JP7210060B2 - Device for suppressing choroidal thinning and method for operating the same - Google Patents
Device for suppressing choroidal thinning and method for operating the same Download PDFInfo
- Publication number
- JP7210060B2 JP7210060B2 JP2021116584A JP2021116584A JP7210060B2 JP 7210060 B2 JP7210060 B2 JP 7210060B2 JP 2021116584 A JP2021116584 A JP 2021116584A JP 2021116584 A JP2021116584 A JP 2021116584A JP 7210060 B2 JP7210060 B2 JP 7210060B2
- Authority
- JP
- Japan
- Prior art keywords
- thinning
- choroidal
- irradiation
- violet light
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Radiation-Therapy Devices (AREA)
Description
本発明は、バイオレットライトの照射により脈絡膜の菲薄化を抑制して健康な眼を維持する装置及び方法に関する。 The present invention relates to an apparatus and method for maintaining healthy eyes by suppressing choroidal thinning by irradiation with violet light.
脈絡膜は、いわゆる白目部分である強膜の内側の膜である。こうした脈絡膜は、その内部の血管で眼球や網膜に酸素や養分を補給している。一方、脈絡膜は、菲薄化することで眼の血流が十分でなくなることが知られている。眼の血流の80%程度は、脈絡膜の血流であり、眼の健康維持や機能向上、眼疾患の進行や改善に大きく関与すること等が報告されている(非特許文献1)。 The choroid is the inner membrane of the sclera, the so-called white part of the eye. These choroids supply the eyeball and retina with oxygen and nutrients through the blood vessels inside them. On the other hand, it is known that thinning of the choroid causes insufficient blood flow to the eye. About 80% of blood flow in the eye is blood flow in the choroid, and it has been reported that choroidal blood flow is greatly involved in maintaining eye health, improving eye function, and progressing and improving eye diseases (Non-Patent Document 1).
本発明は、脈絡膜の菲薄化を抑制する装置及び方法を提供することを目的とする。 An object of the present invention is to provide an apparatus and method for suppressing choroidal thinning.
(1)本発明に係る脈絡膜の菲薄化抑制装置は、360nm~400nmの範囲内の波長のバイオレットライトを発光する光源を備え、前記バイオレットライトを照射して脈絡膜の菲薄化を抑制する、ことを特徴とする。 (1) A device for suppressing choroidal thinning according to the present invention comprises a light source that emits violet light having a wavelength in the range of 360 nm to 400 nm, and suppresses choroidal thinning by irradiating the violet light. Characterized by
本発明に係る脈絡膜の菲薄化抑制装置において、前記バイオレットライトの放射照度と照射時間を制御する制御機構を有する。 The apparatus for suppressing choroidal thinning according to the present invention has a control mechanism for controlling the irradiance and irradiation time of the violet light.
本発明に係る脈絡膜の菲薄化抑制装置において、血流不全又は血流低下に基づいた、加齢黄斑変性症、緑内障、糖尿病網膜症、黄斑浮腫、眼精疲労、網膜血管閉塞症、三角症候群、中心性漿液性脈絡網膜症、網膜色素変性症、老視、及び白内障等から選ばれる眼疾患を適用対象とする。 Age-related macular degeneration, glaucoma, diabetic retinopathy, macular edema, asthenopia, retinal vascular occlusion, triangular syndrome, An eye disease selected from central serous chorioretinopathy, retinitis pigmentosa, presbyopia, cataract and the like is targeted for application.
本発明に係る脈絡膜の菲薄化抑制装置において、血流不全又は血流低下に基づいた、閉塞性動脈硬化症、閉塞性血栓血管炎、糖尿病、心筋梗塞、狭心症、脳梗塞、手足の冷感、痛み、脱毛、耳鳴、肩こり、むくみ、冷え、生理不順、自律神経の乱れ、慢性疲労、眠気、及び便秘等から選ばれる全身症状及び疾患を適用対象とする。 The device for suppressing choroidal thinning according to the present invention can be used to treat arteriosclerosis obliterans, thromboangiitis obliterans, diabetes, myocardial infarction, angina pectoris, cerebral infarction, and cold hands and feet due to insufficient blood flow or decreased blood flow. Systemic symptoms and diseases selected from sensation, pain, hair loss, tinnitus, stiff shoulders, swelling, coldness, irregular menstruation, disturbance of autonomic nerves, chronic fatigue, drowsiness, constipation, etc.
