以下、図面を参照して本願の開示するプラズマ処理装置、算出方法および算出プログラムの実施形態について詳細に説明する。本開示においては、プラズマ処理装置の具体例として、プラズマエッチングを行う装置を例にとり詳細に説明する。なお、本実施形態により、開示するプラズマ処理装置、算出方法および算出プログラムが限定されるものではない。
ところで、半導体ウエハ(以下「ウエハ」と呼ぶ。)に対してプラズマを用いてエッチング処理を行うプラズマ処理装置が知られている。プラズマ処理装置は、ウエハの周囲にフォーカスリングが設置される。プラズマ処理装置は、ウエハの周囲にフォーカスリングがあることにより、ウエハ周辺のプラズマ状態が均一になるため、ウエハ全面のエッチング特性を均一化することができる。しかし、フォーカスリングは、エッチングにより消耗して厚さが薄くなる。プラズマ処理装置は、フォーカスリングの消耗に伴いウエハ外周のエッチング特性が悪化する。このため、プラズマ処理装置では、フォーカスリングを定期的に交換する必要がある。
従来、プラズマ処理装置では、処理したウエハの枚数など過去の実績から交換時期を決めたり、外周のエッチング特性をモニターするウエハを定期的に処理してフォーカスリングを交換すべきか否かを判断している。
しかし、プラズマ処理装置は、異なるプロセスレシピでの処理を行われることがある。このため、プラズマ処理装置は、過去の実績にある程度マージンを持たせた交換時期を用いねばならならず、プラズマ処理装置の生産性が低下する。また、モニターするウエハを定期的に処理することもプラズマ処理装置の生産性を低下させる。
なお、フォーカスリングの消耗を例に問題を説明したが、プラズマ処理により消耗する消耗部品全般に同様の問題が発生する。そこで、プラズマ処理装置では、プラズマ処理により消耗する消耗部品の消耗度合を求める技術が期待されている。
(第1実施形態)
[プラズマ処理装置の構成]
最初に、実施形態に係るプラズマ処理装置10の構成について説明する。図1は、第1実施形態に係るプラズマ処理装置の概略的な構成の一例を示す断面図である。図1に示すプラズマ処理装置10は、容量結合型平行平板プラズマエッチング装置である。プラズマ処理装置10は、略円筒状の処理容器12を備えている。処理容器12は、例えば、アルミニウムから構成されている。また、処理容器12の表面は、陽極酸化処理が施されている。
処理容器12内には、載置台16が設けられている。載置台16は、静電チャック18および基台20を有する。静電チャック18の上面は、プラズマ処理の対象となる被処理体が載置される載置面とされている。本実施形態では、被処理体としてウエハWが静電チャック18の上面に載置される。基台20は、略円盤形状を有しており、主部が、例えばアルミニウムといった導電性の金属により構成されている。基台20は、下部電極を構成している。基台20は、支持部14によって支持されている。支持部14は、処理容器12の底部から延びる円筒状の部材である。
基台20には、整合器MU1を介して第1の高周波電源HFSが電気的に接続されている。第1の高周波電源HFSは、プラズマ生成用の高周波電力を発生する電源であり、27~100MHzの周波数、一例においては40MHzの高周波電力を発生する。これにより、基台20直上にプラズマが生成される。整合器MU1は、第1の高周波電源HFSの出力インピーダンスと負荷側(基台20側)の入力インピーダンスを整合させるための回路を有する。
また、基台20には、整合器MU2を介して第2の高周波電源LFSが電気的に接続されている。第2の高周波電源LFSは、ウエハWにイオンを引き込むための高周波電力(高周波バイアス電力)を発生して、当該高周波バイアス電力を基台20に供給する。これにより、基台20にバイアス電位が生じる。高周波バイアス電力の周波数は、400kHz~13.56MHzの範囲内の周波数であり、一例においては3MHzである。整合器MU2は、第2の高周波電源LFSの出力インピーダンスと負荷側(基台20側)の入力インピーダンスを整合させるための回路を有する。
基台20上には、静電チャック18が設けられている。静電チャック18は、クーロン力等の静電力によりウエハWを吸着し、当該ウエハWを保持する。静電チャック18は、セラミック製の本体部内に静電吸着用の電極E1が設けられている。電極E1には、スイッチSW1を介して直流電源22が電気的に接続されている。ウエハWを保持する吸着力は、直流電源22から印加される直流電圧の値に依存する。
載置台16には、プラズマ処理により消耗する消耗部品が載置される。例えば、載置台16は、静電チャック18上のウエハWの周囲に、消耗部品として、フォーカスリングFRが配置される。フォーカスリングFRは、プラズマ処理の均一性を向上させるために設けられている。フォーカスリングFRは、実行すべきプラズマ処理に応じて適宜選択される材料から構成されている。例えば、フォーカスリングFRは、シリコン、または石英により構成される。
基台20の内部には、冷媒流路24が形成されている。冷媒流路24には、処理容器12の外部に設けられたチラーユニットから配管26aを介して冷媒が供給される。冷媒流路24に供給された冷媒は、配管26bを介してチラーユニットに戻る。
処理容器12内には、上部電極30が設けられている。上部電極30は、載置台16の上方において、載置台16と対向配置されている。載置台16と上部電極30とは、互いに略平行に設けられている。
上部電極30は、絶縁性遮蔽部材32を介して、処理容器12の上部に支持されている。上部電極30は、電極板34と電極支持体36とを有する。電極板34は、処理空間Sに面しており、複数のガス吐出孔34aが形成されている。電極板34は、ジュール熱の少ない低抵抗の導電体または半導体により構成されている。上部電極30は、温度の制御が可能とされている。例えば、上部電極30は、不図示のヒーターなどの温調機構が設けられ、温度の制御が可能とされている。
電極支持体36は、電極板34を着脱自在に支持する。電極支持体36は、例えばアルミニウムといった導電性材料により構成されている。電極支持体36の内部には、ガス拡散室36aが設けられている。電極支持体36には、ガス吐出孔34aに連通する複数のガス通流孔36bがガス拡散室36aから下方に延びている。また、電極支持体36には、ガス拡散室36aに処理ガスを導くガス導入口36cが形成されている。ガス導入口36cには、ガス供給管38が接続されている。
ガス供給管38には、バルブ群42および流量制御器群44を介してガスソース群40が接続されている。バルブ群42は、複数の開閉バルブを有する。流量制御器群44は、マスフローコントローラといった複数の流量制御器を有する。また、ガスソース群40は、プラズマ処理に必要な複数種のガス用のガスソースを有する。ガスソース群40の複数のガスソースは、対応の開閉バルブおよび対応のマスフローコントローラを介してガス供給管38に接続されている。
プラズマ処理装置10では、ガスソース群40の複数のガスソースのうち選択された一以上のガスソースからの一以上のガスが、ガス供給管38に供給される。ガス供給管38に供給されたガスは、ガス拡散室36aに至り、ガス通流孔36bおよびガス吐出孔34aを介して処理空間Sに吐出される。
また、プラズマ処理装置10は、接地導体12aをさらに有する。接地導体12aは、略円筒状の接地導体であり、処理容器12の側壁から上部電極30の高さ位置よりも上方に延びるように設けられている。
また、プラズマ処理装置10では、処理容器12の内壁に沿ってデポシールド46が着脱自在に設けられている。また、デポシールド46は、支持部14の外周にも設けられている。デポシールド46は、処理容器12にエッチング副生物(デポ)が付着することを防止するものであり、アルミニウム材にY2O3等のセラミックスを被覆することにより構成されている。デポシールド46は、温度の制御が可能とされている。例えば、デポシールド46は、不図示のヒーターなどの温調機構が設けられ、温度の制御が可能とされている。
処理容器12の底部側においては、支持部14と処理容器12の内壁との間に排気プレート48が設けられている。排気プレート48は、例えば、アルミニウム材にY2O3等のセラミックスを被覆することにより構成されている。処理容器12は、排気プレート48の下方に排気口12eが設けられている。排気口12eには、排気管52を介して排気装置50が接続されている。排気装置50は、ターボ分子ポンプなどの真空ポンプを有する。排気装置50は、プラズマ処理を実施する際、処理容器12内を所望の真空度まで減圧する。また、処理容器12の側壁には、ウエハWの搬入出口12gが設けられている。搬入出口12gは、ゲートバルブ54により開閉可能となっている。
上記のように構成されたプラズマ処理装置10は、制御部100によって、その動作が統括的に制御される。制御部100は、例えば、コンピュータであり、プラズマ処理装置10の各部を制御する。プラズマ処理装置10は、制御部100によって、動作が統括的に制御される。
[載置台の構成]
次に、載置台16について詳細に説明する。図2は、第1実施形態に係る載置台を示す平面図である。上述したように、載置台16は、静電チャック18および基台20を有する。静電チャック18は、セラミックで形成され、上面が、ウエハWおよびフォーカスリングFRを載置する載置領域18aとされている。載置領域18aは、平面視において略円形の領域とされている。図1に示すように、静電チャック18は、ウエハWが配置される領域に静電吸着用の電極E1が設けられている。電極E1は、スイッチSW1を介して直流電源22に接続されている。
また、図1に示すように、載置領域18a内、且つ、電極E1の下方には、複数のヒーターHTが設けられている。載置領域18aは、複数の分割領域75に分割され、それぞれの分割領域75にヒーターHTが設けられている。例えば、載置領域18aは、図2に示すように、中央の円状の分割領域75a及び環状の分割領域75bに分割されている。分割領域75a、75bには、それぞれヒーターHTが設けられている。例えば、分割領域75aには、ヒーターHT1が設けられている。分割領域75bには、ヒーターHT2が設けられている。分割領域75aには、ウエハWが配置される。分割領域75bには、フォーカスリングFRが配置される。本実施形態では、載置台16の面内を2つの分割領域75a、75bに分けて温度制御する場合を例に説明するが、分割領域75の数は2つに限らず、3つ以上でもあってもよい。
ヒーターHTは、不図示の配線を介して、図1に示す、ヒーター電源HPに個別に接続されている。ヒーター電源HPは、制御部100から制御の元、各ヒーターHTに個別に調整された電力を供給する。これにより、各ヒーターHTが発する熱が個別に制御され、載置領域18a内の各分割領域75の温度が個別に調整される。
ヒーター電源HPには、各ヒーターHTへ供給する供給電力を検出する電力検出部PDが設けられている。なお、電力検出部PDは、ヒーター電源HPとは別に、ヒーター電源HPから各ヒーターHTへの電力が流れる配線に設けてもよい。電力検出部PDは、各ヒーターHTへ供給する供給電力を検出する。例えば、電力検出部PDは、各ヒーターHTへ供給する供給電力として、電力量[W]を検出する。ヒーターHTは、電力量に応じて発熱する。このため、ヒーターHTへ供給する電力量は、ヒータパワーを表す。電力検出部PDは、検出した各ヒーターHTへの供給電力を示す電力データを制御部100に通知する。
また、載置台16は、載置領域18aの各分割領域75に、それぞれヒーターHTの温度が検出可能な不図示の温度センサが設けられている。温度センサは、ヒーターHTとは別に温度を測定する素子であってもよい。また、温度センサは、ヒーターHTへの電力が流れる配線に配置され、温度上昇に応じて電気抵抗が増大する性質を利用して、温度を検出する素子であってもよい。各温度センサにより検出されたセンサ値は、温度測定器TDに送られる。温度測定器TDは、各センサ値から載置領域18aの各分割領域75の温度を測定する。温度測定器TDは、載置領域18aの各分割領域75の温度を示す温度データを制御部100に通知する。
さらに、図示しない伝熱ガス供給機構およびガス供給ラインによって伝熱ガス、例えばHeガスが静電チャック18の上面とウエハWの裏面との間に供給されてもよい。
[制御部の構成]
次に、制御部100について詳細に説明する。図3は、第1実施形態に係るプラズマ処理装置を制御する制御部100の概略的な構成を示したブロック図である。制御部100は、例えば、コンピュータであり、外部インターフェース101と、プロセスコントローラ102と、ユーザインターフェース103と、記憶部104とが設けられている。
