JP7212738B1 - ball bearing - Google Patents

ball bearing Download PDF

Info

Publication number
JP7212738B1
JP7212738B1 JP2021153147A JP2021153147A JP7212738B1 JP 7212738 B1 JP7212738 B1 JP 7212738B1 JP 2021153147 A JP2021153147 A JP 2021153147A JP 2021153147 A JP2021153147 A JP 2021153147A JP 7212738 B1 JP7212738 B1 JP 7212738B1
Authority
JP
Japan
Prior art keywords
rivet
annular member
flat plate
rivet hole
plate portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021153147A
Other languages
Japanese (ja)
Other versions
JP2023044988A (en
Inventor
泰裕 上堀
雄太 望月
悠稀 橋詰
拓史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2021153147A priority Critical patent/JP7212738B1/en
Priority to CN202280060102.5A priority patent/CN117916480A/en
Priority to PCT/JP2022/034532 priority patent/WO2023048058A1/en
Application granted granted Critical
Publication of JP7212738B1 publication Critical patent/JP7212738B1/en
Publication of JP2023044988A publication Critical patent/JP2023044988A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/42Ball cages made from wire or sheet metal strips

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Figure 0007212738000001

【課題】保持器の強度低下が生じにくく、耐久性に優れた玉軸受を提供する。
【解決手段】鋲軸12の直径をD、元頭部13の直径をD、玉3の直径をDaとしたときに、α=D/Da、β=D/Dがそれぞれ次式(1)(2)を満たすように鋲軸12および元頭部13が形成され、
0.30<α<0.70 ・・・(1)
1.35<β<1.70 ・・・(2)
加締め頭部14の直径をD、加締め頭部14の高さをHとしたときに、次式(3)(4)をそれぞれ満たすように加締め頭部14が形成されている。

Figure 0007212738000008
【選択図】図11

Figure 0007212738000001

An object of the present invention is to provide a ball bearing in which the strength of a retainer is less likely to decrease and which has excellent durability.
SOLUTION: When the diameter of a rivet shaft 12 is D 1 , the diameter of a root portion 13 is D 2 , and the diameter of a ball 3 is Da, α=D 1 /Da and β=D 2 /D 1 are respectively satisfied. The rivet shaft 12 and the base portion 13 are formed so as to satisfy the following expressions (1) and (2),
0.30<α<0.70 (1)
1.35<β<1.70 (2)
The crimping head 14 is formed so as to satisfy the following equations (3) and (4), where D 3 is the diameter of the crimping head 14 and H is the height of the crimping head 14 .

Figure 0007212738000008
[Selection drawing] Fig. 11

Description

この発明は、玉軸受に関する。 This invention relates to ball bearings.

自動車や産業機械などの回転軸を支持する軸受として、玉軸受が多く用いられる。玉軸受は、内輪と、内輪の径方向外側に同軸に設けられた外輪と、内輪と外輪の間の環状空間内に設けられた複数の玉と、その複数の玉を保持する保持器とを有する。 Ball bearings are often used as bearings that support rotating shafts in automobiles, industrial machinery, and the like. A ball bearing comprises an inner ring, an outer ring coaxially provided radially outside the inner ring, a plurality of balls provided in an annular space between the inner ring and the outer ring, and a retainer for holding the plurality of balls. have.

玉軸受(特に深溝玉軸受)の保持器として、一般に、コストと生産性に優れた波形保持器が用いられている(例えば、特許文献1)。特許文献1の波形保持器は、鋼板製の第1環状部材と第2環状部材を軸方向に対向して配置し、その第1環状部材と第2環状部材を複数の鋲で結合したものである。第1環状部材は、玉を収容する弧状の第1ポケット壁部と、軸方向に貫通する第1鋲穴をもつ第1平板部とを周方向に交互に有する。同様に、第2環状部材も、玉を収容する弧状の第2ポケット壁部と、軸方向に貫通する第2鋲穴をもつ第2平板部とを周方向に交互に有する。鋲は、鋲軸と、鋲軸の一端にあらかじめ成形された元頭部と、鋲軸の他端を加締めることにより形成された加締め頭部とを有する。 As a retainer for ball bearings (especially deep groove ball bearings), generally, a wave retainer that is excellent in cost and productivity is used (for example, Patent Document 1). The corrugated retainer disclosed in Patent Document 1 has a steel plate-made first annular member and a second annular member arranged to face each other in the axial direction, and the first annular member and the second annular member are joined by a plurality of rivets. be. The first annular member has alternating circumferentially arcuate first pocket wall portions for receiving balls and first plate portions having first rivet holes extending axially therethrough. Similarly, the second annular member also has arcuate second pocket wall portions for receiving balls and second flat plate portions having second rivet holes extending axially therethrough alternately in the circumferential direction. The rivet has a rivet shank, a base head formed in advance on one end of the rivet shank, and a crimping head formed by crimping the other end of the rivet shank.

鋲軸は、第1平板部と第2平板部を重ね合わせた状態で、第1鋲穴と第2鋲穴に挿通されている。元頭部と加締め頭部は、第1平板部と第2平板部を軸方向に挟み込むように配置され、元頭部が第1平板部を軸方向に係止し、加締め頭部が第2平板部を軸方向に係止している。 The rivet shaft is inserted through the first rivet hole and the second rivet hole in a state in which the first flat plate portion and the second flat plate portion are overlapped. The root portion and the crimping head are arranged so as to sandwich the first flat plate portion and the second flat plate portion in the axial direction, the root portion axially locks the first flat plate portion, and the crimping head is It locks the second flat plate portion in the axial direction.

上記の波形保持器を構成する第1環状部材および第2環状部材は、コストと生産性の観点から、冷間圧延鋼板(SPCC)等の圧延鋼板をプレス成形することで形成されることが多い。 From the viewpoint of cost and productivity, the first annular member and the second annular member that constitute the above-described wave cage are often formed by press forming a rolled steel plate such as a cold rolled steel plate (SPCC). .

ところが、圧延鋼板は、硬度および耐摩耗性が比較的低いため、圧延鋼板で第1環状部材および第2環状部材を形成した場合、軸受の運転条件によっては、玉の接触により第1環状部材および第2環状部材が摩耗し、最悪の場合、保持器が破損に至ることもある。 However, since the rolled steel plate has relatively low hardness and wear resistance, if the first and second annular members are formed of rolled steel plate, depending on the operating conditions of the bearing, the contact between the balls may cause the first and second annular members to become loose. The second annular member wears, and in the worst case, the retainer may break.

そこで、波形保持器の耐久性を向上させるため、波形保持器に軟窒化処理を施す方法が提案されている(特許文献1参照)。軟窒化処理は、鋼材の表面に窒化層(表面硬化層)を形成する処理であり、例えば、アンモニアガスと吸熱型変性ガスの混合ガス雰囲気中で、鋼材を変態点よりも低温(400℃~590℃程度の温度)の範囲で加熱することで、鋼材の表面に窒素を浸透させて窒化層を形成する処理である。この軟窒化処理を波形保持器に施すと、波形保持器の寸法をほとんど変化させることなく、波形保持器の耐久性を向上させることが可能となる。 Therefore, in order to improve the durability of the corrugated cage, a method of subjecting the corrugated cage to nitrocarburizing has been proposed (see Patent Document 1). Soft nitriding is a process for forming a nitrided layer (surface hardening layer) on the surface of a steel material. It is a process in which nitrogen is permeated into the surface of the steel material to form a nitrided layer by heating in the range of about 590°C. By subjecting the corrugated cage to this nitrocarburizing treatment, it is possible to improve the durability of the corrugated cage without substantially changing the dimensions of the corrugated cage.

特許第6098720号公報Japanese Patent No. 6098720

波形保持器の組み立ては、一般に、次のようにして行われる。すなわち、まず、鋲を第1環状部材の第1鋲穴に圧入する。次に、第1環状部材と第2環状部材を軸方向に対向させ、第1平板部を第2平板部に重ね合わせることで、第1鋲穴から突出した鋲軸を第2環状部材の第2鋲穴に挿入する。その後、第2鋲穴から突出した鋲軸の部分を加締めることで、第1環状部材と第2環状部材を結合する。 Assembly of the wave retainer is generally performed as follows. That is, first, the rivet is press-fitted into the first rivet hole of the first annular member. Next, the first annular member and the second annular member are axially opposed to each other, and the first flat plate portion is overlaid on the second flat plate portion so that the rivet shaft protruding from the first rivet hole is the second annular member. 2 Insert it into the rivet hole. After that, the first annular member and the second annular member are joined by crimping the portion of the rivet shaft protruding from the second rivet hole.

