JP7214257B1 - Production of end electrodes of multilayer ceramic capacitors and method of printing internal electrode protective layers over the entire area - Google Patents

Production of end electrodes of multilayer ceramic capacitors and method of printing internal electrode protective layers over the entire area Download PDF

Info

Publication number
JP7214257B1
JP7214257B1 JP2021115302A JP2021115302A JP7214257B1 JP 7214257 B1 JP7214257 B1 JP 7214257B1 JP 2021115302 A JP2021115302 A JP 2021115302A JP 2021115302 A JP2021115302 A JP 2021115302A JP 7214257 B1 JP7214257 B1 JP 7214257B1
Authority
JP
Japan
Prior art keywords
ceramic capacitor
electrodes
entire area
internal electrode
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021115302A
Other languages
Japanese (ja)
Other versions
JP2023017133A (en
Inventor
リー,ウェン-シ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Cheng Kung University NCKU
Original Assignee
National Cheng Kung University NCKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Cheng Kung University NCKU filed Critical National Cheng Kung University NCKU
Priority to JP2021115302A priority Critical patent/JP7214257B1/en
Application granted granted Critical
Publication of JP7214257B1 publication Critical patent/JP7214257B1/en
Publication of JP2023017133A publication Critical patent/JP2023017133A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】本発明は、積層セラミックコンデンサ端電極の作製と、全面積に内部電極保護層を印刷する方法を提供する。【解決手段】積層セラミックコンデンサ(Multi-layer ceramic capacitors, MLCC)に応用され、薄層化誘電体セラミックス層の厚さと複数層のニッケル内部電極の堆積により、高密度の電極―セラミック比の末端縁と側縁を作製して、高キャパシタンス化の目的を達成する。これにより、本発明は、超低温電気化学堆積塗膜技術で、低内部応力の積層セラミックコンデンサ端電極と絶縁保護層を作製することにより、積層セラミックコンデンサの収率を向上でき、また、コストダウンできる。【選択図】図1Kind Code: A1 The present invention provides a method for fabricating end electrodes of a multilayer ceramic capacitor and printing an internal electrode protective layer over the entire area. Applied to multi-layer ceramic capacitors (MLCC), the thickness of the thin dielectric ceramic layer and the deposition of multiple layers of nickel internal electrodes provide a high density electrode-to-ceramic ratio end edge. and side edges to achieve the purpose of high capacitance. As a result, the present invention can improve the yield of laminated ceramic capacitors and reduce the cost by producing low internal stress laminated ceramic capacitor end electrodes and insulating protective layers using ultra-low temperature electrochemical deposition coating technology. . [Selection drawing] Fig. 1

Description

本発明は、積層セラミックコンデンサ端電極の作製と、全面積に内部電極保護層を印刷する方法に関し、特に、超低温電気化学堆積塗膜技術で、低内部応力の積層セラミックコンデンサ端電極や絶縁保護層を作製することにより、積層セラミックコンデンサの収率を向上でき、また、コストダウンできるものに関する。 The present invention relates to a method for manufacturing end electrodes of a multilayer ceramic capacitor and printing an internal electrode protective layer over the entire area, in particular, by ultra-low temperature electrochemical deposition coating technology, end electrodes and insulating protective layers of multilayer ceramic capacitors with low internal stress. It is possible to improve the yield of laminated ceramic capacitors and to reduce the cost by manufacturing the

図10に、末端縁と側縁の低密度ニッケル内部電極の構造が示され、表三は、従来の低密度ニッケル積層セラミックコンデンサ(Multi-layer ceramic capacitors, MLCC)端電極の作製原理と方法であり、既存の積層セラミックコンデンサ5の端電極の作製は、ガラスを有する厚膜銅ペーストを利用して、浸漬鍍金工程によって端電極が成型され、そして、高温(800~900°C)において、窒素ガス雰囲気によって保護される下で、熱処理によって、銅電極53が焼結形成され、そして、銅と内部電極52で、合金のオーミック接触が形成されることにより、内部電極52を並列接続して、低損失高キャパシタンス値の目的を実現し、更に、銅ペースト内のガラスを利用して、誘電体セラミックス51と銅電極53を連結する。 FIG. 10 shows the structure of the low-density nickel internal electrodes of the terminal edge and side edge, and Table 3 shows the manufacturing principle and method of conventional low-density nickel multilayer ceramic capacitors (MLCC) terminal electrodes. There is, in the fabrication of the end electrodes of the existing multilayer ceramic capacitor 5, the end electrodes are formed by immersion plating process using thick-film copper paste with glass, and nitrogen Under the protection of a gas atmosphere, the copper electrode 53 is sintered and formed by heat treatment, and the copper and the internal electrode 52 form an alloy ohmic contact, thereby connecting the internal electrode 52 in parallel, The purpose of low loss and high capacitance value is achieved, and the glass in copper paste is used to connect the dielectric ceramics 51 and the copper electrode 53 .

Figure 0007214257000002
Figure 0007214257000002

表三から分かるように、既存の技術は、厚膜導電性銅ペーストを利用して、浸漬鍍金工程によって成型され、そして、750~900°Cの窒素ガス還元雰囲気の下において、約1時間熱処理することにより、積層セラミックコンデンサ銅電極を焼結する。しかしながら、当該積層セラミックコンデンサの高温還元雰囲気の端電極工程において、高温熱処理に従って、積層セラミックコンデンサに高内部応力の釈放が発生することにより、素子亀裂等の厳しい欠陥が現れる。 As can be seen from Table 3, the existing technology utilizes thick-film conductive copper paste, cast by immersion plating process, and heat-treated under nitrogen gas reducing atmosphere at 750-900°C for about 1 hour. By doing so, the laminated ceramic capacitor copper electrodes are sintered. However, in the end electrode process of the multilayer ceramic capacitor in a high-temperature reducing atmosphere, the high-temperature heat treatment causes release of high internal stress in the multilayer ceramic capacitor, resulting in severe defects such as element cracks.

