JP7206871B2 - METHOD FOR MANUFACTURING POLYCRYSTALLINE SILICON CARBIDE SUBSTRATE AND PLATE-TYPE SUBSTRATE - Google Patents

METHOD FOR MANUFACTURING POLYCRYSTALLINE SILICON CARBIDE SUBSTRATE AND PLATE-TYPE SUBSTRATE Download PDF

Info

Publication number
JP7206871B2
JP7206871B2 JP2018229749A JP2018229749A JP7206871B2 JP 7206871 B2 JP7206871 B2 JP 7206871B2 JP 2018229749 A JP2018229749 A JP 2018229749A JP 2018229749 A JP2018229749 A JP 2018229749A JP 7206871 B2 JP7206871 B2 JP 7206871B2
Authority
JP
Japan
Prior art keywords
substrate
silicon carbide
polycrystalline silicon
flat
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018229749A
Other languages
Japanese (ja)
Other versions
JP2020090423A (en
Inventor
剛 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018229749A priority Critical patent/JP7206871B2/en
Publication of JP2020090423A publication Critical patent/JP2020090423A/en
Application granted granted Critical
Publication of JP7206871B2 publication Critical patent/JP7206871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、単結晶炭化珪素が貼り合わされて、例えば、炭化珪素半導体等に使用される多結晶炭化珪素基板に係り、特に、基板製造の時間短縮と簡便化を図れる多結晶炭化珪素基板の製造方法に関するものである。 The present invention relates to a polycrystalline silicon carbide substrate to which single-crystal silicon carbide is bonded and used, for example, for a silicon carbide semiconductor. It is about the method.

炭化珪素(SiC)は珪素(Si)と炭素で構成される化合物半導体材料であり、絶縁破壊電界強度が珪素の10倍、バンドギャップが珪素の3倍と優れているだけでなく、デバイス作製に必要なp型、n型の制御が広い範囲で可能であることから、珪素の限界を超えるパワーデバイス用材料として期待されている。更に、炭化珪素は、薄い膜厚でも高い耐電圧が得られるため、炭化珪素の膜厚を薄くすることで、ON抵抗が小さく、低損失の半導体を得ることが可能となる。 Silicon carbide (SiC) is a compound semiconductor material composed of silicon (Si) and carbon. Since it is possible to control the required p-type and n-type in a wide range, it is expected as a material for power devices that exceeds the limits of silicon. Furthermore, since silicon carbide can provide a high withstand voltage even with a small film thickness, it is possible to obtain a semiconductor with low ON resistance and low loss by reducing the film thickness of silicon carbide.

しかし、炭化珪素半導体は、広く普及するSi半導体に較べて大面積の単結晶炭化珪素基板(ウェハ)を製造することが難しく、製造工程も複雑であることから、Si半導体と比較して大面積単結晶炭化珪素基板の大量生産が難しく、高価であった。 However, it is difficult to manufacture a large-area single-crystal silicon carbide substrate (wafer) from a silicon carbide semiconductor compared to the widely used Si semiconductor, and the manufacturing process is also complicated. Mass production of single-crystal silicon carbide substrates has been difficult and expensive.

そこで、炭化珪素半導体のコストを下げるため、様々な工夫がなされている。例えば、特許文献1には、単結晶炭化珪素と多結晶炭化珪素基板を貼り合わせて成る炭化珪素基板の製造方法が開示されている。すなわち、少なくとも、マイクロパイプの密度が30個/cm2以下の単結晶炭化珪素基板と多結晶炭化珪素基板を貼り合わせ、その後、上記単結晶炭化珪素基板を薄膜化することで、炭化珪素半導体に供される炭化珪素基板の製造方法が記載されている。因みに、炭化珪素半導体のデバイス活性層は上記単結晶炭化珪素基板が機能し、下部の機械的支持部、放熱部分は多結晶炭化珪素基板がその役割を受け持つ構造となり、炭化珪素基板全体を単結晶の炭化珪素で構成した基板と同等に扱うことが可能となる。 Therefore, various measures have been taken to reduce the cost of silicon carbide semiconductors. For example, Patent Document 1 discloses a method of manufacturing a silicon carbide substrate by bonding a single crystal silicon carbide substrate and a polycrystalline silicon carbide substrate together. That is, at least, a single crystal silicon carbide substrate having a micropipe density of 30 micropipes/cm 2 or less and a polycrystalline silicon carbide substrate are bonded together, and then the single crystal silicon carbide substrate is thinned to form a silicon carbide semiconductor. A method for manufacturing a provided silicon carbide substrate is described. Incidentally, the single crystal silicon carbide substrate functions as the device active layer of the silicon carbide semiconductor, and the polycrystalline silicon carbide substrate plays the role of the lower mechanical support portion and the heat radiation portion. can be handled in the same way as a substrate made of silicon carbide.

更に、特許文献1には、単結晶炭化珪素基板と多結晶炭化珪素基板を貼り合わせる前に単結晶炭化珪素基板に水素イオン注入層を形成し、水素イオン注入層が形成された単結晶炭化珪素基板と多結晶炭化珪素基板を貼り合わせた後、350℃以下の温度で熱処理を行うことで、上記水素イオン注入層を単結晶炭化珪素基板の剥離面にして単結晶炭化珪素基板を薄膜化する方法も記載されている。 Furthermore, in Patent Document 1, a hydrogen ion-implanted layer is formed on a single-crystal silicon carbide substrate before bonding a single-crystal silicon carbide substrate and a polycrystalline silicon carbide substrate together, and single-crystal silicon carbide with the hydrogen-ion-implanted layer is formed. After bonding the substrate and the polycrystalline silicon carbide substrate together, a heat treatment is performed at a temperature of 350° C. or less to thin the single crystal silicon carbide substrate with the hydrogen ion-implanted layer as a peeling surface of the single crystal silicon carbide substrate. A method is also described.

そして、特許文献1に記載された方法により、1つの大面積単結晶炭化珪素インゴットから炭化珪素半導体に供されるより多くの炭化珪素基板が得られるようになった。 Further, by the method described in Patent Document 1, more silicon carbide substrates to be used for silicon carbide semiconductors can be obtained from one large-area single-crystal silicon carbide ingot.

特開2009-117533号公報JP 2009-117533 A

ところで、単結晶炭化珪素が貼り合わされて、炭化珪素半導体等に使用される多結晶炭化珪素基板は、一般的に、熱CVD法等の気相成膜法により製造されている。 By the way, a polycrystalline silicon carbide substrate, in which single crystal silicon carbide is bonded together and used for a silicon carbide semiconductor or the like, is generally manufactured by a vapor deposition method such as a thermal CVD method.

すなわち、平板状被成膜基板(母材基板)が配置された育成炉内を1300℃以上の環境に設定し、該炉内にSiH4等のSi系原材料ガス、CH4等のC系原材料ガス、不純物ガスである窒素ガス、および、キャリアガスである水素ガスを導入し、熱反応により、上記平板状被成膜基板の表裏面と外周端面に多結晶炭化珪素を析出させる。 That is, the growth furnace in which the flat film-forming substrate (base material substrate) is arranged is set to an environment of 1300 ° C. or higher, and Si-based raw material gas such as SiH 4 and C-based raw material such as CH 4 are placed in the furnace. A gas, a nitrogen gas as an impurity gas, and a hydrogen gas as a carrier gas are introduced, and polycrystalline silicon carbide is deposited on the front and back surfaces and the outer peripheral end face of the flat film-forming substrate by thermal reaction.

そして、多結晶炭化珪素が析出された平板状被成膜基板を育成炉から取り出し、かつ、平板状被成膜基板をベベリング加工して該平板状被成膜基板の端面を露出させた後、電気炉等を用いて平板状被成膜基板(後述するように高純度カーボン材等で構成される)のみを燃焼(焼成による消失)させ、平板状被成膜基板の表裏面に形成された多結晶炭化珪素膜から成る2枚の多結晶炭化珪素基板が得られる。 Then, the flat plate-shaped substrate on which polycrystalline silicon carbide is deposited is taken out from the growth furnace, and the flat plate-shaped substrate is beveled to expose the end face of the flat film-formation substrate, Only the flat film-forming substrate (made of a high-purity carbon material, etc., as described later) is burned (disappeared by firing) using an electric furnace or the like, and formed on the front and back surfaces of the flat film-forming substrate. Two polycrystalline silicon carbide substrates made of polycrystalline silicon carbide films are obtained.

