JP7202220B2 - oxygen adsorbent - Google Patents

oxygen adsorbent Download PDF

Info

Publication number
JP7202220B2
JP7202220B2 JP2019041063A JP2019041063A JP7202220B2 JP 7202220 B2 JP7202220 B2 JP 7202220B2 JP 2019041063 A JP2019041063 A JP 2019041063A JP 2019041063 A JP2019041063 A JP 2019041063A JP 7202220 B2 JP7202220 B2 JP 7202220B2
Authority
JP
Japan
Prior art keywords
oxygen
adsorbent
temperature
perovskite
oxygen adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019041063A
Other languages
Japanese (ja)
Other versions
JP2020142194A (en
Inventor
亮太 浅間
稔 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd, Tokyo Gas Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP2019041063A priority Critical patent/JP7202220B2/en
Publication of JP2020142194A publication Critical patent/JP2020142194A/en
Application granted granted Critical
Publication of JP7202220B2 publication Critical patent/JP7202220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Iron (AREA)

Description

本発明は酸素吸着剤に関し、詳しくは、広い温度範囲において高い吸着性能を有するペロブスカイト型酸化物からなる酸素吸着剤に関する。 TECHNICAL FIELD The present invention relates to an oxygen adsorbent, and more particularly to an oxygen adsorbent comprising a perovskite oxide having high adsorption performance over a wide temperature range.

従来、酸素を含む混合気体から酸素を分離するための1つの方法として圧力スイング吸着法(Pressure Swing Adsorption法(PSA法))が知られている。このPSA法は、酸素吸着剤に対する酸素の吸着量が酸素の分圧に依存することを利用して、酸素を含む混合気体から酸素を分離する方法である。 Conventionally, a pressure swing adsorption method (PSA method) is known as one method for separating oxygen from a mixed gas containing oxygen. This PSA method is a method of separating oxygen from a mixed gas containing oxygen by utilizing the fact that the amount of oxygen adsorbed by an oxygen adsorbent depends on the partial pressure of oxygen.

より詳しくは、PSA法においては、酸素吸着剤を充填した吸着塔に酸素を含む混合気体を導入し、所定の温度及び圧力の条件下に上記混合気体中の酸素を酸素吸着剤に選択的に吸着させると共に、酸素を吸着剤に吸着させた後の上記混合気体を吸着塔から排出させ、次いで、吸着塔内を減圧して、上記酸素吸着剤から酸素を脱着(脱離ともいう。)させ、この酸素を吸着塔から排出させて回収する方法である。 More specifically, in the PSA method, a mixed gas containing oxygen is introduced into an adsorption tower filled with an oxygen adsorbent, and oxygen in the mixed gas is selectively transferred to the oxygen adsorbent under predetermined temperature and pressure conditions. Along with the adsorption, the mixed gas after oxygen has been adsorbed on the adsorbent is discharged from the adsorption tower, and then the pressure in the adsorption tower is reduced to desorb (also referred to as desorption) the oxygen from the oxygen adsorbent. , the oxygen is discharged from the adsorption tower and recovered.

上述したPSA法における酸素吸着剤として、近年、種々のペロブスカイト型酸化物が有用であることが提案されている(特許文献1参照)。 In recent years, it has been proposed that various perovskite-type oxides are useful as oxygen adsorbents in the above-described PSA method (see Patent Document 1).

具体的には、例えば、組成式La1-xSrCo1-yFe3-z(式中、x、y及びzはそれぞれ0.05≦x≦1.0、0≦y≦0.95及びz>0を満たす数であり、zは酸素欠損量を示す。)で表されるペロブスカイト型酸化物からなる酸素吸着剤が提案されている(特許文献1参照)。 Specifically, for example, the composition formula La 1-x Sr x Co 1-y Fe y O 3-z (wherein x, y and z are 0.05≦x≦1.0 and 0≦y≦ is a number that satisfies 0.95 and z>0, where z indicates the amount of oxygen deficiency.