また、当該積層セラミックコンデンサ5は、高キャパシタンスを作製する時、内部電極52と内部電極52との間にある誘電体セラミックス層51の厚さを低減しなければならないだけでなく、同時に、より多い内部電極52の層数を堆積することが必要になり、そのため、容易に、中央の電極密度が、誘電体セラミックス層51だけを有する両辺の電極密度より、遥かに、高くなり、更に、高温焼結すれば、容易に、メイラード反応が形成され、図11のように、積層セラミックコンデンサの上下に、でこぼこのような隆起が生成される。前記の高キャパシタンスの積層セラミックコンデンサを作製する時、薄い介電層と多数の内部電極の堆積により、電極がある中央と、電極を有しない側縁との密度が、極めて異なり、これに対して、既存の技術は、電極部分を有しない両辺に、セラミックを印刷することにより、電極を有する中央と電極を有しない両辺との密度差違を低減する。両辺において、余分に、高温セラミック絶縁保護層を作製するから、余分にセラミック絶縁層を印刷して、超高温還元雰囲気保護の下で、焼結することにより、積層セラミックコンデンサと保護層とが、緊密に結合されるように、ニッケル内部電極層の厚さを補充する。しかしながら、当該積層セラミックコンデンサは、余分の高温セラミック絶縁保護層工程において、高温熱処理に従って、積層セラミックコンデンサに高内部応力の釈放が発生することにより、素子亀裂等の厳しい欠陥が現れる。 In addition, when the multilayer ceramic capacitor 5 has a high capacitance, not only should the thickness of the dielectric ceramic layer 51 between the internal electrodes 52 be reduced, but also more It becomes necessary to deposit the number of layers of the internal electrode 52, so that the electrode density in the center is easily much higher than the electrode density on both sides having only the dielectric ceramic layer 51, and furthermore, the high temperature firing If this is done, the Maillard reaction is easily formed, and as shown in FIG. 11, irregular bumps are generated above and below the multilayer ceramic capacitor. When fabricating the above-mentioned high-capacitance multilayer ceramic capacitor, due to the deposition of a thin conductive layer and a large number of internal electrodes, the density between the center where the electrodes are located and the side edges where there are no electrodes is very different. , The existing technology reduces the density difference between the center with the electrode and the two sides without the electrode by printing the ceramic on both sides without the electrode part. On both sides, extra high-temperature ceramic insulating protective layers are produced, so the extra ceramic insulating layers are printed and sintered under ultra-high temperature reducing atmosphere protection, so that the multilayer ceramic capacitor and the protective layer are Replenish the thickness of the nickel internal electrode layer so that it is tightly coupled. However, the multilayer ceramic capacitor has severe defects such as element cracks due to release of high internal stress due to the high temperature heat treatment in the extra high temperature ceramic insulating protective layer process.

既存の積層セラミックコンデンサ端電極工程は、高温還元雰囲気で焼結することであり、また、高キャパシタンスの積層セラミックコンデンサが焼結された後、多数電極が堆積された中央と電極がない空白セラミック層の両辺との密度差違によって隆起のメイラード反応が発生するため、高キャパシタンスの積層セラミックコンデンサの内部応力による品質問題が解決しなければならなく、超低温端電極技術の発展が要求される。そのため、一般の従来のものは、実用的とは言えない。 The existing multilayer ceramic capacitor end electrode process is sintering in a high-temperature reducing atmosphere, and after the high-capacitance multilayer ceramic capacitor is sintered, the center where many electrodes are deposited and the blank ceramic layer without electrodes Due to the difference in density between the two sides of the ridge, Maillard reaction occurs, so the quality problem caused by the internal stress of the high-capacitance multilayer ceramic capacitor must be solved, and the development of ultra-low temperature end electrode technology is required. Therefore, the general conventional one cannot be said to be practical.

本発明者は、上記欠点を解消するため、慎重に研究し、また、学理を活用して、有効に上記欠点を解消でき、設計が合理である本発明を提案する。 In order to solve the above-mentioned drawbacks, the present inventors have conducted careful research and applied scientific theory to propose the present invention, which can effectively overcome the above-mentioned drawbacks and has a rational design.

本発明の主な目的は、従来の上記らの問題を解消するため、超低温電気化学堆積塗膜技術で、低内部応力の積層セラミックコンデンサ端電極と絶縁保護層を作製することにより、積層セラミックコンデンサの収率を向上でき、コストダウンできる、積層セラミックコンデンサ端電極の作製方法と、全面積に内部電極保護層を印刷する方法を提供する。 SUMMARY OF THE INVENTION The main object of the present invention is to solve the above-mentioned conventional problems by using ultra-low-temperature electrochemical deposition coating technology to produce end electrodes and insulating protective layers of laminated ceramic capacitors with low internal stress. Provided are a method for producing end electrodes of a laminated ceramic capacitor and a method for printing an internal electrode protective layer over the entire area, which can improve the yield of and reduce the cost.

本発明は、上記らの目的を達成するために、積層セラミックコンデンサ端電極の作製方法と全面積に内部電極保護層を印刷する方法を提供し、少なくとも、当該積層セラミックコンデンサが、複数層の薄層化誘電体セラミックス層と複数層の内部電極とを相互に堆積することにより、構成され、当該積層セラミックコンデンサの内部電極が、全面積に印刷され、当該積層セラミックコンデンサ末端縁に高密度の内部電極を有する、焼結された後、端電極を有しない積層セラミックコンデンサを用意するステップAと、湿式化学浸漬塗膜方式で、当該積層セラミックコンデンサを、温度が80°Cより低い金属溶液に浸漬して、電気化学堆積によって、当該内部電極表面に、緩やかに、金属塗膜が生成されるステップBと、1~2時間に堆積した後、当該内部電極表面に、持続的に金属塗膜が形成されて、一体に接続し、当該積層セラミックコンデンサ末端縁に、接続面になる金属塗膜端電極が形成されるステップCとが、含まれる。 In order to achieve the above objects, the present invention provides a method for manufacturing end electrodes of a multilayer ceramic capacitor and a method for printing an internal electrode protective layer over the entire area, at least the multilayer ceramic capacitor has a multi-layer thin film. It is constructed by mutually depositing a layered dielectric ceramic layer and multiple layers of internal electrodes, wherein the internal electrodes of the multilayer ceramic capacitor are printed on the entire area, and the terminal edges of the multilayer ceramic capacitor are densely packed with internal electrodes. Step A of preparing a multilayer ceramic capacitor with electrodes and without end electrodes after sintering, and dipping the multilayer ceramic capacitor in a metal solution with a temperature lower than 80°C by wet chemical dip coating method. Then, a step B in which a metal coating film is slowly formed on the internal electrode surface by electrochemical deposition, and a metal coating film is continuously formed on the internal electrode surface after deposition for 1 to 2 hours. a step C in which metal coating end electrodes are formed to form and connect integrally to the end edges of the multilayer ceramic capacitor to serve as connection surfaces.

本発明の上記実施例によれば、当該湿式化学浸漬塗膜は、一般の金属メッキ、或いは、金属置換化学鍍金が含まれる金属化学鍍金によって、実現される。 According to the above embodiments of the present invention, the wet chemical immersion coating is realized by general metal plating or metal chemical plating, including metal displacement chemical plating.

本発明の上記実施例によれば、当該積層セラミックコンデンサの内部電極と誘電体セラミックス層との比率は、1:50より大きい。 According to the above embodiments of the present invention, the ratio between the internal electrodes and the dielectric ceramic layers of the multilayer ceramic capacitor is greater than 1:50.

本発明の上記実施例によれば、当該電気化学堆積による当該金属塗膜端電極の材料は、オーミック接触として利用できる、当該内部電極と同じ金属材料であり、或いは、当該内部電極との合金が形成される金属材料である。 According to the above embodiment of the present invention, the material of the electrochemically deposited metal-coated end electrode is the same metal material as the internal electrode, which can be used as an ohmic contact, or is alloyed with the internal electrode. It is the metal material that is formed.

本発明の上記実施例によれば、当該金属塗膜端電極は、銅端電極やニッケル端電極、銅ニッケル合金端電極、マンガニン合金端電極或いは、ニッケルクロムシリコン合金端電極である。 According to the above embodiments of the present invention, the metal coating end electrode is a copper end electrode, a nickel end electrode, a copper nickel alloy end electrode, a manganin alloy end electrode or a nickel chromium silicon alloy end electrode.

