JP7214962B2 - Alkaline phosphatase high expression animal cells - Google Patents

Alkaline phosphatase high expression animal cells Download PDF

Info

Publication number
JP7214962B2
JP7214962B2 JP2018005380A JP2018005380A JP7214962B2 JP 7214962 B2 JP7214962 B2 JP 7214962B2 JP 2018005380 A JP2018005380 A JP 2018005380A JP 2018005380 A JP2018005380 A JP 2018005380A JP 7214962 B2 JP7214962 B2 JP 7214962B2
Authority
JP
Japan
Prior art keywords
gene
alp
cells
alkaline phosphatase
dhfr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018005380A
Other languages
Japanese (ja)
Other versions
JP2019122303A (en
Inventor
孝弘 新井
悠 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2018005380A priority Critical patent/JP7214962B2/en
Publication of JP2019122303A publication Critical patent/JP2019122303A/en
Application granted granted Critical
Publication of JP7214962B2 publication Critical patent/JP7214962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、遺伝子組換えアルカリホスファターゼを生産する方法に関する。 The present invention relates to a method for producing recombinant alkaline phosphatase.

アルカリホスファターゼ(以下、ALPと略する)は、抗原抗体反応などの検出系にホースラディッシュパーオキシダーゼと並んでよく利用される酵素である。種々の動物から単離されたALPの中で、ウシ小腸由来の酵素の比活性が高いことから主に使用されている。また天然型のALPには高活性型(CIPII)と中活性型(CIPI)が存在することが知られているが、高活性なALPは子牛小腸からしか精製することができず、安定供給は課題の一つであった。 Alkaline phosphatase (hereinafter abbreviated as ALP) is an enzyme that is often used along with horseradish peroxidase in detection systems such as antigen-antibody reactions. Among ALPs isolated from various animals, bovine small intestine-derived enzymes are mainly used due to their high specific activity. In addition, it is known that natural ALP has a highly active form (CIPII) and an intermediately active form (CIPI). was one of the issues.

近年遺伝子工学技術を用い、CHO細胞で高活性遺伝子組換えALPを生産する方法(特許文献1)やピキア酵母で発現する方法が報告されている(特許文献2)。
CHO細胞(動物細胞)での発現系では、細胞内の分泌経路において付加された糖鎖をトリミングして適切な形に修正するため、天然型に近い糖鎖が得られる利点があるが、発現量が少ないため経済性に問題があることが報告さている(特許文献2)。
ピキア酵母で産業上利用できる程度の発現量は得られているが、酵母でタンパク質を発現する際には過剰にN型糖鎖が付加される傾向が強いため、分子量が大きくなる、分子の均一性に欠ける等の問題を生じる(非特許文献1)。これらは、免疫学的測定において、ALP標識後のゲルろ過での精製に支障が生じることが考えられる。また、医療用途においてはアレルゲン性の問題を生じることが危惧される。
非特許文献3では、遺伝子組み換えの手法を用いてALPのアミノ酸に変異を導入することで、酵母におけるALP発現の糖鎖付加の不均一性を解消しているが、変異導入を行ったことで、天然型のALPとは一次構造が異なり、修飾される糖鎖構造も異なっている。
これまで、動物細胞でALPを発現した際に最も天然型に近いALPが作製可能なことは知られていたが、発現量が低いことによる経済的な問題のために実施されてこなかった。
In recent years, a method for producing highly active recombinant ALP in CHO cells using genetic engineering technology (Patent Document 1) and a method for expression in Pichia yeast have been reported (Patent Document 2).
The expression system in CHO cells (animal cells) trims the sugar chains added in the intracellular secretory pathway and corrects them into an appropriate shape, so it has the advantage of obtaining a sugar chain close to the natural type. It has been reported that there is a problem in economic efficiency due to the small amount (Patent Document 2).
Although an expression level sufficient for industrial use has been obtained in Pichia yeast, there is a strong tendency for excess N-glycans to be added when expressing proteins in yeast. This causes problems such as lack of flexibility (Non-Patent Document 1). These are considered to interfere with purification by gel filtration after ALP labeling in immunoassays. Moreover, it is apprehended that it may cause an allergenic problem in medical applications.
In Non-Patent Document 3, the heterogeneity of glycosylation in ALP expression in yeast is eliminated by introducing mutations into the amino acids of ALP using a genetic recombination technique. , the primary structure is different from that of natural ALP, and the sugar chain structure to be modified is also different.
Until now, it has been known that ALP closest to the natural form can be produced when ALP is expressed in animal cells, but this has not been implemented due to economic problems due to the low expression level.

特許第4295386号公報Japanese Patent No. 4295386 特許第3657895号公報Japanese Patent No. 3657895 特開2008-5734号公報JP 2008-5734 A

Dean,Biochim.Biophys.Acta,1426,309-322(1999)Dean, Biochim. Biophys. Acta, 1426, 309-322 (1999)

本発明の目的は、ALPを経済的な発現量で生産可能な動物細胞発現株及び生産方法を提供することである。 An object of the present invention is to provide an animal cell expression strain and production method capable of producing ALP at an economical expression level.