更に、組成式Sr1-xCaFeO3-σ(式中、x及びσはそれぞれ0.12≦x≦0.40及び0≦σ≦0.5を満たす数であり、σは酸素欠損量を示す。)で表されるペロブスカイト型酸化物(以下、「SCaF」ということがある。)からなる、より安価な酸素吸着剤が提案されている。このSCaFは、ランタンのような高価な元素を含まず、それでいて酸素吸着性能にすぐれていることが知られている(特許文献2参照)。 Furthermore, the composition formula Sr 1-x Ca x FeO 3-σ (wherein x and σ are numbers satisfying 0.12≦x≦0.40 and 0≦σ≦0.5, respectively, and σ is an oxygen deficiency A less expensive oxygen adsorbent composed of a perovskite-type oxide (hereinafter sometimes referred to as “SCaF”) represented by the following formula has been proposed. It is known that this SCaF does not contain expensive elements such as lanthanum and yet has excellent oxygen adsorption performance (see Patent Document 2).

このようなペロブスカイト型酸化物からなる酸素吸着剤は、PSA法においては、通常、ペレットのような成形体に成形し、これを吸着塔に充填して用いられる。しかしながら、上記SCaFをはじめ、多くのペロブスカイト型酸化物は、吸着塔に充填して、加温すると、吸着塔において充填される位置によって、同じ温度に加温されず、温度差が生じて、温度領域によっては、吸着性能が著しく低下することが発明者等によって見出された。 In the PSA method, such an oxygen adsorbent comprising a perovskite-type oxide is usually formed into a compact such as a pellet, which is packed into an adsorption tower for use. However, when many perovskite-type oxides, including SCaF, are packed in an adsorption tower and heated, they are not heated to the same temperature depending on the position where they are packed in the adsorption tower. The inventors have found that the adsorption performance is significantly reduced in some regions.

特開2005-87941号公報JP-A-2005-87941 特開2017-64673号公報JP 2017-64673 A

そこで、本発明者らは、上記SCaFからなる酸素吸着剤における上述した問題を解決するために鋭意、研究した結果、SCaFに一定量のバリウムを有せしめると共に、高い結晶性を有せしめたペロブスカイト型酸化物からなる酸素吸着剤が広い温度範囲でほぼ一定して高い酸素吸着性能を有することを見出して、本発明を完成したものである。即ち、本発明は、広い温度範囲、通常、500~800℃の範囲にて、好ましくは、550~700℃の範囲にて、ほぼ一定して高い酸素吸着性能を有する酸素吸着剤を提供することを目的とする。 Therefore, the present inventors have made intensive research to solve the above-mentioned problems in the oxygen adsorbent made of SCaF, and as a result, have made SCaF have a certain amount of barium and have high crystallinity perovskite type The inventors have completed the present invention by discovering that oxygen adsorbents made of oxides have substantially constant high oxygen adsorption performance over a wide temperature range. That is, the present invention provides an oxygen adsorbent that exhibits high oxygen adsorption performance almost constantly over a wide temperature range, usually in the range of 500 to 800°C, preferably in the range of 550 to 700°C. With the goal.

本発明によれば、組成式(I)
Sr(1-x-y) CaBaFe3-δ
で表され、式中、x、y及びzはそれぞれ
0.1500≦x≦0.3000、
0.0002≦y≦0.0140及び
0.9775≦z≦1.0000
を満たす数であり、δは酸素欠損量であるペロブスカイト型酸化物からなり、X線回折測定結果から得られる(110)面の結晶子サイズが700Å以上である酸素吸着剤が提供される。
According to the present invention, the composition formula (I)
Sr (1-xy) Ca x Bay Fe z O 3-δ
where x, y and z are respectively 0.1500≦x≦0.3000,
0.0002≤y≤0.0140 and 0.9775≤z≤1.0000
is a number that satisfies the following conditions, δ is the amount of oxygen deficiency, and is composed of a perovskite oxide, and the crystallite size of the (110) plane obtained from X-ray diffraction measurement is 700 Å or more.