ここで、波形保持器に軟窒化処理を施す方法として、2通りの方法が考えられる。1つ目の方法は、鋲を第1鋲穴に圧入する前に、軟窒化処理を施す方法である。すなわち、まず、第1環状部材と第2環状部材とにそれぞれ軟窒化処理を施し、その後、軟窒化処理を施していない鋲を、第1環状部材の第1鋲穴に圧入する方法である。その後、第1環状部材を第2環状部材に重ね合わせ、第2環状部材の第2鋲穴から突出した鋲軸の部分を加締めることで、第1環状部材と第2環状部材を結合する。 Here, two methods are conceivable as a method of soft-nitriding the corrugated retainer. The first method is to apply a nitrocarburizing treatment before the rivet is pressed into the first rivet hole. That is, first, the first annular member and the second annular member are each subjected to nitrocarburizing treatment, and then a rivet that has not been nitrocarburized is press-fitted into the first rivet hole of the first annular member. Thereafter, the first annular member is superimposed on the second annular member, and the rivet shaft portion protruding from the second rivet hole of the second annular member is crimped to join the first annular member and the second annular member.

この1つ目の方法では、鋲を第1鋲穴に圧入するときに、軟窒化処理が施されていない鋲軸と、軟窒化処理が施された第1環状部材との間に表面硬度差が存在することから、鋲軸の外周が削れ、その削りカスが鋲の元頭部と第1環状部材の第1平板部との間に挟み込まれ、その結果、元頭部が第1平板部に密着せず(鋲の着座不良)、保持器の強度低下が生じるおそれがある。 In this first method, when the rivet is press-fitted into the first rivet hole, the difference in surface hardness between the rivet shaft not subjected to nitrocarburizing treatment and the first annular member subjected to nitrocarburizing treatment is As a result, the outer periphery of the rivet shaft is shaved, and the shavings are caught between the root portion of the rivet and the first flat plate portion of the first annular member. (bad seating of the rivets), and the strength of the retainer may be reduced.

また、波形保持器に軟窒化処理を施す2つ目の方法は、鋲を第1鋲穴に圧入した後に、軟窒化処理を施す方法である。すなわち、まず、軟窒化処理を施していない鋲を、軟窒化処理を施していない第1環状部材の第1鋲穴に圧入し、その圧入により一体化した鋲と第1環状部材とに軟窒化処理を施す方法である。その後、第1環状部材を、軟窒化処理が施された第2環状部材に重ね合わせ、第2環状部材の第2鋲穴から突出した鋲軸の部分を加締めることで、第1環状部材と第2環状部材を結合する。 A second method of applying soft-nitriding to the corrugated retainer is to perform soft-nitriding after press-fitting the rivet into the first rivet hole. That is, first, the rivet not subjected to nitrocarburizing treatment is press-fitted into the first rivet hole of the first annular member not subjected to nitrocarburizing treatment, and the rivet and the first annular member integrated by the press-fitting are nitrocarburized. It is a method of processing. After that, the first annular member is superimposed on the soft-nitrided second annular member, and the rivet shaft portion protruding from the second rivet hole of the second annular member is crimped to form the first annular member. A second annular member is coupled.

この2つ目の方法では、鋲を第1鋲穴に圧入するときに、鋲軸と第1環状部材のいずれも軟窒化処理が施されていないことから、鋲軸の外周が削れにくく、鋲の着座不良を防止することが可能である。 In this second method, when the rivet is pressed into the first rivet hole, neither the rivet shank nor the first annular member is subjected to nitrocarburizing treatment, so the outer periphery of the rivet shank is less likely to be scraped. It is possible to prevent poor seating.

しかしながら、本願の発明者らが、上記2つ目の方法で軟窒化処理を施した波形保持器の複数のサンプルを社内で試作し、その評価試験を行なったところ、上記2つ目の方法で軟窒化処理を施した場合でも、保持器の強度低下が生じる場合があることが分かった。 However, the inventors of the present application produced a number of samples of corrugated cages soft-nitrided by the above-mentioned second method in-house, and conducted an evaluation test. It was found that the strength of the cage may be lowered even when the nitrocarburizing treatment is performed.

この保持器の強度低下が生じる原因は、次のように考えられる。すなわち、上記2つ目の方法で軟窒化処理を施した場合、鋲を第1環状部材の第1鋲穴に圧入し、その状態で第1環状部材に軟窒化処理を施すので、第1鋲穴の内周(鋲軸との嵌合面)は、鋲軸でマスキングされた状態となって、窒化層が形成されない。そして、その後、第1環状部材を第2環状部材に重ね合わせ、その第2環状部材の第2鋲穴から突出した鋲軸の部分を加締めたとき、その加締めによって、鋲軸は径方向に膨張するように塑性変形し、その鋲軸の塑性変形によって第1鋲穴の内周は引張応力が発生した状態となる。つまり、上記2つ目の方法で軟窒化処理を施した場合、第1鋲穴の内周に窒化層(表面硬化層)が形成されない非窒化面が生じ、その非窒化面に、鋲軸の膨張に伴う引張応力が作用することが原因で、保持器の強度低下が生じる場合があることが分かった。 The reason why the strength of the retainer is lowered is considered as follows. That is, when nitrocarburizing is performed by the second method, the rivet is press-fitted into the first rivet hole of the first annular member, and the first rivet is nitrocarburized in this state. The inner circumference of the hole (the mating surface with the rivet shaft) is masked by the rivet shaft, and no nitride layer is formed. Then, after that, when the first annular member is superimposed on the second annular member and the portion of the rivet shaft protruding from the second rivet hole of the second annular member is crimped, the rivet shaft is moved radially by the crimping. The inner periphery of the first rivet hole is in a state where tensile stress is generated due to the plastic deformation of the rivet shaft. In other words, when the nitrocarburizing treatment is performed by the second method, a non-nitrided surface on which a nitrided layer (hardened surface layer) is not formed is formed on the inner circumference of the first rivet hole, and the non-nitrided surface is formed on the rivet shaft. It has been found that the strength of the retainer may be reduced due to the action of tensile stress accompanying expansion.

ここで、第2環状部材の第2鋲穴から突出した鋲軸の部分を加締めて加締め頭部を形成するとき、加締めの荷重が小さいと、第1環状部材と第2環状部材の密着性が不足し、保持器の強度低下が生じるおそれがある。そこで、第1環状部材と第2環状部材の密着性を確保するため、一般に、加締めの荷重は大きく設定される。そして、加締めの荷重を大きくすると、加締め頭部の直径は大きくなり、加締め頭部の高さは低くなる。これに対し、本願の発明者らは、第1鋲穴の内周に、鋲軸の膨張に伴う引張応力が作用することが原因で保持器の強度低下が生じるという問題に着眼し、この問題を解消するため、加締めの荷重を従来よりも小さくする(すなわち、加締め頭部の直径を小さくし、加締め頭部の高さを高くする)ことで、引張応力によって保持器の強度低下が生じるのを防止することができることを見出し、この発明をするに至ったものである。 Here, when the portion of the rivet shaft protruding from the second rivet hole of the second annular member is crimped to form the crimped head portion, if the crimping load is small, the first annular member and the second annular member will be separated. Insufficient adhesion may result in deterioration of the strength of the retainer. Therefore, in order to ensure the tight contact between the first annular member and the second annular member, a large crimping load is generally set. When the crimping load is increased, the diameter of the crimped head increases and the height of the crimped head decreases. On the other hand, the inventors of the present application have focused on the problem that the strength of the retainer is reduced due to the tensile stress acting on the inner periphery of the first rivet hole due to the expansion of the rivet shaft. In order to solve this problem, the crimping load is reduced (that is, the diameter of the crimping head is decreased and the height of the crimping head is increased), thereby reducing the strength of the cage due to tensile stress. The inventors have found that it is possible to prevent the occurrence of this, and have made the present invention.

この発明が解決しようとする課題は、保持器の強度低下が生じにくく、耐久性に優れた玉軸受を提供することである。 The problem to be solved by the present invention is to provide a ball bearing in which the strength of the retainer is less likely to decrease and which has excellent durability.