外部インターフェース101は、プラズマ処理装置10の各部と通信可能とされ、各種のデータを入出力する。例えば、外部インターフェース101には、電力検出部PDから各ヒーターHTへの供給電力を示す電力データが入力する。また、外部インターフェース101には、温度測定器TDから載置領域18aの各分割領域75の温度を示す温度データが入力する。また、外部インターフェース101は、各ヒーターHTへ供給する供給電力を制御する制御データをヒーター電源HPへ出力する。
プロセスコントローラ102は、CPU(Central Processing Unit)を備えプラズマ処理装置10の各部を制御する。
ユーザインターフェース103は、工程管理者がプラズマ処理装置10を管理するためにコマンドの入力操作を行うキーボードや、プラズマ処理装置10の稼動状況を可視化して表示するディスプレイ等から構成されている。
記憶部104には、プラズマ処理装置10で実行される各種処理をプロセスコントローラ102の制御にて実現するための制御プログラム(ソフトウエア)や、処理条件データ等が記憶されたレシピが格納されている。また、記憶部104には、プラズマ処理を行う上での装置やプロセスに関するパラメータ等が格納されている。なお、制御プログラムやレシピ、パラメータは、コンピュータで読み取り可能なコンピュータ記録媒体(例えば、ハードディスク、DVDなどの光ディスク、フレキシブルディスク、半導体メモリ等)に記憶されていてもよい。また、制御プログラムやレシピ、パラメータは、他の装置に記憶され、例えば専用回線を介してオンラインで読み出して利用されてもよい。
プロセスコントローラ102は、プログラムやデータを格納するための内部メモリを有し、記憶部104に記憶された制御プログラムを読み出し、読み出した制御プログラムの処理を実行する。プロセスコントローラ102は、制御プログラムが動作することにより各種の処理部として機能する。例えば、プロセスコントローラ102は、ヒーター制御部102aと、計測部102bと、パラメータ算出部102cと、設定温度算出部102dと、アラート部102eの機能を有する。なお、本実施形態では、プロセスコントローラ102が、各種の処理部として機能する場合を例に説明するが、これに限定されるものではない。例えば、ヒーター制御部102aと、計測部102b、パラメータ算出部102c、設定温度算出部102d、アラート部102eの機能を複数のコントローラで分散して実現してもよい。
ところで、プラズマ処理では、温度によって処理の進行が変化する。例えば、プラズマエッチングでは、ウエハWやフォーカスリングFRの温度によってエッチングの進行速度が変化する。そこで、プラズマ処理装置10では、各ヒーターHTによって、ウエハWやフォーカスリングFRの温度を目標温度に制御することが考えられる。
ここで、ウエハWやフォーカスリングFRの温度に影響を与えるエネルギーの流れを説明する。以下では、フォーカスリングFRの温度に影響を与えるエネルギーの流れを説明するが、ウエハWの温度に影響を与えるエネルギーの流れも同様である。図4は、フォーカスリングの温度に影響を与えるエネルギーの流れを模式的に示す図である。図4には、フォーカスリングFRや、静電チャック(ESC)18を含む載置台16が簡略化して示されている。図4の例は、静電チャック18の載置領域18aの1つの分割領域75(分割領域75b)について、フォーカスリングFRの温度に影響を与えるエネルギーの流れを示している。載置台16は、静電チャック18および基台20を有する。静電チャック18と基台20は、接着層19により接着されている。静電チャック18の内部には、ヒーターHT(ヒーターHT2)が設けられている。基台20の内部には、冷媒が流れる冷媒流路24が形成されている。
ヒーターHT2は、ヒーター電源HPから供給される供給電力に応じて発熱し、温度が上昇する。図4では、ヒーターHT2へ供給される供給電力をヒータパワーPhとして示している。ヒーターHT2では、ヒータパワーPhを静電チャック18のヒーターHT2が設けられている領域の面積Aで割った単位面積当たりの発熱量(熱流束)qhが生じる。
プラズマ処理装置10では、上部電極30やデポシールド46などの処理容器12の内部パーツの温度を制御している場合、内部パーツから輻射熱が発生する。例えば、上部電極30やデポシールド46の温度をデポの付着を抑制するために高温に制御している場合、フォーカスリングFRには、上部電極30やデポシールド46から輻射熱が入熱する。図4では、上部電極30やデポシールド46からフォーカスリングFRへの輻射熱qrとして示している。
また、プラズマ処理を行っている場合、フォーカスリングFRには、プラズマから入熱する。図4では、プラズマからフォーカスリングFRへの入熱量をフォーカスリングFRの面積で割った単位面積当たりのプラズマからの熱流束qpとして示している。フォーカスリングFRは、プラズマからの熱流束qpの入熱や輻射熱qrの入熱により、温度が上昇する。
輻射熱による入熱は、処理容器12の内部パーツの温度の温度に比例する。例えば、輻射熱による入熱は、上部電極30やデポシールド46の温度の4乗に比例する。プラズマからの入熱は、主にフォーカスリングFRへの照射されるプラズマ中のイオンの量と、プラズマ中のイオンをフォーカスリングFRに引き込むためのバイアス電位との積に比例することが知られている。フォーカスリングFRへの照射されるプラズマ中のイオンの量は、プラズマの電子密度に比例する。プラズマの電子密度は、プラズマの生成で印加する第1の高周波電源HFSからの高周波電力に比例する。また、プラズマの電子密度は、処理容器12内の圧力に依存する。プラズマ中のイオンをフォーカスリングFRに引き込むためのバイアス電位は、バイアス電位の発生で印加する第2の高周波電源LFSからの高周波電力に比例する。また、プラズマ中のイオンをフォーカスリングFRに引き込むためのバイアス電位は、処理容器12内の圧力に依存する。なお、高周波電力が載置台16に印加されていない場合、プラズマが生成された時に生じるプラズマの電位(プラズマポテンシャル)と載置台16の電位差によって、イオンが載置台16へ引き込まれる。
また、プラズマからの入熱は、プラズマの発光による加熱やプラズマ中の電子やラジカルによるフォーカスリングFRへの照射、イオンとラジカルによるフォーカスリングFR上の表面反応などが含まれる。これらの成分も高周波電源のパワーや処理容器12内の圧力に依存する。プラズマからの入熱は、その他、プラズマ生成に関わる装置パラメータ、例えば、載置台16と上部電極30との間隔距離や処理空間Sに供給されるガス種に依存する。
フォーカスリングFRに伝わった熱は、静電チャック18に伝わる。ここで、静電チャック18には、フォーカスリングFRの熱が全て伝わるわけではなく、フォーカスリングFRと静電チャック18との接触度合など、熱の伝わり難さに応じて静電チャック18に熱が伝わる。熱の伝わり難さ、すなわち熱抵抗は、熱の伝熱方向に対する断面積に反比例する。このため、図4では、フォーカスリングFRから静電チャック18の表面への熱の伝わり難さを、フォーカスリングFRと静電チャック18の表面間の単位面積当たりの熱抵抗Rth・Aとして示している。なお、Aは、ヒーターHT2が設けられている領域(分割領域75b)の面積である。Rthは、ヒーターHT2が設けられている領域全体における熱抵抗である。また、図4では、フォーカスリングFRから静電チャック18表面への入熱量を、フォーカスリングFRから静電チャック18表面への単位面積当たりの熱流束qとして示している。なお、熱抵抗Rth・Aは、静電チャック18の表面状態、フォーカスリングFRの保持で直流電源22から印加される直流電圧の値、および静電チャック18の上面とフォーカスリングFRの裏面との間に供給される伝熱ガスの圧力に依存する。また、熱抵抗Rth・Aは、その他、熱抵抗もしくは熱伝導率に関与する装置パラメータにも依存する。
静電チャック18の表面に伝わった熱は、静電チャック18の温度を上昇させ、さらに、ヒーターHT2に伝わる。図4では、静電チャック18表面からヒーターHT2への入熱量を、静電チャック18表面からヒーターHT2への単位面積当たりの熱流束qcとして示している。
一方、基台20は、冷媒流路24を流れる冷媒により冷却され、接触する静電チャック18を冷却する。このとき、図4では、接着層19を通過して静電チャック18の裏面から基台20への抜熱量を、静電チャック18の裏面から基台20への単位面積当たりの熱流束qsusとして示している。これにより、ヒーターHT2は、抜熱によって冷却され、温度が低下する。
ところで、フォーカスリングFRは、エッチングにより消耗して厚さが薄くなる。プラズマ処理装置10は、フォーカスリングFRが消耗して厚さが薄くなると、プラズマ処理中のヒーターHTへの入熱量が変化する。
ここで、フォーカスリングFRが消耗によるヒーターHT2への入熱量が変化を説明する。図5は、消耗前のフォーカスリングの場合のエネルギーの流れを模式的に示す図である。なお、輻射熱の入熱は、影響が小さいため、省略する。
ヒーターHT2の温度が一定となるように制御している場合、ヒーターHT2の位置において、ヒーターHT2に入熱する熱量およびヒーターHT2で発生する発熱量の総和と、ヒーターHT2から抜熱される抜熱量とが等しい状態となる。例えば、プラズマを点火して無い未点火状態では、ヒーターHT2で発生する発熱量の総和と、ヒーターHT2から抜熱される抜熱量とが等しい状態となる。図5において、「未点火状態」とした例では、基台20から冷却により、ヒーターHT2から「10」の熱量が抜熱されている。ヒーターHT2の温度が一定となるように制御している場合、ヒーターHT2には、ヒーター電源HPからヒータパワーPhにより「10」の熱量が発生する。
一方、例えば、プラズマを点火した点火状態では、ヒーターHT2には、静電チャック18を介して、プラズマからも入熱する。点火状態には、過度状態と定常状態とがある。過度状態は、例えば、フォーカスリングFRや静電チャック18に対する入熱量が抜熱量よりも多く、フォーカスリングFRや静電チャック18の温度が経時的に上昇傾向となる状態である。定常状態は、フォーカスリングFRや静電チャック18の入熱量と抜熱量が等しくなり、フォーカスリングFRや静電チャック18の温度に経時的な上昇傾向がなくなり、温度が略一定となった状態である。
点火状態の場合、フォーカスリングFRは、定常状態となるまで、プラズマからの入熱により温度が上昇する。ヒーターHT2には、静電チャック18を介してフォーカスリングFRから熱が伝わる。上述のように、ヒーターHT2の温度が一定となるように制御している場合、ヒーターHT2に入熱される熱量とヒーターHT2から抜熱される熱量は、等しい状態となる。ヒーターHT2は、ヒーターHT2の温度を一定に維持するために必要な熱量が低下する。このため、ヒーターHT2への供給電力が低下する。
例えば、図5において、「過度状態」とした例では、プラズマからフォーカスリングFRへ「5」の熱量が伝わる。フォーカスリングFRに伝わった熱は、静電チャック18に伝わる。また、フォーカスリングFRの温度が定常状態ではない場合、フォーカスリングFRに伝わった熱は、一部がフォーカスリングFRの温度の上昇に作用する。フォーカスリングFRの温度上昇に作用する熱量は、フォーカスリングFRの熱容量に依存する。このため、フォーカスリングFRに伝わった「5」の熱量のうち、「3」の熱量がフォーカスリングFRから静電チャック18の表面へ伝わる。静電チャック18の表面に伝わった熱は、ヒーターHT2に伝わる。また、静電チャック18の温度が定常状態ではない場合、静電チャック18の表面に伝わった熱は、一部が静電チャック18の温度の上昇に作用する。静電チャック18の温度上昇に作用する熱量は静電チャック18の熱容量に依存する。このため、静電チャック18の表面に伝わった「3」の熱量のうち、「2」の熱量がヒーターHT2に伝わる。このため、ヒーターHT2の温度が一定となるように制御している場合、ヒーターHT2には、ヒーター電源HPからヒータパワーPhにより「8」の熱量が供給される。
また、図5Bにおいて、「定常状態」とした例では、プラズマからフォーカスリングFRへ「5」の熱量が伝わる。フォーカスリングFRに伝わった熱は、静電チャック18に伝わる。また、フォーカスリングFRの温度が定常状態である場合、フォーカスリングFRは、入熱量と出熱量が等しい状態となっている。このため、プラズマからフォーカスリングFRに伝わった「5」の熱量がフォーカスリングFRから静電チャック18の表面へ伝わる。静電チャック18の表面に伝わった熱は、ヒーターHT2に伝わる。静電チャック18の温度が定常状態である場合、静電チャック18は、入熱量と出熱量が等しい状態となっている。このため、静電チャック18の表面に伝わった「5」の熱量がヒーターHT2に伝わる。このため、ヒーターHT2の温度が一定となるように制御している場合、ヒーターHT2には、ヒーター電源HPからヒータパワーPhにより「5」の熱量が供給される。