本発明の上記実施例によれば、当該金属溶液は、硫酸銅や硫酸ニッケル、硫酸マンガン、硫酸クロム、ケイ素化合物或いは、その組み合わせである。 According to the above embodiments of the present invention, the metal solution is copper sulfate, nickel sulfate, manganese sulfate, chromium sulfate, a silicon compound, or a combination thereof.

本発明の上記実施例によれば、更に、200~300°Cの低温熱処理によって、当該積層セラミックコンデンサの両側にある末端縁の当該金属塗膜端電極を、金属酸化物に酸化して、絶縁保護層とするステップDが含まれる。 According to the above embodiment of the present invention, the metal coating end electrodes on both sides of the end edge of the multilayer ceramic capacitor are further oxidized into metal oxides by low temperature heat treatment at 200-300° C. to provide insulation. Step D is included as a protective layer.

本発明の上記実施例によれば、当該金属塗膜端電極と当該誘電体セラミックス層との結合力は、当該金属塗膜端電極と当該誘電体セラミックス層との結合力及び、当該内部電極と当該金属塗膜端電極との結合力が含まれる。 According to the above embodiment of the present invention, the bonding strength between the metal coating end electrode and the dielectric ceramic layer is the bonding strength between the metal coating end electrode and the dielectric ceramic layer, and the bonding strength between the metal coating end electrode and the dielectric ceramic layer, and the internal electrode. It includes the bonding force with the metal coating end electrode.

本発明は、上記の目的を達成するため、積層セラミックコンデンサ端電極の作製と、全面積に内部電極保護層を印刷する方法を提供し、少なくとも、当該積層セラミックコンデンサが、複数層の薄層化誘電体セラミックス層と複数層の内部電極とを相互に堆積することにより、構成され、当該積層セラミックコンデンサの内部電極が、全面積に印刷され、当該積層セラミックコンデンサ末端縁に高密度の内部電極を有する、焼結された後、端電極を有しない積層セラミックコンデンサを用意するステップA1と、当該積層セラミックコンデンサに対して、浸漬鍍金と低温焼成を行い、200°Cより低い熱処理を行った後、当該内部電極表面に、アルミ端電極が作製されるステップB1と、湿式化学浸漬塗膜方式で、当該アルミ端電極の積層セラミックコンデンサを、60~80°Cの金属溶液に、10~60分に浸漬した後、当該積層セラミックコンデンサのアルミ端電極を、化学酸化還元置換反応によって、当該金属溶液に対応する金属塗膜端電極に転化するステップC1と、が含まれる。 In order to achieve the above object, the present invention provides a method for producing end electrodes of a multilayer ceramic capacitor and printing an internal electrode protective layer over the entire area, at least the multilayer ceramic capacitor is formed by thinning multiple layers. The internal electrodes of the multilayer ceramic capacitor are printed on the entire area, and high-density internal electrodes are formed on the terminal edges of the multilayer ceramic capacitor. Step A1 of preparing a multilayer ceramic capacitor having no end electrodes after being sintered, and subjecting the multilayer ceramic capacitor to immersion plating and low-temperature firing and heat treatment at a temperature lower than 200°C, Step B1 in which an aluminum end electrode is formed on the surface of the internal electrode, and a wet chemical dip coating method is used to immerse the multilayer ceramic capacitor with the aluminum end electrode in a metal solution at 60 to 80 ° C for 10 to 60 minutes. After soaking, a step C1 of converting the aluminum end electrodes of the multilayer ceramic capacitor into metal coated end electrodes corresponding to the metal solution by chemical oxidation-reduction substitution reaction.

以下、図面を参照しながら、本発明の特徴や技術内容について、詳しく説明するが、それらの図面等は、参考や説明のためであり、本発明は、それによって制限されることが無い。 Hereinafter, the features and technical content of the present invention will be described in detail with reference to the drawings, but the drawings and the like are for reference and explanation, and the present invention is not limited thereby.

図1~図9は、それぞれ、本発明に係る末端縁と側縁にある高密度ニッケル内部電極の概念図や、本発明に係る高キャパシタンスの高密度のニッケル内部電極の積層セラミックコンデンサと一般の低ニッケル内部電極の積層セラミックコンデンサとの酸化還元電位の比較概念図、本発明に係る新規の端電極工程と既存の積層セラミックコンデンサ端電極工程との比較概念図、本発明に係る、高キャパシタンスの積層セラミックコンデンサ側縁の高密度ニッケル電極を銅電極に置換する場合の概念図、本発明に係る電気鍍金して堆積した後の銅電極の光学顕微構造図、本発明に係る電気鍍金して堆積する時の銅電極の電子顕微構造と材料分析図、本発明に係る高キャパシタンスの積層セラミックコンデンサが、低温硫酸銅溶液に浸漬されることにより、銅電極に転化する時の概念図、本発明に係る高キャパシタンスの積層セラミックコンデンサが、20分乃至2時間に、低温硫酸銅溶液に浸漬されることにより、端電極が、次第に銅電極に転化される時の光学顕微構造図、本発明に係る積層セラミックコンデンサの低温アルミ端電極が、酸化還元の化学置換反応によって、銅電極に転化される時の概念図、本発明に係る全面積電極を印刷してから、両辺の保護絶縁層を作製する時の概念図及び、本発明によって作製された全面積印刷且つメイラード反応なしの高キャパシタンスの積層セラミックコンデンサの光学顕微構造図である。図のように、本発明は、積層セラミックコンデンサ端電極の作製と、全面積に内部電極保護層を印刷する方法であり、積層セラミックコンデンサ(Multi-layer ceramic capacitors, MLCC)1を応用して、薄層化誘電体セラミックス層11の厚さと複数層のニッケル内部電極12の堆積により、高い、密度の電極とセラミック比の末端縁と側縁を作製して、高キャパシタンス化の目的を達成し、図1のようである。 1 to 9 are conceptual diagrams of high-density nickel internal electrodes on end edges and side edges according to the present invention, respectively, and a multilayer ceramic capacitor with high-capacitance high-density nickel internal electrodes according to the present invention and general Conceptual diagram for comparison of oxidation-reduction potential with low-nickel internal electrode multilayer ceramic capacitor, Conceptual diagram for comparison between new terminal electrode process according to the present invention and existing multilayer ceramic capacitor terminal electrode process, High capacitance according to the present invention Conceptual diagram of replacing the high-density nickel electrode on the side edge of the multilayer ceramic capacitor with a copper electrode, optical microscopic structure diagram of the copper electrode after depositing by electroplating according to the present invention, depositing by electroplating according to the present invention. The electron microscopic structure and material analysis diagram of the copper electrode when the Optical microscopic structural view when such high capacitance multilayer ceramic capacitor is immersed in a low temperature copper sulfate solution for 20 minutes to 2 hours, whereby the end electrodes are gradually converted to copper electrodes, lamination according to the present invention Conceptual diagram of when the low-temperature aluminum end electrode of a ceramic capacitor is converted into a copper electrode by oxidation-reduction chemical substitution reaction, when the entire area electrode according to the present invention is printed and then the protective insulation layers on both sides are made. and an optical microscopic structural view of a high-capacitance multi-layer ceramic capacitor with full-area printing and no Maillard reaction fabricated according to the present invention. As shown in the figure, the present invention is a method of manufacturing end electrodes of a multilayer ceramic capacitor and printing an internal electrode protective layer over the entire area, applying a multilayer ceramic capacitor (MLCC) 1, The thickness of the thinned dielectric ceramic layer 11 and the deposition of multiple layers of nickel internal electrodes 12 to produce high density electrode and ceramic ratio end and side edges to achieve the purpose of high capacitance, It is as shown in FIG.