上記の課題を解決するため、この発明では、以下の構成の玉軸受を提供する。
内輪と、
内輪の径方向外側に同軸に設けられた外輪と、
前記内輪と前記外輪の間に周方向に間隔をおいて組み込まれた複数の玉と、
前記複数の玉を保持する波形保持器とを有し、
前記波形保持器は、鋼板製の第1環状部材と、前記第1環状部材と軸方向に対向する鋼板製の第2環状部材と、前記第1環状部材と前記第2環状部材を結合する複数の鋲とを有し、
前記第1環状部材は、前記玉を収容する弧状の第1ポケット壁部と、軸方向に貫通する第1鋲穴をもつ第1平板部とを周方向に交互に有し、
前記第2環状部材は、前記玉を収容する弧状の第2ポケット壁部と、軸方向に貫通する第2鋲穴をもつ第2平板部とを周方向に交互に有し、
前記鋲は、前記第1平板部と前記第2平板部を重ね合わせた状態で前記第1鋲穴と前記第2鋲穴に挿通された鋲軸と、前記鋲軸の一端にあらかじめ成形され、前記第1平板部を軸方向に係止する元頭部と、前記鋲軸の他端を加締めることにより形成され、前記第2平板部を軸方向に係止する加締め頭部とを有する玉軸受において、
前記鋲軸の直径をD、前記元頭部の直径をD、前記玉の直径をDaとしたときに、α=D/Da、β=D/Dがそれぞれ次式(1)(2)を満たすように前記鋲軸および前記元頭部が形成され、
0.30<α<0.70 ・・・(1)
1.35<β<1.70 ・・・(2)
前記加締め頭部の直径をD、前記加締め頭部の高さをHとしたときに、次式(3)(4)をそれぞれ満たすように前記加締め頭部が形成されていることを特徴とする玉軸受。

Figure 0007212738000002
Figure 0007212738000003
In order to solve the above problems, the present invention provides a ball bearing having the following configuration.
inner ring;
an outer ring coaxially provided radially outside the inner ring;
a plurality of balls embedded between the inner ring and the outer ring at intervals in the circumferential direction;
a corrugated retainer that retains the plurality of balls;
The wave retainer includes a first annular member made of steel, a second annular member made of steel and facing the first annular member in the axial direction, and a plurality of rings connecting the first annular member and the second annular member. and having a rivet of
The first annular member has arc-shaped first pocket wall portions for accommodating the balls and first flat plate portions having first rivet holes penetrating in the axial direction alternately in the circumferential direction,
The second annular member has arcuate second pocket wall portions for accommodating the balls and second flat plate portions having second rivet holes axially penetrating alternately in the circumferential direction,
The rivet is formed in advance on a rivet shaft inserted through the first rivet hole and the second rivet hole in a state in which the first flat plate portion and the second flat plate portion are overlapped, and one end of the rivet shaft, It has a base head for axially locking the first flat plate portion, and a crimping head formed by crimping the other end of the rivet shaft for axially locking the second flat plate portion. In ball bearings,
When D 1 is the diameter of the rivet shaft, D 2 is the diameter of the base portion, and Da is the diameter of the ball, α = D 1 /Da and β = D 2 /D 1 are expressed by the following equations (1 ) the tack shaft and the root portion are formed so as to satisfy (2);
0.30<α<0.70 (1)
1.35<β<1.70 (2)
The crimping head is formed so as to satisfy the following equations ( 3 ) and (4), where D is the diameter of the crimping head and H is the height of the crimping head. A ball bearing characterized by
Figure 0007212738000002
Figure 0007212738000003

このようにすると、第1環状部材と第2環状部材の密着性を確保しながら、鋲の加締め時に第1鋲穴の内周に作用する引張応力の大きさを低減することができる。そのため、保持器の強度低下を効果的に防止することが可能である。なお、上記式(1)(2)は、加締め頭部を形成した後の鋲軸の直径Dおよび元頭部の直径Dが満たすべき式である。 By doing so, it is possible to reduce the magnitude of the tensile stress acting on the inner circumference of the first rivet hole when the rivet is crimped while ensuring the tight contact between the first annular member and the second annular member. Therefore, it is possible to effectively prevent a decrease in the strength of the retainer. The above formulas ( 1 ) and ( 2 ) are formulas to be satisfied by the diameter D1 of the rivet shaft and the diameter D2 of the base of the rivet after forming the crimped head.

前記第1環状部材の表面および前記第2環状部材の表面には、窒化層が形成され、
前記第2鋲穴の内周は、その全体に前記窒化層が形成され、
前記第1鋲穴の内周は、前記窒化層が形成されていない非窒化面を有する構成を採用することができる。
a nitride layer is formed on the surface of the first annular member and the surface of the second annular member;
The nitride layer is formed on the entire inner periphery of the second rivet hole,
The inner periphery of the first rivet hole may have a non-nitrided surface on which the nitrided layer is not formed.

上記構成は、次の方法で軟窒化処理を施したときに得られるものである。まず、鋲を、軟窒化処理を施していない第1環状部材の第1鋲穴に圧入する。次に、その圧入により一体化した鋲と第1環状部材とに軟窒化処理を施す。このとき、軟窒化処理によって第1環状部材の表面に窒化層が形成されるが、第1鋲穴の内周(鋲軸との嵌合面)は、鋲軸でマスキングされた状態となっているので、窒化層が形成されない非窒化面を有するものとなる。その後、第1環状部材を、軟窒化処理が施された第2環状部材に重ね合わせ、第2環状部材の第2鋲穴から突出した鋲軸の部分を加締めることで、第1環状部材と第2環状部材を結合する。 The structure described above is obtained when soft-nitriding is performed by the following method. First, the rivet is press-fitted into the first rivet hole of the first annular member that is not nitrocarburized. Next, the rivet and the first annular member, which are integrated by the press-fitting, are subjected to nitrocarburizing. At this time, a nitrided layer is formed on the surface of the first annular member by nitrocarburizing, but the inner periphery of the first rivet hole (the mating surface with the rivet shaft) is masked by the rivet shaft. Therefore, it has a non-nitrided surface on which a nitrided layer is not formed. After that, the first annular member is superimposed on the soft-nitrided second annular member, and the rivet shaft portion protruding from the second rivet hole of the second annular member is crimped to form the first annular member. A second annular member is coupled.

前記第1環状部材および前記第2環状部材は、機械構造用炭素鋼、冷間圧造用炭素鋼、ステンレス鋼のいずれかで形成されたものを採用することができる。 The first annular member and the second annular member may be made of carbon steel for machine structural use, carbon steel for cold heading, or stainless steel.

また、前記鋲も、機械構造用炭素鋼、冷間圧造用炭素鋼、ステンレス鋼のいずれかで形成されたものを採用することができる。 Also, the rivet may be made of carbon steel for machine structural use, carbon steel for cold heading, or stainless steel.

前記第1鋲穴の前記第2平板部の側とは反対側の開口縁に断面R状の第1だれ部が形成され、
前記第1鋲穴の内周面は、軸方向に延びる筋状の模様をもつせん断面とされ、
前記第1鋲穴の前記第2平板部の側の端部内周にテーパ状の第1面取り部が形成され、
前記第2鋲穴の前記第1平板部の側とは反対側の開口縁に断面R状の第2だれ部が形成され、
前記第2鋲穴の内周面は、軸方向に延びる筋状の模様をもつせん断面とされ、
前記第2鋲穴の前記第1平板部の側の端部内周にテーパ状の第2面取り部が形成されている構成を採用すると好ましい。
A first recess having an R-shaped cross section is formed on the edge of the opening of the first rivet hole opposite to the second flat plate portion,
The inner peripheral surface of the first rivet hole is a sheared surface having a striped pattern extending in the axial direction,
A tapered first chamfered portion is formed on the inner circumference of the end of the first rivet hole on the second flat plate portion side,
A second recess having an R-shaped cross section is formed at the opening edge of the second rivet hole on the side opposite to the first flat plate portion,
The inner peripheral surface of the second rivet hole is a sheared surface having a striped pattern extending in the axial direction,
It is preferable to employ a configuration in which a tapered second chamfered portion is formed on the inner circumference of the end of the second rivet hole on the first flat plate portion side.

このようにすると、保持器の強度低下を特に効果的に防止することが可能となる。すなわち、パンチを用いた打ち抜き加工によって第1鋲穴を形成する場合、第1平板部を、第2平板部の側とは反対側から第2平板部の側に打ち抜いて第1鋲穴を形成すると、第1鋲穴の第2平板部の側とは反対側の開口縁には、第1平板部の材料表面がパンチで引っ張られることで生じる断面R状の第1だれ部が形成され、第1鋲穴の内周面には、第2平板部の側とは反対側から第2平板部の側に向かって順に、せん断面と破断面が形成される。せん断面は、軸方向に延びる筋状の模様をもつ滑らかな面であり、破断面は、第1平板部の材料が引きちぎられて生じる不規則な凹凸面である。ここで、前記の第1鋲穴を追加工せずにそのまま用いて、第1鋲穴に鋲を圧入し、鋲軸を加締めた場合、第1鋲穴の内周の破断面(不規則な凹凸面)に引張応力が作用し、保持器の強度低下が生じるおそれがある。同様に、パンチを用いた打ち抜き加工によって第2鋲穴を形成し、その第2鋲穴を追加工せずにそのまま用いた場合、第2鋲穴の内周の破断面に引張応力が作用し、保持器の強度低下が生じるおそれがある。そこで、第1鋲穴の第2平板部の側の端部内周にテーパ状の第1面取り部を形成するとともに、第2鋲穴の第1平板部の側の端部内周にもテーパ状の第2面取り部を形成すると、第1鋲穴および第2鋲穴の内周の破断面が除去されるので、第1鋲穴および第2鋲穴の内周の破断面による引張強度の低下が抑えられ、その結果、保持器の強度低下を防止することが可能となる。 By doing so, it is possible to prevent deterioration of the strength of the retainer particularly effectively. That is, when the first rivet hole is formed by punching using a punch, the first rivet hole is formed by punching the first flat plate portion from the side opposite to the second flat plate portion toward the second flat plate portion. Then, at the edge of the opening of the first rivet hole on the side opposite to the second flat plate portion, a first recess having an R-shaped cross section is formed by pulling the surface of the material of the first flat plate portion with the punch, In the inner peripheral surface of the first rivet hole, a sheared surface and a fractured surface are formed in order from the side opposite to the second flat plate portion toward the second flat plate portion. The sheared surface is a smooth surface with a streak-like pattern extending in the axial direction, and the fractured surface is an irregular uneven surface caused by tearing off the material of the first flat plate portion. Here, when the first rivet hole is used as it is without additional processing, the rivet is press-fitted into the first rivet hole, and the rivet shaft is crimped, the fractured surface (irregularity) of the inner circumference of the first rivet hole Tensile stress acts on the uneven surface), which may reduce the strength of the cage. Similarly, if the second rivet hole is formed by punching and the second rivet hole is used as it is without additional processing, tensile stress acts on the fracture surface of the inner circumference of the second rivet hole. , the strength of the retainer may be lowered. Therefore, a tapered first chamfered portion is formed on the inner periphery of the end of the first rivet hole on the second flat plate portion side, and the inner periphery of the end of the second rivet hole on the first flat plate portion side is also tapered. When the second chamfered portion is formed, the fractured surfaces on the inner peripheries of the first and second rivet holes are removed, so that the tensile strength due to the fractured surfaces on the inner peripheries of the first and second rivet holes is reduced. As a result, it is possible to prevent deterioration of the strength of the retainer.