上記課題に鑑みてなされた本発明は、以下の態様を包含する。
[1]
以下の工程(A)~(C)を含むアルカリホスファターゼの生産方法であって、アルカリホスファターゼ生産量が100mg/L以上である、方法:
(A)配列番号3であらわされるアミノ酸配列と80%以上の相同性を有するアミノ酸配列をコードする遺伝子を、哺乳動物細胞へ導入する工程;
(B)薬剤耐性を利用して前記遺伝子が導入された哺乳動物細胞を選別する工程;
(C)前記(B)で導入した遺伝子を、薬剤耐性を利用して増幅する工程。
[2]
アルカリホスファターゼ生産量が300mg/L以上である[1]に記載の方法。
[3]
哺乳動物細胞がミエローマ細胞である[1]または[2]に記載の方法。
[4]
工程(C)における薬剤耐性を利用した遺伝子増幅がdhfr-MTX遺伝子増幅法である[1]~[3]のいずれかに記載の方法。
[5]
変異型dhfrを用いる[4]に記載の方法。
[6]
工程(C)により得られた、アルカリホスファターゼ生産量が増大した哺乳動物細胞を培地中で培養する工程をさらに含み、前記培地が亜鉛イオンを10~250μM含有する、[1]~[5]のいずれかに記載の方法。
[7]
前記培養する工程における、細胞培養基材がホローファイバーであることを特徴とする[6]に記載の方法。
[8]
配列番号3であらわされるアミノ酸配列と80%以上の相同性を有するアミノ酸配列をコードする遺伝子が、変異型dhfrを用いてdhfr-MTX遺伝子増幅法により遺伝子増幅され、アルカリホスファターゼの生産量が100mg/mL以上であるミエローマ細胞。
[9]
以下の工程(A)~(C)を含むアルカリホスファターゼ生産用哺乳動物細胞の製造方法であって、前記細胞は100mg/L以上のアルカリホスファターゼ生産能力を有する、方法:
(A)配列番号3であらわされるアミノ酸配列と80%以上の相同性を有するアミノ酸配列をコードする遺伝子を、哺乳動物細胞へ導入する工程;
(B)薬剤耐性を利用して前記遺伝子が導入された哺乳動物細胞を選別する工程;
(C)前記(B)で導入した遺伝子を、薬剤耐性を利用して増幅する工程。
The present invention, which has been made in view of the above problems, includes the following aspects.
[1]
A method for producing alkaline phosphatase comprising the following steps (A) to (C), wherein the production amount of alkaline phosphatase is 100 mg/L or more:
(A) introducing into mammalian cells a gene encoding an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 3;
(B) selecting mammalian cells into which the gene has been introduced using drug resistance;
(C) A step of amplifying the gene introduced in (B) above using drug resistance.
[2]
The method according to [1], wherein the production of alkaline phosphatase is 300 mg/L or more.
[3]
The method of [1] or [2], wherein the mammalian cells are myeloma cells.
[4]
The method according to any one of [1] to [3], wherein the gene amplification using drug resistance in step (C) is a dhfr-MTX gene amplification method.
[5]
The method of [4] using mutant dhfr.
[6]
[1] to [5], further comprising the step of culturing the mammalian cells with increased alkaline phosphatase production obtained in step (C) in a medium, wherein the medium contains 10 to 250 μM of zinc ions. Any method described.
[7]
The method according to [6], wherein the cell culture substrate in the culturing step is a hollow fiber.
[8]
A gene encoding an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 3 was amplified by the dhfr-MTX gene amplification method using mutant dhfr, and the alkaline phosphatase production amount was 100 mg/ Myeloma cells that are ≧mL.
[9]
A method for producing alkaline phosphatase-producing mammalian cells comprising the following steps (A) to (C), wherein the cells have an alkaline phosphatase-producing capacity of 100 mg/L or more:
(A) introducing into mammalian cells a gene encoding an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 3;
(B) selecting mammalian cells into which the gene has been introduced using drug resistance;
(C) A step of amplifying the gene introduced in (B) above using drug resistance.

