JP6327507B2 - Insulation monitoring device - Google Patents

Insulation monitoring device Download PDF

Info

Publication number
JP6327507B2
JP6327507B2 JP2014007756A JP2014007756A JP6327507B2 JP 6327507 B2 JP6327507 B2 JP 6327507B2 JP 2014007756 A JP2014007756 A JP 2014007756A JP 2014007756 A JP2014007756 A JP 2014007756A JP 6327507 B2 JP6327507 B2 JP 6327507B2
Authority
JP
Japan
Prior art keywords
current
insulation
distribution bus
exploration
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014007756A
Other languages
Japanese (ja)
Other versions
JP2015137854A (en
Inventor
恭二 大西
恭二 大西
知司 座馬
知司 座馬
宏行 榊原
宏行 榊原
英幸 廣井
英幸 廣井
明 日向野
明 日向野
重嘉 酒井
重嘉 酒井
Original Assignee
株式会社関電工
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社関電工 filed Critical 株式会社関電工
Priority to JP2014007756A priority Critical patent/JP6327507B2/en
Publication of JP2015137854A publication Critical patent/JP2015137854A/en
Application granted granted Critical
Publication of JP6327507B2 publication Critical patent/JP6327507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)

Description

本発明は、変圧器の二次側電路が非接地配電方式または接地配電方式で非接地状態にした回路構成で複数の分岐回路がある電路の絶縁劣化を監視する絶縁監視装置に関する。   The present invention relates to an insulation monitoring apparatus for monitoring insulation deterioration of an electric circuit having a plurality of branch circuits in a circuit configuration in which a secondary side electric circuit of a transformer is in a non-grounded state by a non-ground distribution system or a ground distribution system.

変圧器の二次側を非接地とした非接地配電方式は、一相で絶縁抵抗が低下しても閉回路が形成されない。従って、一相の対地絶縁破壊(地絡)時にも電源の供給を確保できるので、変圧器の二次側電路全体を停電に至らしめることを防止できる。   In the non-grounded distribution system in which the secondary side of the transformer is ungrounded, a closed circuit is not formed even if the insulation resistance decreases in one phase. Therefore, since the supply of power can be ensured even in the case of one-phase ground insulation breakdown (ground fault), it is possible to prevent the entire secondary side electric circuit of the transformer from causing a power failure.

この非接地配電方式によって、一相で絶縁劣化しても変圧器の二次側電路全体の停電は防ぐことができるが、電路の絶縁劣化が除去できるわけではない。さらにこの状態で他の相が絶縁劣化すると、変圧器の二次側電路全体が停電となる。そこで、絶縁監視装置を設置して電路の絶縁劣化を監視するようにしている。   Although this non-grounded distribution system can prevent a power failure of the entire secondary side electric circuit of the transformer even if the insulation is deteriorated in one phase, the insulation deterioration of the electric circuit cannot be removed. Furthermore, if the other phases are insulated and deteriorated in this state, the entire secondary side electric circuit of the transformer will be cut off. Therefore, an insulation monitoring device is installed to monitor the insulation deterioration of the electric circuit.

非接地電路の絶縁監視装置として、複数のバンクとこれらの各バンクから枝分れしている複数のフィーダとで構成された配電設備の各フィーダの漏れ電流を的確に計測できるようにしたものがある(特許文献1参照)。また、非接地電路の絶縁監視方式として、母線から複数のフィーダのどのフィーダが絶縁劣化したのかを監視できるようにしたものがある(例えば、特許文献2参照)。   As an insulation monitoring device for ungrounded electrical circuits, a device that can accurately measure the leakage current of each feeder of a distribution facility composed of a plurality of banks and a plurality of feeders branched from each bank. Yes (see Patent Document 1). In addition, as an insulation monitoring method for non-grounded electric circuits, there is one that can monitor which feeder of a plurality of feeders has deteriorated from the bus (see, for example, Patent Document 2).

特開2007−285929号公報JP 2007-285929 A 特開平9−218237号公報JP 9-218237 A

しかし、特許文献1、2のものでは、どのフィーダが絶縁劣化したのかを監視できるが、絶縁劣化した箇所を特定することは困難である。活線状態で絶縁劣化した箇所を特定するには、例えば、一つ一つ機器をコンセントから抜き、どの機器で絶縁監視装置が絶縁劣化を検出しなくなるかを確認しなければならない。また、絶縁劣化が電線の絶縁劣化によると推察される場合には、開閉器を一つ一つ開放して、どの開閉器を開放したときに絶縁監視装置が絶縁劣化を検出しなくなるかを確認し、電線の絶縁劣化箇所を特定しなければならない。そこで、電路や設備の保護と操業の安全性及び継続性を図るために、活線状態で絶縁劣化の箇所を特定できることが要請されている。   However, in Patent Documents 1 and 2, it is possible to monitor which feeder has undergone insulation degradation, but it is difficult to specify the location of insulation degradation. In order to identify the location where insulation deterioration has occurred in a live line state, for example, it is necessary to unplug each device from the outlet and check with which device the insulation monitoring device will not detect insulation deterioration. Also, if it is assumed that the insulation deterioration is due to the insulation deterioration of the wire, open the switches one by one and check which switch is opened when the insulation monitoring device will not detect the insulation deterioration However, the insulation deterioration point of the electric wire must be specified. Therefore, in order to protect the electric circuit and equipment and to ensure the safety and continuity of operation, it is required that the location of insulation deterioration can be specified in a live line state.

本発明の目的は、非接地配電方式または接地配電方式で非接地状態にした回路構成で複数の分岐回路がある電路の絶縁劣化の箇所を活線状態で特定できる絶縁監視装置を提供することである。   An object of the present invention is to provide an insulation monitoring device that can identify an insulation deterioration point of an electric circuit having a plurality of branch circuits in a non-grounded state by a non-grounded distribution method or a grounded distribution method. is there.

本発明の絶縁監視装置は、非接地配電方式または接地配電方式で非接地状態にした回路構成で変圧器の二次側の直近の直近配電母線から分岐した分岐配電母線から複数のフィーダが引き出され前記フィーダに複数の分岐回路がある電路の前記直近配電母線に接続され前記電路に絶縁劣化があったとき活線状態で前記電路に探査電流を供給する直流電流供給部と、前記分岐回路の分岐点の下流側にそれぞれ設けられ前記直流電流供給部から供給された探査電流を検出する電流検出器と、前記電流検出器で検出された探査電流を入力し予め定めた所定値より大きい探査電流を検出した電流検出器の配置関係から絶縁劣化の箇所を特定する絶縁状態評価部とを備えたことを特徴とする。 In the insulation monitoring device of the present invention, a plurality of feeders are drawn from a branch distribution bus that branches from the nearest distribution bus on the secondary side of the transformer in a circuit configuration that is ungrounded by a non-ground distribution system or a ground distribution system. A DC current supply unit that is connected to the nearest distribution bus of an electric circuit having a plurality of branch circuits in the feeder and supplies an exploration current to the electric circuit in a live state when the electric circuit has insulation deterioration; and a branch of the branch circuit a current detector for detecting a probe current supplied from the direct current supply unit respectively provided on the downstream side of the point, the predetermined value is greater than exploration currents enter the probe current detected by said current detector An insulation state evaluation unit that identifies a location of insulation deterioration from the detected arrangement relationship of current detectors is provided.

本発明によれば、非接地配電方式または接地配電方式で非接地状態にした回路構成で変圧器の二次側に複数の分岐回路がある電路の変圧器の二次側の直近配電母線に活線状態で探査電流を供給し、予め定めた所定値より大きい探査電流を検出した電流検出器の配置関係から絶縁劣化の箇所を特定するので、非接地配電方式または接地配電方式で非接地状態にした回路構成で複数の分岐回路がある電路の絶縁劣化の箇所を活線状態で特定できる。   According to the present invention, a non-grounded distribution system or a grounded distribution system is used for the nearest distribution bus on the secondary side of a transformer in a circuit having a plurality of branch circuits on the secondary side of the transformer. Since the location of insulation deterioration is identified from the arrangement relationship of the current detectors that supply the exploration current in the line state and detect the exploration current greater than the predetermined value, set it to the non-ground state with the non-ground distribution method or the ground distribution method With this circuit configuration, it is possible to identify the location of insulation deterioration in an electric circuit having a plurality of branch circuits in a live state.

本発明の第1実施形態に係る絶縁監視装置を適用した非接地配電方式の電路の一例を示す系統図。The systematic diagram which shows an example of the electric circuit of the non-grounding distribution system to which the insulation monitoring apparatus which concerns on 1st Embodiment of this invention is applied. 図1に示した電路の系統図を簡略化した系統図。The system diagram which simplified the system diagram of the electric circuit shown in FIG. 図2に示した電路の末端回路で絶縁劣化があった場合の本発明の第1実施形態に係る絶縁監視装置の動作説明図。Operation | movement explanatory drawing of the insulation monitoring apparatus which concerns on 1st Embodiment of this invention when insulation degradation exists in the terminal circuit of the electric circuit shown in FIG. 図2に示した電路の途中で絶縁劣化があった場合の本発明の第1実施形態に係る絶縁監視装置の動作説明図。Operation | movement explanatory drawing of the insulation monitoring apparatus which concerns on 1st Embodiment of this invention when there is insulation degradation in the middle of the electric circuit shown in FIG. 図2に示した電路の2箇所で絶縁劣化があった場合の本発明の第1実施形態に係る絶縁監視装置の動作説明図。Operation | movement explanatory drawing of the insulation monitoring apparatus which concerns on 1st Embodiment of this invention when insulation degradation exists in two places of the electrical circuit shown in FIG. 本発明の第2実施形態に係る絶縁監視装置を適用した非接地配電方式の電路の一例を示す簡略化した系統図。The simplified systematic diagram which shows an example of the electric circuit of the non-grounding distribution system to which the insulation monitoring apparatus which concerns on 2nd Embodiment of this invention is applied. 図6に示した電路の途中で絶縁劣化があった場合の本発明の第2実施形態に係る絶縁監視装置の動作説明図。Operation | movement explanatory drawing of the insulation monitoring apparatus which concerns on 2nd Embodiment of this invention when there exists insulation degradation in the middle of the electric circuit shown in FIG. 図6に示した電路の分岐配電母線で絶縁劣化があった場合の本発明の第2実施形態に係る絶縁監視装置の動作説明図。Operation | movement explanatory drawing of the insulation monitoring apparatus which concerns on 2nd Embodiment of this invention when insulation degradation exists in the branch distribution bus of the electrical circuit shown in FIG. 図6に示した電路の2箇所で絶縁劣化があった場合の一例を示す本発明の第2実施形態に係る絶縁監視装置の動作説明図。Operation | movement explanatory drawing of the insulation monitoring apparatus which concerns on 2nd Embodiment of this invention which shows an example when insulation degradation exists in two places of the electrical circuit shown in FIG. 図6に示した電路の直流電流供給部の直近配電母線への接続点の下流側で絶縁劣化があった場合の本発明の第2実施形態に係る絶縁監視装置の動作説明図。Operation | movement explanatory drawing of the insulation monitoring apparatus which concerns on 2nd Embodiment of this invention when insulation degradation exists in the downstream of the connection point to the nearest distribution bus of the direct current supply part of the electric circuit shown in FIG. 図6に示した電路の2箇所で絶縁劣化があった場合の他の一例を示す本発明の第2実施形態に係る絶縁監視装置の動作説明図。Operation | movement explanatory drawing of the insulation monitoring apparatus which concerns on 2nd Embodiment of this invention which shows another example when insulation degradation exists in two places of the electrical circuit shown in FIG. 図6に示した電路の直流電流供給部の直近配電母線への接続点の上流側で絶縁劣化があった場合の本発明の第2実施形態に係る絶縁監視装置の動作説明図。Operation | movement explanatory drawing of the insulation monitoring apparatus which concerns on 2nd Embodiment of this invention when insulation degradation exists in the upstream of the connection point to the nearest distribution bus of the direct current supply part of the electric circuit shown in FIG. 図6に示した電路の2箇所で絶縁劣化があった場合の別の他の一例を示す本発明の第2実施形態に係る絶縁監視装置の動作説明図。Operation | movement explanatory drawing of the insulation monitoring apparatus which concerns on 2nd Embodiment of this invention which shows another example when insulation degradation exists in two places of the electrical circuit shown in FIG.

以下、本発明の第1実施形態を説明する。本発明は、非接地配電方式だけでなく、接地配電方式で非接地状態にした回路構成にも適用できるが、以下の説明では、非接地配電方式に適用した場合について説明する。
図1は本発明の第1実施形態に係る絶縁監視装置を適用した非接地配電方式の電路の一例を示す系統図である。変圧器11には図示省略の混触防止板が設けられている。この混触防止板により変圧器の一次側コイル(高圧コイル)と二次側コイル(低圧側コイル)との絶縁が破れても二次側(低圧側)に一次側の高電圧が侵入しないよう保護する。これにより、非接地配電方式を構成している。
Hereinafter, a first embodiment of the present invention will be described. The present invention can be applied not only to the non-grounded power distribution method but also to a circuit configuration in a non-grounded state by the grounded power distribution method. In the following description, a case where the present invention is applied to the non-grounded power distribution method will be described.
FIG. 1 is a system diagram showing an example of an ungrounded power distribution system to which the insulation monitoring apparatus according to the first embodiment of the present invention is applied. The transformer 11 is provided with a contact prevention plate (not shown). This anti-contact plate protects the primary side high voltage from entering the secondary side (low voltage side) even if the insulation between the transformer primary coil (high voltage coil) and secondary coil (low voltage coil) is broken. To do. This constitutes a non-grounded power distribution system.

