 32 calibrates the superimposed voltage Vt (S2). If it is determined in step S1 that the start time t1 of the stop time T2 has not come, or if the superimposed voltage Vt has been calibrated, it is determined whether or not the implementation time T1 has come (S3). When the execution time T1 has not come, it is determined whether or not there is a command to apply the superimposed voltage Vt from the current measurement unit 20 (S4). When there is no command to apply the superimposed voltage Vt from the current measuring unit 20, the process returns to step (S1).

ステップS3の判定で計測監視の実施時間T1が来たとき、またはステップS4の判定で電流計測ユニット20から重畳電圧Vtの印加指令があったときは、重畳電圧Vtを印加する(S5)。二次側電路への重畳電圧Vtの印加はスイッチ23aを閉じ直流電源22を大地に接続することで行われる。これにより、周期的に予め設定された電路の絶縁抵抗Rgの計測監視を行う実施時間T1が来たとき、または電流計測ユニット20から重畳電圧Vtの印加指令あったときに二次側電路に重畳電圧Vtが印加される。 When the execution time T1 for measurement and monitoring has arrived in step S3, or when there is a command to apply the superimposed voltage Vt from the current measuring unit 20 in the decision of step S4, the superimposed voltage Vt is applied (S5). Application of the superimposed voltage Vt to the secondary electric circuit is performed by closing the switch 23a and connecting the DC power supply 22 to the ground. As a result, when the execution time T1 for measuring and monitoring the insulation resistance Rg of the electric circuit set periodically in advance comes, or when there is a command to apply the superimposed voltage Vt from the current measurement unit 20, it is superimposed on the secondary electric circuit. A voltage Vt is applied.

二次側電路に重畳電圧Vtを印加した後に漏れ電流Igを計測する(S6)。漏れ電流Igの計測は二次側電路に重畳電圧Vtを印加した状態で、重畳電圧Vtにより生じる二次側電路の漏れ電流Igを重畳計測ユニット19内に設けた電圧計24で電圧値に変換して検出する。そして、絶縁抵抗Rgを算出する(S7)。絶縁抵抗Rgの算出は重畳計測ユニット19により重畳電圧Vtと電圧計24で検出した電圧値の漏れ電流Igに基づいて行われる。絶縁抵抗Rgが算出されると、絶縁抵抗Rgは閾値RL以下か否かを判定する(S8)。絶縁抵抗Rgが閾値RL以下でないときはステップS6に戻る。 After applying the superimposed voltage Vt to the secondary electric circuit, the leakage current Ig is measured (S6). Leakage current Ig is measured by applying superimposed voltage Vt to the secondary circuit, and converting leakage current Ig in the secondary circuit caused by superimposed voltage Vt into a voltage value with voltmeter 24 provided in superimposition measurement unit 19. to detect. Then, the insulation resistance Rg is calculated (S7). The calculation of the insulation resistance Rg is performed by the superimposed measurement unit 19 based on the superimposed voltage Vt and the leakage current Ig of the voltage value detected by the voltmeter 24 . After the insulation resistance Rg is calculated, it is determined whether or not the insulation resistance Rg is equal to or less than the threshold value RL (S8). If the insulation resistance Rg is not less than the threshold RL, the process returns to step S6.

一方、絶縁抵抗Rgが閾値RL以下であるときは、重畳電圧Vtの印加を停止し(S9)、絶縁劣化を発報する(S10)。これにより、二次側電路に絶縁劣化が発生していること分かる。そして、処理の終了か否かを判定し(S11)、処理の終了でないときはステップS1に戻り、処理の終了であるときは処理を終了する。 On the other hand, when the insulation resistance Rg is equal to or less than the threshold value RL, the application of the superimposed voltage Vt is stopped (S9), and insulation deterioration is reported (S10). As a result, it can be seen that insulation deterioration has occurred in the secondary electric circuit. Then, it is determined whether or not the process is finished (S11). If the process is not finished, the process returns to step S1, and if the process is finished, the process is finished.

次に、図7(b)に示すように、電流計測ユニット20は、まず、計測監視の実施時間T1の開始時点t3の所定時間前か否かを判定する(S12)。計測監視の実施時間T1の開始時点t3の所定時間前か否かの判定は、実施時間T1の開始時点の所定の零調整時間T3前になったか否かで判定される。計測監視の実施時間T1の開始時点t3の所定時間前すなわち実施時間T1の開始時点t3の所定の零調整時間T3前であるときは、零調整電圧V0を計測する(S13)。零調整電圧V0の計測は、所定の零調整時間T3だけ電流センサの出力電圧を検出することで行われる。これにより、実施時間T1の開始の所定の零調整時間T3前に所定の零調整時間T3だけ電流センサ17a、17bの出力電圧が零調整電圧V0として検出される。そして、零調整電圧V0を検出した後に、重畳計測ユニット19に重畳電圧Vtの印加指令を出力する(S14)。一方、ステップS12の判定で計測監視の実施時間T1の開始時点t3の所定時間前でないときは、ステップS12に戻り、計測監視の実施時間T1の開始時点t3の所定時間前になるまで待つ。 Next, as shown in FIG. 7B, the current measurement unit 20 first determines whether or not it is a predetermined time before the start time t3 of the measurement monitoring implementation time T1 (S12). Whether or not it is a predetermined time before the start time t3 of the implementation time T1 of measurement monitoring is determined by whether or not it is a predetermined zero adjustment time T3 before the start time of the implementation time T1. When it is a predetermined time before the start time t3 of the measurement monitoring implementation time T1, that is, a predetermined zero adjustment time T3 before the start time t3 of the implementation time T1, the zero adjustment voltage V0 is measured (S13). The zero adjustment voltage V0 is measured by detecting the output voltage of the current sensor for a predetermined zero adjustment time T3. As a result, the output voltages of the current sensors 17a and 17b are detected as the zero adjustment voltage V0 for a predetermined zero adjustment time T3 before the start of the implementation time T1. Then, after detecting the zero adjustment voltage V0, a command to apply the superimposed voltage Vt is output to the superimposed measurement unit 19 (S14). On the other hand, if it is determined in step S12 that it is not the predetermined time before the start time t3 of the measurement and monitoring implementation time T1, the process returns to step S12 and waits until the predetermined time before the start time t3 of the measurement and monitoring implementation time T1.