しかし、上記多結晶炭化珪素基板の製造方法は、平板状被成膜基板を燃焼させる際、露出している平板状被成膜基板(母材基板)は側面の厚み分のみであることから母材基板全体に熱が伝わり難く、燃焼(焼成による消失)に時間がかかるため加工工程のボトルネックとなっている。 However, in the above-described method for manufacturing a polycrystalline silicon carbide substrate, when the flat plate-shaped film formation substrate is burned, only the thickness of the side surface of the flat film formation substrate (base material substrate) is exposed. It is difficult for heat to be transmitted to the entire substrate, and it takes time to burn (disappear by firing), which is a bottleneck in the processing process.

また、多結晶炭化珪素基板は、半導体である単結晶炭化珪素を貼り合わせて使用されるため、多結晶炭化珪素基板に金属汚染のないことが要求される。このため、多結晶炭化珪素が析出(成膜)される平板状被成膜基板(母材基板)の材料には、金属汚染を生じさせずかつ高温環境に耐え得る高純度カーボン材等が用いられている。 In addition, since the polycrystalline silicon carbide substrate is used by laminating single crystal silicon carbide, which is a semiconductor, the polycrystalline silicon carbide substrate is required to be free from metal contamination. For this reason, a high-purity carbon material that does not cause metal contamination and can withstand high-temperature environments is used as the material of the flat plate-shaped substrate (base material substrate) on which polycrystalline silicon carbide is deposited (film-formed). It is

しかし、カーボン材料は、高温に耐え得るものの機械的強度は弱く、ばね性を付与させることが難しいため、平板状被成膜基板(母材基板)を固定する際、図1~図2に示すようにカーボン製ナット等から成る治具(ロッド2、母材基板1を挟み込むスペーサ3、および、スペーサ3を固定するナット4等で構成される)で母材基板1を挟み込んで固定するか、爪形状の載置部等に乗せて固定する方法が採られている。この状態で、平板状被成膜基板(母材基板)1の表裏面と外周端面に多結晶炭化珪素を析出(成膜)させると、図3に示すようにカーボン製ナット等から成る上記治具や載置部(図示せず)にも多結晶炭化珪素5が析出(成膜)し、析出(成膜)した多結晶炭化珪素5によって治具や載置部と平板状被成膜基板(母材基板)1が固着してしまう。 However, although carbon materials can withstand high temperatures, they have low mechanical strength and are difficult to impart spring properties. The base material substrate 1 is fixed by sandwiching it with a jig (consisting of a rod 2, a spacer 3 for sandwiching the base material substrate 1, a nut 4 for fixing the spacer 3, etc.) made of a carbon nut or the like, or A method of placing and fixing it on a nail-shaped mounting portion or the like is adopted. In this state, when polycrystalline silicon carbide is deposited (film-formed) on the front and back surfaces and the outer peripheral end face of the flat substrate to be film-formed (base material substrate) 1, as shown in FIG. Polycrystalline silicon carbide 5 is also deposited (film-formed) on the jig and mounting portion (not shown), and the deposited (film-formed) polycrystalline silicon carbide 5 forms a bond between the jig or mounting portion and the flat film-forming substrate. (Base material substrate) 1 will stick.

そして、上記治具等と平板状被成膜基板(母材基板)1が固着した場合、多結晶炭化珪素の析出(成膜)終了後に母材基板1を高温環境から冷却する際、多結晶炭化珪素膜の収縮等による治具等と多結晶炭化珪素膜間に生じる応力によって多結晶炭化珪素膜や母材基板1にクラック等を生ずることがあった。 When the jig or the like is fixed to the flat film-forming substrate (base material substrate) 1, when the base material substrate 1 is cooled from the high-temperature environment after the deposition (film-forming) of polycrystalline silicon carbide is completed, the polycrystalline Cracks or the like may occur in the polycrystalline silicon carbide film or base material substrate 1 due to stress generated between a jig or the like and the polycrystalline silicon carbide film due to shrinkage of the silicon carbide film.

また、多結晶炭化珪素膜のクラック等が生じない平板状被成膜基板(母材基板)1においても、治具等との固着部分を取り外す際に、図4に示すように治具等との固着部分を欠損させて母材基板1から取り除く必要があり、固着部分の多結晶炭化珪素膜が欠損してしまう(図4に基板欠損部6を示す)ため、多結晶炭化珪素膜が成膜された母材基板1の円形状を保持できなくなる問題点があった。 In addition, even in the case of the planar film-forming substrate (base material substrate) 1 in which cracks or the like of the polycrystalline silicon carbide film do not occur, when removing the portion fixed to the jig etc. Therefore, the polycrystalline silicon carbide film at the fixed portion is damaged (substrate missing portion 6 is shown in FIG. 4), so that the polycrystalline silicon carbide film is formed. There is a problem that the circular shape of the base material substrate 1 on which the film is formed cannot be maintained.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、製造工程のボトルネックであった平板状被成膜基板(母材基板)における消失時間の短縮が図れ、かつ、多結晶炭化珪素膜や平板状被成膜基板(母材基板)等の破損が抑制されると共に、多結晶炭化珪素膜が成膜された母材基板の円形状も保持することが可能となる多結晶炭化珪素基板の製造方法を提供し、合わせてこの製造方法に適用される平板状被成膜基板を提供することにある。 The present invention has been made by paying attention to such a problem, and the object thereof is to shorten the disappearance time in the planar film-forming substrate (base material substrate), which has been a bottleneck in the manufacturing process. In addition, damage to the polycrystalline silicon carbide film, the flat plate-shaped substrate (base material substrate), etc. can be suppressed, and the circular shape of the base material substrate on which the polycrystalline silicon carbide film is formed can be maintained. It is an object of the present invention to provide a method for manufacturing a polycrystalline silicon carbide substrate that can achieve this, and also to provide a flat plate-like substrate for film formation that is applied to this manufacturing method.

そこで、本発明者は、平板状被成膜基板(母材基板)における消失時間の短縮が図れ、多結晶炭化珪素膜や平板状被成膜基板等の破損が防止される方法について鋭意研究を重ねた結果、上記平板状被成膜基板を、分離可能に一体化された上側平板状基板と下側平板状基板とで構成し、該平板状被成膜基板の端面を露出させた後、上側平板状基板と下側平板状基板を分離させて両基板を除去(消失)することで達成されることを見出すに至った。更に、下側平板状基板の外周端面に挿入孔を形成し、該下側平板状基板を固定保持する挿入治具を下側平板状基板の上記挿入孔に嵌入させる構造を採用することで、多結晶炭化珪素膜が成膜された平板状被成膜基板の円形状を保持できることも見出すに至った。 Therefore, the present inventors have conducted intensive research into a method for shortening the dissipation time in the flat substrate for film formation (base material substrate) and preventing damage to the polycrystalline silicon carbide film, the flat substrate for film formation, and the like. As a result of stacking, the flat plate-shaped substrate for film formation is configured by the upper flat substrate and the lower flat substrate which are detachably integrated, and after exposing the end surface of the flat plate-shaped substrate for film formation, The present inventors have found that this can be achieved by separating the upper flat substrate and the lower flat substrate and removing (disappearing) both substrates. Furthermore, by adopting a structure in which an insertion hole is formed in the outer peripheral end face of the lower flat substrate and an insertion jig for fixing and holding the lower flat substrate is fitted into the insertion hole of the lower flat substrate, It has also been found that the circular shape of a flat substrate on which a polycrystalline silicon carbide film is formed can be maintained.