このような非接地配電方式の電路は変圧器11で降圧された電圧が配電母線12に供給される。配電母線12は変圧器11の二次側直近の直近配電母線12aと、直近配電母線12aから分岐した分岐配電線12bからなる。分岐配電母線12bからは複数のフィーダ13a〜13nが引き出され、分岐配電母線12bを介して各々のフィーダ13a〜13nに電力が供給される。また、各々のフィーダ13a〜13nは複数の分岐回路を有する。二次側電路の分岐点の下流側には開閉器14が設けられている。開閉器14は常時は閉じており、開閉器14の下流側(負荷側)の点検の際に開放される。   In such an ungrounded distribution system, the voltage stepped down by the transformer 11 is supplied to the distribution bus 12. The distribution bus 12 includes a nearest distribution bus 12a closest to the secondary side of the transformer 11 and a branch distribution line 12b branched from the nearest distribution bus 12a. A plurality of feeders 13a to 13n are drawn out from the branch distribution bus 12b, and power is supplied to each of the feeders 13a to 13n via the branch distribution bus 12b. Each feeder 13a-13n has a plurality of branch circuits. A switch 14 is provided on the downstream side of the branch point of the secondary side electric circuit. The switch 14 is normally closed and is opened when the downstream side (load side) of the switch 14 is inspected.

本発明の第1実施形態に係る絶縁監視装置は、分岐回路の分岐点の下流側、つまり、各々の開閉器14の上流側(変圧器側)に、それぞれ設けられた電流検出器15と、活線状態で変圧器11の二次側電路に探査電流Isを供給する直流電流供給部16と、絶縁劣化の箇所を特定する絶縁状態評価部17とからなる。   The insulation monitoring apparatus according to the first embodiment of the present invention includes a current detector 15 provided on the downstream side of the branch point of the branch circuit, that is, on the upstream side (transformer side) of each switch 14, It consists of a direct current supply unit 16 that supplies the exploration current Is to the secondary side electric circuit of the transformer 11 in a live line state, and an insulation state evaluation unit 17 that identifies the location of insulation degradation.

直流電流供給部16は、変圧器11の二次側の直近配電母線12aに接続される。そして、活線状態で変圧器11の二次側電路に直流の探査電流Isを供給する。直流電流供給部16は、直流電源18とスイッチ19と抵抗R0とからなり、抵抗R0を介して接地点Aに接地されている。直流電流供給部16のスイッチ19がオンすると、直流電源18が抵抗R0を介して接地点Aに接続される。直流電流供給部16のスイッチ19は常時はオンした状態である。探査電流Isは変圧器11の二次側電路に絶縁劣化があったときに流れる直流電流であり、絶縁劣化の箇所がない場合は探査電流Isは零である。   The direct current supply unit 16 is connected to the closest distribution bus 12 a on the secondary side of the transformer 11. Then, a DC exploration current Is is supplied to the secondary side electric circuit of the transformer 11 in a live line state. The direct current supply unit 16 includes a direct current power source 18, a switch 19, and a resistor R0, and is grounded to the ground point A through the resistor R0. When the switch 19 of the DC current supply unit 16 is turned on, the DC power supply 18 is connected to the ground point A through the resistor R0. The switch 19 of the DC current supply unit 16 is normally on. The exploration current Is is a direct current that flows when the secondary side electric circuit of the transformer 11 is deteriorated in insulation, and the exploration current Is is zero when there is no portion of insulation deterioration.

電流検出器15は、各々の開閉器14の上流側(分岐回路の分岐点)にそれぞれ設けられ、直流電流供給部16から供給された探査電流Isを検出する。例えば、フィーダ13aには開閉器14a1〜14a11の上流側に電流検出器15a1〜15a11が設けられ、フィーダ13dには開閉器14d1〜14d4の上流側に電流検出器15d1〜15d4が設けられ、フィーダ13nには開閉器14n1〜14n11の上流側に電流検出器15n1〜15n11が設けられている。   The current detector 15 is provided on the upstream side of each switch 14 (branch point of the branch circuit), and detects the exploration current Is supplied from the DC current supply unit 16. For example, the feeder 13a is provided with current detectors 15a1 to 15a11 on the upstream side of the switches 14a1 to 14a11, the feeder 13d is provided with current detectors 15d1 to 15d4 on the upstream side of the switches 14d1 to 14d4, and the feeder 13n. Are provided with current detectors 15n1 to 15n11 upstream of the switches 14n1 to 14n11.

その他のフィーダ13にも、同様に開閉器14及び電流検出器15が設けられるが、図1では、開閉器14b1、14c1、14e1及び電流検出器15b1、15c1、15e1を図示し、それ以外の開閉器14及び電流検出器15の図示は省略している。電流検出器15は、感度の良い計測器{例えば、マルチ計測器株式会社製のクランプ式の計測器でAC/DCクランプリーカ(M700、M730)}を用いる。   The other feeder 13 is similarly provided with a switch 14 and a current detector 15, but FIG. 1 shows the switches 14b1, 14c1, 14e1 and the current detectors 15b1, 15c1, 15e1, and other switches. The device 14 and the current detector 15 are not shown. The current detector 15 uses a highly sensitive measuring instrument {for example, an AC / DC clamp leaker (M700, M730) with a clamp type measuring instrument manufactured by Multi Instrument Co., Ltd.}.

なお、電流検出器15は、すべての開閉器14に対応して、その上流側にそれぞれ設けてもよいが、必ずしもすべての開閉器14の上流側に設ける必要はない。負荷や分岐回路の重要度に応じて必要に応じて分岐回路の分岐点に設ければよい。   The current detector 15 may be provided on the upstream side corresponding to all the switches 14, but is not necessarily provided on the upstream side of all the switches 14. What is necessary is just to provide in the branch point of a branch circuit as needed according to the importance of a load or a branch circuit.

絶縁状態評価部17は、各々の電流検出器15で検出された探査電流Isの検出値を入力する。各々の電流検出器15の検出値は図示省略の信号線により絶縁状態評価部17に入力される。また、無線通信により絶縁状態評価部17に入力されるようにしてもよい。   The insulation state evaluation unit 17 inputs the detection value of the exploration current Is detected by each current detector 15. The detection value of each current detector 15 is input to the insulation state evaluation unit 17 through a signal line (not shown). Moreover, you may make it input into the insulation state evaluation part 17 by radio | wireless communication.

絶縁状態評価部17は、予め定めた所定値より大きい探査電流Isを検出した電流検出器15を判定し、それら電流検出器の配置関係から絶縁劣化の箇所を特定するためのものである。例えば、予め定めた所定値より大きい探査電流Isを検出した電流検出器15を出力し、作業員に絶縁劣化の箇所を特定するための情報を提供する。また、電流検出器の配置関係から絶縁劣化の箇所を特定する。さらに、必要に応じて、絶縁状態評価部17は、電流検出器15で探査電流Isが検出されると、その探査電流Isの大きさに基づいて絶縁抵抗Rを求め、求めた絶縁抵抗Rの大きさにより絶縁状態を評価する。   The insulation state evaluation unit 17 determines the current detector 15 that has detected the exploration current Is larger than a predetermined value, and identifies the location of insulation deterioration from the arrangement relationship of these current detectors. For example, the current detector 15 that detects the exploration current Is greater than a predetermined value is output, and information for specifying the location of insulation deterioration is provided to the worker. Moreover, the location of insulation deterioration is specified from the arrangement relationship of the current detectors. Further, as necessary, when the current detector 15 detects the exploration current Is, the insulation state evaluation unit 17 obtains the insulation resistance R based on the magnitude of the exploration current Is, and determines the obtained insulation resistance R. The insulation state is evaluated by the size.

絶縁状態評価部17で得られた絶縁抵抗の評価結果や絶縁劣化の箇所の情報は、記憶装置に記憶するようにしてもよいし、必要に応じて、警報装置、表示装置、印刷装置、通信装置などの出力装置に出力するようにしてもよい。   The insulation resistance evaluation result obtained by the insulation state evaluation unit 17 and the information on the location of insulation deterioration may be stored in a storage device, or an alarm device, a display device, a printing device, communication, if necessary. You may make it output to output devices, such as an apparatus.

図2は、図1に示した電路の系統図を簡略化した系統図であり、フィーダ13は5本のフィーダ13a〜13eの場合を示しており、各々のフィーダ13a〜13eの分岐点での分岐回路の図示を省略している。電流検出器15は分岐点の下流側に設けられるので、実際には、各々の電流検出器の上流側で分岐回路が分岐しているが、その分岐回路の図示を省略している。また、開閉器14の図示も省略している。以下、図2示す簡略化した系統図に基づいて説明する。   FIG. 2 is a system diagram that simplifies the system diagram of the electric circuit shown in FIG. 1, and the feeder 13 shows the case of five feeders 13 a to 13 e, and the feeder 13 a to 13 e at the branching point. The branch circuit is not shown. Since the current detector 15 is provided on the downstream side of the branch point, the branch circuit is actually branched on the upstream side of each current detector, but the illustration of the branch circuit is omitted. The illustration of the switch 14 is also omitted. Hereinafter, description will be given based on the simplified system diagram shown in FIG.

図3は、図2に示した電路の末端回路で絶縁劣化があった場合の本発明の第1実施形態に係る絶縁監視装置の動作説明図である。いま、フィーダ13eの末端回路のF1点で絶縁抵抗R1の絶縁劣化があったとする。そうすると、直流電流供給部16のスイッチ19はオンした状態であるので、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F1、フィーダ13e、分岐配電母線12b、直近配電母線12a、直流電流供給部16の直流電源18の閉回路(以下、F1閉回路という)が形成され、図3中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is1が流れる。この探査電流Is1は、変圧器側から見て下流側(負荷側)から上流側(変圧器側)に流れ込み、フィーダ13eの電流検出器15e4、15e3、15e2、15e1で検出される。   FIG. 3 is an operation explanatory diagram of the insulation monitoring apparatus according to the first embodiment of the present invention when there is insulation deterioration in the terminal circuit of the electric circuit shown in FIG. Now, it is assumed that the insulation resistance R1 is deteriorated at the point F1 of the terminal circuit of the feeder 13e. Then, since the switch 19 of the DC current supply unit 16 is in an ON state, the DC power supply 18 of the DC current supply unit 16, the grounding point A, the insulation deterioration point F1, the feeder 13e, the branch distribution bus 12b, the nearest distribution bus 12a, A closed circuit (hereinafter referred to as F1 closed circuit) of the DC power supply 18 of the DC current supply unit 16 is formed, and the search current Is1 flows from the DC power supply 18 of the DC current supply unit 16 in the direction indicated by the arrow in FIG. This exploration current Is1 flows from the downstream side (load side) to the upstream side (transformer side) when viewed from the transformer side, and is detected by the current detectors 15e4, 15e3, 15e2, and 15e1 of the feeder 13e.

絶縁状態評価部17は、電流検出器15e4、15e3、15e2、15e1で探査電流Is1が検出されると、電流検出器15e4、15e3、15e2、15e1で検出された探査電流Is1が予め定めた所定値より大きいか否かを判定し、予め定めた所定値より大きいときは、その情報を外部に出力する。これにより、作業員は絶縁劣化の箇所が特定できる。   When the current detectors 15e4, 15e3, 15e2, and 15e1 detect the exploration current Is1, the insulation state evaluation unit 17 determines the exploration current Is1 detected by the current detectors 15e4, 15e3, 15e2, and 15e1 as a predetermined value. It is determined whether or not the value is larger than the predetermined value. Thereby, the worker can specify the location of insulation deterioration.

また、絶縁状態評価部17は、電流検出器15e4、15e3、15e2、15e1の配置関係から絶縁劣化の箇所を特定する。すなわち、絶縁状態評価部17は、予め定めた所定値より大きい探査電流を検出した電流検出器15e4、15e3、15e2、15e1のうち、探査電流Is1の流れる最も下流側の電流検出器15e4より下流側の負荷側で絶縁劣化の箇所が有ると判断する。これは、電流検出器15e4より上流側の電流検出器15e3、15e2、15e1に流れる探査電流Is1は、電流検出器15e4より下流側の箇所で絶縁劣化が発生した影響で流れているからである。   Moreover, the insulation state evaluation part 17 specifies the location of insulation degradation from the arrangement | positioning relationship of the current detectors 15e4, 15e3, 15e2, and 15e1. That is, the insulation state evaluation unit 17 is downstream of the most downstream current detector 15e4 through which the search current Is1 flows among the current detectors 15e4, 15e3, 15e2, and 15e1 that have detected a search current greater than a predetermined value. It is judged that there is a place of insulation deterioration on the load side. This is because the exploration current Is1 that flows through the current detectors 15e3, 15e2, and 15e1 upstream of the current detector 15e4 flows due to the effect of insulation deterioration at a location downstream of the current detector 15e4.