ステップS14の処理により、二次側電路には重畳電圧Vtが印加されている状態となる。この二次側電路に重畳電圧Vtが印加されている状態で所定の計測時間毎に電流センサ17a、17bの出力電圧を計測電圧Vsとして計測する(S15)。 By the processing of step S14, the superimposed voltage Vt is applied to the secondary electric path. With the superimposed voltage Vt applied to the secondary electric circuit, the output voltages of the current sensors 17a and 17b are measured as the measurement voltage Vs at predetermined measurement times (S15).

そして、零調整電圧V0と計測電圧Vsとの電圧差ΔVを算出し(S16)、電圧差ΔVは閾値VLより大きいか否かを判定する(S17)。この判定により、電圧差ΔVが閾値VLより大きくないときは、ステップS12に戻る。一方、電圧差ΔVが閾値VLより大きいときは、電圧差ΔVが閾値VLより大きい電流センサ17a、17bの設置箇所を絶縁劣化箇所として特定する(S18)。その後に、処理の終了か否かを判定し(S19)、処理の終了でないときはステップS12に戻り、処理の終了であるときは処理を終了する。 Then, the voltage difference ΔV between the zero adjustment voltage V0 and the measured voltage Vs is calculated (S16), and it is determined whether or not the voltage difference ΔV is greater than the threshold value VL (S17). When the voltage difference ΔV is not larger than the threshold value VL as a result of this determination, the process returns to step S12. On the other hand, when the voltage difference ΔV is greater than the threshold value VL, the installation locations of the current sensors 17a and 17b where the voltage difference ΔV is greater than the threshold value VL are identified as insulation deterioration locations (S18). After that, it is determined whether or not the process is finished (S19). If the process is not finished, the process returns to step S12, and if the process is finished, the process is finished.

第3の実施形態によれば、重畳計測ユニット19は、周期的に予め設定された電路の絶縁抵抗Rgの計測監視を行わない停止時間T2のときは重畳電圧Vtの校正を行うので、漏れ電流Igを高精度に検出でき絶縁抵抗Rgの算出の精度を向上できる。周期的に予め設定された電路の絶縁抵抗Rgの計測監視を行う実施時間T1が来たときまたは電流計測ユニット20から重畳電圧Vtの印加指令あったときに電路に重畳電圧Vtを印加し、所定の計測時間毎に電路の漏れ電流Igを検出して重畳電圧Vt及び漏れ電流Igに基づいて計測時間毎の絶縁抵抗Rgを算出し、絶縁抵抗Rgが閾値RL以下のときは絶縁劣化を発報するので、変圧器11の二次側電路で絶縁劣化が発生していることを検出できる。 According to the third embodiment, the superimposed measurement unit 19 calibrates the superimposed voltage Vt during the stop time T2 during which the measurement and monitoring of the insulation resistance Rg of the electric circuit is periodically set in advance. Ig can be detected with high accuracy, and the accuracy of calculation of the insulation resistance Rg can be improved. When the execution time T1 for periodically measuring and monitoring the insulation resistance Rg of the electric circuit comes, or when there is a command to apply the superimposed voltage Vt from the current measurement unit 20, the superimposed voltage Vt is applied to the electric circuit, and the predetermined Insulation resistance Rg is calculated for each measurement time based on superimposed voltage Vt and leakage current Ig, and insulation deterioration is reported when insulation resistance Rg is less than threshold RL. Therefore, it is possible to detect that insulation deterioration has occurred in the secondary side electric circuit of the transformer 11 .

また、電流計測ユニット20は実施時間T1の開始前に零調整時間T3だけ電流センサ17a、17bの出力電圧を電流センサ17a、17bの計測電圧Vsの基準値である零調整電圧V0として計測し、零調整電圧V0を計測した後の実施期間T1中に重畳計測ユニット19に重畳電圧Vtの印加指令を出力し、電路に重畳電圧Vtが印加されている状態で計測時間T1毎に電流センサ17a、17bの出力電圧を計測電圧Vsとして計測し、零調整電圧V0と計測時間毎の計測電圧との電圧差ΔVを求め、差電圧ΔVが閾値VLより大きい電流センサ17a、17bの設置箇所を絶縁劣化箇所として特定する。従って、零調整電圧V0は停止時間T2の度に更新されるので、電流センサ17a、17bの計測電圧Vsの測定精度に影響する電流センサ17a、17bの出力電圧に含まれる時間的な変動分、周囲温度や周囲磁場の変化よる変動分の影響を少なくした計測電圧Vsで絶縁劣化箇所を特定できる。これにより、変圧器11の二次側電路の停電範囲を絞り込むことが可能となり、停電復旧作業を大幅に短縮できる。 Further, the current measurement unit 20 measures the output voltages of the current sensors 17a and 17b for the zero adjustment time T3 before the start of the implementation time T1 as the zero adjustment voltage V0 which is the reference value of the measurement voltage Vs of the current sensors 17a and 17b, During the implementation period T1 after measuring the zero adjustment voltage V0, an application command for the superimposed voltage Vt is output to the superimposed measurement unit 19, and the current sensor 17a, The output voltage of 17b is measured as the measured voltage Vs, the voltage difference ΔV between the zero adjustment voltage V0 and the measured voltage for each measurement time is obtained, and the difference voltage ΔV is greater than the threshold value VL. Identify as a point. Therefore, since the zero adjustment voltage V0 is updated every stop time T2, the temporal fluctuations included in the output voltages of the current sensors 17a and 17b that affect the measurement accuracy of the measured voltage Vs of the current sensors 17a and 17b, The location of insulation deterioration can be identified by the measured voltage Vs that is less affected by fluctuations due to changes in the ambient temperature and the ambient magnetic field. As a result, it becomes possible to narrow down the power failure range of the secondary electric circuit of the transformer 11, and the power failure restoration work can be greatly shortened.