図2は、サイクリックボルタンメトリーで、本発明によって作製された積層セラミックコンデンサと従来の積層セラミックコンデンサを測定する時の酸化還元電位図であり、その中、図(a)は、本発明に係る高キャパシタンスの高密度ニッケル内部電極の積層セラミックコンデンサの酸化還元電位で、図(b)は、一般の低密度のニッケル内部電極の積層セラミックコンデンサの酸化還元電位である。分かるように、明らかに、本発明に係る高キャパシタンスの積層セラミックコンデンサは、より高いニッケル内部電極を有して、導体化されるから、酸化還元電位が、より高くなり、そのため、この端面や側面には、容易に、電気化学堆積塗膜が行われる。 FIG. 2 is an oxidation-reduction potential diagram when measuring a multilayer ceramic capacitor manufactured according to the present invention and a conventional multilayer ceramic capacitor by cyclic voltammetry. Figure (b) is the oxidation-reduction potential of a multi-layer ceramic capacitor with high-density nickel internal electrodes of capacitance, and FIG. As can be seen, apparently, the high capacitance multilayer ceramic capacitor according to the present invention has higher nickel internal electrodes and is made conductive, so the redox potential is higher, so that the end faces and side faces are are readily electrochemically deposited coatings.

表一は、本発明に係る高キャパシタンスの高密度ニッケル内部電極の積層セラミックコンデンサ端電極の工程原理と方法であり、高キャパシタンスの積層セラミックコンデンサの末端縁に、高密度のニッケル内部電極が存在するため、高酸化還元電位になり、その故、電気鍍金と化学鍍金を含む電気化学堆積技術で、端電極を作製でき、当該電気化学堆積の金属塗膜端電極の材料は、ニッケル内部電極と同様の材料或いは、ニッケル内部電極とオーミック接触が形成される材料であり、また、連結端電極と誘電体セラミックス層の結合力は、電気化学堆積の金属塗膜端電極と誘電体セラミックス層との結合力の外に、更に、積層セラミックコンデンサの高密度ニッケル内部電極と電気化学堆積の金属塗膜端電極との結合力が含まれる。 Table 1 shows the process principle and method of the high-capacitance high-density nickel internal electrode multilayer ceramic capacitor end electrode according to the present invention, where the high-density nickel internal electrode exists at the end edge of the high-capacitance multilayer ceramic capacitor. Therefore, the end electrode can be fabricated by electrochemical deposition techniques including electroplating and chemical plating, and the material of the electrochemically deposited metal coating end electrode is similar to that of the nickel internal electrode. or a material that forms an ohmic contact with the nickel internal electrode, and the bonding force between the connecting end electrode and the dielectric ceramic layer is the same as that between the electrochemical deposition metal coating end electrode and the dielectric ceramic layer Besides the force, it also includes the bonding force between the high-density nickel internal electrodes of the multilayer ceramic capacitor and the metal-coated end electrodes of the electrochemical deposition.

Figure 0007214257000003
Figure 0007214257000003

図3は、従来と本発明に係る新規の積層セラミックコンデンサ端電極の工程比較図であり、従来の工程は、厚膜銅ペーストを利用して、浸漬鍍金工程によって成型されてから、高温窒素ガス下の焼結により、図の破線Aによって囲まれた部分の銅電極になる。本発明に係る新規の工程によれば、電気化学堆積浸漬で、銅電極13が得られる。 FIG. 3 is a process comparison diagram of the conventional and novel multilayer ceramic capacitor end electrodes according to the present invention. The conventional process uses thick-film copper paste, forms by immersion plating process, and then forms with high-temperature nitrogen gas. The bottom sintering results in the copper electrode in the portion enclosed by dashed line A in the figure. According to the novel process of the present invention, the copper electrode 13 is obtained by electrochemical deposition dipping.

上記の、電気化学堆積浸漬によって銅電極が得られる工程は、図4Aのようであり、図(a)は、高キャパシタンスの積層セラミックコンデンサ端面にある高密度のニッケル内部電極12の表面に、電気化学堆積により、次第に、銅電極13aが形成され、図(b)のようである。さらに、所定の時間に堆積した後、ニッケル内部電極12表面の銅電極13aが、成長して、互いに連結し、末端縁の銅電極13が形成され、図(c)のようである。その中、本発明に係る電気鍍金堆積後の銅電極13の光学顕微構造は、図4Bのようであり、図4A(c)は、光学顕微鏡で観察した電気化学堆積による銅電極の完全構造である。電気鍍金堆積中の銅電極を電子顕微で観察した構造は、図4C(a)のように、電子顕微鏡により表示される新規銅電極とニッケル内部電極の微構造電子画像であり、その材料分析は、図4Cの(b)、(c)のように、それぞれ、銅電極材料分析とニッケル内部電極材料分析から、明らかに分かるように、銅電極とニッケル内部電極とが、優れた連結が得られる。 The above process of obtaining a copper electrode by electrochemical deposition immersion is shown in FIG. 4A, and FIG. A copper electrode 13a is gradually formed by chemical deposition, as shown in FIG. Further, after depositing for a predetermined time, the copper electrodes 13a on the surface of the nickel internal electrodes 12 grow and connect with each other to form the terminal edge copper electrodes 13, as shown in FIG. (c). Among them, the optical microscopic structure of the copper electrode 13 after electroplating deposition according to the present invention is as shown in FIG. 4B, and FIG. be. Electron microscopic observation structure of the copper electrode during electroplating deposition is shown in FIG. , Fig. 4C (b), (c), respectively, from the copper electrode material analysis and the nickel internal electrode material analysis, it can be clearly seen that the copper electrode and the nickel internal electrode have an excellent connection. .

以下、実施例を挙げて、本発明の細部や意図を説明するが、本発明の特許請求範囲は、それによって制限されない。 The following examples illustrate the details and intent of the present invention, but the scope of the invention is not limited thereby.