(2)本発明に係る脈絡膜の菲薄化抑制方法は、360nm~400nmの範囲内の波長のバイオレットライトを照射し、脈絡膜の菲薄化を抑制する、ことを特徴とする。 (2) A method for suppressing choroidal thinning according to the present invention is characterized by irradiating violet light having a wavelength within a range of 360 nm to 400 nm to suppress choroidal thinning.
本発明に係る脈絡膜の菲薄化抑制方法において、前記バイオレットライトの放射照度と照射時間を制御する。 In the method for suppressing choroidal thinning according to the present invention, the irradiance and irradiation time of the violet light are controlled.
本発明に係る脈絡膜の菲薄化抑制方法において、上記本発明に係る脈絡膜の菲薄化抑制装置での適用対象を同様に適用する。 In the method for suppressing choroidal thinning according to the present invention, the object of application of the device for suppressing choroidal thinning according to the present invention is similarly applied.
本発明によれば、脈絡膜の菲薄化を抑制する装置及び方法を提供することができる。特に眼の血流の大部分が流れる脈絡膜の菲薄化を抑制でき、血流不全又は血流低下に基づいた様々な症状や疾患の改善や治療に期待できる。 ADVANTAGE OF THE INVENTION According to this invention, the apparatus and method which suppress thinning of a choroid can be provided. In particular, it can suppress the thinning of the choroid, through which most of the blood flow in the eye flows, and can be expected to improve or treat various symptoms and diseases based on insufficient blood flow or decreased blood flow.
本発明に係る脈絡膜の菲薄化抑制装置及び方法について説明する。本発明は、以下の実施形態及び実施例の内容に限定されず、本発明の要旨を包含する範囲で種々の変形例や応用例を含む。 An apparatus and method for suppressing choroidal thinning according to the present invention will be described. The present invention is not limited to the following embodiments and examples, and includes various modifications and applications within the scope of the present invention.
[脈絡膜の菲薄化抑制装置及び方法]
本発明に係る脈絡膜の菲薄化抑制装置及び方法は、360nm~400nmの範囲内の波長のバイオレットライトを発光し、そのバイオレットライトを照射して脈絡膜の菲薄化を抑制する。こうした装置及び方法は、後述する実験結果に示すように、眼の血流の大部分が流れる脈絡膜の菲薄化を抑制でき、眼球や網膜に酸素や養分を十分に補給可能とし、血流不全又は血流低下に基づいた様々な症状や疾患の改善や治療が期待できる。
[Device and method for suppressing choroidal thinning]
A device and method for suppressing choroidal thinning according to the present invention emits violet light having a wavelength within the range of 360 nm to 400 nm, and irradiates the violet light to suppress choroidal thinning. As shown in the experimental results to be described later, these devices and methods can suppress thinning of the choroid, through which most of the blood flow in the eye flows, and can sufficiently supply oxygen and nutrients to the eyeball and retina. Improvement and treatment of various symptoms and diseases based on decreased blood flow can be expected.
本発明は、バイオレットライトを照射して、脈絡膜の菲薄化を少なくとも抑制することに特徴があり、「菲薄化を少なくとも抑制」には、脈絡膜の菲薄化の抑制の他、脈絡膜が厚くなること(厚さ増加)も含まれる。こうした脈絡膜の菲薄化抑制や厚さ増加は、脈絡膜の血流を維持又は増大させるので、バイオレットライトの使用(照射)は、血流不全又は血流低下に基づいた様々な症状の改善や疾患の治療に用いることができる。こうした知見は、従来は全く知られておらず、本発明者が初めて発見した。 The present invention is characterized by irradiating violet light to at least suppress choroidal thinning. thickness increase) are also included. Such suppression of choroidal thinning and increase in thickness maintains or increases choroidal blood flow, so the use of violet light (irradiation) is effective in improving various symptoms and treating diseases caused by insufficient blood flow or decreased blood flow. It can be used for therapy. Such findings have not been known at all in the past, and were first discovered by the inventors of the present invention.