次に本発明の第4実施形態に係る絶縁監視方法について説明する。図8は本発明の第4実施形態に係る絶縁監視方法の処理内容を示すフローチャートである。図8(a)は図4に示した重畳計測ユニット19の処理内容を示すフローチャート、図8(b)は図4に示した電流計測ユニット20の処理内容を示すフローチャートである。本発明の第4実施形態に係る絶縁監視方法は、図7に示した本発明の第4実施形態に係る絶縁監視方法に対し、ステップSS1及びステップSS2を追加するとともに、ステップS15に代えてステップSS3を設けたものである。 Next, an insulation monitoring method according to a fourth embodiment of the present invention will be described. FIG. 8 is a flow chart showing the processing contents of the insulation monitoring method according to the fourth embodiment of the present invention. 8A is a flow chart showing the processing contents of the superposition measurement unit 19 shown in FIG. 4, and FIG. 8B is a flow chart showing the processing contents of the current measurement unit 20 shown in FIG. In the insulation monitoring method according to the fourth embodiment of the present invention, steps SS1 and SS2 are added to the insulation monitoring method according to the fourth embodiment of the present invention shown in FIG. SS3 is provided.

図8(a)において、重畳計測ユニット19のステップS1~ステップS10は図7(a)と同一処理であるので説明を省略する。ステップS10で絶縁劣化を発報した後に、絶縁抵抗Rgの計測監視を休止時間Txだけ休止する(SS1)。そして、処理の終了か否かを判定し(S11)、処理の終了でないときはステップS1に戻り、処理の終了であるときは処理を終了する。 In FIG. 8(a), steps S1 to S10 of the superposition measurement unit 19 are the same as those in FIG. 7(a), so description thereof will be omitted. After the insulation deterioration is reported in step S10, the measurement and monitoring of the insulation resistance Rg are paused for the pause time Tx (SS1). Then, it is determined whether or not the process is finished (S11). If the process is not finished, the process returns to step S1, and if the process is finished, the process is finished.

図8(b)において、電流計測ユニット20は、計測監視の実施時間T1の開始時点t3の所定時間前か否かを判定し(S12)。計測監視の実施時間T1の開始時点t3の所定時間前でないときは 、重畳計測ユニット19から絶縁劣化の発報があったか否かを判定する(SS2)。重畳計測ユニット19から絶縁劣化の発報がなかったときはステップS12に戻り、計測監視の実施時間T1の開始時点t3の所定時間前になるまで待つ。 In FIG. 8B, the current measurement unit 20 determines whether or not it is a predetermined time before the start time t3 of the measurement monitoring implementation time T1 (S12). If it is not the predetermined time before the start time t3 of the measurement monitoring implementation time T1, it is determined whether or not the superimposition measurement unit 19 has issued an insulation deterioration report (SS2). When there is no notification of insulation deterioration from the superimposition measurement unit 19, the process returns to step S12 and waits until a predetermined time before the start time t3 of the measurement monitoring implementation time T1.

一方、ステップS12の判定で計測監視の実施時間T1の開始時点t3の所定時間前すなわち実施時間T1の開始時点t3の所定の零調整時間T3前であるとき、または、重畳計測ユニット19から絶縁劣化の発報があったときは零調整電圧V0を計測する(S13)。そして、零調整電圧V0を検出した後に、重畳計測ユニット19に重畳電圧Vtの印加指令を出力する(S14)。 On the other hand, when it is determined in step S12 that it is a predetermined time before the start time t3 of the measurement monitoring implementation time T1, that is, a predetermined zero adjustment time T3 before the start time t3 of the implementation time T1, or the insulation deterioration from the superimposition measurement unit 19 is issued, the zero adjustment voltage V0 is measured (S13). Then, after detecting the zero adjustment voltage V0, a command to apply the superimposed voltage Vt is output to the superimposed measurement unit 19 (S14).

ステップS14の処理により、二次側電路には重畳電圧Vtが印加されている状態となると、二次側電路に重畳電圧Vtが印加されている状態で1回めの計測時間T5だけ電流センサ17a、17bの出力電圧を計測電圧Vsとして計測する(SS3)。 When the superimposed voltage Vt is applied to the secondary electric circuit by the process of step S14, the current sensor 17a is turned on for the first measurement time T5 while the superimposed voltage Vt is being applied to the secondary electric circuit. , 17b is measured as the measurement voltage Vs (SS3).