以下に本発明をさらに詳細に説明する。
(1)ALP遺伝子配列
天然型のアルカリホスファターゼ遺伝子の3’付近には、GPIアンカーをコードする配列が含まれているため、この領域を含んだ形で組換えタンパクとして発現させた場合には、細胞膜上のタンパクとして発現する。細胞膜上に発現した場合、精製工程が煩雑になるため、ALP活性に影響を与えない範囲で3’のアミノ酸を短くすることが好ましい。好ましくは配列番号1に示す500番目のアミノ酸より短い配列、更に好ましくは、490番目より短い配列である。
(2)哺乳動物細胞
発現に用いる哺乳動物細胞は一般的に組換えタンパクの生産に用いられる細胞を用いればよく、特に限定されない。例えばCHO細胞、HEK293細胞、ミエローマ細胞などが例示できる。中でも、HGPRT(ヒポキサンチン・グアニンホスホリボシルトランスフェラーゼ)を欠損させたミエローマ細胞はデノボ経路によるDNA合成系のみを有するため、dhfr-MTX(ジヒドロ葉酸レダクターゼ-メトトレキサート)遺伝子増幅法を行う際に、サルベージ経路によるDNA合成を考慮する必要がなく、血清含有培地や、HT(ヒポキサンチン・チミジン)含有培地を使用可能なため、好ましい。
(3)遺伝子導入方法
哺乳動物細胞への遺伝子導入は効率的な遺伝子導入が行える方法であればよく、特に限定されない。例えば、リポフェクション、リン酸カルシウム共沈殿法、エレクトロポレーション法等を例示できる。中でも、導入効率の観点からエレクトロポレーション法による遺伝子導入が好ましい。
(4)薬剤耐性による細胞選別
薬剤耐性による細胞選別は薬剤耐性遺伝子を発現ベクター内に導入することで行えばよい。薬剤耐性遺伝子にはネオマイシン、ハイグロマイシン、ピューロマイシン耐性遺伝子などを用いればよい。例えば、タンパク発現ベクター上にネオマイシン耐性遺伝子を導入し、細胞培養培地中にG418を添加することで、選別を行ってもよい。
(5)遺伝子増幅
本発明における遺伝子増幅法は、哺乳動物細胞内の目的の発現タンパク遺伝子を増やす方法であればよく、特に限定されない。例えばIR/MAR(哺乳動物複製開始領域/核マトリックス結合領域)遺伝子増幅法、dhfr/MTX遺伝子増幅法などを例示できる。ミエローマ細胞を用いてdhfr/MTX遺伝子増幅法を行う際、発現ベクターに導入するdhfr遺伝子はMTXに対して感受性の低い変異型であることが好ましい。MTXを用いた遺伝子増幅を行う際、細胞にとって、薬剤感受性の低い変異型dhfr遺伝子を増幅した方が、ミエローマ細胞が生来保有していたdhfr遺伝子を増幅するのに比べMTXへの耐性を獲得しやすいため、有利に遺伝子増幅される。
The present invention will be described in more detail below.
(1) ALP gene sequence Since the 3′ region of the native alkaline phosphatase gene contains a sequence encoding a GPI anchor, when expressed as a recombinant protein containing this region, It is expressed as a protein on the cell membrane. Since expression on the cell membrane complicates the purification process, it is preferable to shorten the 3' amino acid within a range that does not affect ALP activity. A sequence shorter than the 500th amino acid shown in SEQ ID NO: 1 is preferred, and a sequence shorter than the 490th amino acid is more preferred.
(2) Mammalian Cells Mammalian cells used for expression are not particularly limited, and cells generally used for recombinant protein production may be used. Examples include CHO cells, HEK293 cells, and myeloma cells. Among them, myeloma cells deficient in HGPRT (hypoxanthine/guanine phosphoribosyltransferase) have only a DNA synthesis system by the de novo pathway. It is preferable because there is no need to consider DNA synthesis by cytotoxicity, and a serum-containing medium or HT (hypoxanthine-thymidine)-containing medium can be used.
(3) Gene Introduction Method Gene introduction into mammalian cells is not particularly limited as long as it allows efficient gene introduction. Examples include lipofection, calcium phosphate coprecipitation, electroporation, and the like. Among them, gene transfer by electroporation is preferred from the viewpoint of transfer efficiency.
(4) Cell Selection Based on Drug Resistance Cell selection based on drug resistance may be performed by introducing a drug resistance gene into an expression vector. Neomycin, hygromycin, puromycin resistance genes, etc. may be used as drug resistance genes. For example, selection may be performed by introducing a neomycin resistance gene onto the protein expression vector and adding G418 to the cell culture medium.
(5) Gene Amplification The gene amplification method in the present invention is not particularly limited as long as it is a method for increasing the target expression protein gene in mammalian cells. For example, IR/MAR (mammalian replication initiation region/nuclear matrix attachment region) gene amplification method, dhfr/MTX gene amplification method, and the like can be exemplified. When the dhfr/MTX gene amplification method is performed using myeloma cells, the dhfr gene to be introduced into the expression vector is preferably a mutant with low sensitivity to MTX. When performing gene amplification using MTX, the cells acquired resistance to MTX by amplifying a mutant dhfr gene with low drug sensitivity, compared to amplifying the dhfr gene originally possessed by myeloma cells. Gene amplification is advantageous because it is easy to

変異型dhfrは文献1(Proc.Natl.Acad.Sci USA 80(1983)2495)に記載のものを用いてもよいし、文献2(Proc.Natl.Acad.Sci USA 90(1993)11797)に記載のものを用いてもよい。特に本発明では文献1に記載のdhfrアミノ酸配列の22番目がアルギニンに置換された変異体を用いることが好ましい。
(6)培養
ALPは活性中心に亜鉛イオンを必要とするため、培養する細胞に毒性を示さない程度で亜鉛塩を添加することが好ましい。亜鉛塩の添加濃度は、好ましくは10μM~250μM、さらに好ましくは15μM~30μMである。亜鉛塩としては、硫酸亜鉛、酢酸亜鉛、塩化亜鉛が例示できるがこれらに限定されない。好ましくは、塩化亜鉛が例示できる。
Mutant dhfr may be those described in Document 1 (Proc. Natl. Acad. Sci USA 80 (1983) 2495), or those described in Document 2 (Proc. Natl. Acad. Sci USA 90 (1993) 11797). You may use the thing of description. In particular, in the present invention, it is preferable to use a mutant in which the 22nd position of the dhfr amino acid sequence described in Document 1 is substituted with arginine.
(6) Culture Since ALP requires zinc ions in its active center, it is preferable to add a zinc salt to the extent that it does not show toxicity to the cells to be cultured. The concentration of zinc salt added is preferably 10 μM to 250 μM, more preferably 15 μM to 30 μM. Examples of zinc salts include, but are not limited to, zinc sulfate, zinc acetate, and zinc chloride. A preferable example is zinc chloride.