(バイオレットライト)
バイオレットライトは、360~400nmの範囲内の波長をいう。バイオレットライトを照射するとは、360~400nmの波長範囲の全部又は一部の光を照射するという意味である。バイオレットライトは光源から照射されるが、そうした光源は、上記波長範囲内の全ての波長を照射するものであってもよいし、その波長範囲内の一部(特定範囲)の波長を照射するものであってもよいし、その波長範囲内にピーク波長を有したスペクトルを照射するものであってもよい。なお、一部の波長を照射する場合は、一部の範囲しか照射しない光源を用いてもよいし、広い波長範囲の光をフィルターで遮光して一部の波長の光だけを照射する光源を用いてもよい。また、360~400nmの範囲内のバイオレットライトを含むものあれば、360nm未満の光を含む光源でも400nmを超えた光を含む光源でも構わない。また、360nm付近や400nm付近では、360nm未満の光を少し含む光源でも構わないし、400nmを超えた光を少し含む光源でも構わない。特に後述の実施例のように、360~400nmの範囲内に極大ピークのあるバイオレットライト光源を好ましく適用でき、具体的には375~380nmに極大ピークのあるバイオレットライト光源が好ましい。
(violet light)
Violet light refers to wavelengths within the range of 360-400 nm. Irradiating with violet light means irradiating with all or part of the light in the wavelength range of 360 to 400 nm. Violet light is emitted from a light source, which may irradiate all wavelengths within the above wavelength range, or may irradiate a part (specific range) of wavelengths within that wavelength range. or a spectrum having a peak wavelength within the wavelength range. When irradiating a part of the wavelengths, a light source that irradiates only a part of the range may be used, or a light source that irradiates only a part of the wavelengths by shielding the light of a wide wavelength range with a filter may be used. may be used. Also, as long as it contains violet light in the range of 360 to 400 nm, it does not matter whether the light source contains light below 360 nm or above 400 nm. Also, in the vicinity of 360 nm and 400 nm, a light source containing a little light of less than 360 nm may be used, and a light source containing a little light of more than 400 nm may be used. In particular, a violet light source having a maximum peak in the range of 360 to 400 nm can be preferably applied as in Examples described later, and specifically, a violet light source having a maximum peak in the range of 375 to 380 nm is preferable.
バイオレットライトの波長範囲(360~400nm)であれば特に限定されないが、上市された光源の入手容易性から、例えば380nmにピークを有する光源や365~380nmの範囲内にピークを有する光源を好ましく用いることができる。なお、バイオレットライト以外の光については、バイオレットライトと共に照射できる光源であってもよいし、バイオレットライトだけを照射する光源であってもよい。通常は、バイオレットライトだけを照射する光源が好ましく採用される。バイオレットライト以外の光としては、例えば、400nmを超える光や、360nm未満の光であってもよい。ただし、315nm以下の光は眼への悪影響が懸念されるので、安全を見れば350nm未満の光は極力含まないことが望ましい。 The wavelength range of violet light (360 to 400 nm) is not particularly limited, but due to the availability of commercially available light sources, for example, a light source having a peak at 380 nm or a light source having a peak in the range of 365 to 380 nm is preferably used. be able to. Light other than violet light may be a light source that can irradiate together with violet light, or a light source that irradiates only violet light. Usually, a light source that emits only violet light is preferably employed. Light other than violet light may be, for example, light over 400 nm or light under 360 nm. However, since light of 315 nm or less may adversely affect the eyes, it is desirable that light of less than 350 nm is not included as much as possible from the viewpoint of safety.
バイオレットライトの放射照度は、0.01~5mW/cm2の範囲内であることが好ましい。この放射照度の範囲により本発明の効果を奏することができる。より好ましくは、0.01~1mW/cm2の範囲内であり、眼により安全な範囲として長時間の照射を可能とすることができる。なお、後述の実験では、0.4mW/cm2(400μW/cm2)の放射照度で照射しており、これを中心にした好ましい範囲として、0.1~0.8mW/cm2とすることができる。 The irradiance of the violet light is preferably in the range of 0.01-5 mW/cm 2 . The effect of the present invention can be exhibited by this range of irradiance. More preferably, it is in the range of 0.01 to 1 mW/cm 2 , and long-term irradiation is possible as a safer range for the eyes. In the experiment described later, irradiation was performed at an irradiance of 0.4 mW/cm 2 (400 μW/cm 2 ), and a preferable range centering on this was 0.1 to 0.8 mW/cm 2 . can be done.