そして、零調整電圧V0と計測電圧Vsとの電圧差ΔVを算出し(S16)、電圧差ΔVは閾値VLより大きいか否かを判定する(S17)。この判定により、電圧差ΔVが閾値VLより大きくないときは、ステップS12に戻る。一方、電圧差ΔVが閾値VLより大きいときは、電圧差ΔVが閾値VLより大きい電流センサ17a、17bの設置箇所を絶縁劣化箇所として特定する(S18)。その後に、処理の終了か否かを判定し(S19)、処理の終了でないときはステップS12に戻り、処理の終了であるときは処理を終了する。 Then, the voltage difference ΔV between the zero adjustment voltage V0 and the measured voltage Vs is calculated (S16), and it is determined whether or not the voltage difference ΔV is greater than the threshold value VL (S17). When the voltage difference ΔV is not larger than the threshold value VL as a result of this determination, the process returns to step S12. On the other hand, when the voltage difference ΔV is greater than the threshold value VL, the installation locations of the current sensors 17a and 17b where the voltage difference ΔV is greater than the threshold value VL are identified as insulation deterioration locations (S18). After that, it is determined whether or not the process is finished (S19). If the process is not finished, the process returns to step S12, and if the process is finished, the process is finished.

本発明の第4実施形態の絶縁監視方法によれば、第3実施形態と同様に、重畳計測ユニット19は、周期的に予め設定された電路の絶縁抵抗Rgの計測監視を行わない停止時間T2のときは重畳電圧Vtの校正を行うので、漏れ電流Igを高精度に検出でき絶縁抵抗Rgの算出の精度を向上できる。さらに、重畳計測ユニット19で行う変圧器11の二次側電路の絶縁抵抗Rgの測定監視において、絶縁抵抗Rgが閾値RL以下となり絶縁劣化の発報があった場合、休止時間Txおいても第3実施形態での停止時間T2と同じ処理(電流センサ17a、17bの零調整、電流センサ17a、17bの出力電圧の測定)を行うので、電流計測ユニット20では定期的に行う実施時間T1においてだけでなく絶縁劣化の発報があった場合にも電流センサ17a、17bの零調整及び電流センサ17a、17bの出力電圧の測定を行うので、早期に絶縁劣化箇所の特定が精度よく行える。 According to the insulation monitoring method of the fourth embodiment of the present invention, similarly to the third embodiment, the superimposed measurement unit 19 periodically sets in advance the stop time T2 during which the measurement and monitoring of the insulation resistance Rg of the electric circuit is not performed. When , the superimposed voltage Vt is calibrated, so the leakage current Ig can be detected with high accuracy, and the accuracy of calculation of the insulation resistance Rg can be improved. Furthermore, in the measurement and monitoring of the insulation resistance Rg of the secondary circuit of the transformer 11 performed by the superimposition measurement unit 19, if the insulation resistance Rg becomes equal to or less than the threshold value RL and an insulation deterioration alarm is issued, even after the pause time Tx, the second Since the same processing (zero adjustment of the current sensors 17a, 17b, measurement of the output voltage of the current sensors 17a, 17b) is performed as in the stop time T2 in the third embodiment, the current measurement unit 20 periodically performs only during the implementation time T1 In addition, even when insulation deterioration is reported, the current sensors 17a and 17b are zero-adjusted and the output voltages of the current sensors 17a and 17b are measured.

また、停止時間T2及び休止時間Txにおいて、電路に重畳電圧Vtが印加されている状態で、第3の実施形態の所定の計測時間T1に代えて、1回めの計測時間T5においてのみ電流センサ17a、17bの出力電圧を計測電圧Vsとして計測し、零調整電圧V0と1回めの計測時間T5においてのみ計測した1個の計測電圧Vsとの差電圧ΔVが閾値VLより大きい電流センサ17a、17bの設置箇所を絶縁劣化箇所として特定する。従って、零調整電圧V0は停止時間T2及び休止時間Txの度に更新され、零調整電圧V0を更新した直後の電流センサ17a、17bの計測電圧Vsを用いるので、電流センサ17a、17bの計測電圧Vsの測定精度に影響する電流センサ17a、17bの出力電圧に含まれる時間的な変動分、周囲温度や周囲磁場の変化よる変動分の影響を少なくした計測電圧Vsで絶縁劣化箇所を特定できる。これにより、変圧器11の二次側電路の停電範囲を絞り込むことが可能となり、停電復旧作業を大幅に短縮できる。 Further, during the stop time T2 and the rest time Tx, in a state where the superimposed voltage Vt is applied to the electric circuit, the current sensor is detected only during the first measurement time T5 instead of the predetermined measurement time T1 of the third embodiment. The current sensor 17a measures the output voltages of 17a and 17b as the measured voltage Vs, and the difference voltage ΔV between the zero adjustment voltage V0 and one measured voltage Vs measured only at the first measurement time T5 is greater than the threshold value VL, 17b is specified as an insulation deterioration location. Therefore, the zero adjustment voltage V0 is updated every stop time T2 and rest time Tx, and the voltages Vs measured by the current sensors 17a and 17b immediately after updating the zero adjustment voltage V0 are used. The location of insulation deterioration can be identified with the measured voltage Vs that reduces the effects of temporal fluctuations contained in the output voltages of the current sensors 17a and 17b and fluctuations due to changes in the ambient temperature and magnetic field that affect the measurement accuracy of Vs. As a result, it becomes possible to narrow down the power failure range of the secondary electric circuit of the transformer 11, and the power failure restoration work can be greatly shortened.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described above, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