すなわち、本発明に係る第1の発明は、
保持手段で固定された平板状被成膜基板の表裏面と外周端面に気相成膜法により多結晶炭化珪素膜を形成する成膜工程と、
上記保持手段から分離された平板状被成膜基板の外周端面に形成された多結晶炭化珪素膜を除去して平板状被成膜基板の外周端面を露出させる端面露出工程と、
外周端面が露出した平板状被成膜基板を除去して該平板状被成膜基板の表裏面に形成された多結晶炭化珪素膜から成る2枚の多結晶炭化珪素基板を得る除去工程、
を具備する多結晶炭化珪素基板の製造方法において、
上記平板状被成膜基板を、分離可能に一体化された上側平板状基板と下側平板状基板とで構成し、
かつ、平板状被成膜基板が固定される上記保持手段を、下側平板状基板の外周端面に形成された挿入孔と、該挿入孔に嵌入されて下側平板状基板を固定保持する挿入治具とで構成すると共に
上記端面露出工程後に、上側平板状基板と下側平板状基板を分離させて両基板を除去することを特徴とする。
That is, the first invention according to the present invention is
a film formation step of forming a polycrystalline silicon carbide film on the front and back surfaces and the outer peripheral end face of the flat plate-shaped substrate fixed by the holding means by a vapor deposition method;
an end face exposing step of removing the polycrystalline silicon carbide film formed on the outer peripheral end face of the flat plate-shaped film formation substrate separated from the holding means to expose the outer peripheral end face of the flat film formation substrate;
a removing step of removing the flat plate-shaped film formation substrate with the outer peripheral end face exposed to obtain two polycrystalline silicon carbide substrates composed of polycrystalline silicon carbide films formed on the front and back surfaces of the flat film-formation substrate;
In a method for manufacturing a polycrystalline silicon carbide substrate comprising
The flat plate-like substrate to be filmed is composed of an upper flat plate-like substrate and a lower flat plate-like substrate separably integrated,
Further, the holding means to which the flat plate-like substrate is fixed is an insertion hole formed in the outer peripheral end face of the lower flat-plate-like substrate, and an insertion hole which is inserted into the insertion hole to fix and hold the lower flat-plate-like substrate. Along with configuring with a jig ,
After the end face exposing step, the upper flat substrate and the lower flat substrate are separated and removed.

また、本発明に係る第2の発明は、
第1の発明に記載の多結晶炭化珪素基板の製造方法において、
上側平板状基板と下側平板状基板を分離させた後、燃焼法により両基板を除去して2枚の多結晶炭化珪素基板を得ることを特徴とし、
第3の発明は、
第1の発明に記載の多結晶炭化珪素基板の製造方法において、
上側平板状基板と下側平板状基板を分離させた後、平面研削により両基板を除去して2枚の多結晶炭化珪素基板を得ることを特徴とする
Moreover, the second invention according to the present invention is
In the method for manufacturing a polycrystalline silicon carbide substrate according to the first invention,
After separating the upper flat substrate and the lower flat substrate, both substrates are removed by a combustion method to obtain two polycrystalline silicon carbide substrates,
The third invention is
In the method for manufacturing a polycrystalline silicon carbide substrate according to the first invention,
After separating the upper flat substrate and the lower flat substrate, both substrates are removed by surface grinding to obtain two polycrystalline silicon carbide substrates.

また、第の発明は、
第1の発明~第の発明のいずれかに記載の多結晶炭化珪素基板の製造方法に用いられる平板状被成膜基板において、
凸形状の嵌入部を有する上側平板状基板と該嵌入部が嵌め込まれる凹形状の嵌合部を有する下側平板状基板とで構成され、かつ、上記下側平板状基板の外周端面に断面矩形状の挿入孔が設けられていることを特徴とするものである。
Moreover, the fourth invention is
In a flat plate-shaped substrate for film formation used in the method for manufacturing a polycrystalline silicon carbide substrate according to any one of the first to third inventions,
It is composed of an upper flat substrate having a convex fitting portion and a lower flat substrate having a concave fitting portion into which the fitting portion is fitted. It is characterized by having a shaped insertion hole.

本発明に係る多結晶炭化珪素基板の製造方法によれば、
表裏面に多結晶炭化珪素膜が形成される平板状被成膜基板を、分離可能に一体化された上側平板状基板と下側平板状基板とで構成し、かつ、平板状被成膜基板の端面を露出させた後、上側平板状基板と下側平板状基板を分離させ、上側平板状基板と下側平板状基板の嵌合面が露出した状態で両基板を除去(消失)するため、板状被成膜基板における除去(消失)時間の短縮が図れると共に、多結晶炭化珪素膜や平板状被成膜基板等の破損をも防止することが可能となる。
According to the method for manufacturing a polycrystalline silicon carbide substrate according to the present invention,
A flat plate-shaped substrate on which a polycrystalline silicon carbide film is formed on the front and back surfaces is composed of an upper flat substrate and a lower flat substrate that are detachably integrated, and the flat plate-shaped substrate on which a film is formed is provided. After exposing the end faces of the upper and lower flat substrates, the upper and lower flat substrates are separated, and both substrates are removed (disappeared) while the mating surfaces of the upper and lower flat substrates are exposed. In addition, it is possible to shorten the removal (disappearance) time of the plate-like film formation substrate, and prevent damage to the polycrystalline silicon carbide film, the plate-like film formation substrate, and the like.

また、上記平板状被成膜基板が固定される保持手段を、下側平板状基板の外周端面に形成された挿入孔と、該挿入孔に嵌入されて下側平板状基板を固定保持する挿入治具とで構成しているため、多結晶炭化珪素膜が成膜された平板状被成膜基板の円形状も保持することが可能となる。 In addition, the holding means for fixing the flat plate-like substrate is composed of an insertion hole formed in the outer peripheral end surface of the lower flat plate-like substrate, and an insertion hole which is inserted into the insertion hole to fix and hold the lower flat plate-like substrate. Since it is configured with a jig, it is possible to maintain the circular shape of the planar substrate on which the polycrystalline silicon carbide film is formed.

育成炉内において多結晶炭化珪素膜が成膜される平板状被成膜基板(母材基板)1を保持手段(ロッド2、母材基板1を挟み込むスペーサ3、スペーサ3を固定するナット4等で構成される治具)で固定した状態を示す概略斜視図。Holding means (rods 2, spacers 3 for sandwiching the base material substrate 1, nuts 4 for fixing the spacers 3, etc.) hold the flat plate-shaped substrate (base material substrate) 1 on which the polycrystalline silicon carbide film is to be formed in the growth furnace. Schematic perspective view showing a state fixed by a jig). 図1の側面図。FIG. 2 is a side view of FIG. 1; 図1に示す保持手段で平板状被成膜基板(母材基板)が固定された場合に、析出(成膜)した多結晶炭化珪素膜により保持手段と平板状被成膜基板(母材基板)が固着した状態を示す概略説明図。When the flat substrate to be film-formed (base material substrate) is fixed by the holding means shown in FIG. ) is fixed. 析出(成膜)した多結晶炭化珪素膜により保持手段と平板状被成膜基板(母材基板)が固着した場合に、保持手段から平板状被成膜基板(母材基板)を取り外したときに形成される基板欠損部6を示す概略斜視図。When the flat plate-shaped film formation substrate (base material substrate) is removed from the holding means when the flat film formation substrate (base material substrate) is fixed to the holding means by the deposited (deposited) polycrystalline silicon carbide film 1 is a schematic perspective view showing a substrate cutout portion 6 formed in FIG. 図5(A)は平板状被成膜基板(母材基板)を構成する上側平板状基板と下側平板状基板が一体化される前の概略斜視図、図5(B)は下側平板状基板の外周端面に形成された挿入孔と該挿入孔に嵌入されて下側平板状基板を固定する挿入治具とで構成された平板状被成膜基板(母材基板)の保持手段を示す説明図。FIG. 5(A) is a schematic perspective view before the upper flat substrate and the lower flat substrate constituting the flat film formation substrate (base material substrate) are integrated, and FIG. 5(B) is the lower flat plate. holding means for a flat substrate to be film-formed (base material substrate) comprising an insertion hole formed in the outer peripheral end surface of the flat substrate and an insertion jig inserted into the insertion hole to fix the lower flat substrate. Explanatory diagram showing. 図6(A)は上側平板状基板と下側平板状基板で構成される平板状被成膜基板(母材基板)の表裏面と外周端面に多結晶炭化珪素膜が析出(成膜)されかつロッドから母材基板が分離された状態を示す説明図、図6(B)は平板状被成膜基板(母材基板)の外周端面に析出(成膜)した多結晶炭化珪素膜と挿入治具(保持板)が除去された状態を示す説明図、図6(C)は上側平板状基板と下側平板状基板が分離されてその嵌合面を露出した状態を示す説明図。FIG. 6A shows that a polycrystalline silicon carbide film is deposited (film-formed) on the front and back surfaces and the outer peripheral end face of a flat film-forming substrate (base material substrate) composed of an upper flat substrate and a lower flat substrate. An explanatory view showing the state in which the base material substrate is separated from the rod, and FIG. FIG. 6C is an explanatory diagram showing a state in which the jig (holding plate) is removed, and FIG. 6C is an explanatory diagram showing a state in which the upper flat substrate and the lower flat substrate are separated and their mating surfaces are exposed.