上記光源を備える本発明に係る装置は、設置型の照射装置又は照明装置であってもよいし、携帯型の照射装置又は照明装置であってもよい。特に上記のように低い放射照度で照射できるので、携帯型の照射装置又は照明装置とすることが好ましく、例えばフェイスマスクのような顔前配置型の装置やメガネ等の装置とすれば、日常生活の中で利用することができる。なお、「照射装置」とは、バイオレットライトを少なくとも照射する装置の意味で用い、「照明装置」とは、バイオレットライトと白色光と併せて照射する装置の意味で用いている。 The apparatus according to the present invention including the light source may be a stationary irradiation device or lighting device, or a portable irradiation device or lighting device. In particular, since it is possible to irradiate with a low irradiance as described above, it is preferable to use a portable irradiation device or lighting device. can be used in The term "irradiation device" is used to mean a device that radiates at least violet light, and the term "illumination device" is used to mean a device that radiates both violet light and white light.
バイオレットライトの照射時間は、その効果を考慮して任意に設定される。一例としては、後述のマウスに対する実施例では3時間照射した実験で結果を得ているが、人間に対しては、普段の生活があることから生活に支障がない時間であれば特に限定されず、例えば一日あたり数時間(例えば1~5時間)を挙げることができる。その期間として、数週間(例えば2~8週間)から数ヶ月(例えば2~6ヶ月)としてもよい。こうした時間と期間でバイオレットライトを照射することにより、生活環境の中で無理せず、日常的に弱めの光を照射することができる。なお、光は、任意に間欠的(一定間隔又は不定期間隔)としたり、連続的としたりすることができるので、そうした照射形態を考慮して、照射時間や期間を設定することができる。 The irradiation time of the violet light is arbitrarily set in consideration of its effect. As an example, results are obtained in the experiment of irradiating mice for 3 hours in the examples described later, but for humans, there is no particular limitation as long as it does not interfere with their daily lives because they have a normal life. , for example several hours per day (eg 1 to 5 hours). The period may be from several weeks (eg, 2 to 8 weeks) to several months (eg, 2 to 6 months). By irradiating with violet light for such a time and period, it is possible to irradiate weak light on a daily basis without overdoing it in the living environment. Note that the light can be arbitrarily intermittent (constant intervals or irregular intervals) or continuous, so the irradiation time and period can be set in consideration of such an irradiation form.
(制御機構)
制御機構は、光源からの光の発光を制御する機構であって、眼の表面でのバイオレットライトの放射照度を上記範囲(0.01~5mW/cm2)で照射できるよう制御するものである。この制御機構は、その放射照度に応じた照射時間を設定できるものであってもよい。具体的には、放射照度や照射方式(連続、一定感間隔等)での制御や、一日あたりの照射時間や、その期間制御(例えば、毎日、隔日等)を行う制御機構を挙げることができる。制御機構は、光源と一体のものであってもよいし、光源とは別体の制御装置であってもよい。一体のものとは、例えばLEDと制御回路とが一体となって光源を構成している場合であり、別体のものとは、例えばLEDからなる光源と、そのLEDの発光を有線又は無線で制御する制御装置とが別部材として構成している場合である。
(control mechanism)
The control mechanism is a mechanism for controlling the emission of light from the light source, and controls the irradiance of the violet light on the surface of the eye so that it can be irradiated within the above range (0.01 to 5 mW/cm 2 ). . This control mechanism may be capable of setting the irradiation time according to the irradiance. Specifically, a control mechanism for controlling irradiance and irradiation method (continuous, constant intervals, etc.), irradiation time per day, and period control (for example, every day, every other day, etc.) can be mentioned. can. The control mechanism may be integrated with the light source, or may be a control device separate from the light source. For example, the integrated one is the case where the LED and the control circuit are integrated to form a light source, and the separate one is, for example, a light source composed of an LED and the light emission of the LED is wired or wireless. This is the case where the control device to control is configured as a separate member.