培養基材も特に限定されない。培養シャーレを用いて静置培養を行ってもよいし、細胞密度を増すためにフラスコを用いた振とう培養を行ってもよい。また、培養液中の栄養状態をコントロールするために、ジャーファーメンターを用いて培養してもよいし、培地中のALPを濃縮するためにホローファイバーによる培養を行ってもよい。本発明では特に、後の精製工程を簡便に行うため、ホローファイバーを用いた濃縮培養を行うことが好ましい。培地としては、通常動物細胞を培養するのに用いられるものであってよく、E-RDF(極東製薬)が例示できるがこれらに限定されない。
(7)生産量
生産量の評価は特開2017-192381に記載のように、培養上清中のALPを2種の抗ALP抗体を用いたサンドイッチELISAで行ってもよいし、培養上中のALPの活性値(U/mL)を測定しておき、精製後に測定される比活性(U/mg)と合わせて算出してもよい。
(8)精製
ALPの精製は哺乳動物細胞の培養上清を用いて当該業者において公知な方法を用いて行えばよい。例えば特開2017-192381に記載のように、クロマトグラフィーによる分離法、特に疎水性カラム及び陰イオン交換カラムを用いる方法によって行えばよい。
The culture substrate is also not particularly limited. Static culture may be performed using a culture petri dish, or shaking culture using a flask may be performed to increase the cell density. In addition, in order to control the nutritional state in the culture medium, culture may be performed using a jar fermenter, or in order to concentrate ALP in the medium, culture may be performed using hollow fibers. Especially in the present invention, it is preferable to carry out concentration culture using hollow fibers, in order to facilitate subsequent purification steps. The medium may be one commonly used for culturing animal cells, and E-RDF (Kyokuto Pharmaceutical Co., Ltd.) can be exemplified, but is not limited to these.
(7) Production volume
As described in JP-A-2017-192381, evaluation of the production amount may be performed by sandwich ELISA using two anti-ALP antibodies for ALP in the culture supernatant, or the activity value of ALP in the culture ( U/mL) may be measured and calculated together with the specific activity (U/mg) measured after purification.
(8) Purification Purification of ALP may be performed using mammalian cell culture supernatants by methods known to those skilled in the art. For example, as described in JP-A-2017-192381, a chromatographic separation method, particularly a method using a hydrophobic column and an anion exchange column, may be used.

本発明の方法では、経済的な発現量で高活性ALPを生産する哺乳動物細胞を構築し、精製ALPを取得することが可能である。 According to the method of the present invention, it is possible to construct mammalian cells that produce highly active ALP at an economical expression level and to obtain purified ALP.

MTX遺伝子増幅各段階でのクローニングした細胞によるALP発現量を示す図である。FIG. 4 shows ALP expression levels by cloned cells at each stage of MTX gene amplification. 実施例9で得られた、Phenyl-5PWカラムにより分離されたクロマトグラムを示す図である。FIG. 10 is a chromatogram separated by a Phenyl-5PW column obtained in Example 9. FIG. 実施例9で得られた、DEAE-5PWカラムにより分離されたクロマトグラムを示す図である。FIG. 10 is a chromatogram separated by a DEAE-5PW column obtained in Example 9. FIG. 実施例10で得られたゲルろ過分析の結果を示す図である。FIG. 10 shows the results of gel filtration analysis obtained in Example 10. FIG.

[実施例1] ALPをコードする遺伝子の作製
特開2017-192381に記載のALPアミノ酸配列(CIPII-CIPI chimera protein、配列番号1)をもとに、シグナル配列を特許第6131074号公報に記載のシグナル配列に置換し、C末が487番目のDである配列番号2のアミノ酸配列をコードする遺伝子(配列番号3)を合成し、ネオマイシン耐性遺伝子配列を有する動物細胞用発現ベクターに組み込んだ。
[Example 1] Preparation of a gene encoding ALP Based on the ALP amino acid sequence (CIPII-CIPI chimera protein, SEQ ID NO: 1) described in JP-A-2017-192381, the signal sequence described in Japanese Patent No. 6131074 A gene (SEQ ID NO: 3) encoding the amino acid sequence of SEQ ID NO: 2 in which the signal sequence was substituted and the C-terminus was D at position 487 was synthesized and incorporated into an animal cell expression vector having a neomycin-resistant gene sequence.

[実施例2]変異型dhfr遺伝子の作製
J.Biochem.、108,673;1990の中で使用されるpECE-dhfrの遺伝子配列を基に、KOD-PLUS-MutagenesisKit(東洋紡績社製)を用いて、dhfr遺伝子配列をProc.Natl.Acad.Sci USA 80(1983)2495に記載の変異dhfr遺伝子配列へ改変した。作製した変異dhfr遺伝子配列は、実施例1に記載の発現ベクターに組み込んだ。
[Example 2] Preparation of Mutant dhfr GeneJ. Biochem. , 108, 673; 1990. Based on the gene sequence of pECE-dhfr used in Proc. Natl. Acad. Sci USA 80 (1983) 2495 to the mutated dhfr gene sequence. The generated mutated dhfr gene sequence was incorporated into the expression vector described in Example 1.

[実施例3]哺乳動物細胞への遺伝子導入及び薬剤スクリーニング
実施例1、2のようにして作製したALP発現ベクターをNeon Transfection system(Thermo Fisher社製)を用いてミエローマ細胞にエレクトロポレーションにより導入した。遺伝子導入後のミエローマ細胞は浮遊培養用シャーレ(住友ベークライト社製)で10%のウシ血清を含むE-RDF培地(極東製薬社製)で1日培養した後、G418(Thermo Fisher社製)を500μg/mLになるよう添加し、1週間培養した。G418含有培地で1週間の培養の後、セルカウントを行い、0.5cells/wellになるよう384well培養プレート(グライナー社製)に播種した。
[Example 3] Gene transfer into mammalian cells and drug screening The ALP expression vector prepared in Examples 1 and 2 was introduced into myeloma cells by electroporation using the Neon Transfection system (manufactured by Thermo Fisher). bottom. The myeloma cells after the gene transfer were cultured in E-RDF medium (manufactured by Kyokuto Pharmaceutical Co., Ltd.) containing 10% bovine serum in a petri dish for suspension culture (manufactured by Sumitomo Bakelite Co., Ltd.) for one day, and then G418 (manufactured by Thermo Fisher Co., Ltd.) was added. It added so that it might become 500 micrograms/mL, and culture|cultivated for 1 week. After culturing in a G418-containing medium for one week, cells were counted and seeded in a 384-well culture plate (manufactured by Greiner) at 0.5 cells/well.