以下、本発明の実施形態について詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.

本発明に係る多結晶炭化珪素基板の製造方法は、表裏面に多結晶炭化珪素が成膜される平板状被成膜基板(母材基板)について、分離可能に一体化された上側平板状基板と下側平板状基板とで構成したことを特徴とするものである。 A method for manufacturing a polycrystalline silicon carbide substrate according to the present invention includes an upper flat substrate that is detachably integrated with a flat film-formed substrate (base material substrate) on which polycrystalline silicon carbide is formed on front and back surfaces. and a lower flat substrate.

(1)母材基板の一部がスペーサで挟持される参考例に係る保持手段
上記平板状被成膜基板(母材基板)1の一部がスペーサで挟持される参考例に係る保持手段は、図1~図2に示すように、三角ネジ加工を施したロッド2と、母材基板1を挟み込むスペーサ3と、該スペーサ3を固定する六角ナット4とで構成されており、各々の材質は全てカーボン材料が用いられている。そして、1本のロッド2に、上記スペーサ3と六角ナット4を等間隔で配置することにより、複数枚の平板状被成膜基板(母材基板)1を同時に成膜処理することが可能となる。
(1) Holding Means According to a Reference Example in which a Part of a Base Material Substrate is Sandwiched by Spacers , as shown in FIGS. 1 and 2, it is composed of a rod 2 with triangular threads, a spacer 3 for sandwiching the base material substrate 1, and a hexagonal nut 4 for fixing the spacer 3. Each material is are all made of carbon material. By arranging the spacers 3 and the hexagonal nuts 4 on a single rod 2 at regular intervals, it is possible to simultaneously perform film formation on a plurality of flat film-forming substrates (base substrates) 1 . Become.

ところで、母材基板の一部がスペーサで挟持される保持手段を採った場合、上述したように、平板状被成膜基板(母材基板)1の表裏面と外周端面に加えて図3に示すように保持手段を構成するロッド2、スペーサ3、および、ナット4の各外周面にも多結晶炭化珪素5が析出(成膜)するため、多結晶炭化珪素5によって平板状被成膜基板(母材基板)1と保持手段が固着してしまう。 By the way, in the case of adopting a holding means in which a part of the base material substrate is sandwiched by spacers, as described above, in addition to the front and back surfaces and the outer peripheral end surface of the flat film-forming substrate (base material substrate) 1, as shown in FIG. As shown, the polycrystalline silicon carbide 5 is also deposited (film-formed) on the outer peripheral surfaces of the rod 2, the spacer 3, and the nut 4 that constitute the holding means. The (base material substrate) 1 and the holding means are fixed.

従って、多結晶炭化珪素5が成膜された平板状被成膜基板(母材基板)1を保持手段から取り外す際、保持手段のスペーサ3で挟持された平板状被成膜基板(母材基板)1の一部を取り除く必要があることから、平板状被成膜基板(母材基板)1の端面を露出させる端面露出工程後の平板状被成膜基板(母材基板)1に、図4に示すような基板欠損部6が形成されてしまうため平板状被成膜基板(母材基板)1の円形状を保持できなくなる。 Therefore, when the flat film-forming substrate (base material substrate) 1 on which the polycrystalline silicon carbide 5 is formed is removed from the holding means, the flat film-forming substrate (base material substrate) sandwiched by the spacers 3 of the holding means ) 1 must be removed. 4 is formed, the circular shape of the flat film-forming substrate (base material substrate) 1 cannot be maintained.

但し、分離可能に一体化された上側平板状基板と下側平板状基板とで上記平板状被成膜基板(母材基板)が構成されていることから、上記端面露出工程後、上側平板状基板と下側平板状基板を分離させ、上側平板状基板と下側平板状基板の嵌合面が露出した状態で両基板を除去(消失)することが可能になるため、平板状被成膜基板における除去(消失)時間の短縮が図れ、かつ、除去(消失)時間が短縮されることに伴い多結晶炭化珪素膜や平板状被成膜基板等の破損も低減できる利点を有する。更に、上側平板状基板と下側平板状基板の嵌合面が露出した状態で両基板を除去(消失)できるため、従前の燃焼法(電気炉を用いた焼成による消失法)に加えて平面研削により上側平板状基板と下側平板状基板を除去することが可能となる。 However, since the flat film-forming substrate (base material substrate) is composed of the upper flat substrate and the lower flat substrate which are separably integrated, the upper flat substrate is formed after the end face exposing step. It is possible to separate the substrate and the lower flat substrate and remove (disappear) the upper and lower flat substrates while exposing the mating surfaces of the upper and lower flat substrates. There is an advantage that the removal (disappearance) time in the substrate can be shortened, and the breakage of the polycrystalline silicon carbide film, flat substrate, etc., can be reduced as the removal (disappearance) time is shortened. Furthermore, since both substrates can be removed (disappeared) while the mating surfaces of the upper and lower flat substrates are exposed, in addition to the conventional combustion method (disappearance method by firing using an electric furnace), Grinding makes it possible to remove the upper flat substrate and the lower flat substrate.

(2)下側平板状基板の挿入孔とロッドに固定された挿入治具から成る本発明に係る保持手段
本発明に係る保持手段で保持される平板状被成膜基板(母材基板)は、図5(A)に示すように凸形状の嵌入部70を有する上側平板状基板7と、該嵌入部70が嵌め込まれる凹形状の嵌合部80を有する下側平板状基板8とで構成され、上記下側平板状基板8の外周端面に断面矩形状の挿入孔10が設けられていると共に、図5(B)に示すように上側平板状基板7と下側平板状基板8が一体化されて多結晶炭化珪素基板の製造に使用される。
(2) Holding means according to the present invention comprising an insertion hole in the lower flat substrate and an insertion jig fixed to the rod
The flat film-forming substrate (base material substrate) held by the holding means according to the present invention includes, as shown in FIG. An insertion hole 10 having a rectangular cross section is provided in the outer peripheral end surface of the lower flat substrate 8, and the bottom flat substrate 8 has a recessed fitting portion 80 in which the 70 is fitted. As shown in FIG. 5B, upper flat substrate 7 and lower flat substrate 8 are integrated and used for manufacturing a polycrystalline silicon carbide substrate.

また、下側平板状基板8の外周端面に設けられた挿入孔10には図5(B)に示すロッド2に固定された挿入治具(保持板)9が嵌入され、この挿入治具(保持板)9の作用により一体化された平板状被成膜基板(母材基板)1が保持されるようになっている。尚、図5(B)中、符号4は挿入治具(保持板)9をロッド2に固定する六角ナットを示す。 An insertion jig (holding plate) 9 fixed to the rod 2 shown in FIG. A holding plate 9 serves to hold an integrated flat film-forming substrate (base material substrate) 1 . 5(B), reference numeral 4 denotes a hexagonal nut for fixing the insertion jig (holding plate) 9 to the rod 2. As shown in FIG.