前記鋲軸の外周に、前記第1面取り部と前記第2面取り部とに同時に係合する環状突起が形成されている構成を採用すると好ましい。 It is preferable to employ a configuration in which an annular protrusion is formed on the outer circumference of the rivet shaft and engages with the first chamfered portion and the second chamfered portion at the same time.

このようにすると、第1平板部および第2平板部に対する鋲の相対移動が、元頭部と加締め頭部によって規制されるだけでなく、環状突起によっても規制されるので、鋲による第1環状部材と第2環状部材の結合強度を向上させることが可能となる。 With this configuration, the relative movement of the rivet with respect to the first flat plate portion and the second flat plate portion is restricted not only by the base portion and the crimping head portion, but also by the annular protrusion, so that the first flat portion by the rivet is restricted. It is possible to improve the bonding strength between the annular member and the second annular member.

この発明の玉軸受は、鋲の加締め時に第1鋲穴の内周に作用する引張応力の大きさが小さい。そのため、保持器の強度低下が生じにくく、耐久性に優れる。 In the ball bearing of the present invention, the magnitude of tensile stress acting on the inner periphery of the first rivet hole is small when the rivet is crimped. Therefore, the strength of the retainer is less likely to decrease, and the durability is excellent.

この発明の実施形態の玉軸受を示す断面図BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which shows the ball bearing of embodiment of this invention 図1の波形保持器を示す斜視図FIG. 2 is a perspective view showing the corrugated retainer of FIG. 1; 図2に示す波形保持器の製造過程を示す図であり、鋼板をプレス成形することで第1環状部材の第1ポケット壁部および第1平板部を形成し、その第1平板部に打ち抜き加工を施すことで第1鋲穴を形成した状態を示す図FIG. 3 is a view showing the manufacturing process of the corrugated cage shown in FIG. 2 , in which the first pocket wall portion and the first flat plate portion of the first annular member are formed by press forming a steel plate, and the first flat plate portion is punched; A diagram showing a state in which the first rivet hole is formed by applying 図3の第1鋲穴の拡大図Enlarged view of the first rivet hole in FIG. 図4に示す第1鋲穴に第1面取り部を加工することで、破断面を除去した状態を示す図The figure which shows the state which removed the fracture surface by processing the 1st chamfering part in the 1st rivet hole shown in FIG. 第1環状部材の第1鋲穴に鋲を圧入し、その第1環状部材に第2環状部材を軸方向に対向させた状態を示す図A view showing a state in which a rivet is press-fitted into the first rivet hole of the first annular member and the second annular member is axially opposed to the first annular member. 図6の鋲の近傍の拡大図Enlarged view of the vicinity of the rivet in FIG. 図6に示す第1環状部材と第2環状部材を重ね合わせた状態を示す図The figure which shows the state which overlap|superposed the 1st annular member and 2nd annular member which are shown in FIG. 図8の鋲の近傍の拡大図Enlarged view of the vicinity of the rivet in FIG. 図8に示す鋲の鋲軸を加締めることで、第1環状部材と第2環状部材を結合した状態を示す図FIG. 9 is a diagram showing a state in which the first annular member and the second annular member are coupled by crimping the rivet shaft of the rivet shown in FIG. 8 ; 図10の鋲の近傍の拡大図Enlarged view of the vicinity of the rivet in FIG. (a)は図7に示す鋲の他の例を示す図、(b)は図7に示す鋲の更に他の例を示す図(a) is a diagram showing another example of the rivet shown in FIG. 7, and (b) is a diagram showing still another example of the rivet shown in FIG.

図1に、この発明の実施形態の玉軸受を示す。この玉軸受は、内輪1と、内輪1の径方向外側に同軸に設けられた外輪2と、内輪1と外輪2の間に周方向に間隔をおいて組み込まれた複数の玉3と、複数の玉3の周方向の間隔を保持する波形保持器4(以下単に「保持器4」という)とを有する。 FIG. 1 shows a ball bearing according to an embodiment of the invention. This ball bearing includes an inner ring 1, an outer ring 2 provided coaxially outside the inner ring 1 in the radial direction, a plurality of balls 3 installed between the inner ring 1 and the outer ring 2 at intervals in the circumferential direction, and a plurality of and a corrugated retainer 4 (hereinafter simply referred to as "retainer 4") that maintains the circumferential spacing of the balls 3. As shown in FIG.

外輪2の内周には、玉3が転がり接触する外輪軌道溝5が形成されている。外輪軌道溝5は、凹円弧状の断面をもつ円弧溝であり、外輪2の内周の軸方向中央を周方向に延びて形成されている。内輪1の外周にも、玉3が転がり接触する内輪軌道溝6が形成されている。内輪軌道溝6は、凹円弧状の断面をもつ円弧溝であり、内輪1の外周の軸方向中央を周方向に延びて形成されている。 The inner circumference of the outer ring 2 is formed with an outer ring raceway groove 5 with which the balls 3 roll and contact. The outer ring raceway groove 5 is an arcuate groove having a concave arcuate cross section, and is formed so as to extend in the axial direction center of the inner circumference of the outer ring 2 in the circumferential direction. The outer circumference of the inner ring 1 is also formed with an inner ring raceway groove 6 with which the balls 3 roll and contact. The inner ring raceway groove 6 is an arcuate groove having a concave arcuate cross section, and is formed so as to extend in the axial direction center of the outer circumference of the inner ring 1 in the circumferential direction.

玉3は、外輪軌道溝5と内輪軌道溝6との間で径方向に挟み込まれている。この玉軸受は、深溝玉軸受である。すなわち、外輪軌道溝5は、外輪2の軸方向中央に対して対称の円弧溝であり、内輪軌道溝6も、内輪1の軸方向中央に対して対称の円弧溝である。また、外輪軌道溝5の軸方向幅寸法は、玉3の直径Daの半分より大きく、内輪軌道溝6の軸方向幅寸法も、玉3の直径Daの半分より大きい。 The ball 3 is radially sandwiched between the outer ring raceway groove 5 and the inner ring raceway groove 6 . This ball bearing is a deep groove ball bearing. That is, the outer ring raceway groove 5 is an arcuate groove symmetrical about the axial center of the outer ring 2 , and the inner ring raceway groove 6 is also an arcuate groove symmetrical about the axial center of the inner ring 1 . The axial width dimension of the outer ring raceway groove 5 is larger than half the diameter Da of the balls 3 , and the axial width dimension of the inner ring raceway groove 6 is also larger than half the diameter Da of the balls 3 .

図2に示すように、保持器4は、鋼板製の第1環状部材7aと、第1環状部材7aと軸方向に対向する鋼板製の第2環状部材7bと、第1環状部材7aと第2環状部材7bを結合する複数の鋲8とを有する。第1環状部材7aは、玉3(図1参照)を収容する円弧状の第1ポケット壁部9aと、軸方向に直交する平板状の第1平板部10aとを周方向に交互に有する。同様に、第2環状部材7bも、玉3(図1参照)を収容する円弧状の第2ポケット壁部9bと、軸方向に直交する平板状の第2平板部10bとを周方向に交互に有する。 As shown in FIG. 2, the retainer 4 includes a first annular member 7a made of steel, a second annular member 7b made of steel and facing the first annular member 7a in the axial direction, the first annular member 7a and the second annular member 7b. It has a plurality of rivets 8 connecting the two annular members 7b. The first annular member 7a has, in the circumferential direction, arc-shaped first pocket wall portions 9a for accommodating the balls 3 (see FIG. 1) and flat plate-shaped first flat plate portions 10a orthogonal to the axial direction alternately. Similarly, in the second annular member 7b, arc-shaped second pocket wall portions 9b for accommodating balls 3 (see FIG. 1) and flat plate-shaped second flat plate portions 10b orthogonal to the axial direction are alternately arranged in the circumferential direction. have in

図10、図11に示すように、第1環状部材7aの第1平板部10aには、軸方向に貫通する第1鋲穴11aが形成され、第2環状部材7bの第2平板部10bにも、軸方向に貫通する第2鋲穴11bが形成され、その第1鋲穴11aおよび第2鋲穴11bに共通の鋲8が挿入されている。 As shown in FIGS. 10 and 11, the first flat plate portion 10a of the first annular member 7a is formed with a first rivet hole 11a penetrating in the axial direction, and the second flat plate portion 10b of the second annular member 7b is formed with a first rivet hole 11a. A second rivet hole 11b is also formed to penetrate axially, and a common rivet 8 is inserted into the first rivet hole 11a and the second rivet hole 11b.