本発明による酸素吸着剤は、上記組成式(I)を有するペロブスカイト型酸化物、即ち、鉄酸ストロンチウムカルシウムバリウムからなり、X線回折測定結果から得られる(110)面の結晶子サイズが700Å以上であって、高い結晶性を有するので、広い温度範囲、通常、500~800℃の範囲にて、好ましくは、550~700℃の範囲にて、ほぼ一定して高い酸素吸着性能を有する。 The oxygen adsorbent according to the present invention comprises a perovskite-type oxide having the above composition formula (I), that is, strontium calcium barium ferrate, and has a crystallite size of 700 Å or more in the (110) plane obtained from X-ray diffraction measurement results. Since it has high crystallinity, it has almost constant high oxygen adsorption performance over a wide temperature range, usually in the range of 500 to 800°C, preferably in the range of 550 to 700°C.

一例として、酸素吸着剤の酸素吸着量を温度600℃において測定するときの工程を示す。As an example, a process for measuring the oxygen adsorption amount of the oxygen adsorbent at a temperature of 600° C. is shown. 本発明の実施例1によるペロブスカイト型酸化物からなる酸素吸着剤の粉末X線回折パターンを示す。1 shows a powder X-ray diffraction pattern of an oxygen adsorbent made of a perovskite oxide according to Example 1 of the present invention.

本発明による酸素吸着剤は、組成式(I)
Sr(1-x-y) CaBaFe3-δ
で表され、式中、x、y及びzはそれぞれ
0.1500≦x≦0.3000、
0.0002≦y≦0.0140及び
0.9775≦z≦1.0000
を満たす数であり、δは酸素欠損量であるペロブスカイト型酸化物からなり、X線回折測定結果から得られる(110)面の結晶子サイズが700Å以上である。
The oxygen adsorbent according to the present invention has a composition formula (I)
Sr (1-xy) Ca x Bay Fe z O 3-δ
where x, y and z are respectively 0.1500≦x≦0.3000,
0.0002≤y≤0.0140 and 0.9775≤z≤1.0000
is a number that satisfies , δ is the amount of oxygen deficiency, and is composed of a perovskite-type oxide, and the crystallite size of the (110) plane obtained from X-ray diffraction measurement is 700 Å or more.

本発明による酸素吸着剤は、第1の特徴として、一般に、Aサイトにストロンチウムを有し、Bサイトに鉄を有するABO3構造を有するペロブスカイト型酸化物(鉄酸ストロンチウム)において、Aサイト元素のストロンチウムの一部がカルシウムのみならず、バリウムによって置換されている。即ち、前記SCaFにおいて、Aサイト元素のストロンチウムの一部が更に所定の割合にてバリウムによって置換されている。 The oxygen adsorbent according to the present invention has, as a first feature, generally a perovskite-type oxide (strontium ferrate) having an ABO3 structure having strontium at the A site and iron at the B site. Part of the strontium is replaced by barium as well as calcium. That is, in the SCaF, part of the A-site element strontium is further substituted with barium at a predetermined ratio.

前記SCaFは、組成式SrFeO3-δで表されるペロブスカイト型酸化物におけるAサイト元素のストロンチウムの一部がストロンチウムよりイオン半径の小さいカルシウムにて所定の割合で置換されていることから、酸化物イオンが拡散し難いとみられる。このことは、ペロブスカイト型酸化物の単位胞(単位格子又はユニットセルともいう。)が小さくなることが影響していると考えられる。 SCaF is a perovskite-type oxide represented by the composition formula SrFeO 3-δ , in which part of the A-site element strontium is replaced with calcium having an ionic radius smaller than that of strontium at a predetermined ratio. Ions are considered to be difficult to diffuse. This is considered to be due to the fact that the perovskite-type oxide has a smaller unit cell (also referred to as a unit lattice or unit cell).