11…変圧器、12…交流電源、13…主回路、14…フィーダ、15…負荷、16…監視計測ユニット、17…電流センサ、18…パネルコンピュータ、19…重畳計測ユニット、20…電流計測ユニット、21…絶縁劣化箇所、22…直流電源、23…スイッチ、24…電圧計、25…絶縁抵抗算出部、26…絶縁劣化発報部、27…零調整電圧検出部、28…重畳電圧印加部、29…連続的電圧計測部、30…絶縁劣化箇所判定部、31…間欠的電圧計測部 DESCRIPTION OF SYMBOLS 11... Transformer, 12... AC power supply, 13... Main circuit, 14... Feeder, 15... Load, 16... Monitoring and measuring unit, 17... Current sensor, 18... Panel computer, 19... Superimposed measuring unit, 20... Current measuring unit , 21... Insulation deterioration part, 22... DC power supply, 23... Switch, 24... Voltmeter, 25... Insulation resistance calculation unit, 26... Insulation deterioration alarm unit, 27... Zero adjustment voltage detection unit, 28... Superimposed voltage application unit , 29... Continuous voltage measurement unit, 30... Insulation deterioration point determination unit, 31... Intermittent voltage measurement unit

Claims (6)

非接地配電方式の変圧器の二次側から引き出された主回路に複数のフィーダがある電路に対して重畳電圧を印加する重畳計測ユニットと前記重畳電圧により生じる前記フィーダの漏れ電流を計測して前記変圧器の二次側電路の絶縁劣化を監視する電流計測ユニットとを有した監視計測ユニットと、前記フィーダの分岐点の下流側に設けられ前記フィーダの前記漏れ電流を電圧値で検出し前記監視計測ユニットに入力する電流センサと、前記監視計測ユニットの操作制御や前記監視計測ユニットからのデータを記録表示するとともに中央監視装置とのデータの送受信を行うパネルコンピュータとを備え、
前記重畳計測ユニットは、前記電路の絶縁抵抗の計測監視を行う実施時間と前記計測監視を行わない停止時間とが予め周期的に設定され、前記実施時間中に前記電路に前記重畳電圧を印加し、所定の計測時間毎に前記電路の前記漏れ電流を検出して前記計測時間毎の前記絶縁抵抗を算出し、前記絶縁抵抗が閾値以下のときは絶縁劣化の発報を行い、前記停止時間中には前記重畳電圧の校正を行い、
前記電流計測ユニットは、前記停止時間中に所定の零調整時間だけ前記電流センサの出力電圧を前記電流センサの計測電圧の基準値である零調整電圧として計測し、前記零調整電圧を計測した後の前記実施時間中に前記計測時間毎に前記電流センサの出力電圧を前記計測電圧として計測し、前記零調整電圧と前記計測時間毎の前記計測電圧との電圧差を求め差電圧が閾値より大きい前記電流センサの設置箇所を絶縁劣化箇所として特定することを特徴とする絶縁監視装置。
A superimposition measuring unit that applies a superimposed voltage to an electric circuit having a plurality of feeders in a main circuit drawn from the secondary side of a transformer of an ungrounded distribution system, and measures the leakage current of the feeder caused by the superimposed voltage. a monitoring and measuring unit having a current measuring unit for monitoring insulation deterioration of the secondary electric circuit of the transformer; A current sensor for inputting to a monitoring and measuring unit, a panel computer for controlling the operation of the monitoring and measuring unit, recording and displaying data from the monitoring and measuring unit, and transmitting and receiving data to and from a central monitoring device,
In the superimposition measurement unit, an execution time for measuring and monitoring the insulation resistance of the electric circuit and a stop time for not performing the measurement and monitoring are periodically set in advance, and the superimposed voltage is applied to the electric circuit during the execution time. , detecting the leakage current of the electric circuit for each predetermined measurement time, calculating the insulation resistance for each measurement time, and issuing a warning of insulation deterioration when the insulation resistance is equal to or less than a threshold value, and during the stop time is calibrated for the superimposed voltage,
The current measurement unit measures the output voltage of the current sensor for a predetermined zero adjustment time during the stop time as a zero adjustment voltage that is a reference value of the measured voltage of the current sensor, and after measuring the zero adjustment voltage measuring the output voltage of the current sensor as the measurement voltage for each measurement time during the execution time of , obtaining a voltage difference between the zero adjustment voltage and the measurement voltage for each measurement time, wherein the difference voltage is greater than a threshold An insulation monitoring device, wherein the location where the current sensor is installed is specified as an insulation deterioration location.
非接地配電方式の変圧器の二次側から引き出された主回路に複数のフィーダがある電路に対して重畳電圧を印加する重畳計測ユニットと前記重畳電圧により生じる前記フィーダの漏れ電流を計測して前記変圧器の二次側電路の絶縁劣化を監視する電流計測ユニットとを有した監視計測ユニットと、前記フィーダの分岐点の下流側に設けられ前記フィーダの前記漏れ電流を電圧値で検出し前記監視計測ユニットに入力する電流センサと、前記監視計測ユニットの操作制御や前記監視計測ユニットからのデータを記録表示するとともに中央監視装置とのデータの送受信を行うパネルコンピュータとを備え、
前記重畳計測ユニットは、前記電路の絶縁抵抗の計測監視を行う実施時間と前記計測監視を行わない停止時間とが予め周期的に設定され、さらに前記実施時間中に前記計測監視を休止する休止時間が設定され、前記停止時間及び前記休止時間以外の前記実施時間中に前記電路に前記重畳電圧を印加し、所定の計測時間毎に前記電路の前記漏れ電流を検出して前記計測時間毎の絶縁抵抗を算出し、前記絶縁抵抗が閾値以下のときは絶縁劣化の発報を行い、前記絶縁劣化の発報があったとき前記計測監視を前記休止時間だけ休止し、前記停止時間中には前記重畳電圧の校正を行い、
前記電流計測ユニットは、前記停止時間及び前記休止時間中に所定の零調整時間だけ前記電流センサの出力電圧を前記電流センサの計測電圧の基準値である零調整電圧として測定し、前記零調整電圧を計測した後の前記実施時間中に1回めの計測時間においてのみ前記電流センサの出力電圧を前記計測電圧として計測し、前記零調整電圧と1回めの前記計測時間においてのみ計測した1個の前記計測電圧との電圧差を求め、差電圧が閾値より大きい前記電流センサの設置箇所を絶縁劣化箇所として特定することを特徴とする絶縁監視装置。
A superimposition measuring unit that applies a superimposed voltage to an electric circuit having a plurality of feeders in a main circuit drawn from the secondary side of a transformer of an ungrounded distribution system, and measures the leakage current of the feeder caused by the superimposed voltage. a monitoring and measuring unit having a current measuring unit for monitoring insulation deterioration of the secondary electric circuit of the transformer; A current sensor for inputting to a monitoring and measuring unit, a panel computer for controlling the operation of the monitoring and measuring unit, recording and displaying data from the monitoring and measuring unit, and transmitting and receiving data to and from a central monitoring device,