さらに、絶縁状態評価部17は、その探査電流Is1の大きさに基づいて絶縁劣化点F1の絶縁抵抗R1を評価する。絶縁劣化点F1のときのF1閉回路においては、電流検出器15e4、15e3、15e2、15e1で検出された探査電流Is1が入力され、その探査電流Is1の大きさに基づいて絶縁抵抗R1を演算する。F1閉回路での電流検出器15e4、15e3、15e2、15e1で検出された探査電流Is1は、絶縁劣化点F1以外に絶縁劣化箇所がないので同じ値である。   Further, the insulation state evaluation unit 17 evaluates the insulation resistance R1 at the insulation deterioration point F1 based on the magnitude of the exploration current Is1. In the F1 closed circuit at the insulation deterioration point F1, the search current Is1 detected by the current detectors 15e4, 15e3, 15e2, and 15e1 is input, and the insulation resistance R1 is calculated based on the magnitude of the search current Is1. . The search current Is1 detected by the current detectors 15e4, 15e3, 15e2, and 15e1 in the F1 closed circuit has the same value because there is no insulation deterioration point other than the insulation deterioration point F1.

直流電流供給部16の直流電源18の電圧をEとすると、下記(1)式が成り立ち、(1)式から絶縁抵抗R1を求めると、絶縁抵抗R1は(2)式で示される。   Assuming that the voltage of the DC power supply 18 of the DC current supply unit 16 is E, the following equation (1) is established. When the insulation resistance R1 is obtained from the equation (1), the insulation resistance R1 is expressed by the equation (2).

Is1=E/(R0+R1) …(1)
R1=(E/Is1)−R0 …(2)
直流電源18の電圧E、直流電流供給部16の抵抗R0は既知であり、探査電流Is1は電流検出器15e4、15e3、15e2、15e1で検出された値であるので、(2)式から絶縁抵抗R1を求めることができる。絶縁状態評価部17は、求めた絶縁抵抗R1の大きさにより絶縁状態を評価する。
Is1 = E / (R0 + R1) (1)
R1 = (E / Is1) −R0 (2)
Since the voltage E of the DC power supply 18 and the resistance R0 of the DC current supply unit 16 are known, and the exploration current Is1 is a value detected by the current detectors 15e4, 15e3, 15e2, and 15e1, the insulation resistance is obtained from the equation (2). R1 can be determined. The insulation state evaluation unit 17 evaluates the insulation state based on the obtained magnitude of the insulation resistance R1.

このように、絶縁状態評価部17は、予め定めた所定値より大きい探査電流Isを検出した電流検出器15の情報を出力するととともに、それらの電流検出器15の配置関係から絶縁劣化の箇所を特定し、必要に応じて絶縁抵抗を求める。図3のF1点で絶縁劣化があった場合には、探査電流Is1の流れる最も下流側の電流検出器15e4より下流の箇所で絶縁劣化が発生したと判定する。また、電流検出器15e4、15e3、15e2、15e1で検出された探査電流Is1の大きさに基づいて絶縁抵抗R1を求める。   In this way, the insulation state evaluation unit 17 outputs information on the current detector 15 that has detected the exploration current Is greater than a predetermined value, and determines the location of insulation deterioration from the arrangement relationship of these current detectors 15. Identify and determine insulation resistance as needed. If there is insulation degradation at point F1 in FIG. 3, it is determined that insulation degradation has occurred at a location downstream of the most downstream current detector 15e4 through which the search current Is1 flows. Further, the insulation resistance R1 is obtained based on the magnitude of the search current Is1 detected by the current detectors 15e4, 15e3, 15e2, and 15e1.

図4は図2に示した電路の途中で絶縁劣化があった場合の本発明の第1実施形態に係る絶縁監視装置の動作説明図である。いま、フィーダ13eの途中のF2点で絶縁抵抗R2の絶縁劣化があったとする。そうすると、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F2、フィーダ13e、分岐配電母線12b、直近配電母線12a、直流電流供給部16の直流電源18の閉回路(F2閉回路)が形成され、図4中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is2が流れる。この探査電流Is2はフィーダ13eの電流検出器15e2、15e1で検出される。   FIG. 4 is an operation explanatory diagram of the insulation monitoring apparatus according to the first embodiment of the present invention when insulation deterioration occurs in the middle of the electric circuit shown in FIG. Now, it is assumed that the insulation resistance R2 is deteriorated at the point F2 in the middle of the feeder 13e. Then, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation degradation point F2, the feeder 13e, the branch distribution bus 12b, the nearest distribution bus 12a, and the closed circuit of the DC power supply 18 of the DC current supply unit 16 (F2 closed circuit). ) And the exploration current Is2 flows from the DC power source 18 of the DC current supply unit 16 in the direction indicated by the arrow in FIG. This exploration current Is2 is detected by the current detectors 15e2 and 15e1 of the feeder 13e.

絶縁状態評価部17は、F2閉回路において、電流検出器15e2、15e1で探査電流Is2が検出されると、電流検出器15e2、15e1で検出された探査電流Is2が予め定めた所定値より大きいか否かを判定し、予め定めた所定値より大きいときは、その情報を外部に出力する。これにより、作業員は絶縁劣化の箇所が特定できる。   In the F2 closed circuit, the insulation state evaluation unit 17 determines whether the exploration current Is2 detected by the current detectors 15e2 and 15e1 is greater than a predetermined value when the exploration current Is2 is detected by the current detectors 15e2 and 15e1. If it is greater than a predetermined value, the information is output to the outside. Thereby, the worker can specify the location of insulation deterioration.

また、絶縁状態評価部17は、電流検出器15e2、15e1の配置関係から絶縁劣化の箇所を特定する。すなわち、絶縁状態評価部17は、予め定めた所定値より大きい探査電流を検出した電流検出器15e2、15e1のうち、探査電流Is1の流れる最も下流側の電流検出器15e2より下流側の負荷側で絶縁劣化の箇所が有ると判断する。なお、電流検出器15e2より下流側の電流検出器15e3、15e4が予め定めた所定値より大きい探査電流Is2を検出していないので、絶縁劣化の箇所は、電流検出器15e3の上流側であると判断する。   Moreover, the insulation state evaluation part 17 specifies the location of insulation degradation from the arrangement | positioning relationship of the electric current detectors 15e2 and 15e1. That is, the insulation state evaluation unit 17 is the current detector 15e2, 15e1 that has detected the exploration current greater than a predetermined value on the load side downstream of the most downstream current detector 15e2 through which the exploration current Is1 flows. Judge that there is a place of insulation deterioration. In addition, since the current detectors 15e3 and 15e4 on the downstream side of the current detector 15e2 have not detected the exploration current Is2 that is larger than the predetermined value, the location of insulation deterioration is on the upstream side of the current detector 15e3. to decide.

さらに、絶縁状態評価部17は、その探査電流Is2の大きさに基づいて絶縁劣化点F2の絶縁抵抗R2を評価する。前述の(1)式、(2)式を用いて、(1)式のIs1をIs2に、R1をR2に置き換えて、絶縁抵抗R2を求め、求めた絶縁抵抗R2の大きさにより絶縁状態を評価する。   Further, the insulation state evaluation unit 17 evaluates the insulation resistance R2 at the insulation deterioration point F2 based on the magnitude of the exploration current Is2. Using the above equations (1) and (2), Is1 in the equation (1) is replaced with Is2 and R1 is replaced with R2, and the insulation resistance R2 is obtained. The insulation state is determined by the magnitude of the obtained insulation resistance R2. evaluate.

このように、絶縁状態評価部17は、予め定めた所定値より大きい探査電流Isを検出した電流検出器15の情報を出力するととともに、それらの電流検出器15の配置関係から絶縁劣化の箇所を特定し、必要に応じて絶縁抵抗を求める。図4のF2点で絶縁劣化があった場合には、探査電流Is2の流れる最も下流側の電流検出器15e2より下流の箇所で、電流検出器15e3の上流側で絶縁劣化が発生したと判定する。また、電流検出器15e2、15e1で検出された探査電流Is2の大きさに基づいて絶縁抵抗R2を求める。   In this way, the insulation state evaluation unit 17 outputs information on the current detector 15 that has detected the exploration current Is greater than a predetermined value, and determines the location of insulation deterioration from the arrangement relationship of these current detectors 15. Identify and determine insulation resistance as needed. When insulation degradation occurs at point F2 in FIG. 4, it is determined that insulation degradation has occurred on the upstream side of the current detector 15e3 at a location downstream of the current detector 15e2 on the most downstream side where the exploration current Is2 flows. . Further, the insulation resistance R2 is obtained based on the magnitude of the exploration current Is2 detected by the current detectors 15e2 and 15e1.

図5は図2に示した電路の2箇所で絶縁劣化があった場合の本発明の第1実施形態に係る絶縁監視装置の動作説明図である。いま、フィーダ13eの途中のF3点で絶縁抵抗R3の絶縁劣化があり、フィーダ13bの途中のF4点でも絶縁抵抗R4の絶縁劣化があったとする。   FIG. 5 is an operation explanatory diagram of the insulation monitoring apparatus according to the first embodiment of the present invention when insulation deterioration occurs at two locations on the electric circuit shown in FIG. Now, it is assumed that the insulation resistance R3 is deteriorated at the point F3 in the middle of the feeder 13e, and the insulation resistance R4 is also deteriorated at the point F4 in the middle of the feeder 13b.

そうすると、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F3、フィーダ13e、分岐配電母線12b、直近配電母線12a、直流電流供給部16の直流電源18の閉回路(F3閉回路)が形成され、図4中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is3が流れる。探査電流Is3はフィーダ13eの電流検出器15e2、15e1で検出される。   Then, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation deterioration point F3, the feeder 13e, the branch distribution bus 12b, the nearest distribution bus 12a, and the closed circuit of the DC power supply 18 of the DC current supply unit 16 (F3 closed circuit). ) And a search current Is3 flows from the DC power supply 18 of the DC current supply unit 16 in the direction indicated by the arrow in FIG. The search current Is3 is detected by the current detectors 15e2 and 15e1 of the feeder 13e.

同様に、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F4、フィーダ13b、分岐配電母線12b、直近配電母線12a、直流電流供給部16の直流電源18の閉回路(F4閉回路)が形成され、図5中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is4が流れる。この探査電流Is4はフィーダ13bの電流検出器15b3、15b2、15b1で検出される。なお、大地の一部にはF3点での絶縁劣化による探査電流Is3と絶縁劣化点F4点での絶縁劣化による探査電流Is4との合計電流Is3+Is4が流れる。   Similarly, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation deterioration point F4, the feeder 13b, the branch distribution bus 12b, the nearest distribution bus 12a, and the closed circuit of the DC power supply 18 of the DC current supply unit 16 (F4 closed). Circuit) is formed, and the search current Is4 flows from the DC power supply 18 of the DC current supply unit 16 in the direction indicated by the arrow in FIG. This exploration current Is4 is detected by current detectors 15b3, 15b2, and 15b1 of the feeder 13b. A total current Is3 + Is4 of the exploration current Is3 due to the insulation deterioration at the point F3 and the exploration current Is4 due to the insulation deterioration at the insulation deterioration point F4 flows in a part of the ground.

まず、絶縁状態評価部17は、F3閉回路において、電流検出器15e2、15e1で探査電流Is3が検出されると、電流検出器15e2、15e1で検出された探査電流Is3が予め定めた所定値より大きいか否かを判定し、予め定めた所定値より大きいときは、その情報を外部に出力する。これにより、作業員は絶縁劣化の箇所が特定できる。   First, in the F3 closed circuit, when the current detectors 15e2 and 15e1 detect the exploration current Is3, the insulation state evaluation unit 17 determines that the exploration current Is3 detected by the current detectors 15e2 and 15e1 is greater than a predetermined value. It is determined whether or not the value is larger, and when the value is larger than a predetermined value, the information is output to the outside. Thereby, the worker can specify the location of insulation deterioration.

また、絶縁状態評価部17は、電流検出器15e2、15e1の配置関係から絶縁劣化の箇所を特定する。すなわち、絶縁状態評価部17は、予め定めた所定値より大きい探査電流を検出した電流検出器15e2、15e1のうち、探査電流Is3の流れる最も下流側の電流検出器15e2より下流側の負荷側で絶縁劣化の箇所が有ると判断する。これは、電流検出器15e2より上流側の電流検出器15e1に流れる探査電流Is3は、電流検出器15e2より下流側の箇所で絶縁劣化が発生した影響で流れているからである。   Moreover, the insulation state evaluation part 17 specifies the location of insulation degradation from the arrangement | positioning relationship of the electric current detectors 15e2 and 15e1. In other words, the insulation state evaluation unit 17 is the current detector 15e2, 15e1 that has detected the exploration current greater than a predetermined value on the load side downstream of the most downstream current detector 15e2 through which the exploration current Is3 flows. Judge that there is a place of insulation deterioration. This is because the exploration current Is3 flowing through the current detector 15e1 upstream of the current detector 15e2 flows due to the influence of insulation deterioration at a location downstream of the current detector 15e2.