図2に示す第1環状部材7aは、機械構造用炭素鋼(SC材、S45C等)、冷間圧造用炭素鋼、ステンレス鋼のいずれかで形成された板材をプレス成形することで形成されている。同様に、第2環状部材7bも、機械構造用炭素鋼、冷間圧造用炭素鋼、ステンレス鋼のいずれかで形成された板材をプレス成形することで形成されている。鋲8は、機械構造用炭素鋼、冷間圧造用炭素鋼、ステンレス鋼のいずれかで形成された線材で形成されている。 The first annular member 7a shown in FIG. 2 is formed by press-molding a plate material formed of any one of carbon steel for machine structural use (SC material, S45C, etc.), carbon steel for cold heading, and stainless steel. there is Similarly, the second annular member 7b is also formed by press forming a plate material formed of any one of carbon steel for machine structural use, carbon steel for cold heading, and stainless steel. The rivet 8 is formed of a wire rod made of any one of carbon steel for machine structural use, carbon steel for cold heading, and stainless steel.

第1環状部材7aの表面には、軟窒化処理を施すことにより窒化層が形成され、第2環状部材7bの表面にも、軟窒化処理を施すことにより窒化層が形成されている。窒化層は、400HV以上の硬度をもつ表面硬化層であり、20μm以下の厚さの極めて薄い化合物層(鉄と窒素からなる化合物層)である。ただし、図11に示す第2鋲穴11bの内周は、その全体に窒化層が形成されているのに対し、第1鋲穴11aの内周は、窒化層が形成されていない非窒化面を有する。 A nitride layer is formed on the surface of the first annular member 7a by performing a nitrocarburizing treatment, and a nitride layer is also formed on the surface of the second annular member 7b by performing a nitrocarburizing treatment. The nitride layer is a surface-hardened layer having a hardness of 400 HV or more, and is an extremely thin compound layer (a compound layer composed of iron and nitrogen) having a thickness of 20 μm or less. However, the inner periphery of the second rivet hole 11b shown in FIG. 11 has a nitrided layer formed over its entirety, whereas the inner periphery of the first rivet hole 11a has a non-nitrided surface on which no nitrided layer is formed. have

図9、図11に示すように、鋲8は、鋲軸12と、鋲軸12の一端(図では上端)にあらかじめ成形された元頭部13と、鋲軸12の他端(図では下端)を加締めることにより形成された加締め頭部14とを有する。図11に示すように、鋲軸12は、第1平板部10aと第2平板部10bを重ね合わせた状態で、第1鋲穴11aと第2鋲穴11bに挿通されている。元頭部13と加締め頭部14は、第1平板部10aと第2平板部10bを軸方向に挟み込むように配置され、元頭部13が第1平板部10aを軸方向に係止し、加締め頭部14が第2平板部10bを軸方向に係止している。 As shown in FIGS. 9 and 11, the rivet 8 includes a rivet shaft 12, a root portion 13 formed in advance on one end of the rivet shaft 12 (upper end in the drawings), and the other end of the rivet shaft 12 (lower end in the drawings). ), and a crimped head 14 formed by crimping. As shown in FIG. 11, the rivet shaft 12 is inserted through the first rivet hole 11a and the second rivet hole 11b in a state in which the first flat plate portion 10a and the second flat plate portion 10b are overlapped. The base portion 13 and the crimping head portion 14 are arranged so as to sandwich the first flat plate portion 10a and the second flat plate portion 10b in the axial direction, and the base portion 13 axially locks the first flat plate portion 10a. , the crimping head 14 axially locks the second flat plate portion 10b.

上記の保持器4は、次のように製造することができる。 The retainer 4 described above can be manufactured as follows.

まず、図3に示すように、鋼板をプレス成形することで、第1ポケット壁部9aと第1平板部10aをもつ第1環状部材7aを形成する。次に、パンチを用いた打ち抜き加工によって、第1環状部材7aの第1平板部10aに第1鋲穴11aを形成する。このとき、第1平板部10aを、第2平板部10bの側とは反対側(図では上側)から第2平板部10bの側(図では下側)に打ち抜いて第1鋲穴11aを形成する。これにより、図4に示すように、第1鋲穴11aの第2平板部10b(図9参照)の側とは反対側(図では上側)の開口縁には、第1平板部10aの材料表面がパンチで引っ張られることで生じる断面R状の第1だれ部15が形成される。また、第1鋲穴11aの内周面には、第2平板部10b(図9参照)の側とは反対側(図では上側)から第2平板部10bの側(図では下側)に向かって順に、せん断面16と破断面17が形成される。せん断面16は、軸方向に延びる筋状の模様をもつ滑らかな面である。一方、破断面17は、第1平板部10aの材料が引きちぎられて生じる不規則な凹凸面である。破断面17は、せん断面16よりも大きい面粗さを有する。その後、図5に示すように、第1鋲穴11aの第2平板部10bの側(図では下側)の端部内周を切削し、テーパ状の第1面取り部18aを形成する。第1面取り部18aの内周は平滑面である。上記と同様に、第2環状部材7bにも、第2鋲穴11b、第2面取り部18b等を形成する。 First, as shown in FIG. 3, a first annular member 7a having a first pocket wall portion 9a and a first flat plate portion 10a is formed by press forming a steel plate. Next, a first rivet hole 11a is formed in the first flat plate portion 10a of the first annular member 7a by punching. At this time, the first flat plate portion 10a is punched from the side opposite to the second flat plate portion 10b (upper side in the drawing) toward the second flat plate portion 10b (lower side in the drawing) to form the first rivet hole 11a. do. As a result, as shown in FIG. 4, the material of the first flat plate portion 10a is applied to the opening edge of the first rivet hole 11a opposite to the side of the second flat plate portion 10b (see FIG. 9) (upper side in the figure). A first droop portion 15 having an R-shaped cross section is formed by pulling the surface with a punch. In addition, on the inner peripheral surface of the first rivet hole 11a, from the side opposite to the side of the second flat plate portion 10b (see FIG. 9) (upper side in the figure) to the side of the second flat plate portion 10b (lower side in the figure) A sheared surface 16 and a fractured surface 17 are formed in this order. The sheared surface 16 is a smooth surface with a streaky pattern extending in the axial direction. On the other hand, the fracture surface 17 is an irregular uneven surface that is generated by tearing off the material of the first flat plate portion 10a. The fractured surface 17 has a surface roughness greater than that of the sheared surface 16 . Thereafter, as shown in FIG. 5, the inner circumference of the end of the first rivet hole 11a on the second flat plate portion 10b side (lower side in the figure) is cut to form a tapered first chamfered portion 18a. The inner circumference of the first chamfered portion 18a is a smooth surface. Similarly to the above, the second rivet hole 11b, the second chamfered portion 18b, etc. are also formed in the second annular member 7b.