図6は、消耗後のフォーカスリングの場合のエネルギーの流れを模式的に示す図である。なお、輻射熱の入熱は、影響が小さいため、省略する。フォーカスリングFRは、エッチングにより消耗したことにより、図5よりも厚さが薄くなっている。
未点火状態では、フォーカスリングFRが消耗して厚さが薄くなった場合でも、図5に示した消耗前の場合とエネルギーの流れは同様となる。図6において、「未点火状態」とした例では、基台20から冷却により、ヒーターHT2から「10」の熱量が抜熱されている。ヒーターHT2の温度が一定となるように制御している場合、ヒーターHT2には、ヒーター電源HPからヒータパワーPhにより「10」の熱量が発生する。
一方、点火状態では、ヒーターHT2には、静電チャック18を介して、プラズマからも入熱する。フォーカスリングFRが消耗して厚さが薄くなった場合、フォーカスリングFRの加熱時間が短縮される。
例えば、図6において、「過度状態」とした例では、プラズマからフォーカスリングFRへ「5」の熱量が伝わる。フォーカスリングFRに伝わった熱は、静電チャック18に伝わる。また、フォーカスリングFRの温度が定常状態ではない場合、フォーカスリングFRに伝わった熱は、一部がフォーカスリングFRの温度の上昇に作用する。例えば、フォーカスリングFRが消耗して厚さが薄くなった場合、フォーカスリングFRに伝わった「5」の熱量のうち、「4」の熱量がフォーカスリングFRから静電チャック18の表面へ伝わる。静電チャック18の表面に伝わった熱は、ヒーターHT2に伝わる。また、静電チャック18の温度が定常状態ではない場合、静電チャック18の表面に伝わった熱は、一部が静電チャック18の温度の上昇に作用する。静電チャック18の温度上昇に作用する熱量は静電チャック18の熱容量に依存する。このため、静電チャック18の表面に伝わった「4」の熱量のうち、「3」の熱量がヒーターHT2に伝わる。このため、ヒーターHT2の温度が一定となるように制御している場合、ヒーターHT2には、ヒーター電源HPからヒータパワーPhにより「7」の熱量が供給される。
また、図6において、「定常状態」とした例では、プラズマからフォーカスリングFRへ「5」の熱量が伝わる。フォーカスリングFRに伝わった熱は、静電チャック18に伝わる。また、フォーカスリングFRの温度が定常状態である場合、フォーカスリングFRは、入熱量と出熱量が等しい状態となっている。このため、プラズマからフォーカスリングFRに伝わった「5」の熱量がフォーカスリングFRから静電チャック18の表面へ伝わる。静電チャック18の表面に伝わった熱は、ヒーターHT2に伝わる。静電チャック18の温度が定常状態である場合、静電チャック18は、入熱量と出熱量が等しい状態となっている。このため、静電チャック18の表面に伝わった「5」の熱量がヒーターHT2に伝わる。このため、ヒーターHT2の温度が一定となるように制御している場合、ヒーターHT2には、ヒーター電源HPからヒータパワーPhにより「5」の熱量が供給される。
図5および図6に示したように、ヒーターHT2への供給電力は、未点火状態よりも点火状態の方が低下する。また、点火状態では、ヒーターHT2への供給電力が定常状態となるまで低下する。また、過度状態では、プラズマからの入熱量が同じでも、フォーカスリングFRの厚さによってヒーターHT2への供給電力が変化する。
なお、図5および図6に示したように、ヒーターHT2の温度が一定となるように制御している場合、「未点火状態」、「過度状態」、「定常状態」のいずれの状態であっても、基台20から冷却により、ヒーターHT2から「10」の熱量が抜熱されている。すなわち、ヒーターHT2から基台20の内部に形成された冷媒流路24に供給される冷媒に向かう単位面積当たりの熱流束qsusは、常に一定となり、ヒーターHT2から冷媒までの温度勾配も常に一定である。そのため、ヒーターHT2の温度が一定となるように制御するために用いられる温度センサは、必ずしもヒーターHT2に直接取り付ける必要はない。例えば、静電チャック18の裏面、接着層19の中、基台20の内部など、ヒーターHT2と冷媒までの間であれば、ヒーターHT2と温度センサ間の温度差も常に一定であり、ヒーターHT2温度とセンサの間にある材質が有する熱伝導率、熱抵抗などを用いて温度センサとヒーターHT2の間の温度差(ΔT)を算出し、温度センサで検出される温度の値に温度差(ΔT)を加算することによって、ヒーターHT2の温度として出力することが可能であり、実際のヒーターHT2の温度が一定となるように制御することができる。
図7は、フォーカスリングの温度とヒーターへの供給電力の変化の一例を示す図である。図7の例は、ヒーターHT2の温度が一定となるように制御し、プラズマを点火して無い未点火状態からプラズマを点火して、フォーカスリングFRの温度とヒーターHT2への供給電力を測定した結果の一例を示している。図7の実線は、新品(消耗前)のフォーカスリングFRの場合のヒーターHT2への供給電力の変化を示している。図7の破線は、新品時よりも厚さが薄くなった消耗後のフォーカスリングFRの場合のヒーターHT2への供給電力の変化を示している。
図7の期間T1は、プラズマを点火して無い未点火状態である。期間T1では、ヒーターHT2への供給電力が一定となっている。図7の期間T2は、プラズマを点火した点火状態であり、過渡状態である。期間T2では、ヒーターHT2への供給電力が低下する。また、期間T2では、フォーカスリングFRの温度が一定の温度まで上昇する。図7の期間T3は、プラズマを点火した点火状態である。期間T3では、フォーカスリングFRの温度は一定であり、定常状態となっている。静電チャック18も定常状態となると、ヒーターHT2への供給電力は、略一定となり、低下する傾向の変動が安定する。
図7の期間T2に示される過度状態でのヒーターHT2への供給電力の低下の傾向は、プラズマからフォーカスリングFRへの入熱量や、フォーカスリングFRと静電チャック18の表面間の熱抵抗、フォーカスリングFRの厚さなどによって変化する。
このように、ヒーターHT2の温度を一定に制御している場合、ヒータパワーPhは、プラズマからフォーカスリングFRへの入熱量や、フォーカスリングFRと静電チャック18の表面間の熱抵抗、フォーカスリングFRの厚さよって変化する。よって、図7に示される期間T2のヒーターHT2への供給電力のグラフは、プラズマからフォーカスリングFRへの入熱量や、フォーカスリングFRと静電チャック18の表面間の熱抵抗、フォーカスリングFRの厚さをパラメータとしてモデル化できる。すなわち、期間T2のヒーターHT2への供給電力の変化は、プラズマからフォーカスリングFRへの入熱量や、フォーカスリングFRと静電チャック18の表面間の熱抵抗、フォーカスリングFRの厚さをパラメータとして、演算式によりモデル化できる。
本実施形態では、図6の期間T2のヒーターHT2への供給電力の変化を単位面積当たりの式としてモデル化する。例えば、プラズマからの熱流束があるときの単位面積当たりのヒーターHT2からの発熱量qhは、以下の式(2)のように表せる。プラズマからの熱流束がないときの定常状態での単位面積当たりのヒーターHT2からの発熱量qh0は、以下の式(3)のように表せる。静電チャック18の表面とヒーター間の単位面積当たりの熱抵抗Rthc・Aは、以下の式(4)のように表せる。熱流束qpおよび熱抵抗Rth・Aをパラメータとし、a1、a2、a3、λ1、λ2、τ1、τ2を以下の式(5)-(11)のように表した場合、発熱量qhは、以下の式(1)のように表せる。
ここで、
Phは、プラズマからの熱流束があるときのヒータパワー[W]である。
Ph0は、プラズマからの熱流束がないときの定常状態でのヒータパワー[W]である。
qhは、プラズマからの熱流束があるときの単位面積当たりのヒーターHT2からの発熱量[W/m2]である。
qh0は、プラズマからの熱流束がないときの定常状態での単位面積当たりのヒーターHT2からの発熱量[W/m2]である。
qpは、プラズマからフォーカスリングFRへの単位面積当たりの熱流束[W/m2]である。
Rth・Aは、フォーカスリングFRと静電チャック18の表面間の単位面積当たりの熱抵抗[K・m2/W]である。
Rthc・Aは、静電チャック18の表面とヒーター間の単位面積当たりの熱抵抗[K・m2/W]である。
Aは、ヒーターHT2設けられた分割領域75(分割領域75b)の面積[m2]である。
ρFRは、フォーカスリングFRの密度[kg/m3]である。
CFRは、フォーカスリングFRの単位面積当たりの熱容量[J/K・m2]である。
zFRは、フォーカスリングFRの厚さ[m]である。
ρcは、静電チャック18を構成するセラミックの密度[kg/m3]である。
Ccは、静電チャック18を構成するセラミックの単位面積当たりの熱容量[J/K・m2]である。
zcは、静電チャック18の表面からヒーターHT2までの距離[m]である。
κcは、静電チャック18を構成するセラミックの熱伝導率[W/K・m]である。
tは、プラズマを点火してからの経過時間[sec]である。
式(5)に示したa1について、1/a1がフォーカスリングFRの温まり難さを示す時定数となる。また、式(6)に示したa2について、1/a2が静電チャック18の熱の入り難さ、温まり難さを示す時定数となる。また、式(7)に示したa3について、1/a3が静電チャック18の熱の浸透し難さ、温まり難さを示す時定数となる。
フォーカスリングFRの密度ρFR、フォーカスリングFRの単位面積当たりの熱容量CFRは、フォーカスリングFRの実際の構成からそれぞれ予め定まる。ヒーターHT2の面積A、静電チャック18を構成するセラミックの密度ρc、および、静電チャック18を構成するセラミックの単位面積当たりの熱容量Ccは、プラズマ処理装置10の実際の構成からそれぞれ予め定まる。静電チャック18の表面からヒーターHT2までの距離zc、および、静電チャック18を構成するセラミックの熱伝導κcも、プラズマ処理装置10の実際の構成からそれぞれ予め定まる。Rthc・Aは、熱伝導κc、距離zcから式(4)により予め定まる。
フォーカスリングFRの厚さzFRは、新品のフォーカスリングFRの場合、特定の値に定まるが、エッチングにより消耗して値が変化する。よって、消耗している場合は、フォーカスリングFRの厚さzFRも、パラメータとなる。
プラズマ処理装置10は、様々なプロセスレシピでのプラズマ処理を行われることがある。プラズマ処理の際のプラズマからフォーカスリングFRへの入熱量や、フォーカスリングFRと静電チャック18の表面間の熱抵抗は、以下のように求めることができる。
例えば、プラズマ処理装置10は、新品のフォーカスリングFRを配置してプラズマ処理を実行し、プラズマ処理中のヒーターHT2のヒータパワーPh0を計測する。
プラズマを点火してからの経過時間tごとのプラズマからの熱流束があるときのヒータパワーPh、および、プラズマからの熱流束がないときの定常状態でのヒータパワーPh0は、プラズマ処理装置10での計測結果から求めることができる。そして、式(2)に示すように、求めたヒータパワーPhをヒーターHT2の面積Aで除算することによって、プラズマからの熱流束があるときの単位面積当たりのヒーターHT2からの発熱量qhを求めることができる。また、式(3)に示すように、求めたヒータパワーPh0をヒーターHT2の面積Aで除算することによって、プラズマからの熱流束がないときの定常状態での単位面積当たりのヒーターHT2からの発熱量qh0を求めることができる。フォーカスリングFRの厚さzFRは、新品のフォーカスリングFRの場合、新品のフォーカスリングFRの厚さの値を用いことができる。新品のフォーカスリングFRの厚さは、ユーザインターフェース103等から入力させて記憶部104に記憶させ、記憶部104に記憶された値を用いてもよい。また、新品のフォーカスリングFRの厚さは、他の計測装置で計測された値を、ネットワーク等を介して取得してもよい。
そして、熱流束qp、および、熱抵抗Rth・Aは、上記の式(1)-(11)を算出モデルとして用いて、計測結果のフィッティングを行うことにより、求めることができる。
すなわち、プラズマ処理装置10は、新品のフォーカスリングFRなど、フォーカスリングFRの厚さが定まる場合、計測結果を用いて、式(1)-(11)に対してフィッティングを行うことにより、熱流束qpおよび熱抵抗Rth・Aを求めることができる。