さらに、絶縁状態評価部17は、その探査電流Is3の大きさに基づいて絶縁劣化点F3の絶縁抵抗R3を評価する。前述の(1)式、(2)式を用いて、(1)式のIs1をIs3に、R1をR3に置き換えて、絶縁抵抗R3を求め、求めた絶縁抵抗R3の大きさにより絶縁状態を評価する。   Further, the insulation state evaluation unit 17 evaluates the insulation resistance R3 of the insulation deterioration point F3 based on the magnitude of the exploration current Is3. Using the equations (1) and (2) described above, Is1 in the equation (1) is replaced with Is3 and R1 is replaced with R3 to obtain the insulation resistance R3. The insulation state is determined by the magnitude of the obtained insulation resistance R3. evaluate.

同様に、絶縁状態評価部17は、F4閉回路において、電流検出器15b3、15b2、15b1で探査電流Is4が検出されると、電流検出器15b3、15b2、15b1で検出された探査電流Is4が予め定めた所定値より大きいか否かを判定し、予め定めた所定値より大きいときは、その情報を外部に出力する。これにより、作業員は絶縁劣化の箇所が特定できる。   Similarly, when the current detectors 15b3, 15b2, and 15b1 detect the exploration current Is4 in the F4 closed circuit, the insulation state evaluation unit 17 obtains the exploration current Is4 detected by the current detectors 15b3, 15b2, and 15b1 in advance. It is determined whether or not the value is larger than a predetermined value. If the predetermined value is larger, the information is output to the outside. Thereby, the worker can specify the location of insulation deterioration.

また、絶縁状態評価部17は、電流検出器15b3、15b2、15b1の配置関係から絶縁劣化の箇所を特定する。すなわち、絶縁状態評価部17は、予め定めた所定値より大きい探査電流を検出した電流検出器15b3、15b2、15b1のうち、探査電流Is4の流れる最も下流側の電流検出器15b3より下流側の負荷側で絶縁劣化の箇所が有ると判断する。これは、電流検出器15b3より上流側の電流検出器15b2、15b1に流れる探査電流Is4は、電流検出器15b3より下流側の箇所で絶縁劣化が発生した影響で流れているからである。   Moreover, the insulation state evaluation part 17 pinpoints the location of insulation degradation from the arrangement | positioning relationship of electric current detector 15b3, 15b2, 15b1. That is, the insulation state evaluation unit 17 is a load on the downstream side of the most downstream current detector 15b3 through which the search current Is4 flows among the current detectors 15b3, 15b2, and 15b1 that have detected the search current larger than a predetermined value. It is judged that there is a place of insulation deterioration on the side. This is because the exploration current Is4 flowing in the current detectors 15b2 and 15b1 on the upstream side of the current detector 15b3 flows due to the effect of insulation deterioration at a location downstream of the current detector 15b3.

さらに、絶縁状態評価部17は、その探査電流Is4の大きさに基づいて絶縁劣化点F4の絶縁抵抗R4を評価する。前述の(1)式、(2)式を用いて、(1)式のIs1をIs4に、R1をR4に置き換えて、絶縁抵抗R4を求め、求めた絶縁抵抗R4の大きさにより絶縁状態を評価する。   Furthermore, the insulation state evaluation unit 17 evaluates the insulation resistance R4 at the insulation deterioration point F4 based on the magnitude of the exploration current Is4. Using the above equations (1) and (2), Is1 in the equation (1) is replaced with Is4 and R1 is replaced with R4 to obtain the insulation resistance R4, and the insulation state is determined by the magnitude of the obtained insulation resistance R4. evaluate.

このように、変圧器11の二次側電路の2箇所で絶縁劣化があった場合であっても、絶縁劣化の箇所を特定でき、絶縁劣化による絶縁抵抗Rの評価ができる。   Thus, even when there is insulation degradation at two locations on the secondary side of the transformer 11, the location of insulation degradation can be identified and the insulation resistance R due to insulation degradation can be evaluated.

本発明の第1実施形態では、絶縁監視装置の直流電流供給部16を変圧器11の二次側の直近の配電母線12に接続するので、変圧器11の二次側電路のいずれで絶縁劣化の箇所があったとしても、探査電流Isは変圧器側から見て下流側(負荷側)から上流側(変圧器側)に流れる。従って、探査電流Isを検出した電流検出器15のうち、変圧器側から見て探査電流Isの流れる最も下流側の電流検出器15より下流側で絶縁劣化の箇所が有ると判定できる。これにより、非接地配電方式で複数の分岐回路がある電路の絶縁劣化の箇所を活線状態で特定できる。   In the first embodiment of the present invention, since the DC current supply unit 16 of the insulation monitoring device is connected to the nearest distribution bus 12 on the secondary side of the transformer 11, insulation deterioration occurs in any of the secondary side electric circuits of the transformer 11. The exploration current Is flows from the downstream side (load side) to the upstream side (transformer side) when viewed from the transformer side. Therefore, it can be determined that among the current detectors 15 that have detected the exploration current Is, there is a portion of insulation deterioration downstream from the most downstream current detector 15 in which the exploration current Is flows when viewed from the transformer side. Thereby, the location of the insulation degradation of the electric circuit with a some branch circuit by a non-grounded distribution system can be specified in a live state.

次に、本発明の第2実施形態を説明する。図6は、本発明の第2実施形態に係る絶縁監視装置を適用した非接地配電方式の電路の一例を示す簡略化した系統図である。この第2の実施の形態は、図2に示す第1実施形態に対し、直近配電母線12aと分岐配電母線12bとの接続点の変圧器側に電流検出器15T1、直流電流供給部16の直近配電母線12aへの接続点を挟んで変圧器11から見て上流側に電流検出器15T2、下流側に電流検出器15T3を追加して設けたものである。これらの電流検出器15T1、電流検出器15T2、電流検出器15T3を設けることにより、直近配電母線12a、分岐配電母線12bの絶縁劣化を検出できるようにしている。図2と同一要素には同一符号を付し重複する説明は省略する。   Next, a second embodiment of the present invention will be described. FIG. 6 is a simplified system diagram showing an example of an ungrounded power distribution system to which the insulation monitoring device according to the second embodiment of the present invention is applied. This second embodiment is different from the first embodiment shown in FIG. 2 in that the current detector 15T1 and the direct current supply unit 16 are arranged on the transformer side at the connection point between the nearest distribution bus 12a and the branch distribution bus 12b. A current detector 15T2 is additionally provided on the upstream side and a current detector 15T3 is additionally provided on the downstream side when viewed from the transformer 11 across the connection point to the distribution bus 12a. By providing these current detector 15T1, current detector 15T2, and current detector 15T3, it is possible to detect insulation deterioration of the nearest distribution bus 12a and branch distribution bus 12b. The same elements as those in FIG.

図7は図6に示した電路の途中で絶縁劣化があった場合の本発明の第2実施形態に係る絶縁監視装置の動作説明図である。いま、フィーダ13eの途中のF5点で絶縁抵抗R5の絶縁劣化があったとする。そうすると、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F5、フィーダ13e、分岐配電母線12b、直近配電母線12a、直流電流供給部16の直流電源18の閉回路(F5閉回路)が形成され、図7中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is5が流れる。この探査電流Is5はフィーダ13eの電流検出器15e2、15e1、分岐配電母線12bとの接続点の変圧器側の電流検出器15T1、直流電流供給部16の直近配電母線12aへの接続点を挟んで変圧器11から見て下流側の電流検出器15T3で検出される。   FIG. 7 is an operation explanatory diagram of the insulation monitoring apparatus according to the second embodiment of the present invention when there is insulation deterioration in the middle of the electric circuit shown in FIG. Now, it is assumed that the insulation resistance R5 is deteriorated at the point F5 in the middle of the feeder 13e. Then, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation deterioration point F5, the feeder 13e, the branch distribution bus 12b, the nearest distribution bus 12a, and the closed circuit of the DC power supply 18 of the DC current supply unit 16 (F5 closed circuit). ) And a search current Is5 flows from the DC power supply 18 of the DC current supply unit 16 in the direction indicated by the arrow in FIG. This exploration current Is5 is sandwiched between the current detectors 15e2 and 15e1 of the feeder 13e, the current detector 15T1 on the transformer side of the connection point with the branch distribution bus 12b, and the connection point to the nearest distribution bus 12a of the DC current supply unit 16. The current is detected by the downstream current detector 15T3 when viewed from the transformer 11.

絶縁状態評価部17は、F5閉回路において、電流検出器15e2、15e1、15T1、15T3で探査電流Is5が検出されると、これら電流検出器15e2、15e1、15T1、15T3で検出された探査電流Is5が予め定めた所定値より大きいか否かを判定し、予め定めた所定値より大きいときは、その情報を外部に出力する。これにより、作業員は絶縁劣化の箇所が特定できる。   When the current detectors 15e2, 15e1, 15T1, and 15T3 detect the search current Is5 in the F5 closed circuit, the insulation state evaluation unit 17 detects the search current Is5 detected by the current detectors 15e2, 15e1, 15T1, and 15T3. Is larger than a predetermined value, and if it is larger than the predetermined value, the information is output to the outside. Thereby, the worker can specify the location of insulation deterioration.

また、絶縁状態評価部17は、電流検出器15e2、15e1、15T1、15T3の配置関係から絶縁劣化の箇所を特定する。すなわち、絶縁状態評価部17は、予め定めた所定値より大きい探査電流を検出した電流検出器15e2、15e1、15T1、15T3のうち、探査電流Is1の流れる最も下流側の電流検出器15e2より下流側の負荷側で絶縁劣化の箇所が有ると判断する。なお、電流検出器15e2より下流側の電流検出器15e3、15e4が予め定めた所定値より大きい探査電流Is5を検出していないので、絶縁劣化の箇所は、電流検出器15e3の上流側であると判断する。   Moreover, the insulation state evaluation part 17 specifies the location of insulation degradation from the arrangement | positioning relationship of the current detectors 15e2, 15e1, 15T1, and 15T3. That is, the insulation state evaluation unit 17 is downstream of the most downstream current detector 15e2 through which the exploration current Is1 flows among the current detectors 15e2, 15e1, 15T1, and 15T3 that have detected the exploration current greater than a predetermined value. It is judged that there is a place of insulation deterioration on the load side. In addition, since the current detectors 15e3 and 15e4 on the downstream side of the current detector 15e2 have not detected the exploration current Is5 larger than a predetermined value, the location of insulation deterioration is on the upstream side of the current detector 15e3. to decide.

さらに、絶縁状態評価部17は、その探査電流Is5の大きさに基づいて絶縁劣化点F5の絶縁抵抗R5を評価する。前述の(1)式、(2)式を用いて、(1)式のIs1をIs5に、R1をR5に置き換えて、絶縁抵抗R5を求め、求めた絶縁抵抗R5の大きさにより絶縁状態を評価する。   Further, the insulation state evaluation unit 17 evaluates the insulation resistance R5 of the insulation deterioration point F5 based on the magnitude of the exploration current Is5. Using the above equations (1) and (2), Is1 in equation (1) is replaced with Is5 and R1 is replaced with R5 to obtain an insulation resistance R5, and the insulation state is determined by the magnitude of the obtained insulation resistance R5. evaluate.

このように、直近配電母線12aと分岐配電母線12bとの接続点の変圧器側に電流検出器15T1、直流電流供給部16の直近配電母線12aへの接続点を挟んで変圧器11から見て上流側に電流検出器15T2、下流側に電流検出器15T3を追加して設けた場合であっても、本発明の実施形態1と同様に、絶縁劣化の箇所を特定でき、絶縁劣化による絶縁抵抗Rの評価ができる。すなわち、図7のF5点で絶縁劣化があった場合には、探査電流Is5の流れる最も下流側の電流検出器15e2より下流の箇所で、電流検出器15e3の上流側であると判断する。   In this way, the transformer 11 is seen from the transformer 11 across the connection point of the current detector 15T1 and the direct current supply unit 16 to the nearest distribution bus 12a on the transformer side of the connection point between the nearest distribution bus 12a and the branch distribution bus 12b. Even when the current detector 15T2 is additionally provided on the upstream side and the current detector 15T3 is additionally provided on the downstream side, as in the first embodiment of the present invention, the location of insulation degradation can be specified, and the insulation resistance due to insulation degradation can be specified. R can be evaluated. That is, when there is insulation degradation at point F5 in FIG. 7, it is determined that it is upstream of the current detector 15e3 at a location downstream of the most downstream current detector 15e2 through which the exploration current Is5 flows.