ここに、本発明による前記組成式(I)で表されるペロブスカイト型酸化物からなる酸素吸着剤は、前記SCaFにおいて、Aサイト元素のストロンチウムの一部がカルシウムに加えて、更に所定の割合でストロンチウムよりイオン半径の大きいバリウムに置換されており、そのために、単位胞が大きくなって、より高い酸素吸着性能を有するものと考えられる。但し、本発明は、理論によって何ら制約を受けるものではない。 Here, the oxygen adsorbent comprising the perovskite-type oxide represented by the composition formula (I) according to the present invention is the SCaF, in which part of the A-site element strontium is added to calcium, and further at a predetermined ratio Strontium is replaced by barium, which has a larger ionic radius than strontium, and is thought to have a larger unit cell and higher oxygen adsorption performance. However, the present invention is not restricted by any theory.

上記組成式(I)で表されるペロブスカイト型酸化物において、カルシウムの組成比xが0.15よりも小さいときも、xが0.3000よりも大きいときも、温度にかかわらず、酸素吸着性能において劣る。 In the perovskite-type oxide represented by the above composition formula (I), oxygen adsorption performance regardless of temperature when the calcium composition ratio x is less than 0.15 or when x is greater than 0.3000 inferior in

上記組成式(I)で表されるペロブスカイト型酸化物において、バリウムの組成比yが0.0002よりも小さいときは、700℃以上の高温領域において高い酸素吸着性能をもたず、一方、バリウムの組成比yが0.0140よりも大きいときは、却って、温度にかかわらず、酸素吸着性能に劣ることとなる。 In the perovskite-type oxide represented by the above composition formula (I), when the composition ratio y of barium is less than 0.0002, it does not have high oxygen adsorption performance in a high temperature range of 700° C. or higher. When the composition ratio y of is greater than 0.0140, the oxygen adsorption performance is rather inferior regardless of the temperature.

上記組成式(I)で表されるペロブスカイト型酸化物において、鉄の組成比zが0.9775よりも小さいときは、温度にかかわらず、酸素吸着性能において劣り、一方、1.0000よりも大きいときは、特に、約700℃以上の高温領域において、酸素吸着性能に劣る。 In the perovskite-type oxide represented by the above compositional formula (I), when the iron composition ratio z is less than 0.9775, the oxygen adsorption performance is inferior regardless of the temperature, while it is greater than 1.0000. Oxygen adsorption performance is poor, especially in a high temperature range of about 700°C or higher.

一般に、ABO3構造を有するペロブスカイト型酸化物においては、A/B比を用いて、その物性が議論されることが多い。そこで、本発明による酸素吸着剤Sr1-x-yCaBaFe3-δにおいて、Aサイト(Sr、Ca及びBaの合計)1モルに対するBサイト(Fe)のモル数(組成比)、即ち、A/B比である1/zの観点からみれば、1/zは、
1.0000≦1/z≦1.0230
を満たす。
In general, the physical properties of perovskite-type oxides having an ABO3 structure are often discussed using the A/B ratio. Therefore, in the oxygen adsorbent Sr 1-x-y Ca x Bay Fe z O 3-δ according to the present invention, the number of moles (composition ratio), i.e., 1/z, which is the A/B ratio, 1/z is
1.0000≤1/z≤1.0230
meet.