次に、図6、図7に示すように、鋲8を、第1環状部材7aの第1鋲穴11aに圧入する。鋲8は、図7に示すように、鋲軸12と、鋲軸12の一端にあらかじめ成形された元頭部13とを有する。鋲軸12は、軸方向に沿って一定の直径を有する円柱状に形成されている。元頭部13は、鋲軸12よりも大径に形成され、軸方向に直角な平面状の座面19を有する。ここで、鋲軸12および元頭部13は、鋲軸12の直径をD、元頭部13の直径をD、玉3の直径(図1参照)をDaとしたときに、α=D/Da、β=D/Dがそれぞれ次式(1)(2)を満たすように形成されている。
0.30<α<0.70 ・・・(1)
1.35<β<1.70 ・・・(2)
Next, as shown in FIGS. 6 and 7, the rivet 8 is press-fitted into the first rivet hole 11a of the first annular member 7a. As shown in FIG. 7, the rivet 8 has a rivet shaft 12 and a root portion 13 preformed at one end of the rivet shaft 12 . The rivet shaft 12 is formed in a cylindrical shape having a constant diameter along the axial direction. The root portion 13 is formed to have a diameter larger than that of the rivet shaft 12 and has a flat bearing surface 19 perpendicular to the axial direction. Here, when the diameter of the rivet shaft 12 is D 1 , the diameter of the rivet shaft 13 is D 2 , and the diameter of the ball 3 (see FIG. 1) is Da, α= D 1 /Da and β=D 2 /D 1 are formed so as to satisfy the following equations (1) and (2), respectively.
0.30<α<0.70 (1)
1.35<β<1.70 (2)

なお、第1環状部材7aと第2環状部材7bの組立性を考慮し、鋲軸12に、先細のテーパ形状を設けることも可能である。例えば、鋲軸12を、元頭部13から連なる円筒状の鋲軸首元部分と、その鋲軸首元部分から鋲軸12の先端に向かって縮径するテーパ状の鋲軸先端部分とで構成するようにしてもよい。この場合、上記の鋲軸12の直径Dは、鋲軸先端部分の直径ではなく、鋲軸首元部分の直径である。また、図11に示すように、第2環状部材7bの第2鋲穴11bから突出した鋲軸12の部分を加締めて加締め頭部14を形成した状態(詳しくは後述する)においても、鋲軸12の直径D(環状突起20を除いた部分の直径)と、元頭部13の直径Dは、上記式(1)(2)を満たしている。 In consideration of the ease of assembly of the first annular member 7a and the second annular member 7b, it is also possible to provide the rivet shaft 12 with a tapered shape. For example, the rivet shank 12 is composed of a cylindrical rivet shank neck portion that continues from the root portion 13 and a tapered rivet shank tip portion that decreases in diameter from the rivet shank neck portion toward the tip of the rivet shank 12 . may be configured. In this case, the diameter D1 of the rivet shank 12 is not the diameter of the rivet shank tip portion but the diameter of the rivet shank neck portion. Further, as shown in FIG. 11, even in a state where the portion of the rivet shaft 12 protruding from the second rivet hole 11b of the second annular member 7b is crimped to form the crimped head portion 14 (details will be described later), The diameter D 1 of the rivet shaft 12 (the diameter of the portion excluding the annular projection 20) and the diameter D 2 of the root portion 13 satisfy the above formulas (1) and (2).

その後、図6に示すように、圧入により一体化した鋲8と第1環状部材7aとに軟窒化処理を施す。軟窒化処理は、鋼材の表面に窒化層(表面硬化層)を形成する処理であり、例えば、アンモニアガスと吸熱型変性ガスの混合ガス雰囲気中で、鋼材を変態点よりも低温(400℃~590℃程度の温度)の範囲で加熱することで、鋼材の表面に窒素を浸透させて窒化層を形成する処理である。この軟窒化処理を保持器4に施すと、保持器4の寸法をほとんど変化させることなく、保持器4の耐久性を向上させることが可能となる。この軟窒化処理によって第1環状部材7aの表面に窒化層が形成されるが、図7に示す第1鋲穴11aの内周(鋲軸12との嵌合面)は、鋲軸12でマスキングされた状態となっているので、窒化層が形成されない非窒化面を有するものとなる。 After that, as shown in FIG. 6, the rivet 8 and the first annular member 7a integrated by press-fitting are subjected to nitrocarburizing. Soft nitriding is a process for forming a nitrided layer (surface hardening layer) on the surface of a steel material. It is a process in which nitrogen is permeated into the surface of the steel material to form a nitrided layer by heating in the range of about 590°C. By subjecting the retainer 4 to this nitrocarburizing treatment, the durability of the retainer 4 can be improved without substantially changing the dimensions of the retainer 4 . Although a nitrided layer is formed on the surface of the first annular member 7a by this nitrocarburizing treatment, the inner periphery of the first rivet hole 11a shown in FIG. Since it is in a state where it is in a state where a nitrided layer is not formed, it has a non-nitrided surface.

また、図6に示すように、第1環状部材7aと結合する前の状態の第2環状部材7bにも軟窒化処理を施す。このとき、第2環状部材7bの第2鋲穴11bは鋲8が挿入されておらず、第2鋲穴11bの内周の全体が露出しているので、第2鋲穴11bの内周の全体に窒化層が形成される。 Further, as shown in FIG. 6, the second annular member 7b before being joined to the first annular member 7a is also nitrocarburized. At this time, the rivet 8 is not inserted into the second rivet hole 11b of the second annular member 7b, and the entire inner circumference of the second rivet hole 11b is exposed. A nitride layer is formed over the entire surface.

次に、図8、図9に示すように、第1環状部材7aを第2環状部材7bに重ね合わせ、第1鋲穴11aから突出した鋲軸12の部分を第2鋲穴11bに挿入する。このとき、鋲軸12は第2鋲穴11bを貫通し、第2鋲穴11bから突出した状態となる。このとき、図1に示す内輪1と外輪2の間に複数の玉3を組み込み、その各玉3を、第1環状部材7aの第1ポケット壁部9aと第2環状部材7bの第2ポケット壁部9bとで軸方向両側から挟むように、第1環状部材7aと第2環状部材7bを合わせる。 Next, as shown in FIGS. 8 and 9, the first annular member 7a is overlaid on the second annular member 7b, and the portion of the rivet shaft 12 protruding from the first rivet hole 11a is inserted into the second rivet hole 11b. . At this time, the rivet shaft 12 passes through the second rivet hole 11b and protrudes from the second rivet hole 11b. At this time, a plurality of balls 3 are assembled between the inner ring 1 and the outer ring 2 shown in FIG. The first annular member 7a and the second annular member 7b are put together so as to be sandwiched from both sides in the axial direction by the wall portion 9b.

その後、図10、図11に示すように、第2環状部材7bの第2鋲穴11bから突出した鋲軸12の部分を図示しない加締め金型で軸方向に押し潰して加締める(塑性変形させる)ことで、第1環状部材7aと第2環状部材7bを結合する。このとき、図11に示すように、鋲軸12の塑性変形によって、鋲軸12の軸方向中央部の外周に、第1面取り部18aと第2面取り部18bとに同時に係合する環状突起20が形成される。図では、環状突起20の存在を分かりやすくするために、環状突起20の大きさを誇張して示している。 Thereafter, as shown in FIGS. 10 and 11, the portion of the rivet shaft 12 protruding from the second rivet hole 11b of the second annular member 7b is crimped in the axial direction by a crimping die (not shown) (plastic deformation). ) to connect the first annular member 7a and the second annular member 7b. At this time, as shown in FIG. 11, due to the plastic deformation of the rivet shaft 12, an annular projection 20 is formed on the outer periphery of the central portion of the rivet shaft 12 in the axial direction and simultaneously engages the first chamfered portion 18a and the second chamfered portion 18b. is formed. In the drawing, the size of the annular protrusion 20 is exaggerated in order to make the presence of the annular protrusion 20 easier to understand.

ここで、図9に示すように第2環状部材7bの第2鋲穴11bから突出した鋲軸12の部分を加締めるとき、使用する加締め金型と加締めの荷重とを調整することで、図11に示す加締め頭部14の直径D、加締め頭部14の高さHが、次式(3)(4)をそれぞれ満たすように加締め頭部14が形成されるようにする。

Figure 0007212738000004
Figure 0007212738000005
Here, when crimping the portion of the rivet shaft 12 protruding from the second rivet hole 11b of the second annular member 7b as shown in FIG. , the diameter D 3 of the crimping head 14 and the height H of the crimping head 14 shown in FIG. do.
Figure 0007212738000004
Figure 0007212738000005

ところで、図6、図7に示すように、鋲8を第1環状部材7aの第1鋲穴11aに圧入し、その状態で第1環状部材7aに軟窒化処理を施したとき、第1鋲穴11aの内周(鋲軸12との嵌合面)は、鋲軸12でマスキングされた状態となっているので、窒化層が形成されない。そして、その後、図8に示すように、第1環状部材7aを第2環状部材7bに重ね合わせ、図9、図11に示すように、第2環状部材7bの第2鋲穴11bから突出した鋲軸12の部分を加締めたとき、その加締めによって、鋲軸12は径方向に膨張するように塑性変形し、その鋲軸12の塑性変形によって第1鋲穴11aの内周は引張応力が発生した状態となる。つまり、第1鋲穴11aの内周の非窒化面(表面硬化層)に、鋲軸12の膨張に伴う引張応力が作用し、このことが原因で、保持器4の強度低下が生じる可能性がある。 By the way, as shown in FIGS. 6 and 7, when the rivet 8 is press-fitted into the first rivet hole 11a of the first annular member 7a and the first annular member 7a is nitrocarburized in this state, the first rivet Since the inner periphery of the hole 11a (the mating surface with the rivet shaft 12) is masked by the rivet shaft 12, no nitride layer is formed. Then, as shown in FIG. 8, the first annular member 7a is superimposed on the second annular member 7b, and as shown in FIGS. When the portion of the rivet shaft 12 is crimped, the rivet shaft 12 is plastically deformed so as to expand in the radial direction due to the crimping, and the plastic deformation of the rivet shaft 12 applies a tensile stress to the inner periphery of the first rivet hole 11a. has occurred. That is, the tensile stress associated with the expansion of the rivet shaft 12 acts on the non-nitrided surface (hardened surface layer) of the inner periphery of the first rivet hole 11a, which may cause the strength of the retainer 4 to decrease. There is