[実施方式一:積層セラミックコンデンサ端電極(I)]
本新規工程は、銅ペーストや高温焼結窒化炉を利用せずに、焼結された、端電極を有しない積層セラミックコンデンサ1を、温度80°Cの硫酸銅溶液2に浸漬し、図5のように、初めに、ニッケル内部電極12の上端に、次第に、銅電極13aが形成され、時間の経過とともに、形成した銅電極13aと銅電極13aが、互いに接近し、約1時間後、接続面の銅電極13が形成される。図6のように、高キャパシタンスの積層セラミックコンデンサを、20分乃至2時間、温度80°Cの硫酸銅溶液に浸漬し、硫酸銅溶液に浸漬する時間の増加とともに、積層セラミックコンデンサの側縁に生成される銅電極が、より完全的になり、表二のように、浸漬時間が長くなるとともに、銅電極が、完全に形成され、その介電特性も、既存の厚膜銅ペーストを利用して、高温窒素ガス下で焼結される銅電極の特性に近づく。
[Implementation Method 1: Multilayer Ceramic Capacitor End Electrodes (I)]
In this new process, the sintered multilayer ceramic capacitor 1 without end electrodes is immersed in a copper sulfate solution 2 at a temperature of 80° C. without using copper paste or a high-temperature sintering and nitriding furnace. First, the copper electrode 13a is gradually formed on the upper end of the nickel internal electrode 12, and the formed copper electrodes 13a and 13a approach each other with the lapse of time. A surface copper electrode 13 is formed. As shown in FIG. 6, a high-capacitance multilayer ceramic capacitor is immersed in a copper sulfate solution at a temperature of 80° C. for 20 minutes to 2 hours. As shown in Table 2, the longer the immersion time, the more complete the copper electrode is formed, and the better the conductive properties of the existing thick-film copper paste. It approaches the properties of copper electrodes sintered under high-temperature nitrogen gas.

Figure 0007214257000004
Figure 0007214257000004

[実施方式二:積層セラミックコンデンサ端電極(II)]
図7のように、本発明は、積層セラミックコンデンサ3に対して、浸漬鍍金と低温焼成を行い、200°Cより低い熱処理を介して、当該内部電極の表面に、アルミ端電極31が作製され、また、湿式化学浸漬塗膜方式に従て、当該アルミ端電極31を有する積層セラミックコンデンサ3を、10~60分、60~80°Cの硫酸銅溶液2に浸漬し、当該積層セラミックコンデンサ3のアルミ端電極31が、化学酸化還元置換反応により、積層セラミックコンデンサ3の銅電極32になり、その容量特性は、銅ペーストで浸漬鍍金して、高温還元雰囲気窒素ガス下で焼結した積層セラミックコンデンサの銅電極に相当する。
[Implementation Method 2: Multilayer Ceramic Capacitor End Electrodes (II)]
As shown in FIG. 7, according to the present invention, the multilayer ceramic capacitor 3 is subjected to immersion plating and low-temperature firing, and through heat treatment at a temperature lower than 200° C., aluminum end electrodes 31 are formed on the surfaces of the internal electrodes. , Also, according to the wet chemical immersion coating method, the multilayer ceramic capacitor 3 having the aluminum terminal electrodes 31 is immersed in a copper sulfate solution 2 at 60 to 80 ° C. for 10 to 60 minutes, and the multilayer ceramic capacitor 3 The aluminum end electrode 31 of the is turned into the copper electrode 32 of the multilayer ceramic capacitor 3 by a chemical oxidation-reduction substitution reaction, and its capacity characteristics are obtained by immersion plating with copper paste and sintering in a high-temperature reducing atmosphere nitrogen gas. Corresponds to the copper electrode of a capacitor.

[実施方式三:積層セラミックコンデンサ絶縁保護層]
従来の高キャパシタンスの積層セラミックコンデンサ5は、焼結後、中央に堆積される多数の内部電極52と、電極なしの両辺にある空白誘電体セラミックス層51との密度差違により、隆起のメイラード反応が現れ、図11のようである。本発明に係る解決策は、図8のように、全面積に電極を印刷してから、両辺にある絶縁保護層43を作製することである。本発明によれば、全面積に内部電極42を印刷することにより、内部電極42を有する中央と内部電極42を有しない両辺との密度差違を無くすことができ、そのため、積層セラミックコンデンサ4の内部製品の作製に、均一性が高いだけでなく、印刷面積を、極大化でき、大面積で、高キャパシタンスの目的を実現できる。しかしながら、積層セラミックの素子の両辺に絶縁保護層が作製されることが、課題になる。
[Implementation method 3: Multilayer ceramic capacitor insulating protective layer]
In the conventional high-capacitance multilayer ceramic capacitor 5, after sintering, due to the difference in density between the numerous internal electrodes 52 deposited in the center and the blank dielectric ceramic layers 51 on both sides without electrodes, Maillard reaction of protuberances occurs. Appears and looks like FIG. The solution according to the present invention is to print the electrodes on the whole area and then fabricate the insulating protective layer 43 on both sides, as shown in FIG. According to the present invention, by printing the internal electrodes 42 over the entire area, it is possible to eliminate the difference in density between the center having the internal electrodes 42 and both sides not having the internal electrodes 42 . In the production of products, not only the uniformity is high, but also the printing area can be maximized, and the purpose of large area and high capacitance can be achieved. However, the problem is that the insulating protective layers are formed on both sides of the laminated ceramic element.

図9を参照しながら、当該絶縁保護層は、前記の高キャパシタンスの銅電極と同様に、積層セラミック素子を、1時間、温度80°Cの硫酸銅溶液に浸漬した後、両辺の側縁に銅電極が生成され、図9(a)(b)のようであり、更に、低温250°Cの大気中、半時間焼成した後、両側縁にある銅電極が、絶縁保護層として、酸化銅に酸化され、図9(c)のようであるが、ニッケル内部電極の導電性に悪影響を与えない。これにより、全面積印刷且つメイラード反応なしに、高キャパシタンスの積層セラミックコンデンサが作製される。 Referring to FIG. 9, the insulating protective layer is applied to the side edges of both sides after immersing the multilayer ceramic element in a copper sulfate solution at a temperature of 80° C. for 1 hour, similarly to the high-capacitance copper electrode. A copper electrode is produced, as shown in FIGS. 9(a) and 9(b), and furthermore, after baking in the air at a low temperature of 250° C. for half an hour, the copper electrodes on both sides are coated with copper oxide as an insulating protective layer. 9(c), but does not adversely affect the conductivity of the nickel internal electrode. This creates a high capacitance multilayer ceramic capacitor with full area printing and no Maillard reaction.

以上のように、本発明の主な技術特徴は、
1、積層セラミックコンデンサの内部電極層と誘電体セラミックス層との比例は、1:50より大きく、誘電体セラミックス側面の導電性を増加するだけでなく、連続的に、端電極或いは側電極が形成される。
2、上記湿式化学浸漬塗膜技術は、一般の金属メッキ或いは、金属置換化学鍍金が含まれる金属化学鍍金を利用して達成できる。
3、上記化学塗膜と積層セラミックの内部電極は、銅金属或いは、合金が形成される金属であり、これにより、内部電極と、優れた電極接続オーミック接触が形成される。
4、上記金属塗膜端電極と誘電体セラミックス層の結合力は、金属塗膜と誘電体セラミックス層との結合力だけでなく、内部電極と金属塗膜との結合力がある。
5、上記側縁にある化学浸漬の金属塗膜は、適当な熱処理条件の下で、金属酸化物に転化し、絶縁保護層とされる。
As described above, the main technical features of the present invention are:
1. The ratio of the internal electrode layer and the dielectric ceramic layer of the multilayer ceramic capacitor is greater than 1:50, which not only increases the conductivity of the side surface of the dielectric ceramic, but also continuously forms end electrodes or side electrodes. be done.
2. The above wet chemical immersion coating technique can be achieved using general metal plating or metal chemical plating, including metal displacement chemical plating.
3. The chemical coating and the internal electrode of the laminated ceramic are copper metal or metal alloyed, so that the internal electrode and the excellent electrode connection ohmic contact are formed.
4. The bonding strength between the metal coating end electrode and the dielectric ceramic layer includes not only the bonding strength between the metal coating film and the dielectric ceramic layer, but also the bonding strength between the internal electrode and the metal coating film.
5. The chemically immersed metal coating on the side edge will be converted into metal oxide under proper heat treatment conditions to form an insulating protective layer.