本発明によれば、上記組成式(I)で表されるペロブスカイト型酸化物からなる酸素吸着剤において、カルシウムの組成比xとバリウムの組成比yと鉄の組成比zは、好ましくは、それぞれ、
0.2000≦x≦0.2500、
0.0003≦y≦0.0060及び
0.9775≦z≦0.9950(即ち、1.0050≦1/z≦1.0230)
を満たす数であり、より好ましくは、
0.2300≦x≦0.2500、
0.0003≦y≦0.0060及び
0.9780≦z≦0.9950(即ち、1.0050≦1/z≦1.0225)
を満たす数である。
According to the present invention, in the oxygen adsorbent comprising the perovskite-type oxide represented by the composition formula (I), the composition ratio x of calcium, the composition ratio y of barium, and the composition ratio z of iron are preferably ,
0.2000≦x≦0.2500,
0.0003≦y≦0.0060 and 0.9775≦z≦0.9950 (i.e., 1.0050≦1/z≦1.0230)
is a number that satisfies
0.2300≦x≦0.2500,
0.0003≦y≦0.0060 and 0.9780≦z≦0.9950 (i.e., 1.0050≦1/z≦1.0225)
is a number that satisfies

最も好ましくは、上記において、バリウムの組成比yが
0.0003≦y≦0.0050
を満たす数であるものである。
Most preferably, in the above, the barium composition ratio y is 0.0003 ≤ y ≤ 0.0050
is a number that satisfies

更に、本発明において、上記組成式(I)で表されるペロブスカイト型酸化物からなる酸素吸着剤は、X線回折測定結果から得られる(110)面の結晶子サイズが700Å以上であることが必要である。結晶子サイズが700Åよりも小さいとき、温度にかかわらず、酸素吸着性能が低い。 Furthermore, in the present invention, the oxygen adsorbent comprising the perovskite-type oxide represented by the composition formula (I) has a (110) plane crystallite size of 700 Å or more obtained from X-ray diffraction measurement results. is necessary. When the crystallite size is smaller than 700 Å, the oxygen adsorption performance is low regardless of temperature.

上記組成式(I)で表されるペロブスカイト型酸化物において、δは、酸素欠損量であって、化学量論より決定され、0≦δ<3を満たす数である。 In the perovskite-type oxide represented by the above composition formula (I), δ is the amount of oxygen deficiency, which is determined by stoichiometry and is a number that satisfies 0≦δ<3.

本発明による酸素吸着剤は、広い温度範囲、通常、500~800℃の範囲にて、好ましくは、550~700℃濃度の範囲にて、ほぼ一定して、高い酸素吸着性能を有し、特に、温度600℃において、酸素吸着剤単位重量(1g)当たり、10cm以上の酸素吸着量を有すると共に、温度550℃、650℃及び700℃における酸素吸着剤単位重量当たりの酸素吸着量は温度600℃における酸素吸着剤単位重量当たりの酸素吸着量の70%以上である。従って、温度550℃、600℃、650℃及び700℃における酸素吸着剤単位重量当たりの酸素吸着量の合計量は31cm以上であり、好ましい態様においては、35cm以上である。 The oxygen adsorbent according to the present invention has substantially constant high oxygen adsorption performance over a wide temperature range, usually in the range of 500 to 800° C., preferably in the range of 550 to 700° C. concentration. , at a temperature of 600 ° C., the oxygen adsorption amount per unit weight (1 g) of the oxygen adsorbent is 10 cm 3 or more, and the oxygen adsorption amount per unit weight of the oxygen adsorbent at temperatures of 550 ° C., 650 ° C. and 700 ° C. is 600 ° C. 70% or more of the oxygen adsorption amount per unit weight of the oxygen adsorbent at °C. Therefore, the total amount of oxygen adsorption per unit weight of the oxygen adsorbent at temperatures of 550°C, 600°C, 650°C and 700°C is 31 cm 3 or more, and preferably 35 cm 3 or more.

本発明による酸素吸着剤は、PSA法において、通常、温度500~800℃の範囲で、好ましくは、550~700℃の範囲で酸素を含む混合気体、代表的には、空気中の酸素を選択的に吸着させ、その後、脱着させるために用いられる。 In the PSA method, the oxygen adsorbent according to the present invention is a mixed gas containing oxygen at a temperature usually in the range of 500 to 800 ° C., preferably in the range of 550 to 700 ° C., typically oxygen in air. It is used for selective adsorption and subsequent desorption.