[実施例4]イムノアッセイによる、ALP発現株のスクリーニング
実施例3のようにして384well培養プレートに播種した細胞のうち、どのwellの発現量が多いかのスクリーニングには、下記に示すイムノアッセイの手法で行った。
(1)固相化用緩衝液(12mM NaCO、38mM NaHCO、pH9.6)で、抗ALP抗体(特開2017-192381に記載のAPA05.3抗体)を1μg/mlとなるように希釈し、50μLを384ウエルのELISAプレートに添加し、1時間室温でインキュベートし、APA05.3をELISAプレートに固相化した。
(2)該ELISAプレートを洗浄用緩衝液(20mM トリス(ヒドロキシメチル)アミノメタン、150mM 塩化ナトリウム、0.1% Tween20)で3回洗浄した後、3%BSAを含むPBSを添加し、1時間室温でインキュベートすることで該ELISAプレートをブロッキングした。
(3)その後、実施例3で作製した384well培養プレートの上清を、特開2008-79517に記載のレプリケータを用いて、0.3%BSA-PBSを含むPBSが50μL/wellで分注されたELISAプレートに移し、一時間反応させた。
(4) 洗浄用緩衝液で洗浄後、4-MUP溶液(1M ジエタノールアミン、0.5mM 塩化マグネシウム、1mM 4-メチルウンベリフェリルりん酸(4-MUP))を添加し、30分間室温でインキュベートした。該ELISAプレートの蛍光強度(励起波長360nm、発光波長465nm)をプレートリーダーで測定した。
[Example 4] Screening of ALP-expressing strains by immunoassay Among the cells seeded on a 384-well culture plate as in Example 3, screening for which wells have a high expression level can be performed by the immunoassay method shown below. gone.
(1) Immobilization buffer (12 mM Na 2 CO 3 , 38 mM NaHCO 3 , pH 9.6), anti-ALP antibody (APA05.3 antibody described in JP 2017-192381) to 1 μg / ml , 50 μL was added to a 384-well ELISA plate, incubated at room temperature for 1 hour, and APA05.3 was immobilized on the ELISA plate.
(2) After washing the ELISA plate three times with a washing buffer (20 mM tris(hydroxymethyl)aminomethane, 150 mM sodium chloride, 0.1% Tween 20), PBS containing 3% BSA was added for 1 hour. The ELISA plate was blocked by incubating at room temperature.
(3) After that, the supernatant of the 384-well culture plate prepared in Example 3 was dispensed at 50 µL/well with PBS containing 0.3% BSA-PBS using a replicator described in JP-A-2008-79517. It was transferred to an ELISA plate and allowed to react for 1 hour.
(4) After washing with washing buffer, 4-MUP solution (1 M diethanolamine, 0.5 mM magnesium chloride, 1 mM 4-methylumbelliferyl phosphate (4-MUP)) was added and incubated at room temperature for 30 minutes. . The fluorescence intensity of the ELISA plate (excitation wavelength 360 nm, emission wavelength 465 nm) was measured with a plate reader.

蛍光強度の強かった上位のwellから細胞を回収し、遺伝子増幅を行った。 Cells were recovered from the upper wells exhibiting high fluorescence intensity, and gene amplification was performed.

[実施例5]薬剤耐性を利用した遺伝子増幅(dhfr-MTX遺伝子増幅法)
dhfr-MTX遺伝子増幅法による発現量上昇は、実施例4で得た発現量の高いクローンに対して実施した。培地は塩化亜鉛25μM、10%ウシ血清を含むE-RDF培地を用いた。まず、4μMのMTXを含有する上記培地で、実施例4で得たクローンを培養した。培養期間はMTX添加前と細胞増殖速度が同等になるまでとし、3~4週間培養を継続した。その後、0.5cells/wellになるよう384well培養プレート(グライナー社製)に播種した。1~2週間経過後、実施例4に記載のイムノアッセイにより、ALP発現量の増幅したクローンを選別した。
[Example 5] Gene amplification using drug resistance (dhfr-MTX gene amplification method)
The clones with high expression levels obtained in Example 4 were subjected to increased expression levels by the dhfr-MTX gene amplification method. E-RDF medium containing 25 μM zinc chloride and 10% bovine serum was used as the medium. First, the clones obtained in Example 4 were cultured in the medium containing 4 μM MTX. The culture was continued for 3 to 4 weeks until the cell growth rate reached the same level as before the addition of MTX. Then, the cells were seeded on a 384-well culture plate (manufactured by Greiner) at 0.5 cells/well. After 1 to 2 weeks, clones with amplified ALP expression levels were selected by the immunoassay described in Example 4.

選別したクローンをもとに、40μMのMTXを含有する培地を用いて上記と同様の方法により、ALP発現量の増幅したクローンを選別した。 Based on the selected clones, clones with amplified ALP expression levels were selected by the same method as above using a medium containing 40 μM MTX.