図8は図6に示した電路の分岐配電母線12bで絶縁劣化があった場合の本発明の第2実施形態に係る絶縁監視装置の動作説明図である。いま、フィーダ13cの引出点とフィーダ13dの引出点との間の分岐配電母線12bのF6点で絶縁抵抗R6の絶縁劣化があったとする。そうすると、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F6、分岐配電母線12b、直流電流供給部16の直流電源18の閉回路(F6閉回路)が形成され、図8中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is6が流れる。この探査電流Is6は、直近配電母線12aと分岐配電母線12bとの接続点の変圧器側の電流検出器15T1、直流電流供給部16の直近配電母線12aへの接続点を挟んで変圧器11から見て下流側の電流検出器15T3で検出される。各々のフィーダ13の電流検出器15は、各々のフィーダ13を通る閉回路が形成されないので、この探査電流Is6を検出することはない。   FIG. 8 is an operation explanatory diagram of the insulation monitoring apparatus according to the second embodiment of the present invention when there is insulation deterioration in the branch distribution bus 12b of the electric circuit shown in FIG. Assume that there is an insulation deterioration of the insulation resistance R6 at the point F6 of the branch distribution bus 12b between the drawing point of the feeder 13c and the drawing point of the feeder 13d. Then, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation deterioration point F6, the branch distribution bus 12b, and the closed circuit (F6 closed circuit) of the DC power supply 18 of the DC current supply unit 16 are formed. The search current Is6 flows from the DC power supply 18 of the DC current supply unit 16 in the direction indicated by the arrow. This exploration current Is6 is transmitted from the transformer 11 across the connection point of the connection point between the nearest distribution bus 12a and the branch distribution bus 12b on the transformer side of the current detector 15T1 on the transformer side and the nearest distribution bus 12a of the DC current supply unit 16. It is detected by the downstream current detector 15T3. The current detector 15 of each feeder 13 does not detect this exploration current Is6 because a closed circuit passing through each feeder 13 is not formed.

絶縁状態評価部17は、電流検出器15T1、15T3で探査電流Is6が検出されると、電流検出器15T1、15T3で検出された探査電流Is6が予め定めた所定値より大きいか否かを判定し、予め定めた所定値より大きいときは、その情報を外部に出力する。これにより、作業員は絶縁劣化の箇所が特定できる。   The insulation state evaluation unit 17 determines whether or not the exploration current Is6 detected by the current detectors 15T1 and 15T3 is larger than a predetermined value when the exploration current Is6 is detected by the current detectors 15T1 and 15T3. When the value is larger than a predetermined value, the information is output to the outside. Thereby, the worker can specify the location of insulation deterioration.

また、絶縁状態評価部17は、F6閉回路において、電流検出器15T1、15T3の配置関係から絶縁劣化の箇所を特定する。すなわち、絶縁状態評価部17は、電流検出器15T1の下流側の分岐配電母線12bで絶縁劣化の箇所が有ると判断する。これは、各々のフィーダ13の電流検出器15は、探査電流Is6を検出していないからである。   Moreover, the insulation state evaluation part 17 specifies the location of insulation degradation from the arrangement | positioning relationship of the current detectors 15T1 and 15T3 in F6 closed circuit. That is, the insulation state evaluation unit 17 determines that there is a portion of insulation deterioration in the branch distribution bus 12b on the downstream side of the current detector 15T1. This is because the current detector 15 of each feeder 13 does not detect the search current Is6.

さらに、絶縁状態評価部17は、その探査電流Is6の大きさに基づいて絶縁劣化点F6の絶縁抵抗R6を評価する。前述の(1)式、(2)式を用いて、(1)式のIs1をIs6に、R1をR6に置き換えて、絶縁抵抗R6を求め、求めた絶縁抵抗R6の大きさにより絶縁状態を評価する。   Further, the insulation state evaluation unit 17 evaluates the insulation resistance R6 of the insulation deterioration point F6 based on the magnitude of the exploration current Is6. Using the equations (1) and (2) described above, Is1 in the equation (1) is replaced with Is6 and R1 is replaced with R6 to obtain the insulation resistance R6, and the insulation state is determined by the magnitude of the obtained insulation resistance R6. evaluate.

このように、絶縁状態評価部17は、予め定めた所定値より大きい探査電流Isを検出した電流検出器15の情報を出力するととともに、それらの電流検出器15の配置関係から絶縁劣化の箇所を特定し、必要に応じて絶縁抵抗を求める。図8のF6点で絶縁劣化があった場合には、探査電流Is6の流れる最も下流側の電流検出器15T1より下流の箇所で、探査電流Is6を検出していない各々のフィーダ13の電流検出器15の上流側、つまり、電流検出器15T1の下流側の分岐配電母線12bで絶縁劣化の箇所が有ると判定する。また、電流検出器15T1、15T3で検出された探査電流Is6の大きさに基づいて絶縁抵抗R6を求める。   In this way, the insulation state evaluation unit 17 outputs information on the current detector 15 that has detected the exploration current Is greater than a predetermined value, and determines the location of insulation deterioration from the arrangement relationship of these current detectors 15. Identify and determine insulation resistance as needed. When there is insulation degradation at point F6 in FIG. 8, the current detectors of the feeders 13 that have not detected the search current Is6 at a location downstream of the most downstream current detector 15T1 through which the search current Is6 flows. 15, that is, it is determined that there is a portion of insulation deterioration in the branch distribution bus 12 b on the downstream side of the current detector 15 </ b> T <b> 1. Further, the insulation resistance R6 is obtained based on the magnitude of the exploration current Is6 detected by the current detectors 15T1 and 15T3.

図9は図6に示した電路の2箇所で絶縁劣化があった場合の一例を示す本発明の第2実施形態に係る絶縁監視装置の動作説明図である。いま、フィーダ13cの引出点とフィーダ13dの引出点との間の分岐配電母線12bのF7点で絶縁抵抗R7の絶縁劣化があり、フィーダ13eの途中のF8点でも絶縁抵抗R8の絶縁劣化があったとする。   FIG. 9 is an operation explanatory diagram of the insulation monitoring apparatus according to the second embodiment of the present invention, showing an example of the case where insulation deterioration has occurred in two places of the electric circuit shown in FIG. Now, there is an insulation deterioration of the insulation resistance R7 at the point F7 of the branch distribution bus 12b between the drawing point of the feeder 13c and the drawing point of the feeder 13d, and there is an insulation deterioration of the insulation resistance R8 also at the F8 point in the middle of the feeder 13e. Suppose.

そうすると、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F7、分岐配電母線12b、直流電流供給部16の直流電源18の閉回路(F7閉回路)が形成され、図9中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is7が流れる。この探査電流Is7は、電流検出器15T1、電流検出器15T3で検出される。各々のフィーダ13を通る閉回路は形成されないので、各々のフィーダ13の電流検出器15は、この探査電流Is7を検出することはない。   Then, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation deterioration point F7, the branch distribution bus 12b, and the closed circuit (F7 closed circuit) of the DC power supply 18 of the DC current supply unit 16 are formed. The exploration current Is7 flows from the DC power supply 18 of the DC current supply unit 16 in the direction indicated by the arrow. The search current Is7 is detected by the current detector 15T1 and the current detector 15T3. Since a closed circuit passing through each feeder 13 is not formed, the current detector 15 of each feeder 13 does not detect this exploration current Is7.

同様に、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F8、フィーダ13e、分岐配電母線12b、直近配電母線12a、直流電流供給部16の直流電源18の閉回路(F8閉回路)が形成され、図9中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is8が流れる。探査電流Is8はフィーダ13eの電流検出器15e2、15e1、電流検出器15T1、電流検出器15T3で検出される。なお、分岐配電母線12bの一部、及び直近配電母線12aにはF7点での絶縁劣化による探査電流Is7と絶縁劣化点F8点での絶縁劣化による探査電流Is8との合計電流Is7+Is8が流れる。   Similarly, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation deterioration point F8, the feeder 13e, the branch distribution bus 12b, the nearest distribution bus 12a, and the closed circuit of the DC power supply 18 of the DC current supply unit 16 (F8 closed). The search current Is8 flows from the DC power supply 18 of the DC current supply unit 16 in the direction indicated by the arrow in FIG. The search current Is8 is detected by the current detectors 15e2, 15e1, the current detector 15T1, and the current detector 15T3 of the feeder 13e. A total current Is7 + Is8 of the exploration current Is7 due to the insulation deterioration at the point F7 and the exploration current Is8 due to the insulation deterioration at the point F8 of insulation flows through a part of the branch distribution bus 12b and the nearest distribution bus 12a.

ここで、フィーダ13eの電流検出器15e2、15e1と配電母線12の電流検出器15T1、15T3との双方の電流検出器15が探査電流Isを検出しているときは、図9に示すようにフィーダ13と配電母線12との双方で絶縁劣化があった場合だけでなく、図7に示すようにフィーダ13に絶縁劣化があった場合も同じである。   Here, when the current detectors 15 of both the current detectors 15e2 and 15e1 of the feeder 13e and the current detectors 15T1 and 15T3 of the distribution bus 12 detect the exploration current Is, as shown in FIG. This is the same not only when there is insulation deterioration in both the power supply line 13 and the distribution bus 12 but also when there is insulation deterioration in the feeder 13 as shown in FIG.

そこで、絶縁状態評価部17は、電流検出器15e2、15e1、15T1、15T3で探査電流Isが検出されると、これら電流検出器15e2、15e1、15T1、15T3で検出された探査電流Isが予め定めた所定値より大きいか否かを判定し、予め定めた所定値より大きいときは、さらに、フィーダ13の電流検出器15e2、15e1が検出した探査電流Isと、配電母線12の電流検出器15T1、15T3が検出した探査電流Isとを比較する。そして、それら情報を外部に出力する。   Therefore, when the search current Is is detected by the current detectors 15e2, 15e1, 15T1, and 15T3, the insulation state evaluation unit 17 determines the search current Is detected by these current detectors 15e2, 15e1, 15T1, and 15T3 in advance. It is determined whether the current value is larger than the predetermined value. If the predetermined value is larger than the predetermined value, the exploration current Is detected by the current detectors 15e2 and 15e1 of the feeder 13 and the current detector 15T1 of the distribution bus 12 The search current Is detected by 15T3 is compared. Then, the information is output to the outside.

図9に示すようにフィーダ13と配電母線12との双方で絶縁劣化があった場合には、電流検出器15e2、15e1で検出された探査電流IsはIs8であり、電流検出器15T1、15T3で検出された探査電流Isは、Is7+Is8である。これら検出した探査電流Isの大きさも外部出力する。これにより、作業員は、絶縁劣化点F7及び絶縁劣化点F8の特定が容易となり絶縁劣化の箇所が特定できる。   As shown in FIG. 9, when both the feeder 13 and the distribution bus 12 have insulation deterioration, the search current Is detected by the current detectors 15e2 and 15e1 is Is8, and the current detectors 15T1 and 15T3 The detected exploration current Is is Is7 + Is8. The detected exploration current Is is also output externally. Thereby, the worker can easily specify the insulation deterioration point F7 and the insulation deterioration point F8, and can specify the location of the insulation deterioration.

絶縁状態評価部17は、F8閉回路において、電流検出器15e2、15e1、15T1、15T3の配置関係及び探査電流Isの大きさから絶縁劣化の箇所を特定する。まず、電流検出器15e2、15e1、15T1、15T3の配置関係から探査電流Isの流れる最も下流側の電流検出器15e2より下流側の負荷側で絶縁劣化の箇所が有ると判断する。一方、探査電流Isの大きさから、異なる値の探査電流Isを検出した電流検出器15e1、15T1の間で絶縁劣化が発生していると判断する。具体的には、F7閉回路において、探査電流Is7+Is8を検出した電流検出器15T1と、探査電流Is8を検出した電流検出器15e1と間で絶縁劣化が発生していると判断する。   In the F8 closed circuit, the insulation state evaluation unit 17 specifies the location of insulation deterioration from the arrangement relationship of the current detectors 15e2, 15e1, 15T1, and 15T3 and the magnitude of the search current Is. First, from the arrangement relationship of the current detectors 15e2, 15e1, 15T1, and 15T3, it is determined that there is a location of insulation deterioration on the load side downstream of the most downstream current detector 15e2 through which the exploration current Is flows. On the other hand, from the magnitude of the exploration current Is, it is determined that insulation degradation has occurred between the current detectors 15e1 and 15T1 that have detected different exploration currents Is. Specifically, in the F7 closed circuit, it is determined that insulation deterioration has occurred between the current detector 15T1 that has detected the exploration current Is7 + Is8 and the current detector 15e1 that has detected the exploration current Is8.

さらに、絶縁状態評価部17は、前述の(1)式、(2)式を用いて、探査電流Is7+Is8の大きさに基づいて絶縁劣化点F7の絶縁抵抗R7を評価する。また、探査電流Is8の大きさに基づいて絶縁劣化点F8の絶縁抵抗R8を評価する。   Furthermore, the insulation state evaluation unit 17 evaluates the insulation resistance R7 of the insulation deterioration point F7 based on the magnitude of the exploration current Is7 + Is8 using the above-described equations (1) and (2). Further, the insulation resistance R8 at the insulation deterioration point F8 is evaluated based on the magnitude of the exploration current Is8.