そこで、上記実施形態の玉軸受は、第2環状部材7bの第2鋲穴11bから突出した鋲軸12の部分を加締めて加締め頭部14を形成するときの加締めの荷重を従来よりも小さくすることで、上記式(3)(4)をそれぞれ満たす範囲で、加締め頭部14の直径を小さくし、加締め頭部14の高さを高くしている。これにより、第1環状部材7aと第2環状部材7bの密着性を確保しながら、鋲8の加締め時に第1鋲穴11aの内周に作用する引張応力の大きさを低減することが可能となっている。そのため、保持器4の強度低下が生じにくく、耐久性に優れる。 Therefore, in the ball bearing of the above-described embodiment, when the portion of the rivet shaft 12 protruding from the second rivet hole 11b of the second annular member 7b is crimped to form the crimped head 14, the crimping load is reduced to is also reduced, the diameter of the crimping head 14 is reduced and the height of the crimping head 14 is increased within a range that satisfies the above equations (3) and (4). As a result, it is possible to reduce the magnitude of the tensile stress acting on the inner circumference of the first rivet hole 11a when the rivet 8 is crimped while ensuring the tight contact between the first annular member 7a and the second annular member 7b. It has become. Therefore, the strength of the retainer 4 is unlikely to be lowered, and the durability is excellent.

また、この玉軸受は、図11に示すように、第1鋲穴11aの第2平板部10bの側の端部内周にテーパ状の第1面取り部18aが形成され、第2鋲穴11bの第1平板部10aの側の端部内周にテーパ状の第2面取り部18bが形成されているので、保持器4の強度低下を特に効果的に防止することが可能となっている。すなわち、図4に示す第1鋲穴11aを追加工せずにそのまま用いて、第1鋲穴11aに鋲8を圧入し、鋲軸12を加締めた場合、第1鋲穴11aの内周の破断面17(不規則な凹凸面)に引張応力が作用し、保持器4の強度低下が生じるおそれがある。第2鋲穴11bの内周の破断面17についても同様である。そこで、図5、図11に示すように、第1鋲穴11aの第2平板部10bの側の端部内周にテーパ状の第1面取り部18aを形成するとともに、第2鋲穴11bの第1平板部10aの側の端部内周にもテーパ状の第2面取り部18bを形成すると、第1鋲穴11aおよび第2鋲穴11bの内周の破断面17が除去されるので、第1鋲穴11aおよび第2鋲穴11bの内周の破断面17による引張強度の低下が抑えられ、その結果、保持器4の強度低下を防止することが可能となる。 In addition, as shown in FIG. 11, in this ball bearing, a tapered first chamfered portion 18a is formed on the inner circumference of the end portion of the first rivet hole 11a on the second flat plate portion 10b side. Since the tapered second chamfered portion 18b is formed on the inner circumference of the end portion on the side of the first flat plate portion 10a, it is possible to prevent deterioration of the strength of the retainer 4 particularly effectively. That is, when the first rivet hole 11a shown in FIG. Tensile stress acts on the broken surface 17 (irregularly uneven surface) of the cage 4, and the strength of the retainer 4 may be lowered. The same applies to the fracture surface 17 on the inner circumference of the second rivet hole 11b. Therefore, as shown in FIGS. 5 and 11, a tapered first chamfered portion 18a is formed on the inner circumference of the end portion of the first rivet hole 11a on the second flat plate portion 10b side, and the second rivet hole 11b If the tapered second chamfered portion 18b is also formed on the inner periphery of the end portion on the side of the first flat plate portion 10a, the fractured surfaces 17 on the inner periphery of the first rivet hole 11a and the second rivet hole 11b are removed. A decrease in tensile strength due to the fractured surfaces 17 on the inner peripheries of the rivet hole 11a and the second rivet hole 11b is suppressed, and as a result, it is possible to prevent the strength of the retainer 4 from decreasing.

また、この玉軸受は、図11に示すように、鋲軸12の外周に、第1面取り部18aと第2面取り部18bとに同時に係合する環状突起20が形成されているので、第1平板部10aおよび第2平板部10bに対する鋲8の相対移動が、元頭部13と加締め頭部14によって規制されるだけでなく、環状突起20によっても規制される。そのため、鋲8による第1環状部材7aと第2環状部材7bの結合強度が高く、耐久性に優れる。 Further, in this ball bearing, as shown in FIG. 11, an annular projection 20 is formed on the outer periphery of the rivet shaft 12 to engage with the first chamfered portion 18a and the second chamfered portion 18b at the same time. Relative movement of the rivet 8 with respect to the flat plate portion 10a and the second flat plate portion 10b is restricted not only by the root portion 13 and the crimping head portion 14, but also by the annular protrusion 20. Therefore, the coupling strength between the first annular member 7a and the second annular member 7b by the rivet 8 is high, and the durability is excellent.

上記実施形態では、図7に示すように、球冠状の元頭部13をもつ鋲8を例に挙げて説明したが、図12(a)に示すように、円筒状の元頭部13をもつ鋲8や、図12(b)に示すように、球台状の元頭部13をもつ鋲8を採用してもよい。 In the above embodiment, as shown in FIG. 7, the rivet 8 having a crown-shaped root portion 13 was described as an example. However, as shown in FIG. A rivet 8 having a shaft or, as shown in FIG.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the meaning and range of equivalents of the scope of the claims.

1 内輪
2 外輪
3 玉
4 波形保持器
7a 第1環状部材
7b 第2環状部材
8 鋲
9a 第1ポケット壁部
9b 第2ポケット壁部
10a 第1平板部
10b 第2平板部
11a 第1鋲穴
11b 第2鋲穴
12 鋲軸
13 元頭部
14 加締め頭部
15 第1だれ部
16 せん断面
18a 第1面取り部
18b 第2面取り部
20 環状突起
Da 玉の直径
鋲軸の直径
元頭部の直径
加締め頭部の直径
H 加締め頭部の高さ
1 inner ring 2 outer ring 3 ball 4 corrugated retainer 7a first annular member 7b second annular member 8 rivet 9a first pocket wall portion 9b second pocket wall portion 10a first flat plate portion 10b second flat plate portion 11a first rivet hole 11b Second rivet hole 12 Rivet shaft 13 Base head 14 Crimp head 15 First droop 16 Sheared surface 18a First chamfered portion 18b Second chamfered portion 20 Annular projection Da Ball diameter D First rivet shaft diameter D Binary Head diameter D 3Crimped head diameter H Height of crimped head

Claims (6)