なお、図5および図6の定常状態は、未点火状態から、プラズマからフォーカスリングFRへの入熱分が、そのままヒーターHT2に入熱として増加している。このため、プラズマからフォーカスリングFRへの入熱量は、図7の期間T1に示した未点火状態の供給電力と期間T3に示した定常状態の供給電力の値の差から算出してもよい。例えば、熱流束qpは、以下の(12)式のように、プラズマからの熱流束がないとき(未点火状態)のヒータパワーPh0と期間T3に示した定常状態のヒータパワーPhとの差を単位面積当たりに換算した値から算出できる。また、熱流束qpは、以下の(12)式のように、単位面積当たりのヒーターHT2からの発熱量qh0と、単位面積当たりのヒーターHT2からの発熱量qhとの差から算出できる。
qp=(Ph0-Ph)/A=qh0-qh (12)
このように、プラズマ処理の際のプラズマからフォーカスリングFRへの入熱量や、フォーカスリングFRと静電チャック18の表面間の熱抵抗が求まる。プラズマ処理装置10は、搬入出される各ウエハWに同様のプラズマ処理を実施する。この場合、各プラズマ処理でのプラズマからフォーカスリングFRへの入熱量や、フォーカスリングFRと静電チャック18の表面間の熱抵抗は、同一と見なすことができる。入熱量や熱抵抗が求まっている場合、フォーカスリングFRの厚さzFRは、以下のように求めることができる。
例えば、プラズマ処理装置10は、プラズマ処理を実行し、プラズマ処理中のヒーターHT2のヒータパワーPh0を計測する。
プラズマを点火してからの経過時間tごとのプラズマからの熱流束があるときのヒータパワーPh、および、プラズマからの熱流束がないときの定常状態でのヒータパワーPh0は、プラズマ処理装置10での計測結果から求めることができる。そして、式(2)に示すように、求めたヒータパワーPhをヒーターHT2の面積Aで除算することによって、プラズマからの熱流束があるときの単位面積当たりのヒーターHT2からの発熱量qhを求めることができる。また、式(3)に示すように、求めたヒータパワーPh0をヒーターHT2の面積Aで除算することによって、プラズマからの熱流束がないときの定常状態での単位面積当たりのヒーターHT2からの発熱量qh0を求めることができる。熱流束qp、および、熱抵抗Rth・Aは、例えば、新品のフォーカスリングFRを用いて求めた値を用いる。
そして、フォーカスリングFRの厚さzFRは、上記の式(1)-(11)を算出モデルとして用いて、計測結果のフィッティングを行うことにより、求めることができる。
すなわち、プラズマ処理装置10は、熱流束qp、および、熱抵抗Rth・Aが定まっている場合、計測結果を用いて、式(1)-(11)に対してフィッティングを行うことにより、フォーカスリングFRの厚さzFRを求めることができる。
また、図7に示される期間T2のフォーカスリングFRの温度のグラフも、プラズマからフォーカスリングFRへの入熱量や、フォーカスリングFRと静電チャック18の表面間の熱抵抗、フォーカスリングFRの厚さをパラメータとしてモデル化できる。本実施形態では、期間T2のフォーカスリングFRの温度の変化を単位面積当たりの式としてモデル化する。例えば、熱流束qp、熱抵抗Rth・Aおよび厚さzFRをパラメータとし、式(5)-(11)に示したa1、a2、a3、λ1、λ2、τ1、τ2を用いた場合、フォーカスリングFRの温度TFRは、以下の式(13)のように表せる。
ここで、
TFRは、フォーカスリングFRの温度[℃]である。
Thは、一定に制御したヒーターHT2の温度[℃]である。
ヒーターの温度Thは、実際にフォーカスリングFRの温度を一定に制御した際の条件から求めることができる。
熱流束qp、熱抵抗Rth・A、および、厚さzFRが求まった場合、フォーカスリングFRの温度TFRは、式(13)から算出できる。
経過時間tが、式(10)、(11)に示した時定数τ1、τ2より十分に長い場合、式(13)は、以下の式(14)のように省略できる。すなわち、図7の期間T3である定常状態に移行した後のフォーカスリングFRの温度TFRが目標温度となるヒーターHT2の温度Thを算出する場合、式(13)は、式(14)のように表せる。
例えば、式(14)により、ヒーターの温度Th、熱流束qp、熱抵抗Rth・A、Rthc・AからフォーカスリングFRの温度TFRを求めることができる。
図3に戻る。ヒーター制御部102aは、各ヒーターHTの温度を制御する。例えば、ヒーター制御部102aは、各ヒーターHTへの供給電力を指示する制御データをヒーター電源HPへ出力して、ヒーター電源HPから各ヒーターHTへ供給する供給電力を制御することにより、各ヒーターHTの温度を制御する。
プラズマ処理の際、ヒーター制御部102aには、各ヒーターHTの目標とする設定温度が設定される。例えば、ヒーター制御部102aには、載置領域18aの分割領域75ごとに、目標とする温度が、当該分割領域75のヒーターHTの設定温度として設定される。この目標とする温度は、例えば、プラズマエッチングの精度が最も良好となる温度である。
ヒーター制御部102aは、プラズマ処理の際、各ヒーターHTが設定された設定温度となるよう各ヒーターHTへの供給電力を制御する。例えば、ヒーター制御部102aは、外部インターフェース101に入力する温度データが示す載置領域18aの各分割領域75の温度を、分割領域75ごとに、当該分割領域75の設定温度と比較する。ヒーター制御部102aは、比較結果を用いて、設定温度に対して温度が低い分割領域75、および、設定温度に対して温度が高い分割領域75を特定する。ヒーター制御部102aは、設定温度に対して温度が低い分割領域75に対する供給電力を増加させ、設定温度に対して温度が高い分割領域75に対する供給電力を減少させる制御データをヒーター電源HPへ出力する。
計測部102bは、各ヒーターHTへの供給電力を計測する。本実施形態では、計測部102bは、外部インターフェース101に入力する電力データが示すヒーターHT2への供給電力を用いて、ヒーターHT2への供給電力を計測する。例えば、計測部102bは、ヒーター制御部102aにより、ヒーターHT2の温度が一定となるようヒーターHT2への供給電力を制御した状態で、プラズマ処理を実施して、ヒーターHT2への供給電力を計測する。例えば、計測部102bは、プラズマ処理の開始前のプラズマが未点火状態でのヒーターHT2への供給電力を計測する。また、計測部102bは、プラズマを点火してからヒーターHT2への供給電力が低下する傾向の変動が安定するまでの過渡状態でのヒーターHT2への供給電力を計測する。また、計測部102bは、プラズマを点火した後、ヒーターHT2への供給電力の低下がなくなって安定した定常状態でのヒーターHT2への供給電力を計測する。未点火状態でのヒーターHT2への供給電力は、少なくとも1つ計測されていればよく、複数回計測して平均値を未点火状態の供給電力としてもよい。過渡状態および定常状態でのヒーターHT2への供給電力は、2回以上計測されていればよい。供給電力を計測する計測タイミングは、供給電力が低下する傾向が大きいタイミングを含むことが好ましい。また、計測タイミングは、計測回数が少ない場合、所定期間以上離れていることが好ましい。本実施形態では、計測部102bは、プラズマ処理の期間中、所定周期(例えば、0.1秒周期)でヒーターHT2への供給電力を計測する。これにより、過渡状態および定常状態でのヒーターHT2への供給電力が多数計測される。
計測部102bは、所定のサイクルで、未点火状態と、過渡状態のヒーターHT2への供給電力を計測する。例えば、計測部102bは、フォーカスリングFRが交換され、消耗していない新品のフォーカスリングFRとウエハWを載置台16に載置してプラズマ処理を行う際に、未点火状態と、過渡状態のヒーターHT2への供給電力を計測する。また、計測部102bは、ウエハWが交換され、交換されたウエハWを載置台16に載置してプラズマ処理を行う際に、毎回、未点火状態と、過渡状態のヒーターHT2への供給電力を計測する。なお、例えば、パラメータ算出部102cは、プラズマ処理ごとに、未点火状態と、過渡状態のヒーターHT2への供給電力を計測してもよい。
パラメータ算出部102cは、新品のフォーカスリングFRを載置台16に載置してプラズマ処理を実行した際に計測部102bにより計測された未点火状態と過渡状態の供給電力を用いて、入熱量および熱抵抗を算出する。
まず、パラメータ算出部102cは、未点火状態で温度を所定の温度に維持するためのヒーターHT2での発熱量を算出する。例えば、パラメータ算出部102cは、未点火状態でのヒーターHT2への供給電力から、未点火状態のヒータパワーPh0を算出する。
そして、パラメータ算出部102cは、フォーカスリングFRと載置台16との間の熱抵抗、点火状態でプラズマから載置台16に流入する入熱量を算出する。例えば、パラメータ算出部102cは、入熱量および熱抵抗をパラメータとし、過渡状態の供給電力を算出する算出モデルに対して、未点火状態と過渡状態の供給電力を用いてフィッティングを行って、入熱量および熱抵抗を算出する。
例えば、パラメータ算出部102cは、経過時間tごとの未点火状態でのヒーターHT2のヒータパワーPh0を求める。また、パラメータ算出部102cは、経過時間tごとの過渡状態でのヒーターHT2のヒータパワーPhを求める。パラメータ算出部102cは、求めたヒータパワーPh0をヒーターHT2の面積Aで除算することによって、経過時間tごとの未点火状態の単位面積当たりのヒーターHT2からの発熱量qh0を求める。また、パラメータ算出部102cは、求めたヒータパワーPhをヒーターHT2の面積Aで除算することによって、経過時間tごとの過渡状態の単位面積当たりのヒーターHT2からの発熱量qhを求める。
そして、パラメータ算出部102cは、上記の式(1)-(11)を算出モデルとして用いて、経過時間tごとの発熱量qhおよび発熱量qh0のフィッティングを行い、誤差が最も小さくなる熱流束qpおよび熱抵抗Rth・Aを算出する。フォーカスリングFRの厚さzFRは、新品のフォーカスリングFRの厚さの値を用いる。
なお、パラメータ算出部102cは、未点火状態の供給電力と定常状態の供給電力の差からプラズマからウエハWへの入熱量を算出してもよい。例えば、パラメータ算出部102cは、(12)式を用いて、未点火状態のヒータパワーPh0と定常状態のヒータパワーPhとの差をヒーターHT2の面積Aで除算することから熱流束qpを算出してもよい。
なお、プラズマ処理装置10でのプラズマ処理の際に熱流束qpおよび熱抵抗Rth・Aが実験や他の手法などで事前に判明している場合、熱流束qpおよび熱抵抗Rth・Aは、算出しなくてもよい。
次に、パラメータ算出部102cは、ウエハWが交換され、交換されたウエハWを載置台16に載置してプラズマ処理を行う際に計測部102bにより計測された未点火状態と過渡状態の供給電力を用いて、フォーカスリングFRの厚さzFRを算出する。
まず、パラメータ算出部102cは、未点火状態で温度を所定の温度に維持するためのヒーターHT2での発熱量を算出する。例えば、パラメータ算出部102cは、未点火状態でのヒーターHT2への供給電力から、未点火状態のヒータパワーPh0を算出する。
そして、パラメータ算出部102cは、フォーカスリングFRの厚さzFRを算出する。例えば、パラメータ算出部102cは、フォーカスリングFRの厚さzFRをパラメータとし、過渡状態の供給電力を算出する算出モデルに対して、未点火状態と過渡状態の供給電力を用いてフィッティングを行って、フォーカスリングFRの厚さzFRを算出する。
例えば、パラメータ算出部102cは、経過時間tごとの未点火状態でのヒーターHT2のヒータパワーPh0を求める。また、パラメータ算出部102cは、経過時間tごとの過渡状態でのヒーターHT2のヒータパワーPhを求める。パラメータ算出部102cは、求めたヒータパワーPh0をヒーターHT2の面積Aで除算することによって、経過時間tごとの未点火状態の単位面積当たりのヒーターHT2からの発熱量qh0を求める。また、パラメータ算出部102cは、求めたヒータパワーPhをヒーターHT2の面積Aで除算することによって、経過時間tごとの過渡状態の単位面積当たりのヒーターHT2からの発熱量qhを求める。
そして、パラメータ算出部102cは、上記の式(1)-(11)を算出モデルとして用いて、フォーカスリングFRの厚さzFRのフィッティングを行い、誤差が最も小さくなるフォーカスリングFRの厚さzFRを算出する。熱流束qp、および、熱抵抗Rth・Aは、例えば、新品のフォーカスリングFRを用いて求めた値を用いる。なお、熱流束qpおよび熱抵抗Rth・Aが実験や他の手法などで事前に判明している場合は、判明している熱流束qpおよび熱抵抗Rth・Aの値を用いてもよい。