このような保持手段を採った場合、平板状被成膜基板(母材基板)1の表裏面と外周端面に加えて、ロッド2、ナット4、および、挿入治具(保持板)9の各外周面にも多結晶炭化珪素5が成膜するが、図6(A)に示すように挿入治具(保持板)9の基端側(すなわち、保持板9がナット4で固定された側)を切断することで、多結晶炭化珪素5が成膜された平板状被成膜基板(母材基板)1をロッド2から取り外すことができるため、図6(B)に示すように平板状被成膜基板(母材基板)1の端面を露出させる端面露出工程後において平板状被成膜基板(母材基板)1の円形状を保持することが可能となる。 When such a holding means is adopted, in addition to the front and back surfaces and the outer peripheral end face of the flat plate-shaped film-forming substrate (base substrate) 1, each of the rod 2, the nut 4, and the insertion jig (holding plate) 9 is held. Polycrystalline silicon carbide 5 is also formed on the outer peripheral surface, but as shown in FIG. ), the flat film-forming substrate (base material substrate) 1 on which the polycrystalline silicon carbide 5 is formed can be removed from the rod 2, so that the flat plate-shaped substrate shown in FIG. After the end face exposing step of exposing the end face of the film formation target substrate (base material substrate) 1, the circular shape of the flat film formation target substrate (base material substrate) 1 can be maintained.

そして、上記端面露出工程後、図6(C)に示すように上側平板状基板7と下側平板状基板8を分離させ、上側平板状基板7と下側平板状基板8の嵌合面が露出した状態で両基板を除去(消失)することが可能になるため、平板状被成膜基板における除去(消失)時間の短縮が図れ、かつ、除去(消失)時間が短縮されることに伴い多結晶炭化珪素膜や平板状被成膜基板等の破損も低減できると共に、平板状被成膜基板(母材基板)1の円形状を保持できる(すなわち、基板欠損部6が形成されない)ことから平板状被成膜基板(母材基板)1に成膜された多結晶炭化珪素膜を無駄なく利用できる利点を有する。更に、上側平板状基板7と下側平板状基板8の嵌合面が露出した状態で両基板を除去(消失)できるため、従前の燃焼法(電気炉を用いた焼成による消失法)に加えて平面研削により上側平板状基板7と下側平板状基板8を除去することが可能となる。 After the end face exposing step, the upper flat substrate 7 and the lower flat substrate 8 are separated as shown in FIG. Since both substrates can be removed (disappeared) in an exposed state, the removal (disappearance) time of the flat substrate for film formation can be shortened, and the removal (disappearance) time is shortened. Damage to the polycrystalline silicon carbide film, the flat substrate for film formation, etc. can be reduced, and the circular shape of the flat substrate for film formation (base material substrate) 1 can be maintained (that is, no substrate chipped portion 6 is formed). This has the advantage that the polycrystalline silicon carbide film formed on the planar film-forming substrate (base material substrate) 1 can be utilized without waste. Furthermore, since the upper flat substrate 7 and the lower flat substrate 8 can be removed (disappeared) in a state where the mating surfaces of the upper flat substrate 7 and the lower flat substrate 8 are exposed, in addition to the conventional burning method (disappearance method by firing using an electric furnace), It is possible to remove the upper flat substrate 7 and the lower flat substrate 8 by surface grinding.

(3)挿入孔と挿入治具(保持板)の一例
図5(A)に示す下側平板状基板8の外周端面に形成される挿入孔10については母材基板1の中心方向に向かって30mm以上の深さを有し、かつ、挿入孔10の断面形状についてはロッド2に対し母材基板1の垂直性を保つため矩形状であることが望ましい。
(3) Examples of Insertion Hole and Insertion Jig (Holding Plate) Regarding the insertion hole 10 formed in the outer peripheral end surface of the lower flat substrate 8 shown in FIG. It is desirable that the insertion hole 10 has a depth of 30 mm or more and a rectangular cross-sectional shape in order to maintain the perpendicularity of the base material substrate 1 with respect to the rod 2 .

他方、ロッド2に固定された挿入治具(保持板)9の外寸は上記挿入孔10より0.1mm~0.2mm小さく設定し、挿入治具(保持板)9を下側平板状基板8の挿入孔10に嵌入させて一体化された平板状被成膜基板(母材基板)1を保持する。 On the other hand, an insertion jig (holding plate) 9 fixed to the rod 2 has an outer dimension smaller than that of the insertion hole 10 by 0.1 mm to 0.2 mm. A plate-like film-forming substrate (base material substrate) 1 integrated by being fitted into an insertion hole 10 of 8 is held.

尚、図5(A)において下側平板状基板8の外周端面に一つの挿入孔10が設けられているが、平板状被成膜基板(母材基板)1を安定して保持できるように複数の挿入孔10を設けてもよい。但し、挿入孔10の設定個数に対応した挿入治具(保持板)9を設ける(ロッド2も複数)ことを要する。 In FIG. 5A, one insertion hole 10 is provided in the outer peripheral end face of the lower flat plate-like substrate 8, but the insertion hole 10 is formed so as to stably hold the flat plate-like substrate (base material substrate) 1. A plurality of insertion holes 10 may be provided. However, it is necessary to provide insertion jigs (holding plates) 9 corresponding to the set number of insertion holes 10 (and a plurality of rods 2 as well).

そして、母材基板の一部がスペーサで挟持される上記保持手段と異なり、挿入孔と挿入治具(保持板)を用いた保持手段では、図6(A)に示すように挿入治具(保持板)9の基端側を切断することで、多結晶炭化珪素5が成膜された母材基板1をロッド2から取り外すことができるため、図6(B)に示すように母材基板1の端面を露出させる端面露出工程後において母材基板1の円形状を保持することが可能となり、その結果、母材基板1に成膜された円形状の多結晶炭化珪素膜を有効に利用することが可能となる。 Unlike the above holding means in which a part of the base material substrate is sandwiched by spacers, the holding means using an insertion hole and an insertion jig (holding plate) has an insertion jig ( By cutting the base end side of the holding plate 9, the base material substrate 1 having the polycrystalline silicon carbide 5 formed thereon can be removed from the rod 2, so that the base material substrate is shown in FIG. It becomes possible to maintain the circular shape of the base material substrate 1 after the end surface exposing step of exposing the end surface of the base material substrate 1, and as a result, the circular polycrystalline silicon carbide film formed on the base material substrate 1 is effectively used. It becomes possible to

以下、本発明の実施例について比較例を挙げて具体的に説明するが、本発明の構成は下記実施例に限定されるものではない。 EXAMPLES Hereinafter, examples of the present invention will be specifically described with reference to comparative examples, but the configuration of the present invention is not limited to the following examples.

[実施例1]
図5(A)に示す凸形状の円形嵌入部70を有する円形上側平板状基板7と、該嵌入部70が嵌め込まれる凹形状の円形嵌合部80を有する円形下側平板状基板8とで構成されるカーボン製の円形母材基板1を作製した。
[Example 1]
A circular upper flat substrate 7 having a convex circular fitting portion 70 shown in FIG. 5A and a circular lower flat substrate 8 having a concave circular fitting portion 80 into which the fitting portion 70 is fitted A circular base material substrate 1 made of carbon was produced.

上記円形母材基板1の直径は4インチ、円形上側平板状基板7における中心部(すなわち、凸形状の円形嵌入部70を含めた上側平板状基板)の厚さは2mm、円形上側平板状基板7における周縁部(すなわち、円形嵌入部70を除いた上側平板状基板)の厚さは1mmであり、また、円形下側平板状基板8における中心部(すなわち、凹形状の円形嵌合部80)の厚さは5mm、円形下側平板状基板8における周縁部(すなわち、円形嵌合部80を除いた下側平板状基板)の厚さは7mmであり、かつ、上側平板状基板7と下側平板状基板8を一体化させたときの合計基板厚みは8mmとした。 The diameter of the circular base material substrate 1 is 4 inches, the thickness of the central portion of the circular upper flat substrate 7 (that is, the upper flat substrate including the convex circular insertion portion 70) is 2 mm, and the circular upper flat substrate 7 has a thickness of 1 mm (that is, the upper flat substrate excluding the circular fitting portion 70), and the central portion of the circular lower flat substrate 8 (that is, the concave circular fitting portion 80) is 1 mm thick. ) is 5 mm in thickness, the peripheral portion of the circular lower flat plate-like substrate 8 (that is, the lower flat plate-like substrate excluding the circular fitting portion 80) has a thickness of 7 mm, and the upper flat plate-like substrate 7 and the The total substrate thickness when the lower flat substrate 8 was integrated was set to 8 mm.