このように、変圧器11の二次側の配電母線12とフィーダ13との2箇所で絶縁劣化があった場合であっても、絶縁劣化の箇所を特定でき、絶縁劣化による絶縁抵抗Rの評価ができる。   Thus, even when there is insulation degradation at two locations of the distribution bus 12 and the feeder 13 on the secondary side of the transformer 11, the location of insulation degradation can be identified, and the insulation resistance R due to insulation degradation can be evaluated. Can do.

図10は、図6に示した電路の直流電流供給部16の直近配電母線12aへの接続点の下流側で絶縁劣化があった場合の本発明の第2実施形態に係る絶縁監視装置の動作説明図である。いま、直流電流供給部16の直近配電母線12aへの接続点の下流側における直近配電母線12aのF9点で絶縁抵抗R9の絶縁劣化があったとする。   FIG. 10 shows the operation of the insulation monitoring apparatus according to the second embodiment of the present invention when there is insulation deterioration downstream of the connection point to the nearest distribution bus 12a of the direct current supply section 16 of the circuit shown in FIG. It is explanatory drawing. Now, it is assumed that the insulation resistance R9 is deteriorated at the point F9 of the nearest distribution bus 12a on the downstream side of the connection point of the direct current supply unit 16 to the nearest distribution bus 12a.

そうすると、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F9、直流電流供給部16の直流電源18の閉回路(F9閉回路)が形成され、図10中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is9が流れる。この探査電流Is9は、電流検出器15T3で検出される。各々のフィーダ13を通る閉回路は形成されないので、各々のフィーダ13の電流検出器15は、この探査電流Is9を検出することはない。   Then, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation deterioration point F9, and the closed circuit (F9 closed circuit) of the DC power supply 18 of the DC current supply unit 16 are formed, and the direction indicated by the arrow in FIG. In addition, a search current Is9 flows from the DC power supply 18 of the DC current supply unit 16. This search current Is9 is detected by the current detector 15T3. Since a closed circuit passing through each feeder 13 is not formed, the current detector 15 of each feeder 13 does not detect this exploration current Is9.

絶縁状態評価部17は、F9閉回路において、電流検出器15T3で探査電流Is9が検出されると、電流検出器15T3で検出された探査電流Is9が予め定めた所定値より大きいか否かを判定し、予め定めた所定値より大きいときは、その情報を外部に出力する。これにより、作業員は絶縁劣化の箇所が特定できる。   In the F9 closed circuit, the insulation state evaluation unit 17 determines whether the exploration current Is9 detected by the current detector 15T3 is greater than a predetermined value when the exploration current Is9 is detected by the current detector 15T3. If the value is larger than a predetermined value, the information is output to the outside. Thereby, the worker can specify the location of insulation deterioration.

また、絶縁状態評価部17は、電流検出器15T3の配置関係から絶縁劣化の箇所を特定する。すなわち、絶縁状態評価部17は、電流検出器15T3の下流側の分岐配電母線12aで絶縁劣化の箇所が有ると判断する。これは、電流検出器15T1及び各々のフィーダ13の電流検出器15は、探査電流Is9を検出していないからである。   Moreover, the insulation state evaluation part 17 specifies the location of insulation degradation from the arrangement | positioning relationship of the current detector 15T3. That is, the insulation state evaluation unit 17 determines that there is a portion of insulation deterioration in the branch distribution bus 12a on the downstream side of the current detector 15T3. This is because the current detector 15T1 and the current detector 15 of each feeder 13 do not detect the search current Is9.

さらに、絶縁状態評価部17は、その探査電流Is9の大きさに基づいて絶縁劣化点F9の絶縁抵抗R9を評価する。前述の(1)式、(2)式を用いて、(1)式のIs1をIs9に、R1をR9に置き換えて、絶縁抵抗R9を求め、求めた絶縁抵抗R9の大きさにより絶縁状態を評価する。   Further, the insulation state evaluation unit 17 evaluates the insulation resistance R9 at the insulation deterioration point F9 based on the magnitude of the exploration current Is9. Using the equations (1) and (2) described above, Is1 in the equation (1) is replaced with Is9 and R1 is replaced with R9 to obtain the insulation resistance R9, and the insulation state is determined by the magnitude of the obtained insulation resistance R9. evaluate.

このように、絶縁状態評価部17は、予め定めた所定値より大きい探査電流Isを検出した電流検出器15の情報を出力するととともに、それらの電流検出器15の配置関係から絶縁劣化の箇所を特定し、必要に応じて絶縁抵抗を求める。図10のF9点で絶縁劣化があった場合には、探査電流Is9の流れる最も下流側の電流検出器15T3より下流の箇所で、探査電流Is9を検出していない検出器15T1、各々のフィーダ13の電流検出器15の上流側、つまり、電流検出器15T3の下流側の直近配電母線12aで絶縁劣化の箇所が有ると判定する。また、電流検出器15T3で検出された探査電流Is9の大きさに基づいて絶縁抵抗R9を求める。   In this way, the insulation state evaluation unit 17 outputs information on the current detector 15 that has detected the exploration current Is greater than a predetermined value, and determines the location of insulation deterioration from the arrangement relationship of these current detectors 15. Identify and determine insulation resistance as needed. When there is insulation degradation at point F9 in FIG. 10, the detector 15T1 that does not detect the exploration current Is9 at each location downstream of the most downstream current detector 15T3 through which the exploration current Is9 flows, and each feeder 13 It is determined that there is a location of insulation deterioration in the nearest distribution bus 12a on the upstream side of the current detector 15, that is, on the downstream side of the current detector 15T3. Further, the insulation resistance R9 is obtained based on the magnitude of the search current Is9 detected by the current detector 15T3.

図11は、図6に示した電路の2箇所で絶縁劣化があった場合の他の一例を示す本発明の第2実施形態に係る絶縁監視装置の動作説明図である。いま、電路の直流電流供給部16の直近配電母線12aへの接続点の下流側のF10点で絶縁抵抗R10の絶縁劣化があり、フィーダ13eの途中のF11点でも絶縁抵抗R11の絶縁劣化があったとする。   FIG. 11 is an operation explanatory diagram of the insulation monitoring apparatus according to the second embodiment of the present invention showing another example in the case where insulation deterioration has occurred in two places of the electric circuit shown in FIG. Now, there is an insulation deterioration of the insulation resistance R10 at the point F10 downstream of the connection point of the DC current supply unit 16 of the electric circuit to the nearest distribution bus 12a, and there is an insulation deterioration of the insulation resistance R11 also at the point F11 in the middle of the feeder 13e. Suppose.

そうすると、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F10、直流電流供給部16の直流電源18の閉回路(F10閉回路)が形成され、図11中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is10が流れる。この探査電流Is10は、電流検出器15T3で検出される。   Then, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation deterioration point F10, and the closed circuit (F10 closed circuit) of the DC power supply 18 of the DC current supply unit 16 are formed, and the direction indicated by the arrow in FIG. In addition, the exploration current Is10 flows from the DC power supply 18 of the DC current supply unit 16. This search current Is10 is detected by the current detector 15T3.

同様に、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F11、フィーダ13e、分岐配電母線12b、直近配電母線12a、直流電流供給部16の直流電源18の閉回路(F11閉回路)が形成され、図11中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is11が流れる。探査電流Is11はフィーダ13eの電流検出器15e2、15e1、電流検出器15T1、電流検出器15T3で検出される。なお、大地の一部及び直近配電母線12aの一部にはF10点での絶縁劣化による探査電流Is10と絶縁劣化点F11点での絶縁劣化による探査電流Is11との合計電流Is10+Is11が流れる。   Similarly, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation deterioration point F11, the feeder 13e, the branch distribution bus 12b, the nearest distribution bus 12a, and the closed circuit of the DC power supply 18 of the DC current supply unit 16 (F11 closed). Circuit) is formed, and the search current Is11 flows from the DC power supply 18 of the DC current supply unit 16 in the direction indicated by the arrow in FIG. The search current Is11 is detected by the current detectors 15e2, 15e1, the current detector 15T1, and the current detector 15T3 of the feeder 13e. A total current Is10 + Is11 of the exploration current Is10 due to insulation deterioration at the F10 point and the exploration current Is11 due to insulation deterioration at the insulation deterioration point F11 flows through a part of the ground and a part of the nearest distribution bus 12a.

ここで、フィーダ13の電流検出器15e2、15e1と配電母線12の電流検出器15T1、15T3との双方の電流検出器15が探査電流Isを検出しているときは、図11に示すようにフィーダ13と配電母線12との双方で絶縁劣化があった場合だけでなく、図7に示すようにフィーダ13に絶縁劣化があった場合も同じである。   Here, when the current detectors 15 of both the current detectors 15e2 and 15e1 of the feeder 13 and the current detectors 15T1 and 15T3 of the distribution bus 12 detect the exploration current Is, as shown in FIG. This is the same not only when there is insulation deterioration in both the power supply line 13 and the distribution bus 12 but also when there is insulation deterioration in the feeder 13 as shown in FIG.

そこで、絶縁状態評価部17は、電流検出器15e2、15e1、15T1、15T3で探査電流Isが検出されると、これら電流検出器15e2、15e1、15T1、15T3で検出された探査電流Isが予め定めた所定値より大きいか否かを判定し、予め定めた所定値より大きいときは、さらに、フィーダ13の電流検出器15e2、15e1が検出した探査電流Isと、配電母線12の電流検出器15T1、15T3が検出した探査電流Isとを比較する。そして、それら情報を外部に出力する。   Therefore, when the search current Is is detected by the current detectors 15e2, 15e1, 15T1, and 15T3, the insulation state evaluation unit 17 determines the search current Is detected by these current detectors 15e2, 15e1, 15T1, and 15T3 in advance. It is determined whether the current value is larger than the predetermined value. If the predetermined value is larger than the predetermined value, the exploration current Is detected by the current detectors 15e2 and 15e1 of the feeder 13 and the current detector 15T1 of the distribution bus 12 The search current Is detected by 15T3 is compared. Then, the information is output to the outside.

図11に示すようにフィーダ13と電流検出器15T3の下流の直近配電母線12aとの双方で絶縁劣化があった場合には、電流検出器15e2、15e1、15T1で検出された探査電流IsはIs11であり、電流検出器15T3で検出された探査電流Isは、Is10+Is11である。これら検出した探査電流Isの大きさも外部出力する。これにより、作業員は、絶縁劣化点F10及び絶縁劣化点F11の特定が容易となり絶縁劣化の箇所が特定できる。   As shown in FIG. 11, when there is insulation degradation in both the feeder 13 and the nearest distribution bus 12a downstream of the current detector 15T3, the search current Is detected by the current detectors 15e2, 15e1, and 15T1 is Is11. The search current Is detected by the current detector 15T3 is Is10 + Is11. The detected exploration current Is is also output externally. Thereby, the worker can easily specify the insulation deterioration point F10 and the insulation deterioration point F11, and can specify the location of the insulation deterioration.

絶縁状態評価部17は、F11閉回路において、電流検出器15e2、15e1、15T1、15T3の配置関係及び探査電流Isの大きさから絶縁劣化の箇所を特定する。まず、電流検出器15e2、15e1、15T1、15T3の配置関係から探査電流Isの流れる最も下流側の電流検出器15e2より下流側の負荷側で絶縁劣化の箇所が有ると判断する。一方、探査電流Isの大きさから、異なる値の探査電流Isを検出した電流検出器15T1、15T3の間で絶縁劣化が発生していると判断する。具体的には、F10閉回路において、探査電流Is10+Is11を検出した電流検出器15T3と、探査電流Is11を検出した電流検出器15T1と間で絶縁劣化が発生していると判断する。   The insulation state evaluation unit 17 specifies the location of insulation deterioration from the arrangement relationship of the current detectors 15e2, 15e1, 15T1, and 15T3 and the magnitude of the search current Is in the F11 closed circuit. First, from the arrangement relationship of the current detectors 15e2, 15e1, 15T1, and 15T3, it is determined that there is a location of insulation deterioration on the load side downstream of the most downstream current detector 15e2 through which the exploration current Is flows. On the other hand, from the magnitude of the exploration current Is, it is determined that insulation deterioration has occurred between the current detectors 15T1 and 15T3 that have detected different exploration currents Is. Specifically, in the F10 closed circuit, it is determined that insulation deterioration has occurred between the current detector 15T3 that has detected the exploration current Is10 + Is11 and the current detector 15T1 that has detected the exploration current Is11.

さらに、絶縁状態評価部17は、前述の(1)式、(2)式を用いて、探査電流Is10+Is11の大きさに基づいて絶縁劣化点F10の絶縁抵抗R10を評価する。また、探査電流Is10の大きさに基づいて絶縁劣化点F11の絶縁抵抗R11を評価する。   Further, the insulation state evaluation unit 17 evaluates the insulation resistance R10 at the insulation deterioration point F10 based on the magnitude of the exploration current Is10 + Is11 using the above-described equations (1) and (2). Further, the insulation resistance R11 at the insulation deterioration point F11 is evaluated based on the magnitude of the exploration current Is10.