In the superimposed measurement unit, an execution time for measuring and monitoring the insulation resistance of the electric circuit and a stop time for not performing the measurement and monitoring are periodically set in advance, and a pause time for stopping the measurement and monitoring during the implementation time. is set, the superimposed voltage is applied to the electric circuit during the execution time other than the stop time and the rest time, the leakage current of the electric circuit is detected every predetermined measurement time, and insulation is performed for each measurement time resistance is calculated, and when the insulation resistance is equal to or less than a threshold value, an insulation deterioration alarm is issued; when the insulation deterioration alarm is issued, the measurement and monitoring are paused for the pause time; Calibrate the superimposed voltage,
The current measurement unit measures the output voltage of the current sensor for a predetermined zero adjustment time during the stop time and the rest time as a zero adjustment voltage that is a reference value of the measured voltage of the current sensor, and measures the zero adjustment voltage The output voltage of the current sensor is measured as the measurement voltage only at the first measurement time during the implementation time after measuring, and the zero adjustment voltage and the one measured only at the first measurement time and a voltage difference between the measured voltage and the installation location of the current sensor where the difference voltage is greater than a threshold is specified as an insulation deterioration location.
請求項2に記載の絶縁型監視装置において、前記零調整電圧は、前記停止時間のうち、前記電流センサの計測電圧の測定精度に影響を与える前記電流センサの出力電圧に含まれる変動分の影響が少ない時間帯の前記停止時間中に計測することを特徴とする絶縁監視装置。 3. The insulated monitoring device according to claim 2, wherein the zero-adjustment voltage is affected by the variation included in the output voltage of the current sensor that affects the measurement accuracy of the measured voltage of the current sensor during the stop time. An insulation monitoring device characterized in that the measurement is performed during the stop time in a time period when the insulation is low. 請求項2に記載の絶縁型監視装置において、前記電流センサの計測電圧の測定精度に影響を与える前記電流センサの出力電圧に含まれる変動分の影響が大きい時間帯の実施時間は、前記変動分の影響が少ない時間帯の前記実施時間より長くすることを特徴とする絶縁監視装置。 3. The insulated monitoring device according to claim 2, wherein the execution time of the time period in which the fluctuation contained in the output voltage of the current sensor that affects the measurement accuracy of the measured voltage of the current sensor has a large influence is equal to the fluctuation. The insulation monitoring device is characterized in that the execution time is set longer than the execution time in a time zone when the influence of the insulation is small. 非接地配電方式の変圧器の二次側から引き出された主回路に複数のフィーダがある電路に対して重畳電圧を印加する重畳計測ユニットと前記重畳電圧により生じる前記フィーダの漏れ電流を計測して前記変圧器の二次側電路の絶縁劣化を監視する電流計測ユニットとを有した監視計測ユニットと、前記フィーダの分岐点の下流側に設けられ前記フィーダの前記漏れ電流を電圧値で検出し前記監視計測ユニットに入力する電流センサと、前記監視計測ユニットの操作制御や前記監視計測ユニットからのデータを記録表示するとともに中央監視装置とのデータの送受信を行うパネルコンピュータとを備えた絶縁監視装置を用いて前記電路の絶縁劣化を監視する絶縁監視方法において、
前記重畳計測ユニットは、周期的に予め設定された前記電路の絶縁抵抗の計測監視を行わない停止時間のときは前記重畳電圧の校正を行い、周期的に予め設定された前記電路の前記絶縁抵抗の前記計測監視を行う実施時間が来たときまたは前記電流計測ユニットから前記重畳電圧の印加指令あったときに前記電路に前記重畳電圧を印加し、所定の計測時間毎に前記電路の前記漏れ電流を検出して前記重畳電圧及び前記漏れ電流に基づいて前記計測時間毎の前記絶縁抵抗を算出し、前記絶縁抵抗が閾値以下のときは絶縁劣化を発報し、
前記電流計測ユニットは、前記実施時間の開始前に零調整時間だけ前記電流センサの出力電圧を前記電流センサの計測電圧の基準値である零調整電圧として計測し、前記零調整電圧を計測した後の前記実施時間中に前記重畳計測ユニットに前記重畳電圧の印加指令を出力し、前記電路に前記重畳電圧が印加されている状態で前記計測時間毎に前記電流センサの出力電圧を前記計測電圧として計測し、前記零調整電圧と前記計測時間毎の前記計測電圧との電圧差を求め、差電圧が閾値より大きい前記電流センサの設置箇所を絶縁劣化箇所として特定することを特徴とする絶縁監視方法。
A superimposition measuring unit that applies a superimposed voltage to an electric circuit having a plurality of feeders in a main circuit drawn from the secondary side of a transformer of an ungrounded distribution system, and measures the leakage current of the feeder caused by the superimposed voltage. a monitoring and measuring unit having a current measuring unit for monitoring insulation deterioration of the secondary electric circuit of the transformer; An insulation monitoring device comprising a current sensor that inputs to a monitoring and measuring unit, and a panel computer that controls the operation of the monitoring and measuring unit, records and displays data from the monitoring and measuring unit, and transmits and receives data to and from a central monitoring device. In the insulation monitoring method for monitoring insulation deterioration of the electric circuit using
The superimposed measurement unit calibrates the superimposed voltage during a stop time during which the measurement and monitoring of the insulation resistance of the electric circuit is not performed, and periodically sets the insulation resistance of the electric circuit. When the implementation time for performing the measurement and monitoring comes or when there is a command to apply the superimposed voltage from the current measurement unit, the superimposed voltage is applied to the electric circuit, and the leakage current of the electric circuit is applied every predetermined measurement time. is detected, the insulation resistance is calculated for each measurement time based on the superimposed voltage and the leakage current, and when the insulation resistance is equal to or less than a threshold value, insulation deterioration is reported,