内輪(1)と、
内輪(1)の径方向外側に同軸に設けられた外輪(2)と、
前記内輪(1)と前記外輪(2)の間に周方向に間隔をおいて組み込まれた複数の玉(3)と、
前記複数の玉(3)を保持する波形保持器(4)とを有し、
前記波形保持器(4)は、鋼板製の第1環状部材(7a)と、前記第1環状部材(7a)と軸方向に対向する鋼板製の第2環状部材(7b)と、前記第1環状部材(7a)と前記第2環状部材(7b)を結合する複数の鋲(8)とを有し、
前記第1環状部材(7a)は、前記玉(3)を収容する弧状の第1ポケット壁部(9a)と、軸方向に貫通する第1鋲穴(11a)をもつ第1平板部(10a)とを周方向に交互に有し、
前記第2環状部材(7b)は、前記玉(3)を収容する弧状の第2ポケット壁部(9b)と、軸方向に貫通する第2鋲穴(11b)をもつ第2平板部(10b)とを周方向に交互に有し、
前記鋲(8)は、前記第1平板部(10a)と前記第2平板部(10b)を重ね合わせた状態で前記第1鋲穴(11a)と前記第2鋲穴(11b)に挿通された鋲軸(12)と、前記鋲軸(12)の一端にあらかじめ成形され、前記第1平板部(10a)を軸方向に係止する元頭部(13)と、前記鋲軸(12)の他端を加締めることにより形成され、前記第2平板部(10b)を軸方向に係止する加締め頭部(14)とを有する玉軸受において、
前記鋲軸(12)の直径をD、前記元頭部(13)の直径をD、前記玉(3)の直径をDaとしたときに、α=D/Da、β=D/Dがそれぞれ次式(1)(2)を満たすように前記鋲軸(12)および前記元頭部(13)が形成され、
0.30<α<0.70 ・・・(1)
1.35<β<1.70 ・・・(2)
前記加締め頭部(14)の直径をD、前記加締め頭部(14)の高さをHとしたときに、次式(3)(4)をそれぞれ満たすように前記加締め頭部(14)が形成されていることを特徴とする玉軸受。
Figure 0007212738000006
Figure 0007212738000007
an inner ring (1);
an outer ring (2) provided coaxially on the radially outer side of the inner ring (1);
a plurality of balls (3) embedded in the inner ring (1) and the outer ring (2) at intervals in the circumferential direction;
a corrugated retainer (4) for retaining the plurality of balls (3);
The corrugated retainer (4) includes a first annular member (7a) made of steel, a second annular member (7b) made of steel and facing the first annular member (7a) in the axial direction, and the first annular member (7b). an annular member (7a) and a plurality of rivets (8) connecting said second annular member (7b);
The first annular member (7a) comprises an arc-shaped first pocket wall (9a) for accommodating the ball (3) and a first flat plate (10a) having a first rivet hole (11a) axially penetrating therethrough. ) alternately in the circumferential direction,
The second annular member (7b) comprises an arc-shaped second pocket wall portion (9b) for accommodating the ball (3) and a second flat plate portion (10b) having a second rivet hole (11b) axially penetrating therethrough. ) alternately in the circumferential direction,
The rivet (8) is inserted through the first rivet hole (11a) and the second rivet hole (11b) in a state in which the first flat plate portion (10a) and the second flat plate portion (10b) are overlapped. a rivet shaft (12), a root portion (13) which is formed in advance on one end of the rivet shaft (12) and axially engages the first flat plate portion (10a), and the rivet shaft (12). A ball bearing having a crimping head (14) formed by crimping the other end of and axially locking the second flat plate portion (10b),
When the diameter of the rivet shaft (12) is D1, the diameter of the root portion (13) is D2, and the diameter of the ball ( 3 ) is Da, α=D1 / Da and β = D2. The rivet shaft (12) and the root portion (13) are formed such that /D 1 satisfies the following equations (1) and (2), respectively;
0.30<α<0.70 (1)
1.35<β<1.70 (2)
When the diameter of the crimping head (14) is D3 and the height of the crimping head (14) is H, the crimping head (14) satisfies the following equations ( 3 ) and (4), respectively. A ball bearing characterized in that (14) is formed.
Figure 0007212738000006
Figure 0007212738000007
前記第1環状部材(7a)の表面および前記第2環状部材(7b)の表面には、窒化層が形成され、
前記第2鋲穴(11b)の内周は、その全体に前記窒化層が形成され、
前記第1鋲穴(11a)の内周は、前記窒化層が形成されていない非窒化面を有する請求項1に記載の玉軸受。
A nitride layer is formed on the surface of the first annular member (7a) and the surface of the second annular member (7b),
The nitride layer is formed on the entire inner periphery of the second rivet hole (11b),
The ball bearing according to claim 1, wherein the inner periphery of said first rivet hole (11a) has a non-nitrided surface on which said nitrided layer is not formed.
前記第1環状部材(7a)および前記第2環状部材(7b)が、機械構造用炭素鋼、冷間圧造用炭素鋼、ステンレス鋼のいずれかで形成されている請求項1または2に記載の玉軸受。 3. The method according to claim 1 or 2, wherein the first annular member (7a) and the second annular member (7b) are made of one of carbon steel for machine structural use, carbon steel for cold heading, and stainless steel. ball bearings. 前記鋲(8)が、機械構造用炭素鋼、冷間圧造用炭素鋼、ステンレス鋼のいずれかで形成されている請求項1から3のいずれかに記載の玉軸受。 4. A ball bearing according to any one of claims 1 to 3, wherein said rivet (8) is made of one of carbon steel for machine structural use, carbon steel for cold heading, and stainless steel. 前記第1鋲穴(11a)の前記第2平板部(10b)の側とは反対側の開口縁に断面R状の第1だれ部(15)が形成され、
前記第1鋲穴(11a)の内周面は、軸方向に延びる筋状の模様をもつせん断面(16)とされ、
前記第1鋲穴(11a)の前記第2平板部(10b)の側の端部内周にテーパ状の第1面取り部(18a)が形成され、
前記第2鋲穴(11b)の前記第1平板部(10a)の側とは反対側の開口縁に断面R状の第2だれ部が形成され、
前記第2鋲穴(11b)の内周面は、軸方向に延びる筋状の模様をもつせん断面とされ、
前記第2鋲穴(11b)の前記第1平板部(10a)の側の端部内周にテーパ状の第2面取り部(18b)が形成されている請求項1から4のいずれかに記載の玉軸受。
A first recess (15) having an R-shaped cross section is formed at the opening edge of the first rivet hole (11a) opposite to the second flat plate portion (10b),
The inner peripheral surface of the first rivet hole (11a) is a sheared surface (16) having a striped pattern extending in the axial direction,
A tapered first chamfered portion (18a) is formed on the inner circumference of the end portion of the first rivet hole (11a) on the side of the second flat plate portion (10b),
A second sagging portion having an R-shaped cross section is formed at the opening edge of the second rivet hole (11b) on the side opposite to the first flat plate portion (10a),
The inner peripheral surface of the second rivet hole (11b) is a sheared surface having a striped pattern extending in the axial direction,
5. A tapered second chamfered portion (18b) is formed on the inner circumference of the end of the second rivet hole (11b) on the side of the first flat plate portion (10a) according to any one of claims 1 to 4. ball bearings.
前記鋲軸(12)の外周に、前記第1面取り部(18a)と前記第2面取り部(18b)とに同時に係合する環状突起(20)が形成されている請求項5に記載の玉軸受。 6. The ball according to claim 5, wherein an annular projection (20) is formed on the outer periphery of the rivet shaft (12) to engage with the first chamfered portion (18a) and the second chamfered portion (18b) at the same time. bearing.
JP2021153147A 2021-09-21 2021-09-21 ball bearing Active JP7212738B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021153147A JP7212738B1 (en) 2021-09-21 2021-09-21 ball bearing
CN202280060102.5A CN117916480A (en) 2021-09-21 2022-09-15 Ball bearing
PCT/JP2022/034532 WO2023048058A1 (en) 2021-09-21 2022-09-15 Ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021153147A JP7212738B1 (en) 2021-09-21 2021-09-21 ball bearing

Publications (2)

Publication Number Publication Date
JP7212738B1 true JP7212738B1 (en) 2023-01-25
JP2023044988A JP2023044988A (en) 2023-04-03

Family

ID=85014920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021153147A Active JP7212738B1 (en) 2021-09-21 2021-09-21 ball bearing

Country Status (3)

Country Link
JP (1) JP7212738B1 (en)
CN (1) CN117916480A (en)
WO (1) WO2023048058A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059617A (en) 2013-09-19 2015-03-30 Ntn株式会社 Ribbon cage for ball bearing, and ball bearing
JP6098720B2 (en) 2013-06-27 2017-03-22 日本精工株式会社 Manufacturing method of waveform cage and components before caulking of waveform cage and waveform cage
JP2017150584A (en) 2016-02-25 2017-08-31 日本精工株式会社 Ball bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098720B2 (en) 2013-06-27 2017-03-22 日本精工株式会社 Manufacturing method of waveform cage and components before caulking of waveform cage and waveform cage
JP2015059617A (en) 2013-09-19 2015-03-30 Ntn株式会社 Ribbon cage for ball bearing, and ball bearing
JP2017150584A (en) 2016-02-25 2017-08-31 日本精工株式会社 Ball bearing

Also Published As

Publication number Publication date
WO2023048058A1 (en) 2023-03-30
CN117916480A (en) 2024-04-19
JP2023044988A (en) 2023-04-03

Similar Documents

Publication Publication Date Title
JP2023082885A (en) ball bearing
EP2315958B1 (en) Method of manufacturing a split bearing ring
US9624976B2 (en) Method of manufacturing corrugated cage and corrugated cage
US20110091144A1 (en) Roller bearing cage, roller bearing, and method for producing roller bearing cage
EP2840268B1 (en) Method for manufacturing a ribbon cage
JP2606328Y2 (en) Resin gear with metal shaft
CN110892165B (en) Hub unit bearing, method for manufacturing hub unit bearing, automobile, and method for manufacturing automobile
JP2003083339A (en) Thrust bearing
JP7212738B1 (en) ball bearing
WO2023210576A1 (en) Ball bearing
JP2020193652A (en) Thrust roller bearing and manufacturing method of bearing ring of the same
WO2023149390A1 (en) Ball bearing
US10670075B2 (en) Thrust roller bearing
JP2019100475A (en) Shape holding unit for ball-bearing
JP7034875B2 (en) Waveform cage
JP2015044220A (en) Method for manufacturing waveform retainer and waveform retainer
JP4072326B2 (en) Rolling bearing manufacturing method and rolling bearing
US11708855B2 (en) Two-piece composite tapered roller bearing outer ring with interference fit
KR20240144947A (en) Ball bearing
JP2015045371A (en) Manufacturing method of corrugated cage and corrugated cage
JP4508751B2 (en) Thrust needle roller bearing
JP2020193646A (en) Thrust roller bearing and manufacturing method of bearing ring of the same
JP2004211835A (en) Thrust roller bearing
JP2008057682A (en) Thrust bearing manufacturing method and thrust bearing
JP4345529B2 (en) Manufacturing method of outer ring of shell type full complement roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221125

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230113

R150 Certificate of patent or registration of utility model

Ref document number: 7212738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150