このように、変圧器11の二次側の配電母線12とフィーダ13との2箇所で絶縁劣化があった場合であっても、絶縁劣化の箇所を特定でき、絶縁劣化による絶縁抵抗Rの評価ができる。   Thus, even when there is insulation degradation at two locations of the distribution bus 12 and the feeder 13 on the secondary side of the transformer 11, the location of insulation degradation can be identified, and the insulation resistance R due to insulation degradation can be evaluated. Can do.

図12は、図6に示した電路の直流電流供給部16の直近配電母線12aへの接続点の上流側で絶縁劣化があった場合の本発明の第2実施形態に係る絶縁監視装置の動作説明図である。いま、直流電流供給部16の直近配電母線12aへの接続点の上流側における直近配電母線12aのF12点で絶縁抵抗R12の絶縁劣化があったとする。   FIG. 12 shows the operation of the insulation monitoring apparatus according to the second embodiment of the present invention when there is insulation deterioration upstream of the connection point to the nearest distribution bus 12a of the DC current supply unit 16 of the circuit shown in FIG. It is explanatory drawing. Now, it is assumed that the insulation resistance R12 has deteriorated at the F12 point of the nearest distribution bus 12a on the upstream side of the connection point of the DC current supply unit 16 to the nearest distribution bus 12a.

そうすると、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F12、直近配電母線12a、直流電流供給部16の直流電源18の閉回路(F12閉回路)が形成され、図12中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is12が流れる。この探査電流Is12は、電流検出器15T2で検出される。各々のフィーダ13を通る閉回路は形成されないので、各々のフィーダ13の電流検出器15は、この探査電流Is12を検出することはない。   Then, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation deterioration point F12, the nearest power distribution bus 12a, and the closed circuit (F12 closed circuit) of the DC power supply 18 of the DC current supply unit 16 are formed. The search current Is12 flows from the DC power supply 18 of the DC current supply unit 16 in the direction indicated by the arrow. This search current Is12 is detected by the current detector 15T2. Since a closed circuit passing through each feeder 13 is not formed, the current detector 15 of each feeder 13 does not detect this exploration current Is12.

絶縁状態評価部17は、電流検出器15T2で探査電流Is12が検出されると、電流検出器15T2で検出された探査電流Is12が予め定めた所定値より大きいか否かを判定し、予め定めた所定値より大きいときは、その情報を外部に出力する。これにより、作業員は絶縁劣化の箇所が特定できる。   When the search current Is12 is detected by the current detector 15T2, the insulation state evaluation unit 17 determines whether or not the search current Is12 detected by the current detector 15T2 is larger than a predetermined value. When it is larger than the predetermined value, the information is output to the outside. Thereby, the worker can specify the location of insulation deterioration.

また、絶縁状態評価部17は、F12閉回路において、電流検出器15T2の配置関係から絶縁劣化の箇所を特定する。すなわち、絶縁状態評価部17は、電流検出器15T2の上流側の直近配電母線12aで絶縁劣化の箇所が有ると判断する。これは、電流検出器15T2が探査電流Isを検出するのは、電流検出器15T2の上流側の直近配電母線12aで絶縁劣化の箇所が有る場合に限られるからである。   Moreover, the insulation state evaluation part 17 specifies the location of insulation deterioration from the arrangement | positioning relationship of the current detector 15T2 in F12 closed circuit. That is, the insulation state evaluation unit 17 determines that there is a portion of insulation deterioration in the nearest distribution bus 12a on the upstream side of the current detector 15T2. This is because the current detector 15T2 detects the exploration current Is only when there is a portion of insulation deterioration in the nearest distribution bus 12a on the upstream side of the current detector 15T2.

さらに、絶縁状態評価部17は、その探査電流Is12の大きさに基づいて絶縁劣化点F12の絶縁抵抗R12を評価する。前述の(1)式、(2)式を用いて、(1)式のIs1をIs12に、R1をR12に置き換えて、絶縁抵抗R12を求め、求めた絶縁抵抗R12の大きさにより絶縁状態を評価する。   Further, the insulation state evaluation unit 17 evaluates the insulation resistance R12 of the insulation deterioration point F12 based on the magnitude of the exploration current Is12. Using the above equations (1) and (2), Is1 in equation (1) is replaced with Is12 and R1 is replaced with R12 to obtain an insulation resistance R12, and the insulation state is determined by the size of the obtained insulation resistance R12. evaluate.

このように、絶縁状態評価部17は、予め定めた所定値より大きい探査電流Isを検出した電流検出器15の情報を出力するととともに、それらの電流検出器15の配置関係から絶縁劣化の箇所を特定し、必要に応じて絶縁抵抗を求める。図12のF12点で絶縁劣化があった場合には、探査電流Is12の流れる電流検出器15T2より上流の直近配電母線12aで絶縁劣化の箇所が有ると判定する。また、電流検出器15T1で検出された探査電流Is12の大きさに基づいて絶縁抵抗R12を求める。   In this way, the insulation state evaluation unit 17 outputs information on the current detector 15 that has detected the exploration current Is greater than a predetermined value, and determines the location of insulation deterioration from the arrangement relationship of these current detectors 15. Identify and determine insulation resistance as needed. When there is insulation degradation at point F12 in FIG. 12, it is determined that there is a location of insulation degradation in the nearest distribution bus 12a upstream from the current detector 15T2 through which the exploration current Is12 flows. Also, the insulation resistance R12 is obtained based on the magnitude of the search current Is12 detected by the current detector 15T1.

以上の説明では、直流電流供給部16の直近配電母線12aへの接続点の上流側における直近配電母線12aのF12点で絶縁抵抗R12の絶縁劣化があった場合について説明したが、直流電流供給部16の直近配電母線12aへの接続点の上流側における変圧器2次側コイルに絶縁劣化があった場合も同様に検出できる。つまり、直流電流供給部16の直近配電母線12aへの接続点の上流側のいずれかの箇所の絶縁劣化を検出できる。直近配電母線12aの絶縁劣化と変圧器2次側コイルの絶縁劣化とを区別するには、直近配電母線12aと変圧器2次側コイルとの境界部分に電流検出器15を設ければよい。   In the above description, the case where the insulation resistance R12 has deteriorated at the point F12 of the nearest distribution bus 12a upstream of the connection point of the DC current supply unit 16 to the nearest distribution bus 12a has been described. The same can be detected when there is insulation deterioration in the transformer secondary coil upstream of the connection point to the 16 nearest distribution buses 12a. That is, it is possible to detect insulation deterioration at any location upstream of the connection point of the direct current supply unit 16 to the nearest distribution bus 12a. In order to distinguish between the insulation deterioration of the nearest distribution bus 12a and the insulation deterioration of the transformer secondary coil, the current detector 15 may be provided at the boundary between the nearest distribution bus 12a and the transformer secondary coil.

図13は、図6に示した電路の2箇所で絶縁劣化があった場合の別の他の一例を示す本発明の第2実施形態に係る絶縁監視装置の動作説明図である。いま、電路の直流電流供給部16の直近配電母線12aへの接続点の上流側のF13点で絶縁抵抗R13の絶縁劣化があり、フィーダ13eの途中のF14点でも絶縁抵抗R14の絶縁劣化があったとする。   FIG. 13 is an operation explanatory diagram of the insulation monitoring apparatus according to the second embodiment of the present invention, showing another example when there is insulation degradation at two locations on the electric circuit shown in FIG. Now, there is an insulation deterioration of the insulation resistance R13 at the point F13 upstream of the connection point of the DC current supply unit 16 of the electric circuit to the nearest distribution bus 12a, and there is an insulation deterioration of the insulation resistance R14 also at the point F14 in the middle of the feeder 13e. Suppose.

そうすると、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F13、直流電流供給部16の直流電源18の閉回路(F13閉回路)が形成され、図13中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is13が流れる。この探査電流Is13は、電流検出器15T2で検出される。   Then, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation deterioration point F13, and the closed circuit (F13 closed circuit) of the DC power supply 18 of the DC current supply unit 16 are formed, and the directions indicated by the arrows in FIG. In addition, the exploration current Is13 flows from the DC power supply 18 of the DC current supply unit 16. This search current Is13 is detected by the current detector 15T2.

同様に、直流電流供給部16の直流電源18、接地点A、絶縁劣化点F14、フィーダ13e、分岐配電母線12b、直近配電母線12a、直流電流供給部16の直流電源18の閉回路(F14閉回路)が形成され、図13中の矢印で示す方向に、直流電流供給部16の直流電源18から探査電流Is14が流れる。探査電流Is14はフィーダ13eの電流検出器15e2、15e1、電流検出器15T1、電流検出器15T3で検出される。   Similarly, the DC power supply 18 of the DC current supply unit 16, the ground point A, the insulation deterioration point F14, the feeder 13e, the branch distribution bus 12b, the nearest distribution bus 12a, and the closed circuit of the DC power supply 18 of the DC current supply unit 16 (F14 closed). Circuit) is formed, and the search current Is14 flows from the DC power supply 18 of the DC current supply unit 16 in the direction indicated by the arrow in FIG. The search current Is14 is detected by the current detectors 15e2 and 15e1, the current detector 15T1, and the current detector 15T3 of the feeder 13e.

絶縁状態評価部17は、電流検出器15e2、15e1、15T1、15T3、15T2で探査電流Isが検出されると、これら電流検出器15e2、15e1、15T1、15T3、15T2で検出された探査電流Isが予め定めた所定値より大きいか否かを判定し、予め定めた所定値より大きいときは、それら情報を外部に出力する。これにより、作業員は、絶縁劣化点F13及び絶縁劣化点F14の特定が容易となり絶縁劣化の箇所が特定できる。なお、図13に示すようにフィーダ13と電流検出器15T2の上流の直近配電母線12aとの双方で絶縁劣化があった場合には、電流検出器15T2で検出された探査電流IsはIs13であり、電流検出器15e2、15e1、15T1、15T3で検出された探査電流IsはIs14である。   When the current detectors 15e2, 15e1, 15T1, 15T3, and 15T2 detect the exploration current Is, the insulation state evaluation unit 17 detects the exploration current Is detected by the current detectors 15e2, 15e1, 15T1, 15T3, and 15T2. It is determined whether or not the predetermined value is larger than the predetermined value. If the predetermined value is larger, the information is output to the outside. Thereby, the worker can easily specify the insulation deterioration point F13 and the insulation deterioration point F14, and can specify the location of the insulation deterioration. In addition, as shown in FIG. 13, when both the feeder 13 and the nearest power distribution bus 12a upstream of the current detector 15T2 have insulation deterioration, the search current Is detected by the current detector 15T2 is Is13. The search current Is detected by the current detectors 15e2, 15e1, 15T1, and 15T3 is Is14.

絶縁状態評価部17は、F13閉回路において、電流検出器15T2の配置関係から絶縁劣化の箇所を特定する。すなわち、絶縁状態評価部17は、電流検出器15T2の上流側の直近配電母線12aで絶縁劣化の箇所が有ると判断する。これは、前述したように、電流検出器15T2が探査電流Isを検出するのは、電流検出器15T2の上流側の直近配電母線12aで絶縁劣化の箇所が有る場合に限られるからである。   The insulation state evaluation part 17 specifies the location of insulation degradation from the arrangement | positioning relationship of the current detector 15T2 in F13 closed circuit. That is, the insulation state evaluation unit 17 determines that there is a portion of insulation deterioration in the nearest distribution bus 12a on the upstream side of the current detector 15T2. This is because, as described above, the current detector 15T2 detects the exploration current Is only when there is a location of insulation deterioration in the nearest distribution bus 12a on the upstream side of the current detector 15T2.

また、絶縁状態評価部17は、F14閉回路において、電流検出器15e2、15e1、15T1、15T3、15T2の配置関係及び探査電流Isの大きさから絶縁劣化の箇所を特定する。まず、F14閉回路において、電流検出器15e2、15e1、15T1、15T3の配置関係から探査電流Isの流れる最も下流側の電流検出器15e2より下流側の負荷側で絶縁劣化の箇所が有ると判断する。   Moreover, the insulation state evaluation part 17 specifies the location of insulation degradation from the arrangement | positioning relationship of the current detectors 15e2, 15e1, 15T1, 15T3, and 15T2 and the magnitude | size of the search electric current Is in F14 closed circuit. First, in the F14 closed circuit, it is determined from the arrangement relationship of the current detectors 15e2, 15e1, 15T1, and 15T3 that there is a location of insulation deterioration on the load side downstream of the most downstream current detector 15e2 through which the exploration current Is flows. .

さらに、絶縁状態評価部17は、前述の(1)式、(2)式を用いて、探査電流Is13の大きさに基づいて絶縁劣化点F13の絶縁抵抗R13を評価する。また、探査電流Is14の大きさに基づいて絶縁劣化点F14の絶縁抵抗R14を評価する。   Furthermore, the insulation state evaluation unit 17 evaluates the insulation resistance R13 of the insulation deterioration point F13 based on the magnitude of the exploration current Is13 using the above-described equations (1) and (2). Further, the insulation resistance R14 at the insulation deterioration point F14 is evaluated based on the magnitude of the exploration current Is14.