The current measurement unit measures the output voltage of the current sensor as a zero adjustment voltage that is a reference value of the measurement voltage of the current sensor for a zero adjustment time before the start of the implementation time, and after measuring the zero adjustment voltage During the execution time of , an application command for the superimposed voltage is output to the superimposed measurement unit, and the output voltage of the current sensor is used as the measured voltage for each measurement time while the superimposed voltage is being applied to the electric circuit. measuring, obtaining a voltage difference between the zero adjustment voltage and the measured voltage for each measurement time, and specifying an installation location of the current sensor where the difference voltage is greater than a threshold as an insulation deterioration location . .
非接地配電方式の変圧器の二次側から引き出された主回路に複数のフィーダがある電路に対して重畳電圧を印加する重畳計測ユニットと前記重畳電圧により生じる前記フィーダの漏れ電流を計測して前記変圧器の二次側電路の絶縁劣化を監視する電流計測ユニットとを有した監視計測ユニットと、前記フィーダの分岐点の下流側に設けられ前記フィーダの前記漏れ電流を電圧値で検出し前記監視計測ユニットに入力する電流センサと、前記監視計測ユニットの操作制御や前記監視計測ユニットからのデータを記録表示するとともに中央監視装置とのデータの送受信を行うパネルコンピュータとを備えた絶縁監視装置を用いて前記電路の前記絶縁劣化を監視する絶縁監視方法において、
前記重畳計測ユニットは、周期的に予め設定された前記電路の絶縁抵抗の計測監視を行わない停止時間のときは前記重畳電圧の校正を行い、周期的に予め設定された前記電路の前記絶縁抵抗の前記計測監視を行う実施時間が来たときまたは前記電流計測ユニットから前記重畳電圧の印加指令あったときに前記電路に前記重畳電圧を印加し、所定の計測時間毎に前記電路の前記漏れ電流を検出して前記重畳電圧及び前記漏れ電流に基づいて前記計測時間毎の前記絶縁抵抗を算出し、前記絶縁抵抗が閾値以下のときは前記絶縁劣化を発報し、前記絶縁劣化の発報があったとき前記計測監視を予め設定された休止時間だけ休止し、
前記電流計測ユニットは、前記実施時間の開始の所定の零調整時間前または前記重畳計測ユニットから前記絶縁劣化の発報があったときに所定の前記零調整時間だけ前記電流センサの出力電圧を前記電流センサの計測電圧の基準値である零調整電圧として計測し、前記零調整電圧を計測した後の前記実施時間中に前記重畳計測ユニットに前記重畳電圧の印加指令を出力し、前記電路に前記重畳電圧が印加されている状態で1回めの前記計測時間においてのみ前記電流センサの出力電圧を前記計測電圧として計測し、前記零調整電圧と1回めの前記計測時間においてのみ計測した1個の前記計測電圧との電圧差を求め、差電圧が閾値より大きい前記電流センサの設置箇所を絶縁劣化箇所として特定することを特徴とする絶縁監視方法。
A superimposition measuring unit that applies a superimposed voltage to an electric circuit having a plurality of feeders in a main circuit drawn from the secondary side of a transformer of an ungrounded distribution system, and measures the leakage current of the feeder caused by the superimposed voltage. a monitoring and measuring unit having a current measuring unit for monitoring insulation deterioration of the secondary electric circuit of the transformer; An insulation monitoring device comprising a current sensor that inputs to a monitoring and measuring unit, and a panel computer that controls the operation of the monitoring and measuring unit, records and displays data from the monitoring and measuring unit, and transmits and receives data to and from a central monitoring device. In the insulation monitoring method for monitoring the insulation deterioration of the electric circuit using
The superimposed measurement unit calibrates the superimposed voltage during a stop time during which the measurement and monitoring of the insulation resistance of the electric circuit is not performed, and periodically sets the insulation resistance of the electric circuit. When the implementation time for performing the measurement and monitoring comes or when there is a command to apply the superimposed voltage from the current measurement unit, the superimposed voltage is applied to the electric circuit, and the leakage current of the electric circuit is applied every predetermined measurement time. is detected, the insulation resistance for each measurement time is calculated based on the superimposed voltage and the leakage current, and when the insulation resistance is equal to or less than a threshold value, the insulation deterioration is reported, and the insulation deterioration is reported. Pausing the measurement and monitoring for a preset pause time when there is,
The current measurement unit reduces the output voltage of the current sensor for the predetermined zero adjustment time before the start of the implementation time or for the predetermined zero adjustment time when the insulation deterioration is reported from the superimposition measurement unit. Measured as a zero adjustment voltage that is a reference value of the measured voltage of the current sensor, outputting an application command for the superimposed voltage to the superimposed measurement unit during the implementation time after measuring the zero adjustment voltage, and applying the superimposed voltage to the electric circuit The output voltage of the current sensor is measured as the measurement voltage only during the first measurement time while the superimposed voltage is being applied, and one voltage is measured only during the zero adjustment voltage and the first measurement time. obtaining a voltage difference from the measured voltage, and specifying an installation location of the current sensor where the difference voltage is greater than a threshold value as an insulation deterioration location.
JP2019014930A 2019-01-31 2019-01-31 Insulation monitoring device and method Active JP7215915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019014930A JP7215915B2 (en) 2019-01-31 2019-01-31 Insulation monitoring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014930A JP7215915B2 (en) 2019-01-31 2019-01-31 Insulation monitoring device and method