MTX添加各段階でのクローニングした細胞によるALP発現量を図1に示す。
[実施例6]シャーレでのALP発現細胞の培養
浮遊培養用シャーレを用いた細胞培養は、37℃、5%COインキュベーター内で、静置培養を行った。培養培地は10%のウシ血清、25μMのZnClを含むE-RDF培地を用いた。発現量の測定を行う際は、1×10Cells/mLに細胞濃度を調整し、10日間静置培養した後培養上清のALP活性測定を行った。
[実施例7]培養上清中ALPの活性測定
培養上清中のALP活性(U/mL)の測定は下記に示す方法で行った。
(1)培養上清をALP希釈液(20mMTris-HCl pH7.5、10mM MgCl、10μM ZnCl、2mg/mL BSA、0.1%NaN)に希釈し、希釈系列を作製した。
(2)その後活性測定緩衝液(パラニトロフェニルフォスフェート(PNPP)391mgを100mLの0.1Mグリシン緩衝液(pH9.6、1mMMgCl2,0.1mMZnCl2、1mg/mL BSA))500μLに(1)を20μL添加した。
(3)25℃で10分間静置後に405nmの吸光度を測定した。
(4)吸光度が1.0付近になる希釈倍率の測定液と活性濃度既知の標準サンプル(0.597U/mL,ウシ小腸ALP ALPI-13G Lot 1706AA、Biozyme社)を比較することで、培養上清中のALPの活性を測定した。
MTX添加各段階でのクローニングした細胞による培養上清中ALP活性を表1に示す。
FIG. 1 shows the ALP expression level by the cloned cells at each stage of MTX addition.
[Example 6] Cultivation of ALP-expressing cells in petri dishes Static culture was performed in a 37°C, 5% CO 2 incubator for cell culture using a suspension culture petri dish. E-RDF medium containing 10% calf serum and 25 μM ZnCl 2 was used as the culture medium. When measuring the expression level, the cell concentration was adjusted to 1×10 5 Cells/mL, and after static culture for 10 days, the ALP activity of the culture supernatant was measured.
[Example 7] Measurement of activity of ALP in culture supernatant ALP activity (U/mL) in the culture supernatant was measured by the method shown below.
(1) The culture supernatant was diluted with ALP diluent (20 mM Tris-HCl pH 7.5, 10 mM MgCl 2 , 10 μM ZnCl 2 , 2 mg/mL BSA, 0.1% NaN 3 ) to prepare a dilution series.
(2) Then add (1) to 500 μL of activity measurement buffer (391 mg of paranitrophenyl phosphate (PNPP) in 100 mL of 0.1 M glycine buffer (pH 9.6, 1 mM MgCl2, 0.1 mM ZnCl2, 1 mg/mL BSA)). 20 μL was added.
(3) Absorbance at 405 nm was measured after standing at 25°C for 10 minutes.
(4) By comparing a diluted measurement solution with an absorbance of around 1.0 and a standard sample with a known activity concentration (0.597 U / mL, bovine small intestine ALP ALPI-13G Lot 1706AA, Biozyme), Activity of ALP in the serum was measured.
Table 1 shows the ALP activity in the culture supernatant of the cloned cells at each stage of MTX addition.

Figure 0007214962000001
Figure 0007214962000001

[実施例8]ホローファイバーを用いたALP発現細胞の培養
ホローファイバーでの細胞培養は、FiberCell Systemsカートリッジ(FiberCell社 セルロース膜 MWCO;5kDa)を用いて行った。浮遊培養用シャーレで拡大培養し、3.3×10Cellsの細胞をホローファイバーに播種した。培地はECS(Extracapillary Space)は10%のウシ血清、25μMのZnClを含むE-RDF培地を用い、ICS(Innercapillary Space)は25μMのZnClを含むE-RDF培地を用いた。細胞の培養は37℃、5%COのインキュベーターで行った。細胞の生育は培地中のグルコース消費をモニターすることで確認した。
[実施例9]ALPの精製
ALPの精製は以下の方法で行った。
(1)培養上清に硫酸アンモニウムを55%飽和となるよう添加し、4℃で0.5時間放置、その後4℃、8000rpm、20分の遠心分離により、沈殿画分として硫安塩析物を得た。
(2)沈殿画分をPBSで溶解し、硫酸アンモニウム濃度を1Mとした後、Phenyl-5PWカラム(21.5mm×150mm、東ソー株式会社)を接続した高速液体クロマトグラフィー(HPLC)にて分離した。Phenyl-5PWカラムカラムクロマトグラフィーは、1M硫酸アンモニウムを含むPBSを平衡化緩衝液とし、流速5ml/分の硫安濃度1Mから0Mまでの60分のリニアグラジエント溶出を行った。そのときのクロマトグラムを図2に示す。
(3)図2に示したフラクションを回収し、硫酸アンモニウムを60%飽和となるよう添加し、4℃で0.5時間放置、その後4℃、8000rpm、20分の遠心分離により、沈殿画分として硫安塩析物を得た。その後、透析により20mM Tris-HCl緩衝液(pH7.5、1mM MgCl、10μM ZnCl)で平衡化させた。
(4)その後、20mM Tris-HCl pH7.5緩衝液で平衡化したDEAE-5PW(25mm×150mm、東ソー株式会社)に供給した後、塩化ナトリウム濃度を0Mから0.25Mまでの60分のリニアグラジエント溶出を行なった。1分ごとにフラクションを試験管に分取し、各溶出フラクションにつき280nmの吸光度(A280)とPNPP法による活性(A405)を測定した。A405の測定は各フラクションを4000倍に希釈したものを用いて、実施例6に記載の方法で行った。結果を図3に示す。この結果得られた比活性(A405/A280)の高いフラクションに、高純度のALPが含まれる。前記比活性の高い、フラクションNo.21~26を回収し、硫酸アンモニウムを60%飽和となるよう添加し、4℃で0.5時間放置、その後4℃、8000rpm、20分の遠心分離により、沈殿画分として硫安塩析物を得た。その後、透析により20mM Tris-HCl緩衝液(pH7.5、1mM MgCl、10μM ZnCl)で平衡化させた。
[実施例10]精製した変異体の純度と比活性の確認
精製したALPの純度を確認するために、ゲルろ過カラム(G3000swxl 東ソー株式会社)を用いて純度を確認した。ゲルろ過のコントロールとして、市販の高活性ウシ小腸ALP(ALPI-13G Lot 1706AA、Biozyme社)も同時に分析した。この結果から、両者の純度は同等であると見積もれた(図4)。
[Example 8] Cultivation of ALP-expressing cells using hollow fibers Cell culture using hollow fibers was performed using a FiberCell Systems cartridge (cellulose membrane MWCO; 5 kDa, FiberCell). The cells were expanded in a suspension culture petri dish, and 3.3×10 8 cells were seeded on hollow fibers. E-RDF medium containing 10% bovine serum and 25 μM ZnCl 2 was used as the medium for ECS (Extracapillary Space), and E-RDF medium containing 25 μM ZnCl 2 for ICS (Inner Capillary Space) was used. Cell culture was performed in a 37° C., 5% CO 2 incubator. Cell growth was confirmed by monitoring glucose consumption in the medium.
[Example 9] Purification of ALP ALP was purified by the following method.
(1) Ammonium sulfate was added to the culture supernatant to 55% saturation, allowed to stand at 4°C for 0.5 hours, and then centrifuged at 8000 rpm at 4°C for 20 minutes to obtain a salted-out ammonium sulfate precipitate as a precipitate fraction. rice field.
(2) The precipitated fraction was dissolved in PBS to ammonium sulfate concentration of 1 M, and separated by high performance liquid chromatography (HPLC) connected to a Phenyl-5PW column (21.5 mm×150 mm, Tosoh Corporation). Phenyl-5PW column chromatography was performed by using PBS containing 1M ammonium sulfate as an equilibration buffer and performing linear gradient elution from 1M to 0M ammonium sulfate at a flow rate of 5 ml/min for 60 minutes. The chromatogram at that time is shown in FIG.
(3) Collect the fraction shown in FIG. 2, add ammonium sulfate to 60% saturation, leave at 4° C. for 0.5 hours, then centrifuge at 4° C., 8000 rpm for 20 minutes to obtain a precipitated fraction. An ammonium sulfate precipitate was obtained. After that, it was equilibrated with 20 mM Tris-HCl buffer (pH 7.5, 1 mM MgCl 2 , 10 μM ZnCl 2 ) by dialysis.
(4) After that, after supplying DEAE-5PW (25 mm × 150 mm, Tosoh Corporation) equilibrated with 20 mM Tris-HCl pH 7.5 buffer, the sodium chloride concentration was linearly adjusted from 0 M to 0.25 M for 60 minutes. Gradient elution was performed. Fractions were taken into test tubes every minute, and the absorbance at 280 nm (A280) and the activity (A405) by the PNPP method were measured for each eluted fraction. A405 was measured by the method described in Example 6 using each fraction diluted 4000 times. The results are shown in FIG. The resulting high specific activity (A405/A280) fraction contains highly pure ALP. Fraction no. 21 to 26 were collected, ammonium sulfate was added to 60% saturation, allowed to stand at 4°C for 0.5 hours, and then centrifuged at 8000 rpm at 4°C for 20 minutes to obtain a salted-out ammonium sulfate precipitate as a precipitate fraction. rice field. After that, it was equilibrated with 20 mM Tris-HCl buffer (pH 7.5, 1 mM MgCl 2 , 10 μM ZnCl 2 ) by dialysis.
[Example 10] Confirmation of Purity and Specific Activity of Purified Mutants In order to confirm the purity of the purified ALP, the purity was confirmed using a gel filtration column (G3000swxl Tosoh Corporation). As a gel filtration control, commercially available highly active bovine intestinal ALP (ALPI-13G Lot 1706AA, Biozyme) was also analyzed at the same time. From this result, it was estimated that both purities were equivalent (Fig. 4).