制御機構には、タイマー装置(時計を含む。)、記憶装置(メモリー)、表示装置(表示パネル)、通信装置等を備えていることが好ましい。これらを備えることで、例えば一日あたりの照射時間を制御したり、繰り返し照射する場合の情報を記憶したり、それらを液晶パネルに表示したり、スマートフォンやパソコンとの間で送受信を行ってアプリケーションソフトでの制御やデータ蓄積を行ったり等々をすることができる。また、病院や医師にデータ送信する送信装置を備えていれば、離れた場所にいても病院や医師による管理が可能になり、適切な管理や、処理指導を行うことができる。 The control mechanism preferably includes a timer device (including a clock), a storage device (memory), a display device (display panel), a communication device, and the like. By providing these, for example, it is possible to control the irradiation time per day, store information for repeated irradiation, display them on the liquid crystal panel, send and receive between smartphones and personal computers, and apply applications. It can be controlled by software, data can be stored, and so on. Also, if a transmission device for transmitting data to a hospital or a doctor is provided, management by the hospital or doctor becomes possible even from a remote location, and appropriate management and processing guidance can be performed.
(菲薄化)
こうした構成からなる本発明に係る脈絡膜の菲薄化抑制装置及び方法は、脈絡膜の菲薄化を少なくとも抑制する。「少なくとも」とは、バイオレットライトの照射によって脈絡膜が薄くなることは少なくとも抑制することを意味している。したがって、バイオレットライトの照射による脈絡膜の厚さの維持(菲薄化抑制)の他、脈絡膜が厚くなる場合を含んでいてもよい。脈絡膜の菲薄化を抑制することにより、現時点での脈絡膜内の血流状態をそのまま維持することができる。また、脈絡膜が厚くなることにより、現時点での脈絡膜内の血流状態を改善し、より血流が流れるようにすることができる。血流の改善は、眼の健康状態を改善することができ、眼の血流状態に起因する眼疾患の改善や治療に期待でき、眼の血流状態に起因する全身症状及び疾患の改善や治療に期待できる。
(thinning)
The apparatus and method for suppressing choroidal thinning according to the present invention having such a configuration at least suppress choroidal thinning. “At least” means that thinning of the choroid due to irradiation with violet light is at least suppressed. Therefore, in addition to maintaining the thickness of the choroid (suppression of thinning) by irradiation with violet light, the case where the choroid becomes thick may also be included. By suppressing the thinning of the choroid, the current state of blood flow in the choroid can be maintained as it is. In addition, by thickening the choroid, the current blood flow condition in the choroid can be improved and the blood can flow more. Improving blood flow can improve the health condition of the eye, can be expected to improve or treat eye diseases caused by the blood flow condition of the eye, and can be expected to improve or improve systemic symptoms and diseases caused by the blood flow condition of the eye. You can expect treatment.
すなわち、今回の実験で確認された脈絡膜の菲薄化抑制手段は、脈絡膜の菲薄化に伴う他の眼疾患、具体的には、脈絡膜の菲薄化が眼の血流不全又は血流低下に基づいていることが報告されている眼疾患、全身症状、及び疾患の進行予防的効果や治療効果が期待できる。例えば、血流不全又は血流低下に基づいた眼疾患としては、加齢黄斑変性症、緑内障、糖尿病網膜症、黄斑浮腫、眼精疲労、網膜血管閉塞症、三角症候群、中心性漿液性脈絡網膜症、網膜色素変性症、老視、白内障を挙げることができる。また、血流不全又は血流低下による全身症状及び疾患としては、閉塞性動脈硬化症、閉塞性血栓血管炎、糖尿病、心筋梗塞、狭心症、脳梗塞、手足の冷感、痛み、脱毛、耳鳴、肩こり、むくみ、冷え、生理不順、自律神経の乱れ、慢性疲労、眠気、便秘等を挙げることができる。 That is, the means for suppressing choroidal thinning confirmed in this experiment is other eye diseases associated with choroidal thinning, specifically, choroidal thinning is caused by insufficient blood flow or decreased blood flow in the eye. It can be expected to have preventive and therapeutic effects on eye diseases, systemic symptoms, and disease progression that have been reported to occur. For example, eye diseases based on poor blood flow or decreased blood flow include age-related macular degeneration, glaucoma, diabetic retinopathy, macular edema, asthenopia, retinal vascular occlusion, triangular syndrome, central serous chorioretinal disease, retinitis pigmentosa, presbyopia, cataract. In addition, systemic symptoms and diseases caused by insufficient blood flow or decreased blood flow include arteriosclerosis obliterans, thromboangiitis obliterans, diabetes, myocardial infarction, angina pectoris, cerebral infarction, coldness in hands and feet, pain, hair loss, Tinnitus, stiff shoulders, swelling, coldness, irregular menstruation, disturbance of autonomic nerves, chronic fatigue, drowsiness, constipation, etc. can be mentioned.