これにより、本実施形態に係るプラズマ処理装置10は、消耗したフォーカスリングFRの厚さzFRを厚さを求めることができる。
ここで、プラズマ処理を続けると、フォーカスリングFRは、消耗する。このため、プラズマ処理装置は、適時、フォーカスリングFRの厚みを把握することは重要である。しかし、フォーカスリングFRは処理容器12内に設置されているため、直接測ることができない。そこで、従来、プラズマ処理装置では、処理したウエハWの枚数など過去の実績から交換時期を決めたり、外周のエッチング特性をモニターするウエハWを定期的に処理してフォーカスリングを交換すべきか否かを判断している。
しかし、プラズマ処理装置は、異なるプロセスレシピでの処理を行われることがある。このため、プラズマ処理装置は、過去の実績にある程度マージンを持たせた交換時期を用いねばならならず、プラズマ処理装置の生産性が低下する。また、モニターするウエハWを定期的に処理することもプラズマ処理装置の生産性を低下させる。
そこで、例えば、処理容器12内にセンサを配置してセンサでフォーカスリングFRの厚さを計測することが考えられる。しかし、プラズマ処理装置10は、処理容器12内にセンサを配置すると、製造コストが上昇する。また、プラズマ処理装置10は、処理容器12内にセンサを配置すると、センサが特異点となり、特異点の周囲でプラズマ処理の均一性が低下する。このため、プラズマ処理装置では、処理容器12内にセンサを配置することなくフォーカスリングFRの厚さを求めることが好ましい。
本実施形態に係るプラズマ処理装置10は、処理容器12内にセンサを配置することなくフォーカスリングFRの厚さを求めることができ、フォーカスリングFRの厚さからフォーカスリングFRの消耗度合を求めることができる。このように、本実施形態に係るプラズマ処理装置10は、フォーカスリングFRの厚さを求めることができため、次のように使用することもできる。例えば、プラズマ処理装置10を複数配置し、ウエハWのエッチングを行うシステムにおいて、フォーカスリングFRの消耗量が少ないプラズマ処理装置10で処理するウエハWを増やすように制御し、プラズマ処理装置10のメンテナンスタイミングを合わせる。これにより、システム全体でのメンテナンでの停止時間を短くでき、生産性を向上させることができる。
設定温度算出部102dは、算出された入熱量、熱抵抗、フォーカスリングFRの厚さzFRを用いて、フォーカスリングFRが目標温度となるヒーターHT2の設定温度を算出する。例えば、設定温度算出部102dは、算出された熱流束qp、熱抵抗Rth・A、および、フォーカスリングFRの厚さzFRを式(5)、(6)、(12)に代入して、式(5)-(11)に示したa1、a2、a3、λ1、λ2、τ1、τ2を求める。設定温度算出部102dは、求めたa1、a2、a3、λ1、λ2、τ1、τ2を用いて、式(12)からフォーカスリングFRの温度TFRが目標温度となるヒーターHT2の温度Thを算出する。例えば、設定温度算出部102dは、経過時間tを定常状態とみなせる程度の大きい所定の値として、フォーカスリングFRの温度TFRが目標温度となるヒーターHT2の温度Thを算出する。算出されるヒーターHT2の温度Thは、フォーカスリングFRの温度が目標温度となるヒーターHT2の温度である。なお、フォーカスリングFRの温度が目標温度となるヒーターHT2の温度Thは、式(13)から求めてもよい。
なお、設定温度算出部102dは、式(14)から現在のヒーターHT2の温度ThでのフォーカスリングFRの温度TFRを算出してもよい。例えば、設定温度算出部102dは、現在のヒーターHT2の温度Thで、経過時間tを定常状態とみなせる程度の大きい所定の値とした場合のフォーカスリングFRの温度TFRを算出する。次に、設定温度算出部102dは、算出した温度TFRと目標温度との差分ΔTWを算出する。そして、設定温度算出部102dは、現在のヒーターHT2の温度Thから差分ΔTWの減算を行った温度を、フォーカスリングFRの温度が目標温度となるヒーターHT2の温度と算出してもよい。
設定温度算出部102dは、ヒーター制御部102aのヒーターHT2の設定温度を、フォーカスリングFRの温度が目標温度となるヒーターHT2の温度に修正する。
これにより、本実施形態に係るプラズマ処理装置10は、プラズマ処理中のフォーカスリングFRの温度を目標温度に精度よく制御できる。
アラート部102eは、パラメータ算出部102cにより所定のサイクルで算出されるフォーカスリングFRの厚さzFRの変化に基づき、アラートを行う。例えば、アラート部102eは、フォーカスリングFRの厚さzFRが交換時期を示す所定の規定値以下となった場合、アラートを行う。アラートは、工程管理者やプラズマ処理装置10の管理者などに交換時期を報知できれば、何れの方式でもよい。例えば、アラート部102eは、ユーザインターフェース103に交換時期を報知するメッセージを表示する。
これにより、本実施形態に係るプラズマ処理装置10は、フォーカスリングFRが消耗して交換時期となったことを報知できる。
[処理の流れ]
次に、プラズマ処理装置10がフォーカスリングFRの厚さを算出する算出処理を含み、算出されたフォーカスリングFRの厚さからフォーカスリングFRの交換時期を判定する判定処理の流れについて説明する。図8は、第1実施形態に係る判定処理の流れの一例を示すフローチャートである。この判定処理は、所定のタイミング、例えば、プラズマ処理装置10がプラズマ処理を開始するタイミングでそれぞれ実行される。
ヒーター制御部102aは、各ヒーターHTが設定温度となるよう各ヒーターHTへの供給電力を制御する(ステップS10)。
計測部102bは、ヒーター制御部102aが各ヒーターHTの温度が一定の設定温度となるよう各ヒーターHTへの供給電力を制御している状態で、未点火状態と過渡状態でのヒーターHT2への供給電力を計測する(ステップS11)。
パラメータ算出部102cは、フォーカスリングFRの厚さが既知であるか判定する(ステップS12)。例えば、フォーカスリングFRが交換された後の最初のプラズマ処理である場合、フォーカスリングFRが新品であれば、設計寸法が分かっており、フォーカスリングの厚さが既知であると判定する。また、中古のフォーカスリングFRに交換する場合、交換前に予めマイクロメーターなどでフォーカスリングFRの厚さを計測していれば、フォーカスリングFRの厚さは既知であると判断する。なお、フォーカスリングFRの厚さが既知であるか否かをユーザインターフェース103から入力させ、パラメータ算出部102cは、入力結果を用いてフォーカスリングFRの厚さが既知であるか否か判定してもよい。例えば、プラズマ処理装置10は、ユーザインターフェース103からフォーカスリングFRの厚さを入力可能とする。パラメータ算出部102cは、ユーザインターフェース103からフォーカスリングFRの厚さが入力された場合、フォーカスリングFRの厚さが既知であるか否か判定してもよい。なお、新品のフォーカスリングFRなど、厚さが既知のフォーカスリングFRの厚さの値を記憶部104に記憶させておき、ユーザインターフェース103からフォーカスリングFRの厚さを選択的に入力可能としてもよい。
フォーカスリングFRの厚さが既知である場合(ステップS12:Yes)、パラメータ算出部102cは、計測部102bにより計測された未点火状態と過渡状態の供給電力を用いて、熱抵抗および入熱量を算出する(ステップS13)。例えば、パラメータ算出部102cは、上記の式(1)-(11)を算出モデルとして用いて、経過時間tごとの発熱量qhおよび発熱量qh0のフィッティングを行い、誤差が最も小さくなる熱流束qpおよび熱抵抗Rth・Aを算出する。フォーカスリングFRの厚さzFRは、既知であるフォーカスリングFRの厚さの値を用いる。
パラメータ算出部102cは、算出された熱流束qpおよび熱抵抗Rth・Aを記憶部104に記憶し(ステップS14)、処理を終了する。
フォーカスリングFRの厚さが既知ではない場合(ステップS12:No)、パラメータ算出部102cは、計測部102bにより計測された未点火状態と過渡状態の供給電力を用いて、フォーカスリングFRの厚さzFRを算出する(ステップS15)。例えば、パラメータ算出部102cは、上記の式(1)-(11)を算出モデルとして用いて、フォーカスリングFRの厚さzFRのフィッティングを行い、誤差が最も小さくなるフォーカスリングFRの厚さzFRを算出する。熱流束qp、および、熱抵抗Rth・Aは、例えば、ステップS14で記憶部104に記憶した値を用いる。
アラート部102eは、パラメータ算出部102cにより算出されたフォーカスリングFRの厚さzFRが所定の規定値以下であるかを判定する(ステップS16)。フォーカスリングFRの厚さzFRが所定の規定値以下ではない場合(ステップS16:No)、処理を終了する。
一方、フォーカスリングFRの厚さzFRが所定の規定値以下である場合(ステップS16:Yes)、アラート部102eは、アラートを行い(ステップS17)、処理を終了する。
このように、本実施形態に係るプラズマ処理装置10は、載置台16と、ヒーター制御部102aと、計測部102bと、パラメータ算出部102cとを有する。載置台16は、プラズマ処理により消耗するフォーカスリングFRが載置される載置面の温度を調整可能なヒーターHT2が設けられている。ヒーター制御部102aは、ヒーターHT2が設定された設定温度となるようヒーターHT2への供給電力を制御する。計測部102bは、ヒーター制御部102aにより、ヒーターHT2の温度が一定となるようヒーターHT2への供給電力を制御して、プラズマを点火して無い未点火状態と、プラズマを点火してからヒーターHT2への供給電力が低下する過渡状態での供給電力を計測する。パラメータ算出部102cは、フォーカスリングFRの厚さzFRをパラメータとして含み、過渡状態の供給電力を算出する算出モデルに対して、計測部102bにより計測された未点火状態と過渡状態の供給電力を用いてフィッティングを行って、フォーカスリングFRの厚さzFRを算出する。これにより、プラズマ処理装置10は、フォーカスリングFRの厚さを求めることができ、フォーカスリングFRの厚さからフォーカスリングFRの消耗度合を求めることができる。
また、計測部102bは、所定のサイクルで、未点火状態と、過渡状態での供給電力を計測する。パラメータ算出部102cは、所定のサイクルごとに、計測された未点火状態と過渡状態の供給電力を用いて、フォーカスリングFRの厚さzFRをそれぞれ算出する。アラート部102eは、パラメータ算出部102cにより算出されるフォーカスリングFRの厚さzFRの変化に基づき、アラートを行う。これにより、プラズマ処理装置10は、フォーカスリングFRが消耗して交換時期となったことを報知できる。
(第2実施形態)
次に、第2実施形態に係るプラズマ処理装置10の概略的な構成を説明する。図9は、第2実施形態に係るプラズマ処理装置の概略的な構成の一例を示す断面図である。第2実施形態に係るプラズマ処理装置10は、図1に示す第1実施形態に係るプラズマ処理装置10と一部同様の構成であるため、同一部分に同一の符号を付して説明を省略し、異なる部分について主に説明する。
第2実施形態に係る載置台16は、ウエハWを支持する第1の載置台60と、フォーカスリングFRを支持する第2の載置台70とに分かれている。
第1の載置台60は、上下方向に底面を向けた略円柱状を呈しており、上側の底面がウエハWの載置される載置面60dとされている。第1の載置台60の載置面60dは、ウエハWと同程度のサイズとされている。第1の載置台60は、静電チャック61と、基台62とを有する。
基台62は、導電性の金属、例えば表面に陽極酸化被膜が形成されたアルミニウム等で構成されている。基台62は、下部電極として機能する。基台62は、絶縁体の支持部14に支持されている。
静電チャック61は、上面が平坦な円盤状とされ、当該上面がウエハWの載置される載置面60dとされている。静電チャック61は、平面視において第1の載置台60の中央に設けられている。静電チャック61は、電極E1が設けられている。また、静電チャック61は、ヒーターHT1が設けられている。
第1の載置台60は、外周面に沿って周囲に第2の載置台70が設けられている。第2の載置台70は、内径が第1の載置台60の外径よりも所定サイズ大きい円筒状に形成され、第1の載置台60と軸を同じとして配置されている。第2の載置台70は、上側の面がフォーカスリングFRの載置される載置面70dとされている。