本発明による前記組成式(I)で表されるペロブスカイト型酸化物は、従来より知られている固相法と液相法のいずれの方法によっても製造することができる。例えば、固相法による場合は、前記組成式(I)と一致するように、ストロンチウム、カルシウム、バリウム及び鉄を含む原料、例えば、炭酸ストロンチウム、炭酸カルシウム、炭酸バリウム及び酸化鉄を秤量し、乾式又は湿式にて混合した後、焼成し、粉砕して、粉体を得る。ここに、上記粉体は、粒子径が数百nmから数百μmであることが好ましい。ストロンチウム、カルシウム、バリウム及び鉄を含む原料は、上記に限定されるものではない。 The perovskite-type oxide represented by the composition formula (I) according to the present invention can be produced by any of the conventionally known solid-phase method and liquid-phase method. For example, in the case of the solid-phase method, raw materials containing strontium, calcium, barium and iron, such as strontium carbonate, calcium carbonate, barium carbonate and iron oxide, are weighed so as to match the composition formula (I) above, and are dry-processed. Alternatively, after wet-mixing, the mixture is fired and pulverized to obtain a powder. Here, the powder preferably has a particle size of several hundred nanometers to several hundred micrometers. Raw materials containing strontium, calcium, barium and iron are not limited to the above.

上記焼成温度は、通常、1000~1500℃の範囲が好ましい。焼成温度が低すぎるときは、得られるペロブスカイト型酸化物の(110)面の結晶子サイズが小さくなり、そのようなペロブスカイト型酸化物は酸素吸着性能が低い。焼成温度が高すぎるときは、比表面積が低下し、酸素吸脱着サイトが減るので、好ましくない。 The firing temperature is usually preferably in the range of 1000 to 1500°C. When the calcination temperature is too low, the crystallite size of the (110) face of the obtained perovskite-type oxide becomes small, and such a perovskite-type oxide has low oxygen adsorption performance. When the calcination temperature is too high, the specific surface area is lowered and the number of oxygen adsorption/desorption sites is reduced, which is not preferable.

以下に実施例と共に比較例を示して、本発明をより具体的に説明する。 EXAMPLES The present invention will be described more specifically below with reference to examples and comparative examples.

以下において、得られた酸素吸着剤のX線結晶構造解析はX線回折装置((株)リガク製、RINT TTR III、線源CuKα、モノクロメータ使用、管電圧50kV、電流300mA、長尺スリットPSA200(全長200mm)、設計開口角度0.057度)を用いて下記条件で測定した。 In the following, the X-ray crystal structure analysis of the obtained oxygen adsorbent was performed using an X-ray diffractometer (manufactured by Rigaku Co., Ltd., RINT TTR III, radiation source CuKα, monochromator, tube voltage 50 kV, current 300 mA, long slit PSA200 (Total length: 200 mm, design opening angle: 0.057 degrees), and measurement was performed under the following conditions.

測定方法:平行法(連続)
スキャンスピード:2度/分
サンプリング幅:0.02度
2θ:20~80度
Measurement method: Parallel method (continuous)
Scan speed: 2 degrees/minute Sampling width: 0.02 degrees 2θ: 20 to 80 degrees

結晶子サイズは統合粉末X線解析ソフトウエア((株)リガク製、PDXL-2)を用い、シェラー法によって求めた。 The crystallite size was determined by the Scherrer method using integrated powder X-ray analysis software (manufactured by Rigaku Co., Ltd., PDXL-2).