以下、実験例により本発明をさらに詳しく説明する。 The present invention will be described in more detail below with reference to experimental examples.
[実験1]
生後3週齢のマウス(C57BL6/J,日本クレア株式会社)に、左眼0D(「D」はDiopterの略で、レンズの屈折力の単位である。)及び右眼-30Dのレンズを装着し、近視を誘導した。近視の誘導は、マウスをVL(+)群とVL(-)群にランダムに分けて開始した。ここでの「VL」はバイオレットライトの略である。VL(-)群は、背景光として50Lux前後の5000ケルビン蛍光灯を毎日朝8時から夜20時まで照射し、VL(+)群は、前記の背景光に加え、360~400nmの波長で400μW/cm2のバイオレットライト(LED光源:日亜化学工業株式会社製、型番:NSPU510CS、ピーク波長:375nm)を毎日17時から20時まで追加照射した。照射を3週間継続し、照射前後のマウス眼球の屈折率、眼軸長及び脈絡膜厚を測定し、その変化量を計算した。
[Experiment 1]
A 3-week-old mouse (C57BL6/J, Clea Japan, Inc.) was equipped with a left eye 0D ("D" is an abbreviation for Diopter, which is the unit of refractive power of the lens) and a right eye -30D lens. and induced myopia. Induction of myopia was initiated by randomly dividing mice into VL(+) and VL(-) groups. "VL" here is an abbreviation for Violet Light. The VL(-) group was irradiated with a 5000 Kelvin fluorescent lamp of around 50 Lux as background light every day from 8:00 in the morning to 20:00 at night. A 400 μW/cm 2 violet light (LED light source: manufactured by Nichia Corporation, model number: NSPU510CS, peak wavelength: 375 nm) was additionally irradiated every day from 17:00 to 20:00. Irradiation was continued for 3 weeks, and the refractive index, axial length, and choroidal thickness of the mouse eyeball before and after irradiation were measured, and the amount of change was calculated.
使用した上記光源は、375nmにピーク波長を有し、そのピーク波長の分光放射照度を1(100%)としたときの360nmでの相対分光放射照度が0.025(2.5%)未満であり、400nmでの相対分光放射照度も0.025(2.5%)未満の光源である。 The light source used has a peak wavelength at 375 nm, and the relative spectral irradiance at 360 nm is less than 0.025 (2.5%) when the spectral irradiance at the peak wavelength is 1 (100%). and the relative spectral irradiance at 400 nm is also less than 0.025 (2.5%).
(脈絡膜の計測方法)
脈絡膜は、場所によって厚さが異なるので、SD-OCT(EnvisuR4310,Leica,Germany)を用い、マウスの脈絡膜を視神経中心に半径0.5mmのcircleで測定した。Image J(National Institutes of Health,Bethesda,USA)で脈絡膜の面積を計測(非特許文献2と同じ方法で計測した。)し、その値を円周率で割ることによって平均の脈絡膜厚を求めた。
(Method for measuring choroid)
Since the thickness of the choroid differs depending on the location, the choroid of the mouse was measured in a circle with a radius of 0.5 mm centered on the optic nerve using SD-OCT (Envisu R4310, Leica, Germany). The area of the choroid was measured with Image J (National Institutes of Health, Bethesda, USA) (measured by the same method as in Non-Patent Document 2), and the average choroidal thickness was obtained by dividing the value by the circumference ratio. .