第2の載置台70は、基台71と、フォーカスリングヒータ72とを有する。基台71は、基台62と同様の導電性の金属、例えば表面に陽極酸化被膜が形成されたアルミニウム等で構成されている。基台62は、下部が、上部よりも径方向に大きく、第2の載置台70の下部の位置まで平板状に形成されている。基台71は、基台62に支持されている。フォーカスリングヒータ72は、基台71に支持されている。フォーカスリングヒータ72は、上面が平坦な環状の形状とされ、当該上面がフォーカスリングFRの載置される載置面70dとされている。フォーカスリングヒータ72は、ヒーターHT2が設けられている。
基台62の内部には、冷媒流路24aが形成されている。冷媒流路24aには、チラーユニットから配管26aを介して冷媒が供給される。冷媒流路24aに供給された冷媒は、配管26bを介してチラーユニットに戻る。また、基台71の内部には、冷媒流路24bが形成されている。冷媒流路24bには、チラーユニットから配管27aを介して冷媒が供給される。冷媒流路24bに供給された冷媒は、配管27bを介してチラーユニットに戻る。冷媒流路24aは、ウエハWの下方に位置してウエハWの熱を吸熱するように機能する。冷媒流路24bは、フォーカスリングFRの下方に位置してフォーカスリングFRの熱を吸熱するように機能する。
一方、第1の載置台60の上方には、第1の載置台60に平行に対面するように、上部電極30が設けられている。上部電極30は、複数の電磁石80が上面に配置されている。本実施形態では、3つの電磁石80a~80cが上面に配置されている。電磁石80aは、円盤状とされ、第1の載置台60の中央部の上部に配置されている。電磁石80bは、円環状とされ、電磁石80aを囲むように、第1の載置台60の周辺部の上部に配置されている。電磁石80cは、電磁石80bよりも大きい円環状とされ、電磁石80bを囲むように、第2の載置台70の上部に配置されている。
電磁石80a~80cは、それぞれ不図示の電源に個別に接続され、電源から供給される電力により磁場を発生する。電源が電磁石80a~80cに供給する電力は、制御部100によって制御可能とされている。制御部100は、電源を制御して電磁石80a~80cに供給される電力を制御することにより、電磁石80a~80cから発生する磁場の制御が可能とされている。
[制御部の構成]
次に、制御部100について詳細に説明する。図10は、第2実施形態に係るプラズマ処理装置を制御する制御部の概略的な構成の一例を示すブロック図である。第2実施形態に係る制御部100は、図3に示す第1実施形態に係る制御部100と一部同様の構成であるため、同一部分に同一の符号を付して説明を省略し、異なる部分について主に説明する。
記憶部104には、補正情報104aが格納されている。なお、補正情報104aは、は、コンピュータで読み取り可能なコンピュータ記録媒体(例えば、ハードディスク、DVDなどの光ディスク、フレキシブルディスク、半導体メモリ等)に記憶されていてもよい。また、補正情報104aは、他の装置に記憶され、例えば専用回線を介してオンラインで読み出して利用されてもよい。
補正情報104aは、プラズマ処理の条件の補正に用いる各種の情報が記憶されたデータである。補正情報104aの詳細は、後述する。
プロセスコントローラ102は、プラズマ制御部102fの機能をさらに有する。
ところで、プラズマ処理装置10では、エッチングの際、処理容器12内にプラズマを生成するが、フォーカスリングFRの消耗によって、プラズマシースの高さが変化し、エッチング特性が変化する。
図11は、プラズマシースの状態の一例を模式的に示した図である。図11には、載置台に置かれたウエハWとフォーカスリングFRとが示されている。なお、図11では、第1の載置台60と第2の載置台70をまとめて載置台として示している。Dwaferは、ウエハWの厚さである。dwaferは、ウエハWの上面からウエハW上のプラズマシース(Sheath)の界面までの高さである。厚さDaは、ウエハWが載置される載置台の載置面とフォーカスリングFRが載置される載置台の載置面との高さの差である。例えば、厚さDaは、第2実施形態では、第1の載置台60の載置面60dと第2の載置台70の載置面70dとの高さの差である。厚さDaは、第1の載置台60と第2の載置台70の構成に応じて、固定値として定まる。厚さzFRは、フォーカスリングFRの厚さである。厚さdFRは、フォーカスリングFRの上面からフォーカスリングFR上のプラズマシース(Sheath)の界面までの高さである。
ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRは、以下の式(15)のように表せる。
ΔDwafer-FR=(Da+Dwafer+dwafer)-(zFR+dFR) (15)
例えば、フォーカスリングFRの消耗によって、フォーカスリングFRの厚さzFRが薄くなった場合、差ΔDwafer-FRが変化する。このため、プラズマ処理装置10では、エッチング特性が変化する。
ところで、プラズマ処理装置10では、電磁石80a~80cからの磁力によってプラズマの状態が変化する。図12Aは、磁場強度とプラズマの電子密度の関係の一例を示すグラフである。図12Aに示すように、プラズマにかかる磁力の磁場強度と、プラズマの電子密度には、比例関係がある。
プラズマの電子密度とプラズマシースの厚さには、以下の式(16)の関係がある。
ここで、Neは、プラズマの電子密度である。Teは、プラズマの電子温度[ev]である。Vdcは、プラズマとの電位差である。Vdcは、ウエハW上部のプラズマの場合、プラズマとウエハWとの電位差であり、フォーカスリングFR上部のプラズマの場合、プラズマとフォーカスリングFRとの電位差である。
式(16)に示すように、プラズマシースの厚さは、電子密度Neに反比例する。よって、プラズマにかかる磁力の磁場強度と、プラズマの電子密度には、反比例の関係がある。図12Bは、磁場強度とプラズマシースの厚さの関係の一例を示すグラフである。図12Bに示すように、プラズマシースの厚さは、プラズマにかかる磁力の磁場強度に反比例する。
そこで、第2実施形態に係るプラズマ処理装置10では、フォーカスリングFRの消耗によるエッチング特性の変化を抑制するように、電磁石80a~80cから発生させる磁力の磁場強度を制御する。
図10に戻る。第2実施形態に係る補正情報104aは、フォーカスリングFRの厚さごとに、電磁石80a~80cへ供給する電力の補正値を記憶する。例えば、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内となるような磁場強度が得られる電磁石80a~80cの電力量を実験的に計測する。例えば、電磁石80に電源から交流電力を供給する場合、交流の電圧、周波数、電力パワーの何れか変化させ、変化させた交流の電圧、周波数、電力パワーの何れかを電力量として計測する。また、電磁石80に電源から直流電力を供給する場合、直流の電圧、電流量の何れか変化させ、変化させた直流の電圧、電流量の何れかを電力量として計測する。所定範囲は、例えば、ウエハWにエッチングした際のホールの角度θが、許容される精度内となるΔDwafer-FRの範囲である。補正情報104aには、計測結果に基づき、フォーカスリングFRの厚さごとに、差ΔDwafer-FRが所定範囲内となる電磁石80a~80cの供給電力の補正値を記憶させる。補正値は、差ΔDwafer-FRが所定範囲内となる電力量の値そのものとであってもよく、プラズマ処理の際に電磁石80a~80cへ供給する標準の電力量に対する差分値であってもよい。本実施形態では、補正値は、電磁石80a~80cへ供給する電力量の値そのものとする。
ここで、第2実施形態に係るプラズマ処理装置10は、電磁石80cの供給電力を補正することで、フォーカスリングFRの上部に形成されるプラズマシースの界面の高さを補正するものとする。補正情報104aには、フォーカスリングFRの厚さごとに、電磁石80cの供給電力の補正値を記憶させる。なお、プラズマ処理装置10は、電磁石80a、80bの供給電力を補正して、ウエハWの上部に形成されるプラズマシースの界面の高さを補正してもよい。この場合、補正情報104aには、フォーカスリングFRの厚さごとに、電磁石80a、80bの供給電力の補正値を記憶させる。また、プラズマ処理装置10は、電磁石80a~80cの供給電力を補正して、フォーカスリングFRの上部に形成されるプラズマシースの界面の高さとウエハWの上部に形成されるプラズマシースの界面の高さをそれぞれ補正してもよい。この場合、補正情報104aには、フォーカスリングFRの厚さごとに、電磁石80a~80cの供給電力の補正値を記憶させる。
プラズマ制御部102fは、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内となるようにプラズマ処理を制御する。
プラズマ制御部102fは、パラメータ算出部102cにより算出されたフォーカスリングFRの厚さzFRに基づき、電磁石80a~80cの磁力を制御する。例えば、プラズマ制御部102fは、フォーカスリングFRの厚さzFRに対応する電磁石80a~80cの供給電力の補正値を補正情報104aから読み出す。そして、プラズマ制御部102fは、プラズマ処理の際に、読み出した補正値の電力が電磁石80a~80cへ供給されるように、電磁石80a~80cに接続された電源を制御する。本実施形態では、プラズマ制御部102fは、電磁石80cへ補正値の電力が供給されるように、電磁石80cに接続された電源を制御する。
これにより、プラズマ処理装置10では、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内となる。この結果、プラズマ処理装置10では、フォーカスリングFRの消耗によるエッチング特性の変化を抑制できる。
次に、第2実施形態に係るプラズマ処理装置10を用いたプラズマ制御処理について説明する。図13は、第2実施形態に係る判定処理の流れの一例を示すフローチャートである。第2実施形態に係る判定処理は、図8に示す第1実施形態に係る判定処理と一部同様の処理であるため、同一部分に同一の符号を付して説明を省略し、異なる部分について主に説明する。
プラズマ制御部102fは、パラメータ算出部102cにより算出されたフォーカスリングFRの厚さzFRに基づき、プラズマ処理を制御する(ステップS18)。例えば、プラズマ制御部102fは、フォーカスリングFRの厚さzFRに基づき、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内となるように電磁石80a~80cの磁力を制御する。
以上のように、第2実施形態に係るプラズマ処理装置10は、プラズマ制御部102fをさらに有する。プラズマ制御部102fは、フォーカスリングFRの厚さzFRに基づき、ウエハWの上部に形成されるプラズマシースの界面の高さとフォーカスリングFRの上部に形成されるプラズマシースの界面の高さとの差が所定範囲内となるようにプラズマ処理を制御する。これにより、プラズマ処理装置10は、ウエハWごとのエッチング特性にばらつきを抑制できる。
また、第2実施形態に係るプラズマ処理装置10は、ウエハW及びフォーカスリングFRの少なくとも一方に並列に配置された少なくとも1つの電磁石80をさらに有する。プラズマ制御部102fは、フォーカスリングFRの厚さzFRに基づき、電磁石80へ供給される電力を制御することで、ウエハWの上部に形成されるプラズマシースの界面の高さとフォーカスリングFRの上部に形成されるプラズマシースの界面の高さとの差が所定範囲内となるように電磁石80の磁力を制御する。これにより、プラズマ処理装置10は、ウエハWごとのエッチング特性にばらつきを抑制できる。
なお、図13に示した第2実施形態に係る判定処理では、ステップS18をステップS15の後に実行する場合を例に説明したが、これに限定されるものではない。例えば、ステップS18は、ステップS15で用いられたウエハWにおけるプラズマ処理にて連続的に実行してもよい。また、ステップS18は、ステップS15で用いられたウエハWにおけるプラズマ処理を終了して、次のウエハW以降のプラズマ処理の時に実行してもよい。
ステップS18をステップS15で用いられたウエハWにおけるプラズマ処理にて連続的に実行する場合、図7の期間T3において、プラズマ制御部102fは、電磁石80a~80cの磁力を制御することとなる。
ステップS18をステップS15で用いられたウエハWにおけるプラズマ処理を終了して、次のウエハW以降のプラズマ処理の時に実行する場合、プラズマ制御部102fは、プラズマ着火時から、電磁石80a~80cの磁力を制御することとなる。電磁石80a~80cの磁力を当初の設定値から変化させた場合、図12Aで示す通りプラズマの電子密度が増減するので、プラズマからフォーカスリングFRへの入熱量も増減することとなる。この場合、ステップ15で算出されたフォーカスリングFRの厚さzFRを既知のフォーカスリングFRの厚さとして、再びステップS13、ステップS14を実行することによって、制御された電磁石80a~80cの磁力における熱抵抗Rth・Aおよびプラズマからの熱流束qpを算出し、新たな熱抵抗Rth・Aおよびプラズマからの熱流束qpとして記憶部104に記憶することが望ましい。