ALPの比活性をPNPP法にて比較した結果を表2に示す。タンパク質濃度は、1mg/mlのALPのA280の吸光度を0.76として計算した。 Table 2 shows the results of comparing the specific activity of ALP by the PNPP method. Protein concentration was calculated using the A280 absorbance of 1 mg/ml ALP as 0.76.

Figure 0007214962000002
Figure 0007214962000002

Claims (2)

以下の工程(A)~(C)を含むアルカリホスファターゼの生産方法であって、
(A)配列番号1であらわされるアミノ酸配列をコードする遺伝子を、哺乳動物細胞へ導入する工程;
(B)薬剤耐性を利用して前記遺伝子が導入された哺乳動物細胞を選別する工程;
(C)前記(B)で導入した遺伝子を、薬剤耐性を利用して増幅する工程;
前記哺乳動物細胞がミエローマ細胞であり、
工程(C)における薬剤耐性を利用した遺伝子増幅がdhfr-MTX遺伝子増幅法であり、かつ、ミエローマ細胞が生来保有していたdhfr遺伝子よりもメトトレキサートに対して感受性の低い変異型dhfr遺伝子を発現ベクターに導入したものを用い、
工程(C)により得られた、アルカリホスファターゼ生産量が増大した哺乳動物細胞を培地中で培養する工程をさらに含み、前記培地が亜鉛イオンを10~250μM含有する、
方法。
A method for producing alkaline phosphatase comprising the following steps (A) to (C),
(A) introducing a gene encoding the amino acid sequence represented by SEQ ID NO: 1 into mammalian cells;
(B) selecting mammalian cells into which the gene has been introduced using drug resistance;
(C) A step of amplifying the gene introduced in (B) above using drug resistance;
said mammalian cells are myeloma cells,
Gene amplification using drug resistance in step (C) is a dhfr-MTX gene amplification method, and a mutant dhfr gene that is less sensitive to methotrexate than the dhfr gene originally possessed by myeloma cells is expressed as an expression vector. using what was introduced in
further comprising the step of culturing the mammalian cells with increased alkaline phosphatase production obtained in step (C) in a medium, wherein the medium contains 10 to 250 μM of zinc ions;
Method.
前記培養する工程における、細胞培養基材がホローファイバーであることを特徴とする請求項に記載の方法。 2. The method according to claim 1 , wherein the cell culture substrate in the culturing step is hollow fiber.
JP2018005380A 2018-01-17 2018-01-17 Alkaline phosphatase high expression animal cells Active JP7214962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018005380A JP7214962B2 (en) 2018-01-17 2018-01-17 Alkaline phosphatase high expression animal cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018005380A JP7214962B2 (en) 2018-01-17 2018-01-17 Alkaline phosphatase high expression animal cells