また、本発明と既存技術の差違点は次のようである。
1、本新規技術は、厚膜導電膏や、保護雰囲気下で、電極を高温焼結することを必要しなく、低温下で、超低内部応力且つ、薄層介電層や多内部電極の高キャパシタンスの積層セラミックコンデンサに適用できる端電極が、作製される。
2、本新規技術は、両側縁において、余分に、低温(<300°C)の大気下熱処理工程で、絶縁保護層を作製でき、新規工程と積層セラミックコンデンサとの結合力は、主として、内部電極と絶縁保護層との結合力であり、低温工程であるため、印刷工程や高温還元雰囲気熱処理工程を必要としなく、工程が簡単だけでなく、絶縁保護層の品質も、既存の工程よりも優れる。
Also, the differences between the present invention and the existing technology are as follows.
1. This new technology does not require thick-film conductive paste or high-temperature sintering of electrodes in a protective atmosphere. End electrodes are fabricated that are applicable to high capacitance multilayer ceramic capacitors.
2. This new technology can make an extra insulating protective layer on both sides by a low temperature (<300°C) atmospheric heat treatment process, and the bonding strength between the new process and the multilayer ceramic capacitor is mainly internal It is the bonding force between the electrode and the insulation protection layer, and since it is a low-temperature process, it does not require a printing process or a heat treatment process in a high-temperature reducing atmosphere. Excellent.

上記のように、本新規技術は、受動素子産業に適用でき、また、貴金属電極の代わりに銅電極を利用する、商業製品に応用でき、例えば、受動素子の積層セラミックコンデンサ端電極や、超低抵抗チップ抵抗器である。 As mentioned above, the new technology is applicable to the passive device industry and also to commercial products that utilize copper electrodes instead of noble metal electrodes, such as end electrodes of multilayer ceramic capacitors in passive devices, ultra-low It is a resistive chip resistor.

上述のように、本発明に係る積層セラミックコンデンサ端電極の作製と、全面積に内部電極保護層を印刷する方法は、有効的に、従来の諸欠点を解消でき、超低温電気化学堆積塗膜技術で、低内部応力の積層セラミックコンデンサ端電極と絶縁保護層を作製することにより、積層セラミックコンデンサの収率を向上でき、また、コストダウンできるため、本発明は、より進歩的かつより実用的で、法に従って特許請求を出願する。 As described above, the manufacturing method of the end electrode of the multilayer ceramic capacitor according to the present invention and the method of printing the internal electrode protective layer on the entire area can effectively solve the conventional defects, and the ultra-low temperature electrochemical deposition coating technology Therefore, the yield of the laminated ceramic capacitor can be improved and the cost can be reduced by producing the laminated ceramic capacitor end electrodes and the insulating protective layer with low internal stress. Therefore, the present invention is more advanced and more practical. , file a patent claim in accordance with the law.

以上は、ただ、本発明のより良い実施例であり、本発明は、それによって制限されることが無く、本発明に係わる特許請求の範囲や明細書の内容に基づいて行った等価の変更や修正は、全てが、本発明の特許請求の範囲内に含まれる。 The above is only a better embodiment of the present invention, and the present invention is not limited thereby, equivalent changes and All modifications are included within the scope of the claims of the present invention.

本発明の末端縁と側縁にある高密度ニッケル内部電極の概念図である。1 is a conceptual diagram of high-density nickel internal electrodes on end and side edges of the present invention; FIG. 本発明に係る高キャパシタンスの高密度のニッケル内部電極の積層セラミックコンデンサと一般の低ニッケル内部電極の積層セラミックコンデンサとの酸化還元電位の比較概念図である。FIG. 2 is a conceptual diagram for comparison of oxidation-reduction potentials of the high-capacitance high-density nickel internal electrode multilayer ceramic capacitor according to the present invention and a general low-nickel internal electrode multilayer ceramic capacitor; 本発明に係る新規の端電極工程と既存の積層セラミックコンデンサ端電極工程との比較概念図である。FIG. 4 is a conceptual diagram for comparison between the new terminal electrode process according to the present invention and the existing multilayer ceramic capacitor terminal electrode process; 本発明に係る、高キャパシタンスの積層セラミックコンデンサ側縁の高密度ニッケル電極を銅電極に置換する場合の概念図である。FIG. 4 is a conceptual diagram of replacing the high-density nickel electrode on the side edge of the high-capacitance multi-layer ceramic capacitor with a copper electrode according to the present invention; 本発明に係る電気鍍金して堆積した後の銅電極の光学顕微構造図である。FIG. 2 is an optical microstructure view of a copper electrode after being electroplated and deposited according to the present invention; 本発明に係る電気鍍金して堆積する時の銅電極の電子顕微構造と材料分析図である。FIG. 3 is an electron microscopic structure and material analysis diagram of a copper electrode deposited by electroplating according to the present invention; 本発明に係る高キャパシタンスの積層セラミックコンデンサが、低温硫酸銅溶液に浸漬されることにより、銅電極に転化する時の概念図である。FIG. 4 is a conceptual diagram of when the high-capacitance multilayer ceramic capacitor according to the present invention is immersed in a low-temperature copper sulfate solution and converted into copper electrodes; 本発明に係る高キャパシタンスの積層セラミックコンデンサが、20分乃至2時間に、低温硫酸銅溶液に浸漬されることにより、端電極が、次第に銅電極に転化される時の光学顕微構造図である。FIG. 4 is an optical microscopic view of the high-capacitance multilayer ceramic capacitor according to the present invention being immersed in a low-temperature copper sulfate solution for 20 minutes to 2 hours, so that the end electrodes are gradually converted into copper electrodes; 本発明に係る積層セラミックコンデンサの低温アルミ端電極が、酸化還元の化学置換反応によって、銅電極に転化される時の概念図である。FIG. 4 is a conceptual diagram of when the low-temperature aluminum end electrodes of the multilayer ceramic capacitor according to the present invention are converted into copper electrodes by oxidation-reduction chemical substitution reaction; 本発明に係る全面積電極を印刷してから、両辺の保護絶縁層を作製する時の概念図である。FIG. 4 is a conceptual diagram of forming protective insulating layers on both sides after printing the entire area electrode according to the present invention; 本発明によって作製された全面積印刷且つメイラード反応なしの高キャパシタンスの積層セラミックコンデンサの光学顕微構造図である。1 is an optical microscopic structural view of a high-capacitance multi-layer ceramic capacitor with full-area printing and no Maillard reaction fabricated according to the present invention; FIG. 従来の末端縁と側縁の低密度ニッケル内部電極概念図である。1 is a conceptual diagram of a conventional end edge and side edge low-density nickel internal electrode; FIG. 従来の高キャパシタンスの積層セラミックコンデンサ焼結後、隆起メイラード反応が現れるときの概念図である。FIG. 2 is a conceptual diagram when a protruding Maillard reaction appears after sintering a conventional high-capacitance multilayer ceramic capacitor;