また、図13に示した第2実施形態に係る判定処理では、ステップS18をステップS15とステップS16の間で実行する場合を例に説明したが、これに限定されるものではない。例えば、ステップS18は、ステップ16:No、すなわちフォーカスリングFRの厚さzFRが所定の規定値以下ではないと判定された後で実行してもよい。これにより、フォーカスリングFRの厚さzFRが所定の規定値以下であると判断されるにも関わらず、ウエハWがプラズマ処理されることによって、再現性の悪化を最小限に抑えることができる。
(第3実施形態)
次に、第3実施形態について説明する。図14は、第3実施形態に係るプラズマ処理装置の概略的な構成の一例を示す断面図である。第3実施形態に係るプラズマ処理装置10は、図9に示す第2実施形態に係るプラズマ処理装置10と一部同様の構成であるため、同一部分に同一の符号を付して説明を省略し、異なる部分について主に説明する。
第3実施形態に係る第2の載置台70は、フォーカスリングFRを載置する載置面70dに電極がさらに設けられている。例えば、第2の載置台70では、フォーカスリングヒータ72の内部に、周方向に沿って、全周に電極73がさらに設けられている。電極73は、配線を介して電源74が電気的に接続されている。第3実施形態に係る電源74は、直流電源であり、電極73に直流電圧を印加する。
ところで、プラズマは、周辺の電気的な特性の変化によって状態が変化する。例えば、フォーカスリングFRの上部のプラズマは、電極73に印加される直流電圧の大きさによって状態が変化し、プラズマシースの厚さが変化する。
そこで、第3実施形態に係るプラズマ処理装置10では、フォーカスリングFRの消耗によるエッチング特性の変化を抑制するように、電極73に印加する直流電圧を制御する。
第3実施形態に係る補正情報104aは、フォーカスリングFRの厚さごとに、電極73に印加する直流電圧の補正値を記憶する。例えば、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内となる、電極73に印加する直流電圧を実験的に計測する。補正情報104aには、計測結果に基づき、フォーカスリングFRの厚さごとに、差ΔDwafer-FRが所定範囲内となる、電極73に印加する直流電圧の補正値を記憶させる。補正値は、差ΔDwafer-FRが所定範囲内となる直流電圧の値そのものとであってもよく、プラズマ処理の際に電極73に印加する標準的な直流電圧に対する差分値であってもよい。本実施形態では、補正値は、電極73に印加する直流電圧の値そのものとする。
プラズマ制御部102fは、パラメータ算出部102cにより算出されたフォーカスリングFRの厚さzFRに基づき、電極73に印加する直流電圧を制御する。例えば、プラズマ制御部102fは、フォーカスリングFRの厚さzFRに対応する電極73に印加する直流電圧の補正値を補正情報104aから読み出す。そして、プラズマ制御部102fは、プラズマ処理の際に、読み出した補正値の直流電圧が電極73へ供給されるように、電源74を制御する。
これにより、プラズマ処理装置10では、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内なる。この結果、プラズマ処理装置10では、フォーカスリングFRの消耗によるエッチング特性の変化を抑制できる。
以上のように、第3実施形態に係るプラズマ処理装置10は、フォーカスリングFRを載置する載置面70dに設けられ、直流電圧が印加される電極73をさらに有する。プラズマ制御部102fは、フォーカスリングFRの厚さzFRに基づき、ウエハWの上部に形成されるプラズマシースの界面の高さとフォーカスリングFRの上部に形成されるプラズマシースの界面の高さとの差が所定範囲内となるように電極73に印加する直流電圧を制御する。これにより、プラズマ処理装置10は、ウエハWごとのエッチング特性にばらつきを抑制できる。
(第4実施形態)
次に、第4実施形態について説明する。図15は、第4実施形態に係るプラズマ処理装置の概略的な構成の一例を示す断面図である。第4実施形態に係るプラズマ処理装置10は、図9に示す第2実施形態に係るプラズマ処理装置10と一部同様の構成であるため、同一部分に同一の符号を付して説明を省略し、異なる部分について主に説明する。
第4実施形態に係る上部電極30の電極板34及び電極支持体36は、絶縁性部材により複数の部分に分割されている。例えば、電極支持体36および電極板34は、環状の絶縁部37により、中央部30aと周辺部30bに分割されている。中央部30aは、円盤状とされ、第1の載置台60の中央部の上部に配置されている。周辺部30bは、円環状とされ、中央部30aを囲むように、第1の載置台60の周辺部の上部に配置されている。
第4実施形態に係る上部電極30は、分割された各部分に個別に直流電流の印加が可能とされ、各部分がそれぞれ上部電極として機能する。例えば、周辺部30bには、ローパスフィルタ(LPF)90a、オン・オフスイッチ91aを介して可変直流電源93aが電気的に接続されている。中央部30aには、ローパスフィルタ(LPF)90b、オン・オフスイッチ91bを介して可変直流電源93bが電気的に接続されている。可変直流電源93a、72bが中央部30a、周辺部30bにそれぞれ印加する電力は、制御部100によって制御可能とされている。中央部30a、周辺部30bは、電極として機能する。
ところで、プラズマは、周辺の電気的な特性の変化によって状態が変化する。例えば、プラズマ処理装置10では、中央部30a、周辺部30bに印加される電圧によってプラズマの状態が変化する。
そこで、第4実施形態に係るプラズマ処理装置10では、フォーカスリングFRの消耗によるエッチング特性の変化を抑制するように、中央部30a、周辺部30bに印加される電圧を制御する。
第4実施形態に係る補正情報104aは、フォーカスリングFRの厚さごとに、中央部30a、周辺部30bに印加する直流電圧の補正値を記憶する。例えば、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内となる、中央部30a、周辺部30bそれぞれに印加する直流電圧を実験的に計測する。補正情報104aには、計測結果に基づき、フォーカスリングFRの厚さごとに、差ΔDwafer-FRが所定範囲内となる、中央部30a、周辺部30bそれぞれに印加する直流電圧の補正値を記憶させる。補正値は、中央部30a、周辺部30bに印加する直流電圧の値そのものとであってもよく、プラズマ処理の際に中央部30a、周辺部30bにそれぞれ印加する標準的な直流電圧に対する差分値であってもよい。本実施形態では、補正値は、中央部30a、周辺部30bそれぞれに印加する直流電圧の値そのものとする。
ここで、第4実施形態に係るプラズマ処理装置10は、周辺部30bに印加する直流電圧を補正することで、フォーカスリングFRの上部に形成されるプラズマシースの界面の高さを補正するものとする。補正情報104aには、フォーカスリングFRの厚さごとに、周辺部30bに印加する直流電圧の補正値を記憶させる。なお、プラズマ処理装置10は、上部電極30をさらに環状に分割して各部分に印加する直流電圧を補正して、ウエハWの上部に形成されるプラズマシースの界面の高さを補正してもよい。
プラズマ制御部102fは、パラメータ算出部102cにより算出されたフォーカスリングFRのzFRに基づき、周辺部30bに印加する直流電圧を制御する。例えば、プラズマ制御部102fは、フォーカスリングFRの厚さzFRに対応する周辺部30bに印加する直流電圧の補正値を補正情報104aから読み出す。そして、プラズマ制御部102fは、プラズマ処理の際に、読み出した補正値の直流電圧が周辺部30bに供給されるように、可変直流電源93aを制御する。
これにより、プラズマ処理装置10では、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内となる。この結果、プラズマ処理装置10では、フォーカスリングFRの消耗によるエッチング特性の変化を抑制できる。
以上のように、第4実施形態に係る上部電極30は、ウエハW及びフォーカスリングFRに対向して配置され、ウエハW及びフォーカスリングFRの少なくとも一方に並列に、それぞれ電極として機能する中央部30a、周辺部30bが設けられ、処理ガスを噴出する。プラズマ制御部102fは、フォーカスリングFRの厚さzFRに基づき、ウエハWの上部に形成されるプラズマシースの界面の高さとフォーカスリングFRの上部に形成されるプラズマシースの界面の高さとの差が所定範囲内となるように中央部30a、周辺部30bへ供給される電力を制御する。これにより、プラズマ処理装置10は、ウエハWごとのエッチング特性にばらつきを抑制できる。
(第5実施形態)
次に、第5実施形態について説明する。図16は、第5実施形態に係るプラズマ処理装置の概略的な構成の一例を示す断面図である。第5実施形態に係るプラズマ処理装置10は、図9に示す第2実施形態に係るプラズマ処理装置10と一部同様の構成であるため、同一部分に同一の符号を付して説明を省略し、異なる部分について主に説明する。第5実施形態に係るプラズマ処理装置10は、上部電極30の上面に電磁石80が設けられておらず、第2の載置台70が昇降可能されている。
[第1の載置台及び第2の載置台の構成]
次に、図17を参照して、第5実施形態に係る第1の載置台60及び第2の載置台70の要部構成について説明する。図17は、第5実施形態に係る第1の載置台及び第2の載置台の要部構成を示す概略断面図である。
第1の載置台60は、基台62と、静電チャック61とを含んでいる。静電チャック61は、絶縁層64を介して基台62に接着されている。静電チャック61は、円板状を呈し、基台62と同軸となるように設けられている。静電チャック61は、絶縁体の内部に電極E1が設けられている。静電チャック61の上面は、ウエハWの載置される載置面60dとされている。静電チャック61の下端には、静電チャック61の径方向外側へ突出したフランジ部61aが形成されている。すなわち、静電チャック61は、側面の位置に応じて外径が異なる。
静電チャック61は、ヒータHT1が設けられている。また、基台62の内部には、冷媒流路24aが形成されている。冷媒流路24a及びヒータHT1は、ウエハWの温度を調整する温調機構として機能する。なお、ヒータHT1は、静電チャック61の内部に存在しなくてもよい。例えば、ヒータHT1は、静電チャック61の裏面に貼り付けられてもよく、載置面60dと冷媒流路24aとの間に介在すればよい。
第2の載置台70は、基台71と、フォーカスリングヒータ72を含んでいる。基台71は、基台62に支持されている。フォーカスリングヒータ72は、内部にヒーターHT2が設けられている。また、基台71の内部には、冷媒流路24bが形成されている。冷媒流路24b及びヒーターHT2は、フォーカスリングFRの温度を調整する温調機構として機能する。フォーカスリングヒータ72は、絶縁層76を介して基台71に接着されている。フォーカスリングヒータ72の上面は、フォーカスリングFRの載置される載置面70dとされている。なお、フォーカスリングヒータ72の上面には、熱伝導性の高いシート部材などを設けてもよい。
フォーカスリングFRは、円環状の部材であって、第2の載置台70と同軸となるように設けられている。フォーカスリングFRの内側側面には、径方向内側へ突出した凸部FRaが形成されている。すなわち、フォーカスリングFRは、内側側面の位置に応じて内径が異なる。例えば、凸部FRaが形成されていない箇所の内径は、ウエハWの外径及び静電チャック61のフランジ部61aの外径よりも大きい。一方、凸部FRaが形成された箇所の内径は、静電チャック61のフランジ部61aの外径よりも小さく、かつ、静電チャック61のフランジ部61aが形成されていない箇所の外径よりも大きい。
フォーカスリングFRは、凸部FRaが静電チャック61のフランジ部61aの上面と離間し、かつ、静電チャック61の側面からも離間した状態となるように第2の載置台70に配置される。すなわち、フォーカスリングFRの凸部FRaの下面と静電チャック61のフランジ部61aの上面との間には、隙間が形成されている。また、フォーカスリングFRの凸部FRaの側面と静電チャック61のフランジ部61aが形成されていない側面との間には、隙間が形成されている。そして、フォーカスリングFRの凸部FRaは、第1の載置台60の基台62と第2の載置台70の基台71との間の隙間110の上方に位置する。すなわち、載置面60dと直交する方向からみて、凸部FRaは、隙間110と重なる位置に存在し該隙間110を覆っている。これにより、プラズマが、隙間110へ進入することを抑制できる。