また、円形下側平板状基板8の外周端面に設けられかつ断面矩形状を有する挿入孔10の孔サイズは、横寸法が15.0mm、縦寸法が1.5mm、深さが35mmとし、また、上記挿入孔10に嵌入されかつ断面矩形状を有する挿入治具(保持板)9のサイズは、横寸法が14.8mm、縦寸法が1.3mm、長さ寸法が30.0mmとし、挿入治具(保持板)9の基端側にロッド2固定用の貫通穴が設けられている。 The hole size of the insertion hole 10 provided in the outer peripheral end face of the circular lower flat plate-shaped substrate 8 and having a rectangular cross section is 15.0 mm in horizontal dimension, 1.5 mm in vertical dimension, and 35 mm in depth. The size of the insertion jig (holding plate) 9 which is fitted into the insertion hole 10 and has a rectangular cross section is 14.8 mm in width, 1.3 mm in length, and 30.0 mm in length. A through hole for fixing the rod 2 is provided on the base end side of the jig (holding plate) 9 .

すなわち、上記挿入治具(保持板)9の貫通穴に、三角ネジ加工が施されたロッド2(L25mm×M6:「M6」はボルト規格)を垂直に通し、図5(B)に示すように六角ナット4で挿入治具(保持板)9を固定する。各挿入治具(保持板)9は等間隔10mmでロッド2に固定し、かつ、それぞれの挿入治具(保持板)9を円形下側平板状基板8の挿入孔10に嵌入させて円形上側平板状基板7と円形下側平板状基板8とで構成されるカーボン製の円形母材基板1を固定保持した。 That is, a rod 2 (L25 mm×M6: "M6" is a bolt standard) threaded with a triangular screw is vertically passed through the through-hole of the insertion jig (retaining plate) 9, as shown in FIG. 5(B). , an insertion jig (retaining plate) 9 is fixed with a hexagonal nut 4 . Each insertion jig (holding plate) 9 is fixed to the rod 2 at equal intervals of 10 mm, and each insertion jig (holding plate) 9 is fitted into the insertion hole 10 of the circular lower flat plate-like substrate 8 to form an upper circular plate. A circular base substrate 1 made of carbon and composed of a flat substrate 7 and a circular lower flat substrate 8 was fixed and held.

尚、各円形下側平板状基板8の挿入孔10に対する上記挿入治具(保持板)9の挿入深さは20mmとし、かつ、ロッド2に10組の円形母材基板(円形上側平板状基板7と円形下側平板状基板8を一体化させて成る円形母材基板)1を固定して熱CVDによる多結晶炭化珪素の成膜試験を行った。 The insertion depth of the insertion jig (holding plate) 9 into the insertion hole 10 of each circular lower flat plate substrate 8 is set to 20 mm, and ten sets of circular base material substrates (circular upper flat substrates) are attached to the rod 2. 7 and a circular lower flat plate-like substrate 8 were integrated, and a polycrystalline silicon carbide film formation test was conducted by fixing a circular base material substrate 1) by thermal CVD.

成膜試験の結果、最下段に配置された2組の挿入治具(保持板)9が破損し脱落したため、これ等挿入治具(保持板)9で保持された2組の円形母材基板1に成膜された4枚の多結晶炭化珪素基板が不良となり、また、他2組の円形母材基板1が成膜中に接触して固着し、当該2組の円形母材基板1に成膜された4枚の多結晶炭化珪素基板も不良となった。尚、残り6組の円形母材基板1については、各挿入治具(保持板)9を切断し、多結晶炭化珪素基板を欠損させることなく6組の円形母材基板1を取り外すことができた。 As a result of the film formation test, the two sets of insertion jigs (holding plates) 9 arranged at the bottom were damaged and fell off, so the two sets of circular base material substrates held by these insertion jigs (holding plates) 9 were removed. The four polycrystalline silicon carbide substrates on which the film was formed on 1 became defective, and the other two sets of circular base material substrates 1 contacted and adhered during the film formation, and the two sets of circular base material substrates 1 became defective. The four polycrystalline silicon carbide substrates on which films were formed were also defective. As for the remaining six sets of circular base material substrates 1, each insertion jig (holding plate) 9 can be cut to remove the six sets of circular base material substrates 1 without damaging the polycrystalline silicon carbide substrates. rice field.

そして、取り外された6組の円形母材基板1について端面加工を実施し、一体化された円形上側平板状基板7と円形下側平板状基板8を分離した上で、設定温度800℃の電気炉により円形上側平板状基板7と円形下側平板状基板8の焼成を行い、12時間で各母材基板が消失することを確認できた。 Then, the removed six sets of circular base material substrates 1 are subjected to end surface processing, and after separating the integrated upper circular flat substrate 7 and the circular lower flat substrate 8, electric power is applied at a set temperature of 800°C. It was confirmed that the circular upper flat substrate 7 and the circular lower flat substrate 8 were baked in a furnace, and that each base material substrate disappeared after 12 hours.

結果を表1に示す。 Table 1 shows the results.

[実施例2]
実施例1の結果から、表裏面に多結晶炭化珪素が成膜された円形母材基板(一体化された円形上側平板状基板7と円形下側平板状基板8から成る)1の重量に対する挿入治具(保持板)9の強度(剛性)が不足していることが判明したため、円形下側平板状基板8の外周端面に設ける挿入孔10の孔サイズと上記挿入孔10に嵌入され挿入治具(保持板)9のサイズを以下のように変更した。
[Example 2]
From the results of Example 1, the insertion with respect to the weight of the circular base material substrate (consisting of integrated circular upper flat plate substrate 7 and circular lower flat substrate 8) having polycrystalline silicon carbide films formed on the front and back surfaces. It was found that the strength (rigidity) of the jig (holding plate) 9 was insufficient. The size of the fixture (holding plate) 9 was changed as follows.

すなわち、上記挿入孔10の孔サイズを、横寸法が15.0mm、縦寸法が3.0mm(実施例1における挿入孔の縦寸法は1.5mm)、深さが35mmとし、また、上記挿入孔10に嵌入される挿入治具(保持板)9のサイズを、横寸法が14.8mm、縦寸法が2.8mm(実施例1における保持板の縦寸法は1.3mm)、長さ寸法が40.0mmとし、各円形下側平板状基板8の挿入孔10に対する上記挿入治具(保持板)9の挿入深さは30mmとし、かつ、ロッド2に10組の円形母材基板(円形上側平板状基板7と円形下側平板状基板8を一体化させて成る円形母材基板)1を固定して、実施例1と同様、熱CVDによる多結晶炭化珪素の成膜試験を行った。 That is, the insertion hole 10 has a horizontal dimension of 15.0 mm, a vertical dimension of 3.0 mm (the vertical dimension of the insertion hole in Example 1 is 1.5 mm), and a depth of 35 mm. The size of the insertion jig (retaining plate) 9 to be inserted into the hole 10 is 14.8 mm in the horizontal dimension, 2.8 mm in the vertical dimension (the vertical dimension of the retaining plate in Example 1 is 1.3 mm), and the length dimension. is 40.0 mm, the insertion depth of the insertion jig (holding plate) 9 into the insertion hole 10 of each circular lower flat substrate 8 is 30 mm, and ten sets of circular base material substrates (circular A circular base material substrate 1 formed by integrating an upper flat substrate 7 and a circular lower flat substrate 8 was fixed, and a film formation test of polycrystalline silicon carbide by thermal CVD was performed in the same manner as in Example 1. .