(本発明の部分)
1 積層セラミックコンデンサ
11 誘電体セラミックス層
12 内部電極
13 銅電極
13a 銅電極
2 硫酸銅溶液
3 積層セラミックコンデンサ
31 アルミ端電極
32 銅電極
4 積層セラミックコンデンサ
42 内部電極
43 絶縁保護層
A 破線
(従来の部分)
5 積層セラミックコンデンサ
51 誘電体セラミックス層
52 内部電極
53 銅電極
(part of the invention)
1 laminated ceramic capacitor 11 dielectric ceramic layer 12 internal electrode 13 copper electrode 13a copper electrode 2 copper sulfate solution 3 laminated ceramic capacitor 31 aluminum end electrode 32 copper electrode 4 laminated ceramic capacitor 42 internal electrode 43 insulating protective layer A dashed line (conventional part )
5 laminated ceramic capacitor 51 dielectric ceramic layer 52 internal electrode 53 copper electrode

Claims (9)

少なくとも、
積層セラミックコンデンサが、複数層の薄層化誘電体セラミックス層と複数層の内部電極とを相互に堆積することにより構成され、当該積層セラミックコンデンサの内部電極が、全面積に印刷され、当該積層セラミックコンデンサ末端縁に高密度の内部電極を有し、焼結された後、端電極を有しない積層セラミックコンデンサを用意するステップAと、
湿式化学浸漬塗膜方式で、当該積層セラミックコンデンサを、温度が80°Cより低い金属溶液に浸漬して、電気化学堆積によって、当該内部電極表面に、緩やかに、金属塗膜が生成されるステップBと、
1~2時間に堆積した後、当該内部電極表面に、持続的に金属塗膜が形成されて、一体に接続し、当該積層セラミックコンデンサ末端縁に、接続面になる金属塗膜端電極が形成されるステップCと
更に、
200°C~300°Cの低温熱処理によって、当該積層セラミックコンデンサの両側にある末端縁の当該金属塗膜端電極を金属酸化物に酸化して絶縁保護層とするステップDと、が含まれ
ことを特徴とする積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法。
at least,
A multilayer ceramic capacitor is constructed by mutually depositing multiple layers of thinned dielectric ceramic layers and multiple layers of internal electrodes, and the internal electrodes of the multilayer ceramic capacitor are printed over the entire area, A step A of preparing a multilayer ceramic capacitor having high-density internal electrodes at the end edges of the multilayer ceramic capacitor and having no end electrodes after being sintered ;
immersing the multilayer ceramic capacitor in a metal solution with a temperature lower than 80° C. by a wet chemical dip coating method to slowly form a metal coating on the internal electrode surface by electrochemical deposition; B and
After depositing for 1-2 hours, the surface of the internal electrode is continuously coated with a metal coating to be connected together, and the end edge of the multilayer ceramic capacitor is formed with a metal coating end electrode that serves as a connection surface. a step C being performed ;
Furthermore,
a step D of oxidizing the metal-coated end electrodes on the end edges on both sides of the multilayer ceramic capacitor to metal oxides by low-temperature heat treatment at 200° C. to 300° C. to form insulating protection layers .
A method for producing end electrodes of a laminated ceramic capacitor and printing an internal electrode protective layer over the entire area thereof.
請求項1に記載の積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法において、
該湿式化学浸漬塗膜は、一般の金属メッキ、或いは、金属置換化学鍍金が含まれる金属化学鍍金によって実現され
ことを特徴とする積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法。
In the method of manufacturing the end electrodes of the laminated ceramic capacitor according to claim 1 and printing the internal electrode protective layer over the entire area ,
The wet chemical immersion coating is realized by general metal plating or metal chemical plating including metal substitution chemical plating
A method for producing end electrodes of a laminated ceramic capacitor and printing an internal electrode protective layer over the entire area thereof.
請求項1に記載の積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法において、
該積層セラミックコンデンサの内部電極と誘電体セラミックス層との比率は、1:50より大き
ことを特徴とする積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法。
In the method of manufacturing the end electrodes of the laminated ceramic capacitor according to claim 1 and printing the internal electrode protective layer over the entire area ,
The ratio of the internal electrodes to the dielectric ceramic layers of the multilayer ceramic capacitor is greater than 1:50.
A method for producing end electrodes of a laminated ceramic capacitor and printing an internal electrode protective layer over the entire area thereof.
請求項1に記載の積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法において、
該電気化学堆積による当該金属塗膜端電極の材料は、オーミック接触として利用できる、当該内部電極と同じ金属材料であり、或いは、当該内部電極との合金が形成される金属材料であ
ことを特徴とする積層セラミックコンデンサ端電極の作製と、全面積に内部電極保護層を印刷する方法。
In the method of manufacturing the end electrodes of the laminated ceramic capacitor according to claim 1 and printing the internal electrode protective layer over the entire area ,
The material of the metal coating end electrode by the electrochemical deposition is the same metal material as the internal electrode, which can be used as an ohmic contact, or is a metal material with which an alloy is formed with the internal electrode.
A method for producing end electrodes of a laminated ceramic capacitor, and printing an internal electrode protective layer over the entire area.
請求項1から請求項のいずれかに記載の積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法において、
該金属塗膜端電極は、銅端電極、ニッケル端電極、銅ニッケル合金端電極、マンガニン合金端電極或いは、ニッケルクロムシリコン合金端電極であ
ことを特徴とする積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法。
In the method for manufacturing the end electrodes of the laminated ceramic capacitor according to any one of claims 1 to 4 and for printing the internal electrode protective layer over the entire area ,
The metal-coated end electrode is a copper end electrode , a nickel end electrode, a copper-nickel alloy end electrode, a manganin alloy end electrode , or a nickel-chromium-silicon alloy end electrode .
A method for producing end electrodes of a laminated ceramic capacitor and printing an internal electrode protective layer over the entire area thereof.
請求項1に記載の積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法において、
該金属溶液は、硫酸銅、硫酸ニッケル、硫酸マンガン、硫酸クロム、ケイ素化合物或いは、それらの組み合わせであ
ことを特徴とする積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法。
In the method of manufacturing the end electrodes of the laminated ceramic capacitor according to claim 1 and printing the internal electrode protective layer over the entire area ,
The metal solution is copper sulfate, nickel sulfate, manganese sulfate, chromium sulfate, silicon compounds , or combinations thereof
A method for producing end electrodes of a laminated ceramic capacitor and printing an internal electrode protective layer over the entire area thereof.
請求項1に記載の積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法において、
当該金属塗膜端電極と当該誘電体セラミックス層との結合力は、当該金属塗膜端電極と当該誘電体セラミックス層との結合力及び当該内部電極と当該金属塗膜端電極との結合力が含まれ
ことを特徴とする積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法。
In the method of manufacturing the end electrodes of the laminated ceramic capacitor according to claim 1 and printing the internal electrode protective layer over the entire area ,
The bonding strength between the metal coating end electrode and the dielectric ceramic layer is the bonding strength between the metal coating end electrode and the dielectric ceramic layer and the bonding strength between the internal electrode and the metal coating end electrode. power included
A method for producing end electrodes of a laminated ceramic capacitor and printing an internal electrode protective layer over the entire area thereof.
少なくとも、
当該積層セラミックコンデンサが、複数層の薄層化誘電体セラミックス層と複数層の内部電極とを相互に堆積することにより構成され、当該積層セラミックコンデンサの内部電極が全面積に印刷され、当該積層セラミックコンデンサ末端縁に高密度の内部電極を有し、焼結された後、端電極を有しない積層セラミックコンデンサを用意するステップA1と、
当該積層セラミックコンデンサに対して浸漬鍍金と低温焼成を行い、200°Cより低い熱処理を行った後、当該内部電極表面にアルミ端電極が作製されるステップB1と、
湿式化学浸漬塗膜方式で、当該アルミ端電極の積層セラミックコンデンサを、60~80°Cの金属溶液に、10~60分に浸漬した後、当該積層セラミックコンデンサのアルミ端電極を化学酸化還元置換反応によって当該金属溶液に対応する金属塗膜端電極に転化するステップC1と、が含まれる、
ことを特徴とする積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法。
at least,
The laminated ceramic capacitor is configured by mutually depositing a plurality of thin dielectric ceramic layers and a plurality of layers of internal electrodes, and the internal electrodes of the laminated ceramic capacitor are printed over the entire area, Step A1 of preparing a multilayer ceramic capacitor having high-density internal electrodes at the end edges of the multilayer ceramic capacitor and having no end electrodes after being sintered;
a step B1 in which the multilayer ceramic capacitor is subjected to immersion plating and low-temperature firing, and after heat treatment at a temperature lower than 200° C. , aluminum end electrodes are formed on the surfaces of the internal electrodes;
Using a wet chemical immersion coating method, the laminated ceramic capacitor with the aluminum end electrodes is immersed in a metal solution at 60 to 80°C for 10 to 60 minutes, and then the aluminum end electrodes of the laminated ceramic capacitor are subjected to chemical oxidation-reduction. a step C1 of converting the metal solution into a corresponding metal coating edge electrode by a substitution reaction;
A method for producing end electrodes of a laminated ceramic capacitor and printing an internal electrode protective layer over the entire area thereof.
請求項8に記載の積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法において、
当該積層セラミックコンデンサの内部電極と誘電体セラミックス層との比率は、1:50より大きい、
ことを特徴とする積層セラミックコンデンサ端電極の作製と全面積に内部電極保護層を印刷する方法。
In the method of manufacturing the end electrodes of the laminated ceramic capacitor according to claim 8 and printing the internal electrode protective layer over the entire area ,
The ratio of the internal electrodes and dielectric ceramic layers of the multilayer ceramic capacitor is greater than 1:50,
A method for producing end electrodes of a laminated ceramic capacitor and printing an internal electrode protective layer over the entire area thereof.
JP2021115302A 2021-07-12 2021-07-12 Production of end electrodes of multilayer ceramic capacitors and method of printing internal electrode protective layers over the entire area Active JP7214257B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021115302A JP7214257B1 (en) 2021-07-12 2021-07-12 Production of end electrodes of multilayer ceramic capacitors and method of printing internal electrode protective layers over the entire area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021115302A JP7214257B1 (en) 2021-07-12 2021-07-12 Production of end electrodes of multilayer ceramic capacitors and method of printing internal electrode protective layers over the entire area