測定結果を図1に示した。縦軸は脈絡膜の厚さであり、VL(-)群とVL(+)群における左眼0Dと右眼-30Dの結果を比較した。図1の結果より、バイオレットライトを追加照射したVL(+)群のマウスは、バイオレットライトを追加照射しないVL(-)群のマウスに比べ、右眼左眼のいずれも照射後の脈絡膜の厚さが増していた。特に近視誘導した右眼-30Dでは、バイオレットライトを追加照射しないVL(-)群のマウスは脈絡膜が薄くなって菲薄化していたが、バイオレットライトを追加照射したVL(+)群では脈絡膜の厚さが増しており、その差は極めて顕著になっていた。この結果は、バイオレットライトの照射が脈絡膜の厚さを増して脈絡膜の血流が向上するように作用することを意味する。眼の血流の80%は脈絡膜の血流によるため、脈絡膜が厚くなることにより眼の血流が改善され、より血流が流れるようにすることができ、その結果、眼の血流状態に起因する眼疾患の改善や治療に期待でき、眼の血流状態に起因する全身症状及び疾患の改善や治療に期待できる。
The measurement results are shown in FIG. The vertical axis represents the thickness of the choroid, and the results of left eye 0D and right eye -30D in the VL(-) group and VL(+) group were compared. From the results in Figure 1, the mice in the VL(+) group that received additional irradiation with violet light had a higher choroidal thickness in both the right and left eyes after irradiation than the mice in the VL(-) group that did not receive additional irradiation with violet light. It was getting louder. In particular, in the myopia-induced right eye -30D, the choroid became thinner and thinner in the VL(-) group without additional irradiation of violet light, but in the VL(+) group with additional irradiation with violet light, the choroid thickened. increased, and the difference was very noticeable. This result means that irradiation with violet light acts to increase the thickness of the choroid and improve blood flow in the choroid. Since 80% of the blood flow in the eye is due to the blood flow in the choroid, the thickening of the choroid improves the blood flow in the eye and allows more blood to flow, resulting in improved blood flow in the eye. It can be expected to ameliorate or treat ocular diseases caused by this, and can be expected to ameliorate or treat systemic symptoms and diseases caused by ocular blood flow conditions.
Claims (2)
A method for operating a device for suppressing choroidal thinning for use in increasing the thickness of the choroidal membrane in myopic eyes by irradiating moderately weak light on a daily basis in a living environment, wherein the wavelength is within the range of 360 nm to 400 nm. and a control mechanism for controlling the irradiance of the violet light and the irradiation method at continuous or constant intervals, wherein the control mechanism controls the irradiance of the violet light from 0.1 to A method of operating a device for suppressing choroidal thinning, characterized in that the irradiation time is 0.8 mW/cm 2 , the irradiation time is 1 to 5 hours per day, and the irradiation is controlled for a period of 2 weeks to 6 months.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021116584A JP7210060B2 (en) | 2020-09-16 | 2021-07-14 | Device for suppressing choroidal thinning and method for operating the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020155389 | 2020-09-16 | ||
JP2021116584A JP7210060B2 (en) | 2020-09-16 | 2021-07-14 | Device for suppressing choroidal thinning and method for operating the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020155389 Division | 2020-09-16 | 2020-09-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022049654A JP2022049654A (en) | 2022-03-29 |
JP7210060B2 true JP7210060B2 (en) | 2023-01-23 |
Family
ID=87888529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021116584A Active JP7210060B2 (en) | 2020-09-16 | 2021-07-14 | Device for suppressing choroidal thinning and method for operating the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7210060B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024090566A1 (en) * | 2022-10-28 | 2024-05-02 | 株式会社坪田ラボ | Method for treating and inhibiting progress of retinal degeneration using violet light, and device used in said method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008539808A (en) | 2005-03-14 | 2008-11-20 | アラクス・メディカル・インコーポレーテッド | Devices, methods and kits for radiation therapy through a target body surface |
WO2017090128A1 (en) | 2015-11-25 | 2017-06-01 | 株式会社ジェイアイエヌ | Optical member |
JP2018086108A (en) | 2016-11-28 | 2018-06-07 | 国立研究開発法人物質・材料研究機構 | Phototherapy device |
WO2019181967A1 (en) | 2018-03-21 | 2019-09-26 | 株式会社坪田ラボ | Non-invasive device and method for strengthening cornea or sclera |
WO2020027305A1 (en) | 2018-08-01 | 2020-02-06 | 株式会社坪田ラボ | Device and method for controlling brain waves and cell activity by photic stimulation, and device for improvement, prophylaxis, or enhancement of brain function |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3670064B2 (en) * | 1995-03-15 | 2005-07-13 | 啓介 小林 | Biological light irradiation device and its lamp |