第1の載置台60には、第2の載置台70を昇降させる昇降機構120が設けられている。例えば、第1の載置台60には、第2の載置台70の下部となる位置に、昇降機構120が設けられている。昇降機構120は、アクチュエータを内蔵し、アクチュエータの駆動力によりロッド120aを伸縮させて第2の載置台70を昇降させる。昇降機構120は、モータの駆動力をギヤー等で変換してロッド120aを伸縮させる駆動力を得るものであってもよく、油圧等によってロッド120aを伸縮させる駆動力を得るものであってもよい。第1の載置台60と第2の載置台70の間には、真空を遮断するためのオーリング(O-Ring)112が設けられている。
第2の載置台70は、上昇させても影響が生じないように構成されている。例えば、冷媒流路24bは、フレキシブルな配管、あるいは、第2の載置台70が昇降しても冷媒を供給可能な機構が構成されている。ヒーターHT2に電力を供給する配線は、フレキシブルな配線、あるいは、第2の載置台70が昇降しても電気的に導通する機構が構成されている。
また、第1の載置台60は、第2の載置台70と電気的に導通する導通部130が設けられている。導通部130は、昇降機構120により第2の載置台70を昇降させても第1の載置台60と第2の載置台70とを電気的に導通するように構成されている。例えば、導通部130は、フレキシブルな配線、あるいは、第2の載置台70が昇降しても導体が基台71と接触して電気的に導通する機構が構成されている。導通部130は、第2の載置台70と第1の載置台60との電気的な特性が同等となるように設けられている。例えば、導通部130は、第1の載置台60の周面に複数設けられている。第1の載置台60に供給されるRF電力は、導通部130を介して第2の載置台70にも供給される。なお、導通部130は、第1の載置台60の上面と第2の載置台70の下面の間に設けてもよい。
昇降機構120は、フォーカスリングFRの周方向に複数の位置に設けられている。本実施形態に係るプラズマ処理装置10では、昇降機構120が3つ設けられている。例えば、第2の載置台70には、第2の載置台70の円周方向に均等な間隔で昇降機構120を配置されている。例えば、昇降機構120は、第2の載置台70の円周方向に対して、120度の角度毎に、同様の位置に設けられている。なお、昇降機構120は、第2の載置台70に対して、4つ以上設けてもよい。
ところで、プラズマ処理装置10では、プラズマ処理を行っていると、フォーカスリングFRが消耗してフォーカスリングFRの厚さzFRが薄くなる。フォーカスリングFRの厚さzFRが薄くなると、フォーカスリングFR上のプラズマシースとウエハW上のプラズマシースとの高さ位置にズレが生じ、エッチング特性が変化する。
そこで、第5実施形態に係るプラズマ処理装置10では、フォーカスリングFRの厚さzFRに応じて、昇降機構120の制御を行う。
プラズマ制御部102fは、パラメータ算出部102cにより算出されたフォーカスリングFRの厚さzFRに基づき、昇降機構120を制御する。例えば、プラズマ制御部102fは、新品のフォーカスリングFRの厚さから、フォーカスリングFRの厚さzFRを減算して消耗分の厚さを求める。プラズマ制御部102fは、消耗分の厚さだけ上昇するように昇降機構120を制御する。
図18は、第2の載置台を上昇させる流れの一例を説明する図である。図18(A)は、新品のフォーカスリングFRを第2の載置台70に載置した状態を示している。第2の載置台70は、新品のフォーカスリングFRを載置した際に、フォーカスリングFRの上面が所定の高さとなるように高さが調整されている。例えば、第2の載置台70は、新品のフォーカスリングFRを載置した際に、エッチング処理によるウエハWの均一性が得られるよう、高さが調整されている。ウエハWに対するエッチング処理に伴い、フォーカスリングFRも消耗する。図18(B)は、フォーカスリングFRが消耗した状態を示している。図18(B)の例では、フォーカスリングFRの上面が0.2mm消耗している。プラズマ処理装置10は、パラメータ算出部102cによりフォーカスリングFRの厚さzFRを算出し、フォーカスリングFRの消耗量を特定する。そして、プラズマ処理装置10は、消耗量に応じて、昇降機構120を制御して第2の載置台70を上昇させる。図18(C)は、第2の載置台70を上昇させた状態を示している。図18(C)の例では、第2の載置台70を0.2mm上昇させてフォーカスリングFRの上面を0.2mm上昇させている。
これにより、プラズマ処理装置10では、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内なる。この結果、プラズマ処理装置10では、フォーカスリングFRの消耗によるエッチング特性の変化を抑制できる。
以上のように、第5実施形態に係るプラズマ処理装置10は、フォーカスリングFRを昇降させる昇降機構120を有する。プラズマ制御部102fは、フォーカスリングFRの厚さzFRに基づき、ウエハWの上部に形成されるプラズマシースの界面の高さとフォーカスリングFRの上部に形成されるプラズマシースの界面の高さとの差が所定範囲内となるように昇降機構120を制御する。これにより、プラズマ処理装置10は、ウエハWごとのエッチング特性にばらつきを抑制できる。
以上、実施形態について説明してきたが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は、多様な形態で具現され得る。また、上記の実施形態は、請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
例えば、上述したプラズマ処理装置10は、容量結合型のプラズマ処理装置10であったが、任意のプラズマ処理装置10に採用され得る。例えば、プラズマ処理装置10は、誘導結合型のプラズマ処理装置10、マイクロ波といった表面波によってガスを励起させるプラズマ処理装置10のように、任意のタイプのプラズマ処理装置10であってもよい。
また、上記の実施形態では、プラズマ処理により消耗する消耗部品をフォーカスリングFRとした場合を例に説明したが、これに限定されるものではない。消耗部品は、何れであってもよい。例えば、ウエハWはプラズマ処理により消耗する。プラズマ処理装置10は、消耗部品をウエハWとし、ウエハWの厚さを算出してもよい。上述した式(1)~(13)は、フォーカスリングFRの密度、熱容量、厚さなどのフォーカスリングFRに関する条件をウエハWに関する条件に読み替えることにより、ウエハWの厚さの算出に適用できる。載置台16は、ウエハWが載置される載置面の温度を調整可能なヒーターHT1が設けられている。ヒーター制御部102aは、ヒーターHT1が設定された設定温度となるようヒーターHT1への供給電力を制御する。計測部102bは、ヒーター制御部102aにより、ヒーターHT1の温度が一定となるようヒーターHT1への供給電力を制御して、未点火状態と過渡状態での供給電力を計測する。パラメータ算出部102cは、上記の式(1)-(11)を算出モデルとして用いて、計測結果のフィッティングを行うことにより、ウエハWの厚さを算出する。これにより、プラズマ処理装置10は、ウエハWの厚さを求めることができる。
また、上記の実施形態では、図2に示すように、静電チャック18の載置領域18aを径方向に2つの分割領域75に分割した場合を例に説明したが、これに限定されるものではない。例えば、載置領域18aは周方向に分割されてもよい。例えば、フォーカスリングFRを載置する分割領域75bは周方向に分割されてもよい。図19は、他の実施形態に係る載置台を示す平面図である。図19では、分割領域75bは、周方向に8つの分割領域75b1~75b8に分割されている。分割領域75b1~75b8には、フォーカスリングFRが配置される。分割領域75b1~75b8には、ヒーターHT2が個別に設ける。ヒーター制御部102aは、分割領域75b1~75b8に設けられたヒーターHT2が領域毎に設定された設定温度となるようヒーターHT2ごとに供給電力を制御する。計測部102bは、ヒーター制御部102aにより、ヒーターHT2ごとに温度が一定となるよう供給電力を制御して、未点火状態と、過渡状態での供給電力をヒーターHT2ごとに計測する。パラメータ算出部102cは、ヒーターHT2ごとに、算出モデルに対して、計測部102bにより計測された未点火状態と過渡状態の供給電力を用いてフィッティングを行って、ヒーターHT2ごとにフォーカスリングFRの厚さzFRを算出する。これにより、プラズマ処理装置10は、分割領域75b1~75b8ごとにフォーカスリングFRの厚さzFRを求めることができる。
また、上述した実施形態では、電磁石80の磁力の変更、電極73に供給する電力の変更、中央部30a、周辺部30bに供給する電力の変更、フォーカスリングFRの昇降の何れかを行うことで、プラズマの状態を変化させる場合を例に説明した。しかし、これに限定されない。インピーダンスの変更を行うことで、プラズマの状態を変化させてもよい。例えば、第2の載置台70のインピーダンスを変更可能する。プラズマ制御部102fは、厚さzFRに基づき、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内となるように第2の載置台70のインピーダンスを制御してもよい。例えば、第2の載置台70の内部に垂直方向にリング状の空間を形成し、空間内にリング状の導電体を導電体駆動機構によって昇降自在に設ける。導電体は、例えばアルミニウムなどの導電性材料で構成する。これにより、第2の載置台70は、導電体駆動機構により、導電体を昇降させることでインピーダンスの変更が可能となる。なお、第2の載置台70は、インピーダンスが変更可能であれば何れの構成であってもよい。補正情報104aには、フォーカスリングFRの厚さごとに、インピーダンスの補正値を記憶する。例えば、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内となる、導電体の高さを実験的に計測する。補正情報104aには、計測結果に基づき、ウエハWの厚さごとに、差ΔDwafer-FRが所定範囲内となる導電体の高さの補正値を記憶させる。プラズマ制御部102fは、パラメータ算出部102cにより算出されたフォーカスリングFRの厚さzFRに対応する導電体の高さの補正値を補正情報104aから読み出す。そして、プラズマ制御部102fは、プラズマ処理の際に、読み出した補正値の高さとなるように、導電体駆動機構を制御する。これにより、プラズマ処理装置10では、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内となり、ウエハWごとのエッチング特性にばらつきを抑制できる。
また、上述した第4実施形態では、電源74から電極73に直流電圧を印加する場合を例に説明したが、これに限定されない。例えば、電源74を交流電源としてもよい。プラズマ制御部102fは、フォーカスリングFRの厚さzFRに基づき、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内となるように電源74から電極73に供給する交流電力の周波数、電圧、パワーの何れかを制御してもよい。
また、上述した各実施形態は、組み合わせて実施してもよい。例えば、第2、第3実施形態を組み合わせて、電磁石80の磁力と電極73に印加する直流電圧の制御により、ウエハW上のプラズマシースの界面とフォーカスリングFR上のプラズマシースの界面との差ΔDwafer-FRが所定範囲内となるように制御してもよい。
また、上述した第6実施形態では、昇降機構120により第2の載置台70を昇降させることで、フォーカスリングFRを昇降させる場合を例に説明したが、これに限定されるものではない。例えば、第2の載置台70にピンなどを貫通させてフォーカスリングFRのみを昇降させてもよい。
また、上述した各実施形態は、フォーカスリングの消耗を例に問題を説明したが、これに限定されるものではない。プラズマ処理により消耗する消耗部品全般に同様の問題が発生するため、例えば、フォーカスリングの更に外周に設置される絶縁物による保護カバーも同様にヒーターなどで温度調整されていれば、同様な手法にて消耗度合を求めることができる。また、載置台上のウエハWの厚さも同様な手法にて算出することができる。