Publications (2)

Publication Number Publication Date
JP2020122716A JP2020122716A (en) 2020-08-13
JP7215915B2 true JP7215915B2 (en) 2023-01-31

Family

ID=71992537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014930A Active JP7215915B2 (en) 2019-01-31 2019-01-31 Insulation monitoring device and method

Country Status (1)

Country Link
JP (1) JP7215915B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286053A (en) 2000-01-28 2001-10-12 Tatsuta Electric Wire & Cable Co Ltd Power feeding system with function of detecting defective insulation to ground
JP3218479B2 (en) 1992-09-22 2001-10-15 株式会社ニコン Focus detection device
JP2015137854A (en) 2014-01-20 2015-07-30 マルチ計測器株式会社 Insulation monitoring device
JP6238371B2 (en) 2015-06-30 2017-11-29 Necプラットフォームズ株式会社 Communication device, communication line switching method and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238371A (en) * 1985-08-14 1987-02-19 Meidensha Electric Mfg Co Ltd Insulation resistance detector
JPH0310270U (en) * 1989-06-19 1991-01-31
JPH03218479A (en) * 1990-01-23 1991-09-26 Hisashi Kumai Insulation degradation diagnostic method for cable
JPH0894699A (en) * 1994-09-29 1996-04-12 Meidensha Corp Apparatus for searching for accident point of power distribution line
JP4121979B2 (en) * 2004-06-29 2008-07-23 光商工株式会社 Non-grounded circuit insulation monitoring method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218479B2 (en) 1992-09-22 2001-10-15 株式会社ニコン Focus detection device
JP2001286053A (en) 2000-01-28 2001-10-12 Tatsuta Electric Wire & Cable Co Ltd Power feeding system with function of detecting defective insulation to ground
JP2015137854A (en) 2014-01-20 2015-07-30 マルチ計測器株式会社 Insulation monitoring device
JP6238371B2 (en) 2015-06-30 2017-11-29 Necプラットフォームズ株式会社 Communication device, communication line switching method and program

Also Published As

Publication number Publication date
JP2020122716A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
US10352984B2 (en) Fault location in power distribution systems
US9488689B2 (en) Systems and methods for identifying fault location using distributed communication
EP3185024B1 (en) Current transformer with enhanced temperature measurement functions
US9304159B2 (en) Detection and location of electrical connections having a micro-interface abnormality in an electrical system
US9720043B2 (en) Testing a fuse
US11067639B2 (en) Trending functions for predicting the health of electric power assets
JP2015109440A (en) Power device including current transformer and compensation method for current transformer
CA3115161C (en) Relative bushing parameter method to avoid temperature influence in transformer absolute bushing parameter monitoring
EP2725367B1 (en) Method and device for monitoring partial discharges
JP7215915B2 (en) Insulation monitoring device and method
KR101358051B1 (en) Apparatus of analyzing leakage current
EP3206041A1 (en) A system and a method for monitoring transformer bushings
JP2019109192A (en) Insulation monitoring device and insulation monitoring system
JP6809189B2 (en) Insulation resistance measurement method for DC power supply circuit
US11366149B2 (en) Electrical network impedance determination
JP7013770B2 (en) Forced grounding device and ground fault search device
JP2019013124A (en) High voltage insulation monitoring apparatus and high pressure insulation monitoring method
US9817419B2 (en) Method for determining an individual power consumption
JP2012088275A (en) Insulation level monitoring device
EP3764499A1 (en) Symmetrical fault detection during power swing condition with single ended measurements
JP3283986B2 (en) Impedance measuring device
JP6969079B2 (en) Forced installation device, ground fault investigation device and method using it
JP6327507B2 (en) Insulation monitoring device
JP2006010608A (en) Insulation level monitoring method for non-earthing electric line and device thereof
KR102489613B1 (en) Remote electric shock prevention system with N-ground voltage and N-ground resistance measurement function

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230119

R150 Certificate of patent or registration of utility model

Ref document number: 7215915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150