シェラー定数=0.940
標準試料:SiO2
Scherrer constant = 0.940
Standard sample: SiO2

また、得られた酸素吸着剤の酸素吸着量は、示差熱熱重量同時測定装置((株)日立ハイテクサイエンス製、STA7300)を用いて、550℃、600℃、650℃及び700℃のそれぞれの温度にて測定した。 In addition, the oxygen adsorption amount of the obtained oxygen adsorbent was measured at 550 ° C., 600 ° C., 650 ° C. and 700 ° C. using a differential thermal thermogravimetric simultaneous measurement device (manufactured by Hitachi High-Tech Science Co., Ltd., STA7300). Measured at temperature.

一例として、酸素吸着剤の酸素吸着量を温度600℃において測定するときの工程を図1に示す。即ち、上記測定装置において窒素ガス流通下で酸素吸着剤を800℃まで昇温し、30分間保持した。この後、酸素吸着剤を600℃の温度まで降温させて、30分間保持した。この後、流通ガスを空気に切り替えた。空気を60分間流通させて、酸素吸着剤に酸素を吸着させた後、再度、流通ガスを窒素ガスに戻し、60分間保持して、酸素吸着剤から酸素を脱着させた。このようにして、酸素吸着剤に酸素を吸着させた後、脱着させたときの酸素吸着剤の重量変化量から酸素吸着剤の単位重量当たりの酸素吸着量aを算出した。 As an example, FIG. 1 shows a process for measuring the oxygen adsorption amount of an oxygen adsorbent at a temperature of 600.degree. That is, the temperature of the oxygen adsorbent was raised to 800° C. under the flow of nitrogen gas in the above measuring apparatus, and was held for 30 minutes. After that, the temperature of the oxygen adsorbent was lowered to 600° C. and held for 30 minutes. After that, the circulating gas was switched to air. Air was circulated for 60 minutes to cause oxygen to be adsorbed on the oxygen adsorbent, and then the circulating gas was returned to nitrogen gas again and held for 60 minutes to desorb oxygen from the oxygen adsorbent. After oxygen was adsorbed on the oxygen adsorbent in this manner, the oxygen adsorption amount a per unit weight of the oxygen adsorbent was calculated from the amount of change in weight of the oxygen adsorbent when it was desorbed.

次いで、再度、流通ガスを空気に切り替えて、60分間保持した後、窒素ガスに戻し、60分間保持して、上述したと同様にして、酸素吸着剤に酸素を吸着させた後、脱着させ、そのときの酸素吸着剤の重量変化量から酸素吸着剤の単位重量当たりの酸素吸着量bを算出した。上記酸素吸着剤の単位重量当たりの酸素吸着量aとbの平均値を温度600℃における上記酸素吸着剤の単位重量当たりの酸素吸着量とした。 Then, the gas is switched to air again, held for 60 minutes, then returned to nitrogen gas, held for 60 minutes, and in the same manner as described above, oxygen is adsorbed by the oxygen adsorbent and then desorbed, The oxygen adsorption amount b per unit weight of the oxygen adsorbent was calculated from the weight change amount of the oxygen adsorbent at that time. The average value of the oxygen adsorption amounts a and b per unit weight of the oxygen adsorbent was defined as the oxygen adsorption amount per unit weight of the oxygen adsorbent at a temperature of 600°C.

実施例1
組成式Sr1-x-y CaBaFe3-δで表される各金属元素の比、即ち、1-x-y、x、y及びzについて、表1に記載の値になるように所要のそれぞれの原料を秤量して混合した。
Example 1
The ratio of each metal element represented by the composition formula Sr 1-xy Ca x Ba y Fe z O 3-δ , that is, 1-xy, x, y and z, to the values shown in Table 1 Each required raw material was weighed and mixed so that