Publications (2)

Publication Number Publication Date
JP2019122303A JP2019122303A (en) 2019-07-25
JP7214962B2 true JP7214962B2 (en) 2023-01-31

Family

ID=67397009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018005380A Active JP7214962B2 (en) 2018-01-17 2018-01-17 Alkaline phosphatase high expression animal cells

Country Status (1)

Country Link
JP (1) JP7214962B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094571A1 (en) 2000-06-08 2001-12-13 Mitsubishi Pharma Corporation Expression vector enabling screening of cells with high expression of recombinant protein, transformant with high expression of recombinant protein and utilization thereof
JP2001352984A (en) 2000-06-09 2001-12-25 Mitsubishi-Tokyo Pharmaceuticals Inc Expression vector capable of screening cell highly expressing recombinant protein and its utilization
JP2005521406A (en) 2002-03-28 2005-07-21 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Host cells having improved cell survival characteristics and methods of making said cells
CN101012453A (en) 2006-10-12 2007-08-08 南开大学 CHO cell strain for highly effective expressing rhBMP2 and establishing method thereof
JP2010526543A (en) 2007-05-11 2010-08-05 エノビア ファルマ インコーポレイテッド Bone-targeted alkaline phosphatase, kit and method of use thereof
JP2014180222A (en) 2013-03-18 2014-09-29 Tosoh Corp Secretory signal sequence
JP2016104017A (en) 2010-11-30 2016-06-09 エルジー ライフ サイエンシーズ リミテッドLg Life Sciences Ltd. Novel hybrid promoter and recombinant vector comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555203B1 (en) * 1988-12-08 1995-10-18 Abbott Laboratories Expression induction method employing dhfr gene
JPH11206378A (en) * 1998-01-23 1999-08-03 Fuso Pharmaceutical Industries Ltd Recombinant human mannan binding protein and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094571A1 (en) 2000-06-08 2001-12-13 Mitsubishi Pharma Corporation Expression vector enabling screening of cells with high expression of recombinant protein, transformant with high expression of recombinant protein and utilization thereof
JP2001352984A (en) 2000-06-09 2001-12-25 Mitsubishi-Tokyo Pharmaceuticals Inc Expression vector capable of screening cell highly expressing recombinant protein and its utilization
JP2005521406A (en) 2002-03-28 2005-07-21 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Host cells having improved cell survival characteristics and methods of making said cells
CN101012453A (en) 2006-10-12 2007-08-08 南开大学 CHO cell strain for highly effective expressing rhBMP2 and establishing method thereof
JP2010526543A (en) 2007-05-11 2010-08-05 エノビア ファルマ インコーポレイテッド Bone-targeted alkaline phosphatase, kit and method of use thereof
JP2016104017A (en) 2010-11-30 2016-06-09 エルジー ライフ サイエンシーズ リミテッドLg Life Sciences Ltd. Novel hybrid promoter and recombinant vector comprising the same
JP2014180222A (en) 2013-03-18 2014-09-29 Tosoh Corp Secretory signal sequence

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jonathan J. Cacciatore et al.,The isolation of CHO cells with a site conferring a high and reproducible transgene amplification rate ,Journal of Biotechnology,2012年,Vol.164,pp.346-353

Also Published As

Publication number Publication date
JP2019122303A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
Jarvis et al. Mechanisms of protein import and routing in chloroplasts
Clary et al. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast
Kaufmann et al. Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells
RU2502802C2 (en) Organic compounds
Kuhn et al. First isolation of human UDP-D-xylose: proteoglycan core protein β-D-xylosyltransferase secreted from cultured JAR choriocarcinoma cells
Baker et al. Peroxisome protein import: some answers, more questions
Florin et al. Heterologous expression of the lipid transfer protein CERT increases therapeutic protein productivity of mammalian cells
Elmore et al. The kinase domain of CK1 enzymes contains the localization cue essential for compartmentalized signaling at the spindle pole
JP2003096099A (en) Antibody specifically bonding to human hmg-1, and immunological determination method and immunological determination reagent of human hmg-1 using the same
JP7214962B2 (en) Alkaline phosphatase high expression animal cells
CN104066841B (en) The manufacture method of expression vector and protein
JP6977301B2 (en) Gene encoding mutant alkaline phosphatase
US20070224662A1 (en) Post-translational modification of proteins in cell-free expression systems
Machesky et al. Arps: actin-related proteins
WO2012077128A1 (en) A novel cell line development process to produce recombinant proteins using twin vector expression system
Rath et al. Purification and crystallization of glycogen phosphorylase from Saccharomyces cerevisiae
JPH10511082A (en) Production of recombinant secretory components
RU2697273C1 (en) Method of producing human recombinant follicle-stimulating hormone, producing cell line and plasmid expression vectors
EA023191B1 (en) Recombinant human cell able to express human long pentraxin ptx3 protein and use thereof
Monroy et al. Photocontrol of chloroplast and mitochondrial polypeptide levels in Euglena
US8105803B2 (en) Phosphatases involved in the regulation of cardiomyocyte differentiation
JP6171331B2 (en) Purification method and quantification method of Fc binding protein
Zhang et al. Characterization of the complex involved in regulating V-ATPase activity of the vacuolar and endosomal membrane
KR100437081B1 (en) Animal cell culture method for increasing productivity of recombinant protein by controlling carbon dioxide level
US20170233695A1 (en) Cell Culture Media Composition and Methods of Producing Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R151 Written notification of patent or utility model registration

Ref document number: 7214962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151