JP7205274B2 - Agglomerate manufacturing method and agglomerate - Google Patents

Agglomerate manufacturing method and agglomerate Download PDF

Info

Publication number
JP7205274B2
JP7205274B2 JP2019023680A JP2019023680A JP7205274B2 JP 7205274 B2 JP7205274 B2 JP 7205274B2 JP 2019023680 A JP2019023680 A JP 2019023680A JP 2019023680 A JP2019023680 A JP 2019023680A JP 7205274 B2 JP7205274 B2 JP 7205274B2
Authority
JP
Japan
Prior art keywords
starch
binder
raw material
agglomerate
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019023680A
Other languages
Japanese (ja)
Other versions
JP2020132901A (en
Inventor
諭 弘中
晃 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019023680A priority Critical patent/JP7205274B2/en
Publication of JP2020132901A publication Critical patent/JP2020132901A/en
Application granted granted Critical
Publication of JP7205274B2 publication Critical patent/JP7205274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、塊成物の製造方法、および前記製造方法によって製造された塊成物に関する。 The present invention relates to an agglomerate manufacturing method and an agglomerate manufactured by the manufacturing method.

製鉄プロセスで発生するダストまたはスラッジ等の鉄分を含有する鉄含有物は、資源の有効活用および環境問題等の観点から、製鉄所内で鉄源として再利用することが進められている。この鉄含有物は、焼結工程で再利用することが多いが、金属鉄を多く含むもの等はペレットまたはブリケットに加工して得られた塊成物(「造粒物」とも称される)として、製銑工程(高炉等)、製鋼工程(転炉等)で再利用することもある。 Iron-containing substances such as dust or sludge generated in the steelmaking process are being recycled as an iron source in steelworks from the viewpoints of effective use of resources and environmental problems. This iron-containing material is often reused in the sintering process, but those containing a large amount of metallic iron are agglomerates (also called "granules") obtained by processing them into pellets or briquettes. As such, it may be reused in the ironmaking process (blast furnace, etc.) and the steelmaking process (converter, etc.).

このような鉄含有物は、その種類によってpH等の特性が大きく異なる。バインダーとして澱粉等の有機系バインダーを用いる場合、バインダーとしての性能は鉄含有物のpHに大きく左右されることが知られている。そのため、特許文献1には、鉄含有物を含む原料のpHが10.5未満の場合はバインダーとしてα澱粉およびデキストリンを用い、当該原料のpHが10.5以上の場合はデキストリンを用いる方法が提案されている。 Such iron-containing substances greatly differ in properties such as pH depending on the type thereof. It is known that when an organic binder such as starch is used as a binder, the performance as a binder is greatly affected by the pH of the iron-containing material. Therefore, in Patent Document 1, α-starch and dextrin are used as binders when the pH of the raw material containing iron-containing material is less than 10.5, and dextrin is used when the pH of the raw material is 10.5 or higher. Proposed.

特開2018-119178号公報JP 2018-119178 A

しかしながら、特許文献1に記載の方法は、原料がpH10.5以上等の高pHの場合に用いるバインダーとして、デキストリンのみ記載されている。そのため、原料が高pHの場合に、バインダーとしてデキストリン以外にどのような澱粉を用いれば、高強度の塊成物を製造できるかは不明である。 However, the method described in Patent Document 1 describes only dextrin as a binder to be used when the raw material has a high pH such as pH 10.5 or higher. Therefore, it is unknown what kind of starch other than dextrin can be used as a binder to produce a high-strength agglomerate when the raw material has a high pH.

本発明の一態様は、鉄含有物のpHが10以上の場合に、バインダーとして澱粉を用いた高強度の塊成物の製造方法を実現することを目的とする。 An object of one aspect of the present invention is to realize a method for producing a high-strength agglomerate using starch as a binder when the pH of the iron-containing material is 10 or higher.

前記の課題を解決するために、本発明の一態様に係る塊成物の製造方法は、鉄含有原料とバインダーとを混合する工程を含む、塊成物の製造方法であって、前記鉄含有原料として、pHが10以上のものを用い、エーテル化澱粉および非エステル化澱粉からなる群より選ばれる少なくとも一つを前記バインダーとして選択する。 In order to solve the above problems, a method for producing an agglomerate according to an aspect of the present invention is a method for producing an agglomerate, comprising mixing an iron-containing raw material and a binder, wherein the iron-containing A raw material having a pH of 10 or more is used, and at least one selected from the group consisting of etherified starch and non-esterified starch is selected as the binder.

本発明の一態様に係る塊成物の製造方法は、炭素数1以上10以下のヒドロキシアルキル基を有する前記エーテル化澱粉を含んだ前記バインダーを選択してもよい。 In the method for producing an agglomerate according to one aspect of the present invention, the binder containing the etherified starch having a hydroxyalkyl group having 1 to 10 carbon atoms may be selected.

本発明の一態様に係る塊成物の製造方法は、前記ヒドロキシアルキル基の含有量が乾燥物換算で1重量%以上である前記エーテル化澱粉を含んだ前記バインダーを選択してもよい。 In the method for producing an agglomerate according to an aspect of the present invention, the binder containing the etherified starch having a hydroxyalkyl group content of 1% by weight or more in terms of dry matter may be selected.

本発明の一態様に係る塊成物の製造方法は、アセチル基およびカルボキシル基の含有量がいずれも乾燥物換算で0.1重量%以下である前記非エステル化澱粉を含んだ前記バインダーを選択してもよい。 In the method for producing an agglomerate according to one aspect of the present invention, the binder containing the non-esterified starch having an acetyl group content and a carboxyl group content of 0.1% by weight or less in terms of dry matter is selected. You may

本発明の一態様に係る塊成物の製造方法は、前記非エステル化澱粉および前記エーテル化澱粉は、α化されていてもよい。 In the method for producing an agglomerate according to one aspect of the present invention, the non-esterified starch and the etherified starch may be pregelatinized.

前記の課題を解決するために、本発明の一態様に係る塊成物は、鉄含有原料とバインダーとを有する塊成物であって、前記鉄含有原料は、pHが10以上のものであり、前記バインダーは、非エステル化澱粉およびエーテル化澱粉からなる群より選ばれる少なくとも一つである。 In order to solve the above problems, an agglomerate according to one aspect of the present invention is an agglomerate containing an iron-containing raw material and a binder, wherein the iron-containing raw material has a pH of 10 or more. , the binder is at least one selected from the group consisting of non-esterified starch and etherified starch.

本発明の一態様によれば、鉄含有物のpHが10以上の場合に、バインダーとして澱粉を用いた高強度の塊成物の製造方法を実現できる。 According to one aspect of the present invention, when the iron-containing material has a pH of 10 or more, it is possible to realize a method for producing a high-strength agglomerate using starch as a binder.

本発明の一実施例に係る原料の粒径を示す図である。FIG. 4 is a diagram showing particle sizes of raw materials according to an example of the present invention; 本発明の一実施例に係るバインダーの粒径を示す図である。FIG. 4 is a diagram showing the particle size of a binder according to an example of the present invention; (a)および(b)は、本発明の一実施例に係る塊成物の圧潰強度と造粒水分との関係を示す図である。(a) and (b) are graphs showing the relationship between the crushing strength of an agglomerate and the granulation moisture content according to an example of the present invention. 本発明の一実施例に係るバインダーにおける、pHと粘度との関係を示す図である。FIG. 4 is a diagram showing the relationship between pH and viscosity in a binder according to an example of the present invention; 本発明の一実施例に係るバインダーに含まれる官能基の分析結果を示す図である。FIG. 4 is a diagram showing analysis results of functional groups contained in a binder according to an example of the present invention;

以下、本発明の一実施形態について、図面を参照して詳細に説明する。なお、以下の記載は発明の趣旨をより良く理解させるためのものであり、特に指定のない限り、本発明を限定するものではない。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上B以下」を意味する。 An embodiment of the present invention will be described in detail below with reference to the drawings. The following description is for better understanding of the gist of the invention, and does not limit the invention unless otherwise specified. In addition, unless otherwise specified in this specification, "A to B" representing a numerical range means "A or more and B or less".

(製造方法)
本発明の一実施形態に係る塊成物の製造方法は、鉄含有物を原料として用い、前記原料(鉄含有原料)とバインダーとを混合する工程により混合物を調整した後、前記混合物をペレットまたはブリケットに加工して塊成物とする。なお、前記混合物にはさらに、水などを混合してもよい。当該塊成物は、製銑工程および製鋼工程等において用いられてよい。
(Production method)
A method for producing an agglomerate according to one embodiment of the present invention uses an iron-containing material as a raw material, prepares a mixture by mixing the raw material (iron-containing raw material) and a binder, and then converts the mixture into pellets or It is processed into briquettes to form agglomerates. Incidentally, the mixture may be further mixed with water or the like. The agglomerate may be used in an ironmaking process, a steelmaking process, or the like.

なお、混合方法および加工方法としては、特に限定されず、当該技術分野において公知の方法に準じて行えばよい。また、ペレットまたはブリケットに加工した後、乾燥処理を行ってもよい。 The mixing method and processing method are not particularly limited, and may be carried out according to methods known in the art. Moreover, after processing into pellets or briquettes, a drying treatment may be performed.

鉄含有物としては、特に限定されないが、資源の有効活用および環境問題等の観点から、製鉄プロセスで発生する鉄含有副産物を用いることが好ましい。製鉄プロセスで発生する鉄含有副産物としては、特に限定されないが、例えば、ダスト、スラッジ、スケール、および地金等が挙げられる。これらは、単独または複数種を組み合わせて、前記原料として用いることができる。 Although the iron-containing material is not particularly limited, it is preferable to use an iron-containing by-product generated in the iron manufacturing process from the viewpoint of effective utilization of resources, environmental problems, and the like. Examples of iron-containing by-products generated in iron-making processes include, but are not limited to, dust, sludge, scale, and bullion. These can be used as the raw material singly or in combination.

バインダーは、SiOおよびAl等のスラグ含有量が比較的低い、有機系バインダーを用いることが好ましい。このような有機系バインダーの一種である澱粉は、入手の容易性等の観点からバインダーとして一般に使用されるが、そのままでは冷水に溶解しない。そのため、酵素や熱などで変性した化工澱粉をバインダーとして選択することが好ましい。 The binder is preferably an organic binder with a relatively low slag content, such as SiO 2 and Al 2 O 3 . Starch, which is one of such organic binders, is generally used as a binder because of its availability, but it does not dissolve in cold water as it is. Therefore, it is preferable to select a modified starch denatured with an enzyme or heat as a binder.

(澱粉の種類)
本実施形態に係る澱粉としては、エーテル化澱粉または非エステル化澱粉であることが好ましく、エーテル化澱粉かつ非エステル化澱粉である澱粉(以下、「エーテル化/非エステル化澱粉」と称する)がより好ましい。言い換えれば、前記化工澱粉としては、エーテル化澱粉および非エステル化澱粉からなる群より選ばれる少なくとも一つである澱粉が好ましい。
(type of starch)
The starch according to the present embodiment is preferably etherified starch or non-esterified starch, and starch that is etherified and non-esterified starch (hereinafter referred to as "etherified/non-esterified starch") is more preferred. In other words, the modified starch is preferably at least one starch selected from the group consisting of etherified starch and non-esterified starch.

エーテル化澱粉とは、グルコース残基の水酸基に、エーテル結合によって官能基が結合している澱粉である。このようなエーテル化澱粉に結合している官能基として、例えば、炭素数1以上10以下のヒドロキシアルキル基が挙げられる。なお、前記ヒドロキシアルキル基の炭素数は、1以上であって、9以下であってもよく、8以下であってもよく、7以下であってもよく、6以下であってもよく、5以下であってもよく、4以下であってもよく、3以下であってもよい。 Etherified starch is starch in which a functional group is bound to the hydroxyl group of a glucose residue through an ether bond. Examples of functional groups bonded to such etherified starch include hydroxyalkyl groups having 1 to 10 carbon atoms. The number of carbon atoms in the hydroxyalkyl group may be 1 or more, 9 or less, 8 or less, 7 or less, 6 or less, 5 It may be less than or equal to 4, or less than or equal to 3.

前記ヒドロキシアルキル基として、具体的には、ヒドロキシプロピル基、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシブチル基、およびヒドロキシペンチル基からなる群より選ばれる少なくとも一つの官能基が挙げられるが、これらに限られない。なお、エーテル化澱粉はこれに限られず、いかなる官能基がエーテル結合により結合している澱粉であってもよい。 Specific examples of the hydroxyalkyl group include at least one functional group selected from the group consisting of a hydroxypropyl group, a hydroxymethyl group, a hydroxyethyl group, a hydroxybutyl group, and a hydroxypentyl group, but are limited to these. can't Note that the etherified starch is not limited to this, and may be a starch in which any functional group is bonded via an ether bond.

また、エーテル化澱粉にヒドロキシアルキル基が含まれている場合、当該エーテル化澱粉におけるヒドロキシアルキル基の含有量は、乾燥物換算で1重量%以上であることが好ましく、1.5重量%以上であることがより好ましく、2.0重量%以上であることがより好ましく、2.5重量%以上であることがより好ましく、3.0重量%以上であることがより好ましく、3.5重量%以上であることがより好ましく、4.0重量%以上であることがより好ましく、4.5重量%以上であることがより好ましく、5.0重量%以上であることがより好ましい。 Further, when the etherified starch contains a hydroxyalkyl group, the content of the hydroxyalkyl group in the etherified starch is preferably 1% by weight or more in terms of dry matter, and 1.5% by weight or more. more preferably 2.0 wt% or more, more preferably 2.5 wt% or more, more preferably 3.0 wt% or more, 3.5 wt% It is more preferably 4.0% by weight or more, more preferably 4.5% by weight or more, and more preferably 5.0% by weight or more.

なお、前記ヒドロキシアルキル基の含有量は滴定法により測定する。後述する実施例において、ヒドロキシプロピル基の含有量を測定する法を例として、ヒドロキシアルキル基の含有量を滴定法によって測定する方法について詳しく説明する。 The content of the hydroxyalkyl group is measured by a titration method. In Examples described later, the method for measuring the content of hydroxyalkyl groups by titration will be described in detail, taking the method for measuring the content of hydroxypropyl groups as an example.

非エステル化澱粉とは、グルコース残基の水酸基に、エステル結合による官能基が結合していない、またはエステル結合による官能基の割合が極めて少ない(測定限界以下であることが好ましい)澱粉である。エステル結合により前記水酸基に結合する官能基としては、例えば、アセチル基およびカルボキシル基等が挙げられるが、これに限られない。 The non-esterified starch is a starch in which the hydroxyl group of the glucose residue is not bound with a functional group through an ester bond, or the ratio of the functional group through an ester bond is extremely low (preferably below the limit of measurement). Examples of the functional group that binds to the hydroxyl group via an ester bond include, but are not limited to, an acetyl group and a carboxyl group.

本実施形態に係る非エステル化澱粉は、例えば、アセチル基およびカルボキシル基の含有量がいずれも、乾燥物換算で0.3重量%未満であることが好ましく、0.2重量%以下であることがより好ましく、0.1重量%以下であることがより好ましい。なお、エステル化澱粉におけるアセチル基およびカルボキシル基の含有量は滴定法により測定する。滴定法の方法については、後述する実施例において詳しく説明する。 In the non-esterified starch according to the present embodiment, for example, the content of both acetyl groups and carboxyl groups is preferably less than 0.3% by weight in terms of dry matter, and is 0.2% by weight or less. is more preferable, and 0.1% by weight or less is more preferable. The content of acetyl group and carboxyl group in the esterified starch is measured by a titration method. The titration method will be described in detail in the examples below.

澱粉は一般的に、高pH条件下(例えば、pH10以上の条件下)において粘度が低下しやすい。ここで、澱粉の粘度が低い場合にはバインダーとしての性能も低下するため、高pH条件下において粘度が低下する澱粉は、バインダーとしては好ましくない。 Starch generally tends to lose viscosity under high pH conditions (eg, pH 10 or higher). Here, when the viscosity of starch is low, the performance as a binder is also lowered, so a starch whose viscosity is lowered under high pH conditions is not preferable as a binder.

一方、エーテル化澱粉、非エステル化澱粉、およびエーテル化/非エステル化澱粉は、高pH条件下において粘度が低下しにくい。これは、高pH条件下において、エステル結合よりもエーテル結合の方が安定な結合であるためである。すなわち、高pH条件下では、エステル結合により結合された官能基は不安定となるが、エーテル結合によって結合された官能基は安定に存在できる。したがって、エーテル化澱粉、非エステル化澱粉、またはエーテル化/非エステル化澱粉であれば、pHの上昇に関わらず化工澱粉としての性質を維持できるため、高pH条件下でも粘度が低下しにくい。 On the other hand, etherified starch, non-esterified starch, and etherified/non-esterified starch are less likely to decrease in viscosity under high pH conditions. This is because an ether bond is a more stable bond than an ester bond under high pH conditions. That is, under high pH conditions, functional groups bonded by ester bonds become unstable, but functional groups bonded by ether bonds can exist stably. Therefore, etherified starch, non-esterified starch, or etherified/non-esterified starch can maintain its properties as a modified starch regardless of the increase in pH, so viscosity is less likely to decrease even under high pH conditions.

塊成物の原料は、製鉄プロセスで発生する鉄含有副産物を用いる場合には、当該製鉄プロセスの種類によって様々な性質を有している。前記原料が高pHである場合、バインダーにおける粘度等の性能は、当該原料のpHにより影響される。 The raw material of the agglomerate has various properties depending on the type of the iron-making process when iron-containing by-products generated in the iron-making process are used. When the raw material has a high pH, performance such as viscosity in the binder is affected by the pH of the raw material.

したがって、原料が高pHである場合でも、バインダーとしてエーテル化澱粉、非エステル化澱粉、またはエーテル化/非エステル化澱粉を用いれば粘度が低下しにくいため、問題なく塊成物の製造に使用できる。 Therefore, even if the raw material has a high pH, if an etherified starch, a non-esterified starch, or an etherified/non-esterified starch is used as a binder, the viscosity does not easily decrease, so that it can be used for producing agglomerates without problems. .

ここで、原料が高pHである場合とは、純水100mLに原料1gを投入し、市販のpHメーターでpHを測定したときに、当該pHが12.5以上の場合であってもよく、12以上の場合であってもよく、11.5以上の場合であってもよく、11以上の場合であってもよく、10.5以上の場合であってもよく、10以上の場合であってもよい。原料がこのような高pHの場合でも、本実施形態に係る澱粉によれば、バインダーとして問題なく塊成物の製造に使用できる。 Here, when the raw material has a high pH, 1 g of the raw material is added to 100 mL of pure water, and when the pH is measured with a commercially available pH meter, the pH may be 12.5 or higher. It may be 12 or more, 11.5 or more, 11 or more, 10.5 or more, or 10 or more. may Even when the raw material has such a high pH, the starch according to the present embodiment can be used as a binder for producing agglomerates without any problems.

また、バインダーは、エーテル化澱粉、非エステル化澱粉、またはエーテル化/非エステル化澱粉を、さらにα化したα澱粉とすることが好ましく、または、さらにデキストリン化したデキストリン等であってもよい。なお、デキストリンには、澱粉を100~200℃で加熱して製造される焙焼デキストリンおよび、酸や酵素でデキストリン化したもの等のように数種類があるが、いずれを用いてもよい。 The binder is preferably etherified starch, non-esterified starch, or α-starch obtained by further pregelatinizing etherified/non-esterified starch, or may be dextrin obtained by further dextrinization. There are several types of dextrin, such as roasted dextrin produced by heating starch at 100 to 200° C. and dextrin produced by acid or enzyme, and any of them may be used.

バインダーの添加量は、原料をペレットまたはブリケットに加工して塊成化が可能な範囲であれば特に限定されず、バインダーの種類に応じて適宜調整すればよい。化工澱粉をバインダーとして用いる場合、その添加量は、原料100質量部に対して、好ましくは0.5~5質量部、より好ましくは1~3質量部である。 The amount of the binder to be added is not particularly limited as long as the raw material can be processed into pellets or briquettes for agglomeration, and may be appropriately adjusted according to the type of binder. When a modified starch is used as a binder, the amount added is preferably 0.5 to 5 parts by mass, more preferably 1 to 3 parts by mass, per 100 parts by mass of raw materials.

本発明の一実施例について以下に説明する。本発明の効果を確認するため、以下の造粒実験を実施した。 An embodiment of the invention is described below. In order to confirm the effects of the present invention, the following granulation experiments were carried out.

(原料pHとバインダーとの関係)
原料として、製鉄プロセスで発生する鉄含有副産物である原料Xおよび原料Yを用いて、塊成物(以下、「サンプル」と称することがある)の製造を行った。以下の表1に、原料Xおよび原料Yの化学成分組成を示す。
(Relationship between raw material pH and binder)
Using raw material X and raw material Y, which are iron-containing by-products generated in the ironmaking process, as raw materials, agglomerates (hereinafter sometimes referred to as “samples”) were produced. Table 1 below shows the chemical composition of raw material X and raw material Y.

Figure 0007205274000001
Figure 0007205274000001

原料XのpHは9.2であり、原料YのpHは12.8であった。なお、それぞれの原料のpHは、純水100mLに原料1gを投入し、市販のpHメーターでpHを測定した。また、図1に示すように、原料の粒径は原料Xの方が原料Yと比べて小さかった。 The pH of raw material X was 9.2 and the pH of raw material Y was 12.8. The pH of each raw material was measured by adding 1 g of raw material to 100 mL of pure water and measuring the pH with a commercially available pH meter. In addition, as shown in FIG. 1, the particle size of the raw material X was smaller than that of the raw material Y.

次に、バインダーは、3種類の異なるα澱粉であるα澱粉A、α澱粉B、およびα澱粉Cを用いた。以下の表2に、これらのα澱粉の物性を示す。 Next, three different types of α-starch, α-starch A, α-starch B, and α-starch C, were used as binders. Table 2 below shows the physical properties of these alpha starches.

Figure 0007205274000002
Figure 0007205274000002

3種類のα澱粉は、市販の食品用化工澱粉をイングレディオン・ジャパンより購入したものである。各α澱粉は、いずれもタピオカを原料としているが、α化前の化学処理方法がそれぞれ異なるものである。各α澱粉の間に、化学成分および分子量分散度の観点からは、顕著な差は見られなかった。また、図2に示すように、各α澱粉の粒径にも特に差は見られなかった。 The three types of α-starch were commercially available modified starches for food purchased from Ingredion Japan. Each α-starch is made from tapioca as a raw material, but the chemical treatment method before gelatinization is different. No significant difference was found between each α-starch in terms of chemical composition and molecular weight dispersity. Moreover, as shown in FIG. 2, no particular difference was observed in the particle size of each α-starch.

これらの原料およびバインダーについて、混練機により以下の表3に示す配合の原料等を混練した後、ポケットサイズが28×26×6.5mmとなるように製団し、105℃で12時間以上の乾燥を行った。得られた各サンプルの圧潰強度および造粒水分の関係を、図3の(a)および(b)に示す。 For these raw materials and binders, after kneading the raw materials and the like shown in the following Table 3 with a kneader, they were formed into a ball having a pocket size of 28 × 26 × 6.5 mm, and were heated at 105 ° C. for 12 hours or more. dried. The relationship between the obtained crushing strength and granulation moisture content of each sample is shown in FIGS. 3(a) and 3(b).

Figure 0007205274000003
Figure 0007205274000003

高pH原料である原料Yは、サンプルNo.1~3には含まれていないが、サンプルNo.4~6には20質量%含まれる。また、いずれの条件においても、いずれかのバインダーが外数で2質量%含まれる。造粒水分については、表中に記載した数値範囲内に収まるように、複数の条件にて実施した。 Raw material Y, which is a high pH raw material, was sample no. Although not included in sample Nos. 1 to 3, 4 to 6 contain 20% by mass. Also, under any conditions, any binder is contained in an external number of 2% by mass. Regarding the granulation moisture content, it was carried out under multiple conditions so as to fall within the numerical range described in the table.

図3の(a)に示すように、原料Yが含まれないサンプルNo.1~3については、いずれも同等の圧潰強度を示した。一方、図3の(b)に示すように、原料Yが20質量%含まれるサンプルNo.4~6については、α澱粉Cをバインダーとして使用したサンプルNo.6において、圧潰強度が顕著に低下した。なお、サンプルNo.6については、造粒水分の割合が4.5質量%以下では造粒できなかった。 As shown in (a) of FIG. 3, sample no. All of 1 to 3 showed equivalent crushing strength. On the other hand, as shown in FIG. 3(b), sample No. containing 20% by mass of raw material Y. For 4 to 6, sample No. using α-starch C as a binder. 6, the crush strength decreased significantly. In addition, sample No. Regarding No. 6, granulation was not possible when the granulation water content was 4.5% by mass or less.

以上の結果より、バインダーとしてα澱粉Cを用いた場合に、原料のpHによる影響を大きく受け、高pHでは造粒後のサンプルの圧潰強度が低下することが示された。 From the above results, it was shown that when α Starch C was used as a binder, it was greatly affected by the pH of the raw material, and the crushing strength of the sample after granulation decreased at high pH.

(澱粉の構造と性能との関係)
α澱粉A、α澱粉B、およびα澱粉Cをバインダーとして使用した場合、α澱粉Cのみが原料が高pHである影響を顕著に受けたため、その原因を検討した。
(Relationship between starch structure and performance)
When α-starch A, α-starch B, and α-starch C were used as binders, only α-starch C was significantly affected by the high pH of the raw material, and the cause was investigated.

まず、α澱粉A、α澱粉B、およびα澱粉Cをそれぞれ、純水(pH7.0)またはアルカリ水(pH11.8)に溶解し、粘度を測定した。なお、アルカリ水は、pH11.8となるように、純水にNaOH試薬を投入して調製した。また、澱粉は、α澱粉Aが40質量%、α澱粉Bが17質量%、α澱粉Cが15質量%となるように溶解した。粘度は、英弘精機製ブルックフィールド型粘度計を用い、スピンドルにLV3を用い、スピンドル回転数20rpm、溶媒温度20~25℃の条件下にて測定した。 First, α-starch A, α-starch B, and α-starch C were each dissolved in pure water (pH 7.0) or alkaline water (pH 11.8), and the viscosity was measured. Alkaline water was prepared by adding a NaOH reagent to pure water so as to have a pH of 11.8. The starches were dissolved so that α-starch A was 40% by mass, α-starch B was 17% by mass, and α-starch C was 15% by mass. Viscosity was measured using a Brookfield viscometer manufactured by Eiko Seiki, using LV3 as a spindle, under conditions of a spindle speed of 20 rpm and a solvent temperature of 20 to 25°C.

図4に示すように、いずれのα澱粉でも、純水に溶解した場合と比較して、アルカリ水に溶解した場合に粘度が低下したが、粘度低下はα澱粉Cにおいて特に顕著であった。この結果から、サンプルNo.6の圧潰強度が他のサンプルよりも顕著に低下したのは、原料のpHがα澱粉Cのバインダーとしての性能(すなわち、粘度)に大きく影響した結果であることが示唆された。 As shown in FIG. 4, the viscosity of all α-starches decreased when dissolved in alkaline water compared to when dissolved in pure water. From this result, sample no. It was suggested that the fact that the crushing strength of 6 was significantly lower than that of other samples was the result of the pH of the raw material greatly affecting the performance (ie, viscosity) of α-starch C as a binder.

(FT-IR分析)
ここで、α澱粉A、α澱粉B、およびα澱粉Cはα化される前の化学処理方法が異なることから、それぞれ付加されている官能基が異なると考えられる。それぞれのα澱粉に付加されている官能基の違いが、高pH条件下における粘度に影響していると仮定し、FT-IR(フーリエ変換赤外分光光度計)による各α澱粉の官能基分析を行った。当該分析の結果について、図5に示す。
(FT-IR analysis)
Here, α starch A, α starch B, and α starch C are considered to have different functional groups added thereto because the chemical treatment methods before gelatinization are different. Functional group analysis of each α-starch by FT-IR (Fourier transform infrared spectrophotometer), assuming that the difference in the functional groups attached to each α-starch affects the viscosity under high pH conditions. did The results of this analysis are shown in FIG.

図5に示すように、いずれのα澱粉においても、(a)OH基を示すO-H伸縮、(b)アルキル基を示すC-H伸縮、および(c)エーテル結合を示すC-O伸縮が認められた。一方、(d)エステル結合を示すC=O伸縮、および(e)カルボン酸塩を示すCOO伸縮は、α澱粉Cにのみ認められ、α澱粉Aおよびα澱粉Bには認められなかった。 As shown in FIG. 5, in any α-starch, (a) OH stretching indicating OH group, (b) C—H stretching indicating alkyl group, and (c) CO stretching indicating ether bond was accepted. On the other hand, (d) C═O stretching indicating an ester bond and (e) COO 2 -stretching indicating a carboxylate were observed only in α-starch C, but not in α-starch A and α-starch B.

(滴定法による測定)
次に、滴定法によって各α澱粉のアセチル基、カルボキシル基、およびヒドロキシプロピル基の含有量を測定した。
(Measurement by titration method)
Next, the content of acetyl group, carboxyl group and hydroxypropyl group in each α-starch was measured by titration method.

アセチル基の測定は以下の通り実施した。乾燥α澱粉5gを純水100mLに加えて懸濁した。フェノールフタレイン試液数滴を加え、液が微紅色を呈するまで水酸化ナトリウム溶液を滴下した。次に、0.45mol/L水酸化ナトリウム溶液25mLを加え、栓をして、30分間激しく振り混ぜて検液とした。当該検液中における過量の水酸化ナトリウムを0.2mol/L塩酸により滴定し、その消費量を「S」mLとした。滴定の終点は、液の微紅色が消える時点とした。また、参照データ取得のため、0.45mol/L水酸化ナトリウム25mLを0.2mol/L塩酸で滴定し、その消費量を「B」mLとした。そして、次式(1)により、各α澱粉に含まれるアセチル基の含有量を求めた。 Acetyl group was measured as follows. 5 g of dry α-starch was added to 100 mL of pure water and suspended. Several drops of phenolphthalein test solution were added, and a sodium hydroxide solution was added dropwise until the solution exhibited a slightly reddish color. Next, 25 mL of 0.45 mol/L sodium hydroxide solution was added, the tube was stoppered, and vigorously shaken for 30 minutes to obtain a test solution. An excessive amount of sodium hydroxide in the test solution was titrated with 0.2 mol/L hydrochloric acid, and the consumption was defined as "S" mL. The endpoint of the titration was the point at which the slightly reddish color of the liquid disappeared. Also, for reference data acquisition, 25 mL of 0.45 mol/L sodium hydroxide was titrated with 0.2 mol/L hydrochloric acid, and the consumption was defined as "B" mL. Then, the content of acetyl groups contained in each α-starch was determined by the following formula (1).

Figure 0007205274000004
Figure 0007205274000004

カルボキシル基の測定は以下の通り実施した。乾燥α澱粉3gに塩酸の80体積%エタノール溶液(塩酸:80体積%エタノール溶液=9:1000)を加え、時々混和しながら30分間放置した後、吸引濾過した。濾紙上の残留物を、洗液が塩化物の反応を呈さなくなるまで80体積%エタノール溶液で洗浄した。濾紙上の残留物に80体積%エタノール溶液300mLを加えて懸濁し、攪拌しながら浴中で加熱して糊化させ、さらに15分間加熱した。糊化した試料を浴中から取り出し、熱いうちに0.1mol/L水酸化ナトリウム溶液により滴定し、その消費量を「S」mLとした。このときの指示薬は、フェノールフタレイン試液3滴とした。また、参照データ取得のため、乾燥α澱粉3gを80体積%エタノール溶液10mLに加えて懸濁し、30分間攪拌した懸濁液を吸引濾過し、濾紙上の残留物を80体積%エタノール溶液200mLで洗った。残留物に80体積%エタノール溶液300mLを加えて懸濁し、以下本試験と同様に操作し、その消費量を「B」mLとした。そして、次式(2)により、各α澱粉に含まれるカルボキシル基の含有量を求めた。 The measurement of carboxyl groups was carried out as follows. An 80% by volume ethanol solution of hydrochloric acid (hydrochloric acid: 80% by volume ethanol solution = 9:1000) was added to 3 g of dried α-starch, left for 30 minutes with occasional mixing, and then suction filtered. The residue on the filter paper was washed with an 80% by volume ethanol solution until the wash showed no chloride reaction. The residue on the filter paper was suspended by adding 300 mL of 80% by volume ethanol solution, heated in a bath with stirring to gelatinize, and heated for an additional 15 minutes. The gelatinized sample was removed from the bath and titrated with 0.1 mol/L sodium hydroxide solution while hot, and its consumption was taken as "S" mL. The indicator at this time was 3 drops of phenolphthalein test solution. In addition, for reference data acquisition, 3 g of dry α-starch was added to 10 mL of 80 vol% ethanol solution and suspended, the suspension was stirred for 30 minutes, suction filtered, and the residue on the filter paper was removed with 200 mL of 80 vol% ethanol solution. washed. 300 mL of an 80% by volume ethanol solution was added to the residue to suspend it, and the same operation as in this test was performed thereafter, and the consumption was defined as "B" mL. Then, the content of carboxyl groups contained in each α-starch was determined by the following formula (2).

Figure 0007205274000005
Figure 0007205274000005

ヒドロキシプロピル基の測定は以下の通り実施した。乾燥α澱粉0.1gに36倍希釈した硫酸25mLを加えて水浴中で加熱して溶解し、冷却後、純水で100mLにして試料液とした。なお、試料液は、必要に応じてヒドロキシプロピル基の濃度が4mg/100mL以上とならないように希釈した。試料液1mLを冷却しながら硫酸8mLを滴下した。攪拌後、水浴中で3分間加熱し、氷冷した。氷冷後、化工澱粉用ニンヒドリン試液0.6mLを加え、直ちに振り混ぜ、25℃の水浴中に100分間静置した。硫酸を加えて25mLとし、懸濁したものを検液とし、対照液に対する590nmの吸光度を測定した。ここで、対照液は、試料のα澱粉と同じ植物を基原とする未化工澱粉を用いて、検液の場合と同様に操作し調製した。 Measurement of hydroxypropyl groups was carried out as follows. 25 mL of 36-fold diluted sulfuric acid was added to 0.1 g of dry α-starch and dissolved by heating in a water bath. The sample solution was diluted as necessary so that the concentration of hydroxypropyl groups did not exceed 4 mg/100 mL. While cooling 1 mL of the sample liquid, 8 mL of sulfuric acid was added dropwise. After stirring, the mixture was heated in a water bath for 3 minutes and ice-cooled. After cooling with ice, 0.6 mL of ninhydrin test solution for modified starch was added, immediately shaken, and allowed to stand in a water bath at 25°C for 100 minutes. Sulfuric acid was added to make 25 mL, the suspension was used as a test solution, and the absorbance at 590 nm for the control solution was measured. Here, the control solution was prepared in the same manner as the test solution using unmodified starch derived from the same plant as the α-starch of the sample.

次に、標準液を調製するため、プロピレングリコール0.025gに純水を加えて100mLとし、この液を2、4、6、8、10mLにそれぞれ分注して、それぞれに純水を加えて各50mLとした。これらの液1mLずつに、冷却しながら硫酸8mLを滴下し、以下検液の場合と同様に操作して標準液とし、検量線を作成した。得られた検量線から、検液中のプロピレングリコール濃度(μg/mL)を求め、次式(3)によりヒロドキシプロピル基の含有量を求めた。 Next, in order to prepare a standard solution, add pure water to 0.025 g of propylene glycol to make 100 mL, divide this solution into 2, 4, 6, 8, and 10 mL, and add pure water to each. 50 mL each. To each 1 mL of these solutions, 8 mL of sulfuric acid was added dropwise while cooling, followed by the same operation as in the test solution to prepare a standard solution and prepare a calibration curve. From the obtained calibration curve, the propylene glycol concentration (μg/mL) in the test solution was determined, and the content of hydroxypropyl groups was determined by the following formula (3).

Figure 0007205274000006
Figure 0007205274000006

これらの測定法に従って、各α澱粉における各官能基の乾燥物換算での含有量(重量%)を測定した結果を、以下の表4に示す。 According to these measurement methods, the content (% by weight) of each functional group in terms of dry matter in each α-starch was measured, and the results are shown in Table 4 below.

Figure 0007205274000007
Figure 0007205274000007

α澱粉Aおよびα澱粉Bはアセチル基およびカルボキシル基がいずれも検出されなかった(測定限界値以下であった)のに対し、α澱粉Cはアセチル基およびカルボキシル基がいずれも0.3重量%含まれていた。以上より、アセチル基およびカルボキシル基の含有量から、α澱粉Aおよびα澱粉Bは非エステル化澱粉であり、α澱粉Cはエステル化澱粉であることを確認した。また、カルボキシル基の含有量から、α澱粉Aおよびα澱粉Bは非酸化澱粉であり、α澱粉Cは酸化澱粉であることを確認した。 Neither acetyl groups nor carboxyl groups were detected in α-starch A and α-starch B (below the limit of measurement), whereas α-starch C contained 0.3% by weight of both acetyl and carboxyl groups. was included. From the above, it was confirmed from the contents of acetyl groups and carboxyl groups that α-starch A and α-starch B were non-esterified starches, and α-starch C was esterified starch. It was also confirmed from the content of carboxyl groups that α-starch A and α-starch B were non-oxidized starch, and α-starch C was oxidized starch.

次に、α澱粉Aおよびα澱粉Bはヒドロキシプロピル基がいずれも5重量%以上含まれていたのに対し、α澱粉Cはヒドロキシプロピル基が検出されなかった(検出限界値以下であった)。この結果から、α澱粉Aおよびα澱粉Bはヒドロキシアルキル基を有するエーテル化澱粉であり、より詳細にはヒドロキシプロピル化澱粉であることを確認した。 Next, α-starch A and α-starch B both contained 5% by weight or more of hydroxypropyl groups, whereas α-starch C did not detect hydroxypropyl groups (below the detection limit). . From these results, it was confirmed that α-starch A and α-starch B were etherified starches having hydroxyalkyl groups, more specifically, hydroxypropylated starches.

(まとめ)
塊成物の製造において、高pH原料である原料Yが含まれる原料を用いた場合でも、バインダーとしてα澱粉Aおよびα澱粉Bを用いれば、α澱粉Cを用いた場合と比較して、得られたサンプルの圧潰強度は良好であった。これは、α澱粉Aおよびα澱粉Bが非エステル化澱粉であること、非酸化澱粉であること、またはエーテル化澱粉であることに起因していることが、前記のα澱粉A、α澱粉B、およびα澱粉Cの官能基含有量測定結果により示された。
(summary)
In the production of agglomerates, even when a raw material containing raw material Y, which is a high pH raw material, is used, if α-starch A and α-starch B are used as binders, the yield is lower than when α-starch C is used. The crush strength of the tested samples was good. This is because α starch A and α starch B are non-esterified starch, non-oxidized starch, or etherified starch. , and the results of measuring the functional group content of α-starch C.

〔付記事項〕
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional notes]
The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.

Claims (5)

鉄含有原料とバインダーとを混合する工程を含む、塊成物の製造方法であって、
前記鉄含有原料として、pHが10以上のものを用い、
エーテル化澱粉および非エステル化澱粉からなる群より選ばれる少なくとも一つであり、炭素数1以上10以下のヒドロキシアルキル基を有する前記エーテル化澱粉を含んだ前記バインダーを選択する、塊成物の製造方法。
A method for producing an agglomerate, comprising a step of mixing an iron-containing raw material and a binder,
As the iron-containing raw material, using one with a pH of 10 or more,
Production of an agglomerate , wherein the binder containing the etherified starch is at least one selected from the group consisting of etherified starch and non-esterified starch and has a hydroxyalkyl group having 1 to 10 carbon atoms. Method.
前記ヒドロキシアルキル基の含有量が乾燥物換算で1重量%以上である前記エーテル化澱粉を含んだ前記バインダーを選択する、請求項に記載の塊成物の製造方法。 2. The method for producing an agglomerate according to claim 1 , wherein the binder containing the etherified starch having a hydroxyalkyl group content of 1% by weight or more in terms of dry matter is selected. アセチル基およびカルボキシル基の含有量がいずれも乾燥物換算で0.1重量%以下である前記非エステル化澱粉を含んだ前記バインダーを選択する、請求項1または2に記載の塊成物の製造方法。 3. The production of the agglomerate according to claim 1 or 2 , wherein the binder containing the non-esterified starch having an acetyl group content and a carboxyl group content of 0.1% by weight or less in terms of dry matter is selected. Method. 前記非エステル化澱粉および前記エーテル化澱粉は、α化されている、請求項1からの何れか1項に記載の塊成物の製造方法。 The method for producing an agglomerate according to any one of claims 1 to 3 , wherein the non-esterified starch and the etherified starch are pregelatinized. 鉄含有原料とバインダーとを有する塊成物であって、
前記鉄含有原料は、pHが10以上のものであり、
前記バインダーは、非エステル化澱粉およびエーテル化澱粉からなる群より選ばれる少なくとも一つであり、炭素数1以上10以下のヒドロキシアルキル基を有する前記エーテル化澱粉を含む、塊成物。
An agglomerate comprising an iron-containing raw material and a binder,
The iron-containing raw material has a pH of 10 or more,
The agglomerate, wherein the binder is at least one selected from the group consisting of non-esterified starch and etherified starch, and contains the etherified starch having a hydroxyalkyl group having 1 to 10 carbon atoms .
JP2019023680A 2019-02-13 2019-02-13 Agglomerate manufacturing method and agglomerate Active JP7205274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019023680A JP7205274B2 (en) 2019-02-13 2019-02-13 Agglomerate manufacturing method and agglomerate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019023680A JP7205274B2 (en) 2019-02-13 2019-02-13 Agglomerate manufacturing method and agglomerate

Publications (2)

Publication Number Publication Date
JP2020132901A JP2020132901A (en) 2020-08-31
JP7205274B2 true JP7205274B2 (en) 2023-01-17

Family

ID=72262429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019023680A Active JP7205274B2 (en) 2019-02-13 2019-02-13 Agglomerate manufacturing method and agglomerate

Country Status (1)

Country Link
JP (1) JP7205274B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116194435A (en) 2020-08-05 2023-05-30 中央硝子株式会社 Fluorine-containing diamine or salt thereof, method for producing fluorine-containing diamine or salt thereof, polyamide, method for producing polyamide, polyamide solution, polyamide cyclized body, method for producing polyamide cyclized body, insulating material for high-frequency electronic component, method for producing insulating material for high-frequency electronic component, high-frequency machine, and insulating material for producing high-frequency electronic component
KR102635760B1 (en) * 2021-07-06 2024-02-13 대상 주식회사 Binder for briquette and use of the same
KR102558949B1 (en) * 2021-07-06 2023-07-25 대상 주식회사 Binder for briquette and use of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119178A (en) 2017-01-25 2018-08-02 日新製鋼株式会社 Method for producing agglomerate for steel making

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119178A (en) 2017-01-25 2018-08-02 日新製鋼株式会社 Method for producing agglomerate for steel making

Also Published As

Publication number Publication date
JP2020132901A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP7205274B2 (en) Agglomerate manufacturing method and agglomerate
Schirmer et al. Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio
AU2012286206C1 (en) Binder composition for agglomeration of fine minerals and pelletizing process
JPS59108001A (en) Granular starch ether with lowered paste temperature
JP4864219B2 (en) Building material composition
US20130236512A1 (en) Novel cellulose ethers and their use
US3839320A (en) Method of preparing starch esters
Volkert et al. Highly substituted carboxymethyl starch
JP4365073B2 (en) Thermally converted starch and process for producing the same
Knaus et al. Synthesis and properties of anionic cellulose ethers: influence of functional groups and molecular weight on flowability of concrete
CN103014169B (en) Based on the nucleic acid qualitative detection method of nano particle and rolling circle amplification
Arueya et al. Effect of varying degrees of succinylation on the functional and morphological properties of starch from acha (Digitaria exilis Kippis Stapf)
US6469161B1 (en) Chemical fluidification process and conversion process of starchy materials, and new cationic starchy materials
Sui et al. Relationship of the channels of normal maize starch to the properties of its modified products
WO2021234759A1 (en) Method for producing agglomerated material, and agglomerated material
JP5890329B2 (en) Single phase preparation of hydrophobic starch products
Kumoro et al. Preparation and characterization of physicochemical properties of glacial acetic acid modified Gadung (Diocorea hispida Dennst) flours
JP4504363B2 (en) Composition based on modified legume starch for papermaking
TW202146670A (en) Method for producing agglomerated material and agglomerated material including a mixing step of mixing an iron-containing material and a binder
CN108164609B (en) Carboxymethyl acetyl ether esterification synergistic composite modified starch and preparation method thereof
Stapley et al. Hydroxypropylated starch: Granule subpopulation reactivity
Tang et al. Sulfonated carboxymethyl debranched starch: Preparation, performance and application
US20030145763A1 (en) Flocculant or binder composition, slurry containing the flocculant or binder composition, method for making ceramics using the slurry, and ceramic products made therefrom
JP2022107128A (en) Granulation binder composition
RU2227165C1 (en) Complex binding agent for production of iron-ore pellets

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R151 Written notification of patent or utility model registration

Ref document number: 7205274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151