成膜試験の結果、全ての円形母材基板(円形上側平板状基板7と円形下側平板状基板8を一体化させて成る円形母材基板)1について脱落や接触は確認されなかった。また、全ての円形母材基板1について、各挿入治具(保持板)9を切断し、多結晶炭化珪素基板を欠損させることなく全ての円形母材基板1を取り外すことができた。 As a result of the film formation test, no drop-off or contact was confirmed for any of the circular base material substrates (circular base material substrates formed by integrating the circular upper flat plate-like substrate 7 and the circular lower flat plate-like substrate 8) 1 . Also, for all circular base material substrates 1, each insertion jig (holding plate) 9 was cut, and all circular base material substrates 1 could be removed without damaging the polycrystalline silicon carbide substrates.

そして、取り外された全ての円形母材基板1について端面加工を実施し、一体化された円形上側平板状基板7と円形下側平板状基板8を分離した上で、設定温度800℃の電気炉により円形上側平板状基板7と円形下側平板状基板8の焼成を行い、12時間で各母材基板が消失することを確認できた。 Then, all the removed circular base material substrates 1 were subjected to end surface processing, and after separating the integrated circular upper flat plate-like substrate 7 and circular lower flat plate-like substrate 8, an electric furnace with a set temperature of 800° C. was placed. It was confirmed that the circular upper flat substrate 7 and the circular lower flat substrate 8 were fired by the above method, and that each base material substrate disappeared in 12 hours.

結果を表1に示す。 Table 1 shows the results.

[比較例1]
従前のカーボン製円形母材基板(厚み方向へ2分割されない単一の平板状被成膜基板)を適用し、かつ、母材基板の一部をスペーサで挟持する保持手段を採用して熱CVDによる多結晶炭化珪素の成膜試験を行った。
[Comparative Example 1]
Thermal CVD by applying a conventional circular carbon base material substrate (single plate-shaped film-forming substrate that is not divided into two in the thickness direction) and adopting a holding means that sandwiches a part of the base material substrate with a spacer. A film formation test of polycrystalline silicon carbide was conducted.

尚、実施例1~2と同様、全ての部品材質はカーボンを用い、上記円形母材基板のサイズは4インチ、厚み1.0mmとした。 As in Examples 1 and 2, carbon was used as the material for all parts, and the size of the circular base material substrate was 4 inches and the thickness was 1.0 mm.

また、母材基板の一部をスペーサで挟持する図1に示す保持手段については、三角ネジ加工が施された実施例と同一のロッド2(L25mm×M6)と、スペーサ3(縦横のサイズが20.0mm×15.0mm、厚みが3.0mm)、および、スペーサ3を固定する実施例と同一の六角ナット4で構成し、上記ロッド2に等間隔10mmで10枚の円形母材基板1を固定し、熱CVDによる多結晶炭化珪素の成膜試験を行った。 As for the holding means shown in FIG. 1, which sandwiches a part of the base material substrate between spacers, the same rod 2 (L25 mm×M6) as in the embodiment in which the triangular screw is processed, and the spacer 3 (lengthwise and widthwise sizes are 20.0 mm × 15.0 mm, thickness 3.0 mm), and the same hexagonal nut 4 as in the embodiment for fixing the spacer 3, and ten circular base material substrates 1 are attached to the rod 2 at regular intervals of 10 mm. was fixed, and a film formation test of polycrystalline silicon carbide by thermal CVD was conducted.

成膜試験の結果、比較例1では母材基板の一部をスペーサで挟持する保持手段が採られているため全ての円形母材基板1に図4に示した基板欠損部6が存在し、かつ、10枚中、1枚の円形母材基板1に割れが生じ、当該円形母材基板1に成膜された2枚の多結晶炭化珪素基板が不良となった。 As a result of the film formation test, in Comparative Example 1, since a holding means was adopted in which a part of the base material substrate was sandwiched between spacers, all the circular base material substrates 1 had the substrate defect portion 6 shown in FIG. In addition, one of the ten circular base material substrates 1 was cracked, and two polycrystalline silicon carbide substrates formed on the circular base material substrate 1 became defective.

そして、取り外された9枚の円形母材基板1について端面加工を行い、かつ、設定温度800℃の電気炉により上記円形母材基板1の焼成を行い、110時間で各母材基板が消失することを確認できた。 Then, the nine circular base material substrates 1 removed are subjected to end surface processing, and the circular base material substrates 1 are fired in an electric furnace at a set temperature of 800° C., and each base material substrate disappears in 110 hours. I was able to confirm that.

結果を表1に示す。 Table 1 shows the results.

Figure 0007206871000001
Figure 0007206871000001

[確 認]
(1)実施例1~2においては、厚み方向へ分離される一体化された上側平板状基板7と下側平板状基板8とで構成される円形母材基板1が適用されていることから、当該円形母材基板1の端面を端面加工により露出させた後、上側平板状基板7と下側平板状基板8を分離させ、上側平板状基板7と下側平板状基板8の嵌合面が露出した状態で両基板(すなわち、上側平板状基板7と下側平板状基板8)を電気炉で除去(消失)するため、円形母材基板1における除去(消失)時間の短縮(比較例1の焼成時間が110時間であるのに対し、実施例1~2の焼成時間は12時間)が図れることが確認される。
[Verification]
(1) In Examples 1 and 2, the circular base material substrate 1 composed of the upper flat substrate 7 and the lower flat substrate 8 that are separated in the thickness direction and integrated is applied. After exposing the end surface of the circular base material substrate 1 by end surface processing, the upper flat substrate 7 and the lower flat substrate 8 are separated, and the mating surfaces of the upper flat substrate 7 and the lower flat substrate 8 are formed. Since both substrates (that is, the upper flat substrate 7 and the lower flat substrate 8) are removed (disappeared) in an electric furnace while the is exposed, the removal (disappearance) time for the circular base material substrate 1 is shortened (comparative example The firing time of Example 1 is 110 hours, while the firing time of Examples 1 and 2 is 12 hours).

(2)比較例1においては、円形母材基板1の一部がスペーサ4で挟持される保持手段(図1参照)を採用しているため、成膜後の円形母材基板1に必然的に基板欠損部6(図4参照)が形成される(基板欠損率が100%)ことから、その分、多結晶炭化珪素膜の有効利用を図れなくなる欠点が確認される。 (2) In Comparative Example 1, since the holding means (see FIG. 1) in which a portion of the circular base material substrate 1 is sandwiched by the spacers 4 is employed, the circular base material substrate 1 after film formation is inevitably Since the substrate defect portion 6 (see FIG. 4) is formed in the substrate (substrate defect rate is 100%), it is confirmed that the polycrystalline silicon carbide film cannot be effectively utilized.

(3)他方、実施例1~2においては、下側平板状基板8の挿入孔10とロッド2に固定された挿入治具(保持板)9から成る保持手段を採用していることから、上記基板欠損部6が形成されない(基板欠損率が0%)ため、円形母材基板1の表裏面に成膜された多結晶炭化珪素膜の有効利用が図れる利点を有することが確認される。 (3) On the other hand, in Examples 1 and 2, since the holding means comprising the insertion hole 10 of the lower flat substrate 8 and the insertion jig (holding plate) 9 fixed to the rod 2 is adopted, It is confirmed that there is an advantage that the polycrystalline silicon carbide films formed on the front and back surfaces of the circular base material substrate 1 can be effectively utilized because the substrate defect portion 6 is not formed (substrate defect rate is 0%).

本発明に係る多結晶炭化珪素基板の製造方法によれば、製造時間の短縮と製造の簡便化が図れるため、単結晶炭化珪素が貼り合わされて炭化珪素半導体に使用される多結晶炭化珪素基板の製造法として利用される産業上の利用可能性を有している。 According to the method for manufacturing a polycrystalline silicon carbide substrate according to the present invention, the manufacturing time can be shortened and the manufacturing can be simplified. It has industrial applicability as a manufacturing method.