このように、直流電流供給部16の直近配電母線12aへの接続点の上流側と、フィーダ13との2箇所で絶縁劣化があった場合であっても、絶縁劣化の箇所を特定でき、絶縁劣化による絶縁抵抗Rの評価ができる。   In this way, even if there is insulation degradation at two locations, the upstream side of the connection point of the direct current supply unit 16 to the nearest distribution bus 12a and the feeder 13, the location of insulation degradation can be identified, and the insulation The insulation resistance R due to deterioration can be evaluated.

この場合も、図12の場合と同様に、直流電流供給部16の直近配電母線12aへの接続点の上流側のいずれかの箇所の絶縁劣化(直近配電母線12aの絶縁劣化及び変圧器2次側コイルの絶縁劣化)を検出できる。直近配電母線12aの絶縁劣化と変圧器2次側コイルの絶縁劣化とを区別するには、直近配電母線12aと変圧器2次側コイルとの境界部分に電流検出器15を設ければよい。   In this case as well, as in the case of FIG. 12, the insulation degradation at any location upstream of the connection point of the direct current supply unit 16 to the nearest distribution bus 12a (the insulation degradation of the nearest distribution bus 12a and the transformer secondary) Side coil insulation deterioration) can be detected. In order to distinguish between the insulation deterioration of the nearest distribution bus 12a and the insulation deterioration of the transformer secondary coil, the current detector 15 may be provided at the boundary between the nearest distribution bus 12a and the transformer secondary coil.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…変圧器、12…配電母線、13…フィーダ、14…開閉器、15…電流検出器、16…直流電流供給部、17…絶縁状態評価部、18…直流電源、19…スイッチ DESCRIPTION OF SYMBOLS 11 ... Transformer, 12 ... Distribution bus, 13 ... Feeder, 14 ... Switch, 15 ... Current detector, 16 ... DC current supply part, 17 ... Insulation state evaluation part, 18 ... DC power supply, 19 ... Switch

Claims (8)

非接地配電方式または接地配電方式で非接地状態にした回路構成で変圧器の二次側の直近配電母線から分岐した分岐配電母線から複数のフィーダが引き出され前記フィーダに複数の分岐回路がある電路の前記直近配電母線に接続され前記電路に絶縁劣化があったとき活線状態で前記電路に探査電流を供給する直流電流供給部と、
前記分岐回路の分岐点の下流側にそれぞれ設けられ前記直流電流供給部から供給された探査電流を検出する電流検出器と、
前記電流検出器で検出された探査電流を入力し予め定めた所定値より大きい探査電流を検出した電流検出器の配置関係から絶縁劣化の箇所を特定するための絶縁状態評価部とを備えたことを特徴とする絶縁監視装置。
A circuit in which a plurality of feeders are drawn from a branch distribution bus that branches from the nearest distribution bus on the secondary side of the transformer in a circuit configuration that is not grounded by a non-ground distribution system or a ground distribution system, and the feeder has a plurality of branch circuits A direct current supply unit that is connected to the nearest distribution bus and supplies an exploration current to the electric circuit in a live state when the electric circuit has insulation deterioration ;
A current detector for detecting a probe current supplied from respectively provided on the downstream side of the branching point of the branch circuit the DC current supply unit,
An insulation state evaluation unit for specifying a location of insulation deterioration from an arrangement relationship of current detectors that input a search current detected by the current detector and detected a search current larger than a predetermined value set in advance Insulation monitoring device characterized by.
前記絶縁状態評価部は、予め定めた所定値より大きい探査電流を検出した前記電流検出器のうち、前記変圧器側から見て前記探査電流の流れる最も下流側の電流検出器より下流側で絶縁劣化の箇所が有ると判定することを特徴とする請求項1に記載の絶縁監視装置。   The insulation state evaluation unit is insulated on a downstream side of a current detector on the most downstream side where the exploration current flows from the transformer side among the current detectors that have detected the exploration current larger than a predetermined value set in advance. The insulation monitoring apparatus according to claim 1, wherein it is determined that there is a portion of deterioration. 前記直近配電母線と前記分岐配電母線との接続点の変圧器側、前記直流電流供給部の前記直近配電母線への接続点を挟んで前記変圧器から見て上流下流の両側に、前記直流電流供給部から供給された探査電流を検出する電流検出器を追加して設け、前記絶縁状態評価部は、追加して設けたこれらの電流検出器及び前記分岐回路の分岐点の下流側に設けられた電流検出器の配置関係や検出された探査電流に基づいて、前記直近配電母線や前記分岐配電母線の絶縁劣化を検出することを特徴とする請求項1または請求項2に記載の絶縁監視装置。 On the transformer side of the connection point between the nearest distribution bus and the branch distribution bus, the direct current on both sides of the upstream and downstream as viewed from the transformer across the connection point to the nearest distribution bus of the DC current supply unit An additional current detector for detecting the exploration current supplied from the supply unit is provided , and the insulation state evaluation unit is provided downstream of the branch point of these additional current detectors and the branch circuit. 3. The insulation monitoring device according to claim 1 , wherein an insulation deterioration of the nearest distribution bus or the branch distribution bus is detected based on an arrangement relationship of the detected current detectors or a detected exploration current. 4. . 前記絶縁状態評価部は、前記直流電流供給部の前記直近配電母線への接続点の下流側に設けられた電流検出器、前記直近配電母線と前記分岐配電母線との接続点の変圧器側に設けられた電流検出器、及び前記分岐回路の分岐点の下流側に設けられた電流検出器が予め定めた所定値より大きい探査電流を検出しているときは、前記直流電流供給部の前記直近配電母線への接続点の下流側に設けられた電流検出器、前記直近配電母線と前記分岐配電母線との接続点の変圧器側に設けられた電流検出器のいずれかに流れる電流が前記分岐回路の分岐点の下流側に設けられた電流検出器に流れる電流より大きいか否かを判定し、大きいときは前記変圧器側から見て前記探査電流の流れる最も下流側の電流検出器より下流側及び前記直流電流供給部の前記直近配電母線への接続点の下流側の直近配電母線または前記分岐配電母線の双方で絶縁劣化の箇所が有ると判定することを特徴とする請求項3に記載の絶縁監視装置。 The insulation state evaluation unit is a current detector provided on the downstream side of the connection point to the nearest distribution bus of the DC current supply unit, on the transformer side of the connection point of the nearest distribution bus and the branch distribution bus. When the provided current detector and the current detector provided on the downstream side of the branch point of the branch circuit detect an exploration current greater than a predetermined value, the immediate vicinity of the DC current supply unit A current detector provided on the downstream side of the connection point to the distribution bus, and a current flowing through any of the current detectors provided on the transformer side of the connection point between the nearest distribution bus and the branch distribution bus It is determined whether or not it is larger than the current flowing in the current detector provided downstream of the circuit branch point, and when it is larger, it is downstream from the most downstream current detector through which the exploration current flows when viewed from the transformer side. Side and in front of the DC current supply Insulation monitoring device of claim 3, wherein determining that the downstream side of the nearest distribution bus or locations of the insulation deterioration in both the branch distribution bus connection point to the nearest distribution bus there. 前記絶縁状態評価部は、前記直流電流供給部の前記直近配電母線への接続点の下流側に設けられた電流検出器、及び前記直近配電母線と前記分岐配電母線との接続点の変圧器側に設けられた電流検出器のみが予め定めた所定値より大きい探査電流を検出しているときは、前記分岐配電母線で絶縁劣化の箇所が有ると判定することを特徴とする請求項3に記載の絶縁監視装置。 The insulation state evaluation unit includes a current detector provided downstream of a connection point to the nearest distribution bus of the direct current supply unit, and a transformer side of a connection point between the nearest distribution bus and the branch distribution bus 4. When only the current detector provided in the terminal detects an exploration current larger than a predetermined value, it is determined that there is a portion of insulation deterioration in the branch distribution bus. Insulation monitoring device. 前記絶縁状態評価部は、前記直流電流供給部の前記直近配電母線への接続点の下流側に設けられた電流検出器のみが予め定めた所定値より大きい探査電流を検出しているときは、前記直流電流供給部の前記直近配電母線への接続点の下流側の直近配電母線で絶縁劣化の箇所が有ると判定することを特徴とする請求項3に記載の絶縁監視装置。 When the insulation state evaluation unit detects an exploration current greater than a predetermined value only by a current detector provided on the downstream side of the connection point to the nearest distribution bus of the DC current supply unit, The insulation monitoring apparatus according to claim 3, wherein it is determined that there is a location of insulation deterioration in the nearest distribution bus downstream of the connection point to the nearest distribution bus of the DC current supply unit. 前記絶縁状態評価部は、前記直流電流供給部の前記直近配電母線への接続点の上流側に設けられた電流検出器のみが予め定めた所定値より大きい探査電流を検出しているときは、前記直流電流供給部の前記直近配電母線への接続点の上流側の直近配電母線で絶縁劣化の箇所が有ると判定することを特徴とする請求項3に記載の絶縁監視装置。 When the insulation state evaluation unit detects an exploration current larger than a predetermined value determined only by a current detector provided on the upstream side of the connection point to the nearest distribution bus of the DC current supply unit, The insulation monitoring apparatus according to claim 3, wherein it is determined that there is a location of insulation deterioration in the nearest distribution bus upstream of the connection point to the nearest distribution bus of the DC current supply unit. 前記絶縁状態評価部は、前記電流検出器で検出された探査電流の大きさに基づいて絶縁劣化の箇所の絶縁抵抗を求めることを特徴とする請求項1ないし請求項7のいずれか1項に記載の絶縁監視装置。   The said insulation state evaluation part calculates | requires the insulation resistance of the location of insulation degradation based on the magnitude | size of the search electric current detected by the said current detector, The any one of Claim 1 thru | or 7 characterized by the above-mentioned. The insulation monitoring device described.
JP2014007756A 2014-01-20 2014-01-20 Insulation monitoring device Active JP6327507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007756A JP6327507B2 (en) 2014-01-20 2014-01-20 Insulation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007756A JP6327507B2 (en) 2014-01-20 2014-01-20 Insulation monitoring device

Publications (2)

Publication Number Publication Date
JP2015137854A JP2015137854A (en) 2015-07-30
JP6327507B2 true JP6327507B2 (en) 2018-05-23

Family

ID=53768961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007756A Active JP6327507B2 (en) 2014-01-20 2014-01-20 Insulation monitoring device

Country Status (1)

Country Link
JP (1) JP6327507B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7215915B2 (en) * 2019-01-31 2023-01-31 株式会社関電工 Insulation monitoring device and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149642A (en) * 1977-06-01 1978-12-27 Kansai Electric Power Co Method of identifying trouble zone of cable
JP3691147B2 (en) * 1996-02-09 2005-08-31 光商工株式会社 Insulation monitoring method for ungrounded circuit
JP2003035740A (en) * 2001-07-24 2003-02-07 Kansai Electric Power Co Inc:The Power distribution accident searching apparatus
JP2003057288A (en) * 2001-08-20 2003-02-26 Mitsubishi Cable Ind Ltd Fault-point specifying method for branch cable line

Also Published As

Publication number Publication date
JP2015137854A (en) 2015-07-30

Similar Documents

Publication Publication Date Title
US9124089B2 (en) Ground monitor accessory connection
KR102050255B1 (en) Method and test device for testing wiring of transducers
US20150168481A1 (en) Device and method for insulation monitoring in a power supply system including a high-resistance grounded neutral point
US10784674B2 (en) Methods and devices for selective insulation monitoring in underground IT power supply systems
US9952271B2 (en) Insulation monitoring system for secured electric power system
US20160025794A1 (en) Apparatus and method for detecting leakage current
JP2010510500A (en) Power monitoring system
Moradi et al. Voltage sag source location: A review with introduction of a new method
KR20140009622A (en) Current transformer protector
US20140062492A1 (en) Testing a fuse
US10520539B2 (en) System for detecting and indicating partial discharges and voltage in high-voltage electric power distribution systems
ES2382323B2 (en) METHOD AND SYSTEM FOR IDENTIFYING GROUND CONNECTION PROBLEMS IN AN ELECTRICAL NETWORK.
JP2016114437A (en) Leakage spot survey method, and device therefor
JP6327507B2 (en) Insulation monitoring device
JP6509029B2 (en) Distribution board
KR20180008987A (en) Apparatus and method for discriminating fault in gas insulated switchgear system
JP2018164358A (en) Disconnection discrimination device and wiring discrimination device of DC power supply circuit
JP6327506B2 (en) Insulation monitoring device
US9529031B2 (en) Grounding detection device and method
JP2006267002A (en) Insulation deterioration position locating device and method thereof
KR101019462B1 (en) Method for determining by detecting inpulse originated from arc
JP2014202696A (en) Electrical leak detection method
KR101993558B1 (en) Bidirectional selective ground fault protection relay and test device capable of detecting faulty wiring
US20150253371A1 (en) Electromagnetic radiation detecting system and method
JP7013770B2 (en) Forced grounding device and ground fault search device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180404

R150 Certificate of patent or registration of utility model

Ref document number: 6327507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250