Publications (2)

Publication Number Publication Date
JP7214257B1 true JP7214257B1 (en) 2023-01-30
JP2023017133A JP2023017133A (en) 2023-02-07

Family

ID=85078875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021115302A Active JP7214257B1 (en) 2021-07-12 2021-07-12 Production of end electrodes of multilayer ceramic capacitors and method of printing internal electrode protective layers over the entire area

Country Status (1)

Country Link
JP (1) JP7214257B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224503A (en) 2008-03-14 2009-10-01 Tdk Corp Multilayer capacitor
JP2010093113A (en) 2008-10-09 2010-04-22 Murata Mfg Co Ltd Multilayer electronic component, and method of manufacturing the same
JP2012209540A (en) 2011-03-15 2012-10-25 Murata Mfg Co Ltd Ceramic electronic component
JP2020057738A (en) 2018-10-04 2020-04-09 株式会社村田製作所 Electronic component, circuit board, and mounting method of electronic component onto circuit board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169014A (en) * 1987-01-06 1988-07-13 松下電器産業株式会社 Method of forming external electrode terminal of chip capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224503A (en) 2008-03-14 2009-10-01 Tdk Corp Multilayer capacitor
JP2010093113A (en) 2008-10-09 2010-04-22 Murata Mfg Co Ltd Multilayer electronic component, and method of manufacturing the same
JP2012209540A (en) 2011-03-15 2012-10-25 Murata Mfg Co Ltd Ceramic electronic component
JP2020057738A (en) 2018-10-04 2020-04-09 株式会社村田製作所 Electronic component, circuit board, and mounting method of electronic component onto circuit board

Also Published As

Publication number Publication date
JP2023017133A (en) 2023-02-07

Similar Documents

Publication Publication Date Title
US10529486B2 (en) Conductive paste for external electrode and method for manufacturing electronic component including the conductive paste for external electrode
US6377439B1 (en) Electronic multilayer ceramic component
US9287043B2 (en) Multilayer ceramic electronic component having controlled difference in continuity between internal electrodes and method of manufacturing the same
CN110880413B (en) Multilayer ceramic electronic component
JP2013214714A (en) Multilayer ceramic electronic component and fabrication method thereof
JP2023113923A (en) Laminate type capacitor and manufacturing method for the same
US20200135403A1 (en) Capacitor component having secondary phase material contained in external electrode thereof
KR20140119645A (en) Monolithic ceramic electronic component
CN114023563A (en) Multilayer ceramic electronic component
KR102531307B1 (en) Method for Fabricating Terminal Electrode of Multilayer Ceramic Capacitor Having Inner Electrodes Printed on Full Area Together with Protective Layers
JP7214257B1 (en) Production of end electrodes of multilayer ceramic capacitors and method of printing internal electrode protective layers over the entire area
JP2011253952A (en) Multilayer capacitor manufacturing method and multilayer capacitor
US12112898B2 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
KR101237612B1 (en) Bulk capacitor and method
KR101148857B1 (en) Metal film and its production method, and multilayer electronic component production method and multilayer electronic component
JP3934983B2 (en) Multilayer electronic component and manufacturing method thereof
CN115692017A (en) Method for manufacturing terminal electrode of laminated ceramic capacitor and printing whole-area inner electrode protection layer
CN1318646C (en) Method of making nickel-coated copper substrate and thin film composite containing same
CN220963057U (en) Ceramic chip in multilayer ceramic capacitor
JPH02224311A (en) Manufacture of laminated ceramic electronic part
JP2014187217A (en) Laminated capacitor
US20240355545A1 (en) Multilayer electronic component
US20240212935A1 (en) Multilayer electronic component
WO2024135397A1 (en) Multilayer ceramic electronic component, conductive material, and method for manufacturing multilayer ceramic electronic component
JP2000306763A (en) Laminated ceramic capacitor and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230111

R150 Certificate of patent or registration of utility model

Ref document number: 7214257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150