1 平板状被成膜基板(母材基板)
2 ロッド
3 スペーサ
4 六角ナット
5 多結晶炭化珪素
6 基板欠損部
7 上側平板状基板
8 下側平板状基板
9 挿入治具(保持板)
10 挿入孔
70 凸形状の嵌入部
80 凹形状の嵌合部
1 flat film-forming substrate (base material substrate)
2 Rod 3 Spacer 4 Hexagonal Nut 5 Polycrystalline Silicon Carbide 6 Substrate Missing Portion 7 Upper Flat Substrate 8 Lower Flat Substrate 9 Insertion Jig (Holding Plate)
10 insertion hole 70 convex fitting portion 80 concave fitting portion

Claims (4)

保持手段で固定された平板状被成膜基板の表裏面と外周端面に気相成膜法により多結晶炭化珪素膜を形成する成膜工程と、
上記保持手段から分離された平板状被成膜基板の外周端面に形成された多結晶炭化珪素膜を除去して平板状被成膜基板の外周端面を露出させる端面露出工程と、
外周端面が露出した平板状被成膜基板を除去して該平板状被成膜基板の表裏面に形成された多結晶炭化珪素膜から成る2枚の多結晶炭化珪素基板を得る除去工程、
を具備する多結晶炭化珪素基板の製造方法において、
上記平板状被成膜基板を、分離可能に一体化された上側平板状基板と下側平板状基板とで構成し、
かつ、平板状被成膜基板が固定される上記保持手段を、下側平板状基板の外周端面に形成された挿入孔と、該挿入孔に嵌入されて下側平板状基板を固定保持する挿入治具とで構成すると共に
上記端面露出工程後に、上側平板状基板と下側平板状基板を分離させて両基板を除去することを特徴とする多結晶炭化珪素基板の製造方法。
a film formation step of forming a polycrystalline silicon carbide film on the front and back surfaces and the outer peripheral end face of the flat plate-shaped substrate fixed by the holding means by a vapor deposition method;
an end face exposing step of removing the polycrystalline silicon carbide film formed on the outer peripheral end face of the flat plate-shaped film formation substrate separated from the holding means to expose the outer peripheral end face of the flat film formation substrate;
a removing step of removing the flat plate-shaped film formation substrate with the outer peripheral end face exposed to obtain two polycrystalline silicon carbide substrates composed of polycrystalline silicon carbide films formed on the front and back surfaces of the flat film-formation substrate;
In a method for manufacturing a polycrystalline silicon carbide substrate comprising
The flat plate-like substrate to be filmed is composed of an upper flat plate-like substrate and a lower flat plate-like substrate separably integrated,
Further, the holding means to which the flat plate-like substrate is fixed is an insertion hole formed in the outer peripheral end face of the lower flat-plate-like substrate, and an insertion hole which is inserted into the insertion hole to fix and hold the lower flat-plate-like substrate. Along with configuring with a jig ,
A method of manufacturing a polycrystalline silicon carbide substrate, wherein the upper flat substrate and the lower flat substrate are separated and removed after the end face exposing step.
上側平板状基板と下側平板状基板を分離させた後、燃焼法により両基板を除去して2枚の多結晶炭化珪素基板を得ることを特徴とする請求項1に記載の多結晶炭化珪素基板の製造方法。 2. The polycrystalline silicon carbide substrate according to claim 1, wherein after the upper flat substrate and the lower flat substrate are separated, both substrates are removed by a combustion method to obtain two polycrystalline silicon carbide substrates. Substrate manufacturing method. 上側平板状基板と下側平板状基板を分離させた後、平面研削により両基板を除去して2枚の多結晶炭化珪素基板を得ることを特徴とする請求項1に記載の多結晶炭化珪素基板の製造方法。 2. The polycrystalline silicon carbide substrate according to claim 1, wherein after the upper flat substrate and the lower flat substrate are separated, both substrates are removed by surface grinding to obtain two polycrystalline silicon carbide substrates. Substrate manufacturing method. 請求項1~のいずれかに記載の多結晶炭化珪素基板の製造方法に用いられる平板状被成膜基板において、
凸形状の嵌入部を有する上側平板状基板と該嵌入部が嵌め込まれる凹形状の嵌合部を有する下側平板状基板とで構成され、かつ、上記下側平板状基板の外周端面に断面矩形状の挿入孔が設けられていることを特徴とする平板状被成膜基板。
A flat film-formed substrate used in the method for manufacturing a polycrystalline silicon carbide substrate according to any one of claims 1 to 3 ,
It is composed of an upper flat substrate having a convex fitting portion and a lower flat substrate having a concave fitting portion into which the fitting portion is fitted. 1. A flat substrate for film formation, comprising a shaped insertion hole.
JP2018229749A 2018-12-07 2018-12-07 METHOD FOR MANUFACTURING POLYCRYSTALLINE SILICON CARBIDE SUBSTRATE AND PLATE-TYPE SUBSTRATE Active JP7206871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018229749A JP7206871B2 (en) 2018-12-07 2018-12-07 METHOD FOR MANUFACTURING POLYCRYSTALLINE SILICON CARBIDE SUBSTRATE AND PLATE-TYPE SUBSTRATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018229749A JP7206871B2 (en) 2018-12-07 2018-12-07 METHOD FOR MANUFACTURING POLYCRYSTALLINE SILICON CARBIDE SUBSTRATE AND PLATE-TYPE SUBSTRATE

Publications (2)

Publication Number Publication Date
JP2020090423A JP2020090423A (en) 2020-06-11
JP7206871B2 true JP7206871B2 (en) 2023-01-18

Family

ID=71012312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018229749A Active JP7206871B2 (en) 2018-12-07 2018-12-07 METHOD FOR MANUFACTURING POLYCRYSTALLINE SILICON CARBIDE SUBSTRATE AND PLATE-TYPE SUBSTRATE

Country Status (1)

Country Link
JP (1) JP7206871B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312245A (en) * 1996-05-21 1997-12-02 Hoya Corp Thin-film-deposited substrate and manufacture thereof
JPH1053464A (en) * 1996-08-06 1998-02-24 Toyo Tanso Kk Production of chemical vapor deposition-silicon carbide material
JP3811540B2 (en) * 1997-03-11 2006-08-23 東海カーボン株式会社 Method for producing silicon carbide molded body

Also Published As

Publication number Publication date
JP2020090423A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP6197461B2 (en) Silicon carbide semiconductor substrate, method of manufacturing the same, and method of manufacturing silicon carbide semiconductor device
JP6232329B2 (en) Method for removing work-affected layer of SiC seed crystal, method for producing SiC seed crystal and SiC substrate
US20070047204A1 (en) Heat sink assembly and related methods for semiconductor vacuum processing systems
JPWO2017175799A1 (en) Polycrystalline SiC substrate and manufacturing method thereof
US8268645B2 (en) Method and apparatus for forming a thin lamina
WO2015198798A1 (en) Susceptor and method for manufacturing same
TWI552205B (en) A method and apparatus for forming a thin lamina
JP2004022571A (en) Wafer supporting tool and semiconductor device manufacturing method using the same
JP7206871B2 (en) METHOD FOR MANUFACTURING POLYCRYSTALLINE SILICON CARBIDE SUBSTRATE AND PLATE-TYPE SUBSTRATE
CN103811380B (en) Batch-type substrate-processing apparatus
JP7347071B2 (en) Board fixing device and board fixing method
JP2022107727A (en) Device for depositing semiconductor layer, production method thereof, and production method of semiconductor layer using the same
JP4619036B2 (en) Carbon composite material
KR101468184B1 (en) Electrostatic chuck with heater and manufacturing method for the same
JP2020158870A (en) Support substrate, support substrate holding method, and film deposition method
JP7328230B2 (en) Manufacturing method for semi-polar self-supporting substrate
JP7367541B2 (en) Method for manufacturing silicon carbide polycrystalline substrate
JP5947516B2 (en) Heat treatment boat
JP7135718B2 (en) Substrate holding mechanism, deposition apparatus, and method for depositing polycrystalline film
JP2021070609A (en) Manufacturing method of silicon carbide polycrystal substrate
JP6322159B2 (en) Wafer boat and manufacturing method thereof
JP4260495B2 (en) Dummy wafer manufacturing method and dummy wafer manufacturing boat
JP5950110B2 (en) Sample holder
JP2021155309A (en) Deposition support substrate, manufacturing method of deposition support substrate, deposition method of polycrystalline film and manufacturing method of polycrystalline substrate
JP2020158869A (en) Manufacturing method of silicon carbide polycrystal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R150 Certificate of patent or registration of utility model

Ref document number: 7206871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150