-
2021
- 2021-07-14 JP JP2021116584A patent/JP7210060B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008539808A (en) | 2005-03-14 | 2008-11-20 | アラクス・メディカル・インコーポレーテッド | Devices, methods and kits for radiation therapy through a target body surface |
WO2017090128A1 (en) | 2015-11-25 | 2017-06-01 | 株式会社ジェイアイエヌ | Optical member |
JP2018086108A (en) | 2016-11-28 | 2018-06-07 | 国立研究開発法人物質・材料研究機構 | Phototherapy device |
WO2019181967A1 (en) | 2018-03-21 | 2019-09-26 | 株式会社坪田ラボ | Non-invasive device and method for strengthening cornea or sclera |
WO2020027305A1 (en) | 2018-08-01 | 2020-02-06 | 株式会社坪田ラボ | Device and method for controlling brain waves and cell activity by photic stimulation, and device for improvement, prophylaxis, or enhancement of brain function |
Also Published As
Publication number | Publication date |
---|---|
JP2022049654A (en) | 2022-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Herbst et al. | Intrinsically photosensitive retinal ganglion cell function in relation to age: a pupillometric study in humans with special reference to the age-related optic properties of the lens | |
Terman et al. | Light therapy | |
US20240261590A1 (en) | Method and apparatus for selective application of stimulus light | |
US20160067087A1 (en) | Wearable devices and methods for multi-wavelength photobiomodulation for ocular treatments | |
US10835417B2 (en) | Devices and methods for novel retinal irradiance distribution modification to improve and restore vision without producing corneal vitrification | |
Münch et al. | Melanopsin-mediated acute light responses measured in winter and in summer: seasonal variations in adults with and without cataracts | |
JP7210060B2 (en) | Device for suppressing choroidal thinning and method for operating the same | |
US20160317834A1 (en) | Light treatment therapy for an eye | |
Gawne et al. | The effects of intensity, spectral purity and duty cycle on red light‐induced hyperopia in tree shrews | |
Madsen et al. | Light therapy for seasonal affective disorder in visual impairment and blindness–a pilot study | |
WO2022059757A1 (en) | Device and method for inhibiting choroidal thinning | |
El-Nimri et al. | The effect of part-time wear of 2-zone concentric bifocal spectacle lenses on refractive error development & eye growth in young chicks | |
Liao et al. | Effects of corneal crosslinking on corneal shape stabilization after orthokeratology | |
WO2024090566A1 (en) | Method for treating and inhibiting progress of retinal degeneration using violet light, and device used in said method | |
US11974945B2 (en) | Devices and methods for novel retinal irradiance distribution modification to improve and restore vision without producing corneal vitrification | |
RU150988U1 (en) | DEVICE FOR LIGHT STIMULATION OF THE PURPOSE EYE REACTION | |
WO2023238956A1 (en) | Method for treating parkinson's disease through photostimulation, and device used in said method | |
WO2023074813A1 (en) | Method for treating disorders with photostimulation and instrument used in said method | |
Zhao et al. | Comparison of functional changes of retina after subthreshold and threshold pan-retinal photocoagulation in severe non-proliferative diabetic retinopathy | |
JP2024504245A (en) | Device and method for novel retinal irradiance distribution modification that improves and restores visual acuity without causing corneal hyalinization | |
Inoue et al. | Cognitive task performance in simulated night shifts: impact of optical filtering on 450–500-nm wavelength light under bright lighting conditions | |
Pai et al. | Overlapping Spots of Photodynamic Therapy for Treatment of Choroidal Hemangioma in Sturge-Weber Syndrome: A Case Report | |
CN117425518A (en) | Method and device for selectively applying a laser | |
Biswas et al. | Interactions between high-intensity light and unrestricted vision in the drive for hyperopia | |
Yu et al. | Axial Length Shortening after Combined Repeated Low‐Level Red‐Light Therapy in Poor Responders of Orthokeratology in Myopic Children |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210714 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211012 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20211213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220517 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220715 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7210060 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |