JP7202590B2 - Circular saw processing thickness measurement method and circular saw adjustment method - Google Patents

Circular saw processing thickness measurement method and circular saw adjustment method Download PDF

Info

Publication number
JP7202590B2
JP7202590B2 JP2019180836A JP2019180836A JP7202590B2 JP 7202590 B2 JP7202590 B2 JP 7202590B2 JP 2019180836 A JP2019180836 A JP 2019180836A JP 2019180836 A JP2019180836 A JP 2019180836A JP 7202590 B2 JP7202590 B2 JP 7202590B2
Authority
JP
Japan
Prior art keywords
circular saw
thickness
laser
blade
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019180836A
Other languages
Japanese (ja)
Other versions
JP2021053771A (en
Inventor
敏史 水谷
Original Assignee
丸北研磨株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸北研磨株式会社 filed Critical 丸北研磨株式会社
Priority to JP2019180836A priority Critical patent/JP7202590B2/en
Publication of JP2021053771A publication Critical patent/JP2021053771A/en
Application granted granted Critical
Publication of JP7202590B2 publication Critical patent/JP7202590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、チップソーやメタルソーなどの丸鋸の加工厚みの測定方法、および2軸切断装置における丸鋸の調整方法に関する。 The present invention relates to a method for measuring the processed thickness of a circular saw such as a tipped saw or a metal saw, and a method for adjusting a circular saw in a biaxial cutting device.

鋼材や木材などの被加工材の切断には、チップソーやメタルソーといった丸鋸を有する切断装置が用いられている。一般的な切断装置は、丸鋸が1つ備わっており、一方向に回転させた丸鋸に対して被加工材を相対移動させることで切断が行われる。しかし、このような切断方式(単軸切断方式)の場合、被加工材の片面に対してのみ丸鋸の刃が侵入するため、その反対面、つまり丸鋸の抜け側の面にはバリや欠けが発生しやすい。 A cutting device having a circular saw, such as a chipped saw or a metal saw, is used to cut workpieces such as steel and wood. A general cutting device is provided with one circular saw, and cutting is performed by relatively moving the workpiece with respect to the circular saw rotated in one direction. However, in the case of such a cutting method (single-axis cutting method), the blade of the circular saw penetrates only one side of the workpiece, so the opposite side, that is, the side where the circular saw comes off, has burrs. Chipping is likely to occur.

これに対して、毛引き用丸鋸と切断用丸鋸の2つの丸鋸を有する切断装置を用いた切断方式(2軸切断方式)が知られている(特許文献1参照)。この2軸切断方式は、まず、毛引き用丸鋸で被加工材の片面(切断用丸鋸の抜け側となる面)に溝を形成した後、その溝に沿って切断用丸鋸で被加工材を切断する方式である。この場合、被加工材の両面に対して、丸鋸の刃が侵入するため、抜け側がなくなる。そのため、単軸切断方式のようなバリや欠けが生じにくく、不良品の抑制や補修工程の削減を図ることができる。 On the other hand, a cutting method (biaxial cutting method) using a cutting device having two circular saws, a circular saw for hair pulling and a circular saw for cutting, is known (see Patent Document 1). In this biaxial cutting method, first, a groove is formed on one side of the workpiece (the side where the circular saw for cutting comes off) with a circular saw for hair pulling, and then the material is cut along the groove with a circular saw for cutting. This method cuts the material to be processed. In this case, since the blade of the circular saw penetrates into both sides of the workpiece, there is no side to come off. Therefore, burrs and chipping unlike the uniaxial cutting method are less likely to occur, and defective products can be suppressed and the repair process can be reduced.

特開2000-15601号公報JP-A-2000-15601

上述の2軸切断方式は、特に、高級家庭用キッチンや、洗面台、家具、業務用陳列什器などの加工に用いられている。近年では、高品質化の要求に伴い、切断加工により高精度な加工が求められている。2軸切断方式の場合、毛引き用丸鋸によって形成された溝は、切断後の加工材に段差となって残存する。そのため、製品の高品質化のためには、この段差の大きさを精度良く管理することが望ましい。この段差は、毛引き用丸鋸と切断用丸鋸の加工厚みの差に起因するため、各丸鋸の加工厚みの管理が求められる。 The biaxial cutting method described above is particularly used for the processing of luxury home kitchens, washstands, furniture, commercial display fixtures, and the like. In recent years, along with the demand for higher quality, high-precision processing by cutting is required. In the case of the biaxial cutting method, the grooves formed by the hair pulling circular saw remain as steps in the workpiece after cutting. Therefore, in order to improve the quality of products, it is desirable to control the size of the step with high accuracy. Since this step is caused by the difference in thickness between the sawing circular saw and the cutting circular saw, it is necessary to manage the thickness of each circular saw.

しかしながら、丸鋸の加工厚みを測定する方法は、ほとんど知られていない。例えば、投影機を用いて、丸鋸の投影像から加工厚みを測定する方法が考えられるが、測定に手間を要し、作業性の面で好ましくない。 However, little is known about how to measure the machining thickness of a circular saw. For example, it is conceivable to use a projector to measure the machining thickness from the projected image of the circular saw, but the measurement requires time and effort, which is not preferable in terms of workability.

また、近年では、品質向上に加えて、丸鋸を研磨(再利用)することによるコスト削減の要求が高まっている。しかしながら、2軸切断装置に用いられる2枚の刃は研磨すると、各刃の加工厚みのバランスが崩れやすく、歪みの許容量も限られることから丸鋸の再利用は比較的困難となっている。 Moreover, in recent years, in addition to quality improvement, there is an increasing demand for cost reduction by grinding (reusing) circular saws. However, when the two blades used in the biaxial cutting device are ground, the thickness of each blade tends to be out of balance, and the permissible amount of distortion is limited. .

本発明はこのような事情に鑑みてなされたものであり、丸鋸の加工厚みを迅速に、かつ精度良く測定できる測定方法、および2軸切断装置における丸鋸の調整方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a measuring method capable of quickly and accurately measuring the machining thickness of a circular saw, and a method of adjusting a circular saw in a biaxial cutting device. and

本発明の丸鋸の加工厚みの測定方法は、レーザを照射する照射部と、該照射部に対向配置された受光部とを有するレーザ装置を用いる方法であり、基板と該基板の外周縁に形成された複数の刃とを有する丸鋸を、該丸鋸の刃の先端部が上記照射部と上記受光部の間のレーザ照射領域に位置するように載置して、上記レーザを照射しながら上記丸鋸を回転させて上記丸鋸の加工厚みを測定することを特徴とする。 The method for measuring the processed thickness of a circular saw according to the present invention is a method using a laser device having an irradiating section for irradiating a laser and a light receiving section arranged opposite to the irradiating section. A circular saw having a plurality of formed blades is placed so that the tips of the blades of the circular saw are positioned in a laser irradiation region between the irradiation unit and the light receiving unit, and the laser is irradiated. The machining thickness of the circular saw is measured while rotating the circular saw.

本発明において、丸鋸の「加工厚み」とは、丸鋸の刃の厚み(刃厚)に加えて、各刃間の位置ずれ(各刃間の相対取付け誤差)や、鋸に発生する歪みに起因する刃振れを含む値であり、丸鋸の回転時の最大幅を示している。例えば、切断装置が正常であれば、被加工材の溝加工時には、丸鋸の加工厚みと等しい幅の溝が形成される。 In the present invention, the "processing thickness" of a circular saw includes not only the thickness of the blade of the circular saw (blade thickness), but also the misalignment between each blade (relative mounting error between each blade) and the distortion that occurs in the saw. This value includes blade runout caused by , and indicates the maximum width of the circular saw during rotation. For example, if the cutting device is normal, grooves having a width equal to the processing thickness of the circular saw are formed when grooving the workpiece.

上記測定方法は、水平に載置された上記丸鋸の下面の外周寄りの位置にダイヤルゲージを接触させ、該ダイヤルゲージを接触させた状態で上記丸鋸を回転させることを特徴とする。 The measuring method is characterized in that a dial gauge is brought into contact with a position near the outer periphery of the lower surface of the circular saw placed horizontally, and the circular saw is rotated while the dial gauge is in contact.

上記丸鋸を10min-1~100min-1の回転速度で1周~1.5周回転させることを特徴とする。 The circular saw is rotated 1 round to 1.5 rounds at a rotational speed of 10 min −1 to 100 min −1 .

上記丸鋸の刃を加熱しながら回転させることを特徴とする。 It is characterized in that the blade of the circular saw is rotated while being heated.

本発明の丸鋸の調整方法は、毛引き用丸鋸で被加工材の片面に溝を形成し、切断用丸鋸で上記溝に沿って上記被加工材を切断する2軸切断装置における丸鋸を調整する方法であり、上記毛引き用丸鋸の加工厚みと上記切断用丸鋸の加工厚みをそれぞれ測定する測定工程と、測定された上記各加工厚みの差に基づいて上記毛引き用丸鋸および上記切断用丸鋸の歪みまたは刃厚を調整する調整工程とを有し、上記測定工程は、本発明の丸鋸の加工厚みの測定方法であることを特徴とする。 A method for adjusting a circular saw according to the present invention is a circular cutting device in a biaxial cutting device in which a groove is formed on one side of a work material by a circular saw for hair pulling, and the work material is cut along the groove by a circular saw for cutting. A method for adjusting a saw, comprising: a measuring step of respectively measuring the processed thickness of the circular saw for hair pulling and the processed thickness of the circular saw for cutting; and an adjustment step of adjusting the distortion or blade thickness of the circular saw and the circular saw for cutting, and the measuring step is the method of measuring the processed thickness of the circular saw according to the present invention.

本発明の丸鋸の加工厚みの測定方法は、レーザ装置を用いる方法であり、丸鋸の刃の先端部が照射部と受光部の間のレーザ照射領域に位置するように載置して、レーザを照射しながら丸鋸を回転させて丸鋸の加工厚みを測定するので、例えば投影機を用いた測定方法に比べて、迅速な測定が可能である。また、レーザを照射しながら丸鋸を回転させる、つまりレーザ照射領域に対して各刃先を連続的に通過させて測定することで、単なる刃厚に加えて、刃の側面の厚みむら、丸鋸使用時の衝撃などで発生する刃のロウ付け位置のずれや鋸の歪みによる刃振れを考慮できるので、より高精度の厚み管理を行うことができる。 The method for measuring the processed thickness of a circular saw according to the present invention is a method using a laser device. Since the circular saw is rotated while irradiating the laser to measure the processed thickness of the circular saw, the measurement can be performed more quickly than, for example, a measuring method using a projector. In addition, by rotating the circular saw while irradiating the laser, that is, by continuously passing each blade edge through the laser irradiation area and measuring it, in addition to the blade thickness, the thickness unevenness of the side of the blade and the thickness of the circular saw Since it is possible to take into account the deviation of the brazing position of the blade caused by impact during use and the blade runout due to the distortion of the saw, it is possible to perform more accurate thickness control.

水平に載置された丸鋸の下面の外周寄りの位置にダイヤルゲージを接触させた状態で丸鋸を回転させるので、異常な値を検出した場合は測定不良と判断でき、加工厚みの信頼性を高めることができる。例えば、測定中に一時的に過度な変位が検出された場合には再度測定を行うことができる。 Since the circular saw is rotated while the dial gauge is in contact with the lower surface of the circular saw placed horizontally, it can be judged as a measurement failure when an abnormal value is detected, and the reliability of the processed thickness is increased. can increase For example, if a temporary excessive displacement is detected during the measurement, the measurement can be taken again.

丸鋸を10min-1~100min-1の回転速度で1周~1.5周回転させるので、迅速な測定を可能としつつ、安全性を確保できる。 Since the circular saw is rotated 1 to 1.5 times at a rotational speed of 10 min -1 to 100 min -1 , it is possible to secure safety while enabling quick measurement.

丸鋸の刃を加熱しながら回転させることで、丸鋸の刃に付着した埃やゴミなどが除去され、精度よく加工厚みを測定できる。 By rotating the blade of the circular saw while heating it, the dust and dirt adhering to the blade of the circular saw can be removed and the thickness of the saw can be measured with high accuracy.

本発明の丸鋸の調整方法は、毛引き用丸鋸の加工厚みと切断用丸鋸の加工厚みをそれぞれ、本発明の測定方法にて測定する測定工程と、測定された各加工厚みの差に基づいて毛引き用丸鋸および切断用丸鋸の歪みまたは刃厚を調整する調整工程とを有するので、より高精度な厚み管理が必要な2軸切断装置における丸鋸の再利用が可能となり、コスト削減に寄与する。 The method for adjusting a circular saw according to the present invention includes a measuring step of measuring the processed thickness of a circular saw for hair pulling and the processed thickness of a circular saw for cutting by the measuring method of the present invention, and the difference between the measured processed thicknesses. and an adjustment process for adjusting the distortion or blade thickness of the circular saw for hair pulling and the circular saw for cutting based on the above, so that the circular saw can be reused in a biaxial cutting device that requires more accurate thickness control. , contribute to cost reduction.

本発明の測定方法の対象物である丸鋸の平面図などである。FIG. 2A is a plan view of a circular saw, which is an object of the measuring method of the present invention; 本発明の測定方法の概略構成を説明するための平面図である。It is a top view for demonstrating the schematic structure of the measuring method of this invention. 図2の概略構成を側面側から見た図などである。3A and 3B are views of the schematic configuration of FIG. 2 as viewed from the side; 本発明における加工厚みを説明するための図である。It is a figure for demonstrating the processing thickness in this invention. 2軸切断装置の概略構成を説明するための図である。It is a figure for demonstrating schematic structure of a biaxial cutting device. 図5のA-A線断面図などである。6 is a cross-sectional view taken along the line AA of FIG. 5 and the like.

本発明の測定対象である丸鋸の一例を、図1に基づいて説明する。図1(a)は丸鋸全体の平面図を示し、図1(b)は丸鋸の刃周辺の拡大図を示す。図1(a)に示すように、丸鋸1は、略円板状の基板2と、基板2の外周縁部に形成された複数の刃4とを有する。丸鋸1(基板2)の中心部には取付孔3が形成されており、この取付孔3に切断装置の丸鋸軸(図示省略)が挿入される。丸鋸1の外径Dは特に限定されず、例えば100mm~800mmであり、好ましくは100mm~400mmである。 An example of a circular saw to be measured in the present invention will be described with reference to FIG. FIG. 1(a) shows a plan view of the entire circular saw, and FIG. 1(b) shows an enlarged view around the blade of the circular saw. As shown in FIG. 1( a ), the circular saw 1 has a substantially disk-shaped substrate 2 and a plurality of blades 4 formed on the outer peripheral edge of the substrate 2 . A mounting hole 3 is formed in the center of the circular saw 1 (substrate 2), and the circular saw shaft (not shown) of the cutting device is inserted into this mounting hole 3. As shown in FIG. The outer diameter D of the circular saw 1 is not particularly limited, and is, for example, 100 mm to 800 mm, preferably 100 mm to 400 mm.

丸鋸1において、複数の刃4は周方向に所定ピッチで設けられている。図1の丸鋸1は、刃4に硬質チップを採用したチップソーである。硬質チップは、耐摩耗性に優れており、例えば、サーメットや、炭化タングステンとコバルトとを焼結した超硬合金などが用いられる。なお、本発明の測定対象はチップソーに限らず、メタルソーであってもよい。 In the circular saw 1, a plurality of blades 4 are provided at a predetermined pitch in the circumferential direction. A circular saw 1 in FIG. The hard tip has excellent wear resistance, and is made of, for example, cermet or cemented carbide obtained by sintering tungsten carbide and cobalt. Note that the object to be measured in the present invention is not limited to the tipped saw, and may be a metal saw.

図1(b)に示すように、各刃4は、切削時に切りくずが流れ出る面であるすくい面4aと、該すくい面4aに略垂直な逃げ面4bとを有している。各刃4は基板2の外周縁部の刃室に、銀ロウなどによって固着されている。 As shown in FIG. 1(b), each blade 4 has a rake face 4a from which chips flow out during cutting, and a flank face 4b substantially perpendicular to the rake face 4a. Each blade 4 is fixed to a blade chamber at the outer peripheral edge of the substrate 2 with silver brazing or the like.

次に、図2を用いて本発明の測定方法について説明する。この測定方法はレーザ装置を用いて丸鋸の加工厚みを測定する方法である。図2は、レーザ装置および測定対象の丸鋸を鉛直方向上側から見た図である。図2に示すように、丸鋸1は、取付孔3に回転台の回転軸8aが挿通されており、水平に載置されている。レーザ装置5は、レーザを照射する照射部6と、照射されたレーザを受光する受光部7とを有する。照射部6は、丸鋸1の軸方向と直交する向き(図2では水平方向)にレーザを照射するように配置され、その照射部6の対向位置に受光部7が配置されている。言い換えると、照射部6は丸鋸1の回転方向と平行な向きにレーザを照射する。 Next, the measuring method of the present invention will be described with reference to FIG. This measurement method uses a laser device to measure the thickness of a circular saw. FIG. 2 is a view of the laser device and the circular saw to be measured from above in the vertical direction. As shown in FIG. 2, the circular saw 1 is placed horizontally with the rotary shaft 8a of the turntable inserted through the mounting hole 3. As shown in FIG. The laser device 5 has an irradiation section 6 for irradiating a laser and a light receiving section 7 for receiving the irradiated laser. The irradiating section 6 is arranged so as to irradiate a laser beam in a direction perpendicular to the axial direction of the circular saw 1 (horizontal direction in FIG. 2). In other words, the irradiating section 6 irradiates the laser in a direction parallel to the rotating direction of the circular saw 1 .

図2では、刃4の先端部がレーザ照射領域R内に位置するように丸鋸1が載置される。レーザ装置5は、光透過型センサであり、照射部6から照射されたレーザが刃4の先端部によって遮断された部分を段差として検出する。この場合、各刃4の最先端から所定範囲までが照射されればよく、例えば、各刃4の最先端から1mm~3mmまでの部分が照射されればよい。レーザ装置としては、例えば、キーエンス社製の2次元高速寸法測定器TM-3000などを用いることができる。 In FIG. 2, the circular saw 1 is placed so that the tip of the blade 4 is positioned within the laser irradiation region R. As shown in FIG. The laser device 5 is a light transmission sensor, and detects a portion where the laser emitted from the irradiation unit 6 is blocked by the tip of the blade 4 as a step. In this case, a predetermined range from the tip of each blade 4 may be irradiated, for example, a portion of 1 mm to 3 mm from the tip of each blade 4 may be irradiated. As the laser device, for example, a two-dimensional high-speed dimension measuring device TM-3000 manufactured by Keyence Corporation can be used.

本発明では、図2に示すように、レーザを照射しながら丸鋸1を方向Xに回転させる。この際、丸鋸1を手動で回転させてもよく、回転制御可能なモータで回転させてもよい。また、丸鋸1の回転速度は、間欠的な回転でなく連続的な回転であれば特に限定されない。迅速性と安全性の面から、回転速度は10min-1~100min-1が好ましく、30min-1~100min-1がより好ましい。 In the present invention, as shown in FIG. 2, the circular saw 1 is rotated in the direction X while irradiating the laser. At this time, the circular saw 1 may be rotated manually, or may be rotated by a motor whose rotation is controllable. Further, the rotation speed of the circular saw 1 is not particularly limited as long as it rotates continuously, not intermittently. From the viewpoint of quickness and safety, the rotation speed is preferably 10 min -1 to 100 min -1 , more preferably 30 min -1 to 100 min -1 .

測定の際、丸鋸1は1周以上回転させればよく、好ましくは1周~1.5周回転させる。また、丸鋸1の刃4を加熱しながら回転させることで、丸鋸1の刃4に付着した埃やゴミなどが除去できるため、好ましい。加熱の方法としては、レーザ照射領域Rに侵入する直前の刃に対して、ガスバーナーなどで直接加熱する方法などが採用できる。また、丸鋸1の回転の向きは、図2に示すように、切削時の回転方向と反対の方向(方向X)に回転させる方が安全性の面で好ましい。 At the time of measurement, the circular saw 1 may be rotated one turn or more, preferably one to 1.5 turns. Further, by rotating the blade 4 of the circular saw 1 while heating it, it is possible to remove dust and dirt from the blade 4 of the circular saw 1, which is preferable. As a heating method, a method of directly heating the blade immediately before entering the laser irradiation region R with a gas burner or the like can be adopted. Moreover, as shown in FIG. 2, it is preferable to rotate the circular saw 1 in a direction (direction X) opposite to the direction of rotation during cutting from the standpoint of safety.

また、図2では、測定時の丸鋸1の回転中に、基板2の下面2a(図3参照)の外周寄りの位置にダイヤルゲージ9を接触させている。外周寄りの位置とは、丸鋸1の径方向において、基板2の内縁(取付孔3との境界)と刃4の先端との間の中央位置よりも外周寄りの位置をいう。つまり、図2の仮想円Cよりも外側にダイヤルゲージ9が配置される。 2, the dial gauge 9 is brought into contact with the lower surface 2a (see FIG. 3) of the base plate 2 at a position near the outer periphery while the circular saw 1 is rotating during measurement. The position closer to the outer periphery means a position closer to the outer periphery than the central position between the inner edge of the substrate 2 (the boundary with the mounting hole 3 ) and the tip of the blade 4 in the radial direction of the circular saw 1 . That is, the dial gauge 9 is arranged outside the imaginary circle C in FIG.

図3(a)には、図2の概略構成を受光部側から見た側面図を示す。図3(a)に示すように、ダイヤルゲージ9の測定ピン9aを基板2の下面2aに接触させて、回転時における丸鋸1の振れ(変位)を測定している。丸鋸1の振れによって基板2が厚み方向に移動する寸法は、基板2とともに測定ピン9aが厚み方向に移動することで測定される。例えば、丸鋸1を回転台8に載置する際に、丸鋸1が傾いて載置される場合などがある。そのような場合でも、ダイヤルゲージ9によって回転時の丸鋸の振れを別途検出しておくことで、異常な値を検出した場合は測定不良と判断し、加工厚みの再測定を実施することができる。これにより、測定された加工厚みの信頼性を向上できる。さらに、丸鋸の傾きなどによる回転振れの影響を受けやすい外周寄りにダイヤルゲージ9を配置することで、そのような不具合を一層検出しやすくなる。 FIG. 3A shows a side view of the schematic configuration of FIG. 2 as seen from the light receiving section side. As shown in FIG. 3A, the measuring pin 9a of the dial gauge 9 is brought into contact with the lower surface 2a of the base plate 2 to measure deflection (displacement) of the circular saw 1 during rotation. The dimension by which the substrate 2 moves in the thickness direction due to the vibration of the circular saw 1 is measured by moving the measuring pin 9a along with the substrate 2 in the thickness direction. For example, when the circular saw 1 is mounted on the turntable 8, the circular saw 1 may be tilted. Even in such a case, by separately detecting the vibration of the circular saw during rotation with the dial gauge 9, it is possible to judge that the measurement is defective and re-measure the thickness when an abnormal value is detected. can. Thereby, the reliability of the measured processed thickness can be improved. Furthermore, by arranging the dial gauge 9 near the outer circumference, which is susceptible to rotational vibration caused by the inclination of the circular saw, such defects can be detected more easily.

図3(b)は、丸鋸の刃をすくい面側から見た図である。図3(b)の刃4は、JIS B 4805に規定されるDタイプの刃形である。刃4の刃厚tは、すくい面4aの上端部4cと下端部4d間の距離であり、刃4の最大厚みに相当する。刃厚tは、例えば1mm~5mmである。レーザは、少なくとも刃4の先端部(最先端から刃4の最大厚み部分を含む箇所)に照射される。なお、刃4の刃形には、Dタイプの他に、Bタイプ(平刃)や、Cタイプ(交互刃)、Aタイプ(交互刃と平刀の組み合わせ)などを用いてもよい。 FIG. 3(b) is a view of the blade of the circular saw viewed from the rake face side. The blade 4 in FIG. 3(b) is a D-type blade defined in JIS B4805. The blade thickness t of the blade 4 is the distance between the upper end portion 4c and the lower end portion 4d of the rake face 4a, and corresponds to the maximum thickness of the blade 4. The blade thickness t is, for example, 1 mm to 5 mm. The laser is irradiated at least to the tip of the blade 4 (a portion including the maximum thickness portion of the blade 4 from the tip). In addition to the D type, the blade shape of the blade 4 may be B type (flat blade), C type (alternating blade), A type (combination of alternating blade and flat blade), or the like.

次に、図4に基づいて本発明の加工厚みについて説明する。図4は測定時の経過時間と刃の変位の関係を示したイメージ図である。図中のL1は、基準線L0に対する刃4の上端部4c(図3(b)参照)の変位を表しており、L2は、基準線L0に対する刃4の下端部4d(図3(b)参照)の変位を表している。この場合、L1とL2間の距離が刃厚tに相当する。図4に示すように、回転時の各刃の位置は、各刃間の位置ずれや刃振れのため、基準線L0に対して変動している。これを考慮して、本発明では変位線L1の最高点P1と変位線L2の最低点P2間の距離を丸鋸の加工厚みTとして測定している。これによって、各刃間の位置ずれや刃振れを含めた回転時の丸鋸の刃の厚み(加工厚み)が測定できるため、実際の加工時の寸法管理に非常に優れている。 Next, the processing thickness of the present invention will be described based on FIG. FIG. 4 is an image diagram showing the relationship between the elapsed time during measurement and the displacement of the blade. L1 in the figure represents the displacement of the upper end portion 4c of the blade 4 (see FIG. 3(b)) relative to the reference line L0, and L2 represents the lower end portion 4d of the blade 4 relative to the reference line L0 (FIG. 3(b)). reference). In this case, the distance between L1 and L2 corresponds to the blade thickness t. As shown in FIG. 4, the position of each blade during rotation fluctuates with respect to the reference line L0 due to positional deviation between the blades and blade runout. Considering this, in the present invention, the distance between the highest point P1 of the displacement line L1 and the lowest point P2 of the displacement line L2 is measured as the machining thickness T of the circular saw. This makes it possible to measure the thickness of the circular saw blade during rotation, including the positional deviation and runout between the blades (cutting thickness).

本発明の測定方法は、一般的な切断装置に用いられる丸鋸に広く適用できる。本発明は、特に、加工厚みを精度良く測定できるため、被加工材の寸法管理が高度に要求される切断装置の丸鋸に適用することが好ましい。例えば、2軸切断装置の丸鋸に適用することが好ましい。 The measuring method of the present invention can be widely applied to circular saws used in general cutting devices. Since the present invention can measure the thickness of the workpiece with high accuracy, it is preferably applied to a circular saw of a cutting apparatus that requires a high degree of dimensional control of the workpiece. For example, it is preferably applied to a circular saw of a biaxial cutting device.

ここで、2軸切断装置の一例を図5に基づいて説明する。図5に示すように、2軸切断装置10は、毛引き用丸鋸11と、切断用丸鋸12と、鋸台13と、レール14と、被加工材15が載置されるテーブル16とを備えている。鋸台13には丸鋸11、12が取り付けられており、これらは一体となってレール14上を搬送方向Yに沿って移動する。毛引き用丸鋸11は搬送方向下流側に配置され、切断用丸鋸12は搬送方向上流側に配置される。また、丸鋸11、12はモータ(図示省略)によって個々に回転駆動され、両軸は被加工材15の両面に対して有利な回転方向(図5では互いが逆方向)に回転する。 Here, an example of the biaxial cutting device will be described with reference to FIG. As shown in FIG. 5, the biaxial cutting device 10 includes a hair pulling circular saw 11, a cutting circular saw 12, a saw base 13, a rail 14, and a table 16 on which a workpiece 15 is placed. It has Circular saws 11 and 12 are attached to the saw base 13, and they move along the conveying direction Y on the rail 14 together. The hair pulling circular saw 11 is arranged downstream in the conveying direction, and the cutting circular saw 12 is arranged upstream in the conveying direction. Circular saws 11 and 12 are individually rotationally driven by motors (not shown), and both shafts rotate in advantageous rotational directions (opposite directions in FIG. 5) with respect to both surfaces of workpiece 15 .

図5の2軸切断装置10は、いわゆるランニングソーやパネルソーであり、被加工材15に対して丸鋸11、12を移動させて切断する装置である。なお、2軸切断装置として、毛引き用丸鋸および切断用丸鋸の位置を固定して、被加工材をこれら丸鋸に対して移動させて切断する装置を用いてもよい。 A biaxial cutting device 10 in FIG. 5 is a so-called running saw or panel saw, and is a device for cutting by moving circular saws 11 and 12 with respect to a workpiece 15 . As the biaxial cutting device, a device in which the positions of the circular saw for hair pulling and the circular saw for cutting are fixed and the workpiece is moved and cut with respect to these circular saws may be used.

続いて、図6(a)に図5のA-A線断面図を示す。図6(a)に示すように、毛引き用丸鋸11は、その刃が被加工材15の下面15aに毛引きが切り込まれるように、下面15aの上にわずかに突出して配置されている。先行して移動する毛引き用丸鋸11によって被加工材15が毛引きされることで、被加工材15に溝15bが形成される。そして、この溝15bの幅方向中心に沿って切断用丸鋸12が移動することで、被加工材15が2つに切断される。 Next, FIG. 6(a) shows a cross-sectional view taken along line AA of FIG. As shown in FIG. 6(a), the hair pulling circular saw 11 is arranged so as to slightly protrude above the lower surface 15a of the workpiece 15 so that the blade cuts the hair pulling into the lower surface 15a of the workpiece 15. As shown in FIG. there is A groove 15 b is formed in the workpiece 15 by pulling the workpiece 15 by the preceding circular saw 11 . By moving the circular cutting saw 12 along the center of the groove 15b in the width direction, the workpiece 15 is cut into two.

切断後の加工材17、18を図6(b)に示す。加工材17の片面には毛引きに伴う段差17aが残存する。この段差17aの幅Waは、外観上小さい方が好ましく、例えば0.05mm程度とすることが好ましい。つまりこの場合、毛引き用丸鋸の加工厚みと切断用丸鋸の加工厚みの差(ΔT)を0.1mm程度にすることが好ましい。一方、幅Waを小さくするために上記ΔTを小さくすると、切断用丸鋸12の位置が溝の中心からずれた場合に加工材の一方に毛引きがきいていない状態が生じるおそれがある。毛引きがきいていないと、バリや欠けの発生につながる。そのため、ΔTの下限は、例えば0.04mmなどに設定される。 The workpieces 17 and 18 after cutting are shown in FIG. 6(b). A step 17a remains on one side of the processed material 17 due to hair pulling. The width Wa of the stepped portion 17a is preferably small in terms of appearance, and is preferably about 0.05 mm, for example. That is, in this case, it is preferable that the difference (ΔT) between the processing thickness of the circular saw for pulling and the processing thickness of the circular saw for cutting be about 0.1 mm. On the other hand, if ΔT is made small in order to reduce the width Wa, there is a possibility that one side of the material to be processed is not haired when the position of the circular cutting saw 12 is displaced from the center of the groove. Insufficient hair pulling leads to the occurrence of burrs and chipping. Therefore, the lower limit of ΔT is set to, for example, 0.04 mm.

また、本発明の丸鋸の調整方法は、2軸切断装置における丸鋸の歪みまたは刃厚を調整する方法である。具体的には、毛引き用丸鋸の加工厚みと切断用丸鋸の加工厚みをそれぞれ測定する測定工程と、測定された各加工厚みの差に基づいて毛引き用丸鋸および切断用丸鋸の歪みまたは刃厚を調整する調整工程とを有する。なお、各加工厚みの測定方法は、上述のとおりである。 A method for adjusting a circular saw according to the present invention is a method for adjusting the distortion or blade thickness of a circular saw in a biaxial cutting device. Specifically, a measurement process for measuring the thickness of the circular saw for pulling and the thickness of the circular saw for cutting, and the difference between the measured thicknesses of the circular saw for pulling and the circular saw for cutting. and an adjusting step of adjusting the distortion or blade thickness of the blade. The method for measuring each processed thickness is as described above.

上記調整工程では、まず各丸鋸の加工厚みの差(ΔT)を算出する。そして、ΔTが所定範囲(例えば、0.06mm~0.1mmの範囲)か否かを判定する。この際、加工厚みの差が適正であれば、丸鋸の歪みまたは刃厚の調整は行わない。一方、加工厚みの差が適正でない場合、つまりΔTが所定範囲に含まれない場合は歪み調整または刃厚調整を行う。歪み調整には、公知の歪み調整手段を採用することができ、例えば、手作業や機械によるたたきの矯正が行われる。また、歪みがなく、加工厚みの差が適正でない場合には刃厚調整として再研磨などが行われる。この場合、刃の外周面を研磨することなどで刃厚を薄くでき、加工厚みの差を所望の範囲に調整できる。また、本発明の丸鋸の調整方法は、例えば、刃の研磨(目立て)後に上記測定工程を実施するため、歪みのない適正外の製品の場合は、再度、加工厚みに基づいた補正値を考慮して研磨を行う。 In the above adjustment process, first, the difference (ΔT) in the machining thickness of each circular saw is calculated. Then, it is determined whether or not ΔT is within a predetermined range (for example, a range of 0.06 mm to 0.1 mm). At this time, if the difference in processing thickness is appropriate, the distortion of the circular saw or the thickness of the blade is not adjusted. On the other hand, if the processing thickness difference is not appropriate, that is, if ΔT is not within the predetermined range, strain adjustment or blade thickness adjustment is performed. For distortion adjustment, known distortion adjustment means can be employed. For example, hammering is corrected manually or mechanically. Also, if there is no distortion and the difference in processed thickness is not appropriate, regrinding or the like is performed to adjust the blade thickness. In this case, the thickness of the blade can be reduced by polishing the outer peripheral surface of the blade, and the difference in processed thickness can be adjusted within a desired range. In addition, in the method for adjusting a circular saw of the present invention, for example, since the above-described measurement process is performed after polishing (sharpening) the blade, in the case of a non-distorted product that is not appropriate, the correction value based on the processed thickness is again adjusted. Consider and polish.

本発明の測定方法は、丸鋸の加工厚みを迅速に、かつ精度良く測定できるので、丸鋸の加工厚みの測定に広く利用できる。特に、厚み管理が必要な2軸切断装置の毛引き用丸鋸および切断用丸鋸の加工厚みの測定に適している。また、これら丸鋸の加工厚みの差に基づいて丸鋸の歪みを調整するので、2軸切断装置における丸鋸の理想的な厚み差が守られ、歪みがあるまま出荷されないので、丸鋸使用者は、刃の交換時の調整が容易となる。 INDUSTRIAL APPLICABILITY The measuring method of the present invention can be used to measure the machining thickness of a circular saw quickly and accurately, so it can be widely used for measuring the machining thickness of a circular saw. In particular, it is suitable for measuring the processed thickness of a circular saw for hair pulling and a circular saw for cutting of a biaxial cutting device that requires thickness control. In addition, since the distortion of the circular saw is adjusted based on the difference in the processed thickness of the circular saw, the ideal thickness difference of the circular saw in the biaxial cutting device is preserved, and the circular saw is not shipped with distortion, so the circular saw is used. The operator can easily adjust when replacing the blade.

1 丸鋸
2 基板
3 取付孔
4 刃
5 レーザ装置
6 照射部
7 受光部
8 回転台
9 ダイヤルゲージ
10 2軸切断装置
11 毛引き用丸鋸
12 切断用丸鋸
13 鋸台
14 レール
15 被加工材
16 テーブル
17 加工材
18 加工材
1 Circular saw 2 Board 3 Mounting hole 4 Blade 5 Laser device 6 Irradiating part 7 Light receiving part 8 Rotating table 9 Dial gauge 10 2-axis cutting device 11 Circular saw for hair pulling 12 Circular saw for cutting 13 Saw table 14 Rail 15 Work material 16 table 17 processed material 18 processed material

Claims (4)

レーザを照射する照射部と、該照射部に対向配置された受光部とを有するレーザ装置を用いる方法であり、
基板と該基板の外周縁に形成された複数の刃とを有する丸鋸を、該丸鋸の刃の先端部が前記照射部と前記受光部の間のレーザ照射領域に位置するように載置して、前記レーザを照射しながら前記丸鋸を10min -1 ~100min -1 の回転速度で1周~1.5周回転させて前記丸鋸の加工厚みを測定することを特徴とする丸鋸の加工厚みの測定方法。
A method using a laser device having an irradiation unit for irradiating a laser and a light receiving unit arranged opposite to the irradiation unit,
A circular saw having a substrate and a plurality of blades formed on the outer peripheral edge of the substrate is placed so that the tips of the blades of the circular saw are positioned in a laser irradiation area between the irradiation unit and the light receiving unit. Then, while irradiating the laser, the circular saw is rotated 1 to 1.5 times at a rotational speed of 10 min -1 to 100 min -1 to measure the processed thickness of the circular saw. Method of measuring the processing thickness of.
レーザを照射する照射部と、該照射部に対向配置された受光部とを有するレーザ装置を用いる方法であり、 A method using a laser device having an irradiation unit for irradiating a laser and a light receiving unit arranged opposite to the irradiation unit,
基板と該基板の外周縁に形成された複数の刃とを有する丸鋸を、該丸鋸の刃の先端部が前記照射部と前記受光部の間のレーザ照射領域に位置するように載置して、前記レーザを照射しながら前記丸鋸の刃を加熱しながら回転させて前記丸鋸の加工厚みを測定することを特徴とする丸鋸の加工厚みの測定方法。 A circular saw having a substrate and a plurality of blades formed on the outer peripheral edge of the substrate is placed so that the tips of the blades of the circular saw are positioned in a laser irradiation area between the irradiation unit and the light receiving unit. and rotating the blade of the circular saw while irradiating it with the laser to measure the thickness of the machined thickness of the circular saw.
前記測定方法は、水平に載置された前記丸鋸の下面の外周寄りの位置にダイヤルゲージを接触させ、該ダイヤルゲージを接触させた状態で前記丸鋸を回転させることを特徴とする請求項1または請求項2記載の丸鋸の加工厚みの測定方法。 The measuring method is characterized in that a dial gauge is brought into contact with a position near the outer circumference of the lower surface of the circular saw placed horizontally, and the circular saw is rotated while the dial gauge is in contact with the circular saw. 3. The method for measuring the working thickness of a circular saw according to claim 1 or claim 2 . 毛引き用丸鋸で被加工材の片面に溝を形成し、切断用丸鋸で前記溝に沿って前記被加工材を切断する2軸切断装置における丸鋸を調整する方法であり、
前記毛引き用丸鋸の加工厚みと前記切断用丸鋸の加工厚みをそれぞれ測定する測定工程と、測定された前記各加工厚みの差に基づいて前記毛引き用丸鋸および前記切断用丸鋸の歪みまたは刃厚を調整する調整工程とを有し、
前記測定工程は、レーザを照射する照射部と、該照射部に対向配置された受光部とを有するレーザ装置を用いる方法であり、基板と該基板の外周縁に形成された複数の刃とを有する前記毛引き用丸鋸および前記切断用丸鋸を、各丸鋸の刃の先端部が前記照射部と前記受光部の間のレーザ照射領域に位置するように載置して、前記レーザを照射しながら各丸鋸を回転させて前記毛引き用丸鋸および前記切断用丸鋸の加工厚みをそれぞれ測定する方法であることを特徴とする丸鋸の調整方法。
A method for adjusting a circular saw in a biaxial cutting device in which a groove is formed on one side of a work material by a circular saw for hair pulling and the work material is cut along the groove by a circular saw for cutting,
a measurement step of respectively measuring the processed thickness of the circular saw for hair pulling and the processed thickness of the circular saw for cutting; and an adjusting step of adjusting the distortion or blade thickness of
The measurement step is a method using a laser device having an irradiation unit that irradiates a laser and a light receiving unit that is arranged opposite to the irradiation unit. The hair-pulling circular saw and the cutting circular saw are placed so that the tips of the blades of each circular saw are positioned in the laser irradiation area between the irradiation unit and the light receiving unit, and the laser is A method for adjusting a circular saw , wherein each of the circular saws is rotated while being irradiated to measure the processed thickness of the circular saw for hair pulling and the circular saw for cutting .
JP2019180836A 2019-09-30 2019-09-30 Circular saw processing thickness measurement method and circular saw adjustment method Active JP7202590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180836A JP7202590B2 (en) 2019-09-30 2019-09-30 Circular saw processing thickness measurement method and circular saw adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180836A JP7202590B2 (en) 2019-09-30 2019-09-30 Circular saw processing thickness measurement method and circular saw adjustment method

Publications (2)

Publication Number Publication Date
JP2021053771A JP2021053771A (en) 2021-04-08
JP7202590B2 true JP7202590B2 (en) 2023-01-12

Family

ID=75269302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180836A Active JP7202590B2 (en) 2019-09-30 2019-09-30 Circular saw processing thickness measurement method and circular saw adjustment method

Country Status (1)

Country Link
JP (1) JP7202590B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3410149A1 (en) * 1984-03-20 1985-10-03 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Optical measuring instrument
JPH04232407A (en) * 1990-12-28 1992-08-20 Seikosha Co Ltd Inspecting method of tool
WO2001007868A1 (en) * 1999-07-27 2001-02-01 California Cedar Products Company Automatic circular saw tooth inspection system and method

Also Published As

Publication number Publication date
JP2021053771A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
KR101746078B1 (en) Machine tool and method for producing gearing
EP1942779B1 (en) Method and apparatus for weld profiling
KR102622120B1 (en) Chamfering tools, chamfering systems, gear cutting machines, and tooth chamfering methods
RU2592649C2 (en) Machining tool
JP6817717B2 (en) Milling cutters, cutting inserts and milling methods
CN100515631C (en) Method, milling tool and tool string for manufacturing fork root of turbine
EP0980302A1 (en) Diamond tip disk saw
JP2010058209A (en) Cutter for rotation and cutting method
KR20160022300A (en) Method for manufacturing circular saw with hard tip
CN111479646A (en) Method for machining tooth, tooth machining machine, and control program for tooth machining machine
US11925994B2 (en) Ring-shaped band saw blade manufacturing method and manufacturing apparatus
JP2003191131A (en) Method for machining essentially cylindrical internal gear or external gear
JP4018150B2 (en) Processing machine for workpieces with cutting teeth
CN103624329B (en) Indexable mechanically-clampedcircular circular saw blade with hard alloy teeth
JP7202590B2 (en) Circular saw processing thickness measurement method and circular saw adjustment method
JPWO2014065069A1 (en) Tip saw
JP2007030119A (en) Wafer chamfering device and wafer chamfering method
US5529528A (en) Saw blade with sanding surface
JP6029163B2 (en) Gear processing machine
JP2019077080A (en) Chip saw
KR102326325B1 (en) Friction saw for cutting high maganese steel
JP5892007B2 (en) Square end mill and manufacturing method thereof
US20160059331A1 (en) Sawing machine
JP7097538B2 (en) Tipped saw manufacturing method
JP6806301B2 (en) Tipped saw manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220927

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221217

R150 Certificate of patent or registration of utility model

Ref document number: 7202590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150