具体的には、炭酸ストロンチウム(富士フイルム和光純薬(株)製)77.80g、炭酸カルシウム(富士フイルム和光純薬(株)製)17.39g、炭酸バリウム(富士フイルム和光純薬(株)製)0.040g及び酸化鉄(III)(富士フイルム和光純薬(株)製)55.68gを500mL容量の樹脂製ポットに秤量した。上記ポットに直径1.0mmのジルコニアビーズ225mLとイオン交換水150mLを加え、遊星ボールミル(フリッチュ社製、P-5)を用いて、回転数210rpmにて120分間混合した後、ジルコニアビーズを分離した。かくして、得られた水スラリーを110℃で加熱して、水分を除去して、固形物を得た。この固形物を乳鉢で解砕し、目開き500μmの篩に通して、原料混合物を粉末として得た。 Specifically, strontium carbonate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) 77.80 g, calcium carbonate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) 17.39 g, barium carbonate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) ) and 55.68 g of iron oxide (III) (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) were weighed into a 500 mL capacity resin pot. 225 mL of zirconia beads with a diameter of 1.0 mm and 150 mL of ion-exchanged water were added to the pot, and mixed using a planetary ball mill (manufactured by Fritsch, P-5) at a rotation speed of 210 rpm for 120 minutes, and then the zirconia beads were separated. . The water slurry thus obtained was heated at 110° C. to remove water and obtain a solid. This solid matter was pulverized in a mortar and passed through a sieve with an opening of 500 μm to obtain a raw material mixture as a powder.

このようにして得られた原料混合物をマグネシア製るつぼに入れ、電気炉で大気雰囲気下、昇温速度200℃/時で常温から1350℃まで加熱し、この温度で5時間保持して、焼成した後、降温速度200℃/時で常温まで冷却して、鉄酸ストロンチウムカルシウムバリウムを焼成物として得た。 The raw material mixture thus obtained was placed in a magnesia crucible, heated in an electric furnace in an air atmosphere at a temperature elevation rate of 200°C/hour from room temperature to 1350°C, held at this temperature for 5 hours, and fired. Thereafter, the mixture was cooled to normal temperature at a temperature-lowering rate of 200° C./hour to obtain strontium-calcium-barium ferrate as a fired product.

上記焼成物についてX線回折測定を行った。その粉末X線回折パターンを図2に示すように、上記焼成物はペロブスカイト型酸化物単相からなることが確認された。 An X-ray diffraction measurement was performed on the fired product. As shown in FIG. 2 for its powder X-ray diffraction pattern, it was confirmed that the fired product consisted of a single perovskite oxide phase.

また、統合粉末X線解析ソフトウエアを用いて、上記X線回折測定結果を解析して、2θが32°~33°の間に現れる(110)面回折線の結晶子サイズを求めた。結果を表1に示す。 Also, the above X-ray diffraction measurement results were analyzed using an integrated powder X-ray analysis software to determine the crystallite size of the (110) plane diffraction line appearing between 32° and 33° 2θ. Table 1 shows the results.

更に、得られた酸素吸着剤の550℃、600℃、650℃及び700℃のそれぞれの温度における単位重量当たりの酸素吸着量と、上記各温度における単位重量当たりの酸素吸着量の合計量と、温度600℃における単位重量当たりの酸素吸着量に対する温度550℃、650℃及び700℃における単位重量当たりの酸素吸着量の割合を表1に示す。 Furthermore, the oxygen adsorption amount per unit weight at each temperature of 550 ° C., 600 ° C., 650 ° C. and 700 ° C. of the obtained oxygen adsorbent, the total amount of the oxygen adsorption amount per unit weight at each temperature, Table 1 shows the ratio of the oxygen adsorption amount per unit weight at temperatures of 550°C, 650°C and 700°C to the oxygen adsorption amount per unit weight at a temperature of 600°C.

実施例2~4
表1に示す組成比となるように、炭酸ストロンチウム、炭酸カルシウム、炭酸バリウム及び酸化鉄(III)を秤量し、混合した以外は、実施例1と同様にして、鉄酸ストロンチウムカルシウムバリウムを焼成物として得た。
Examples 2-4
Strontium calcium barium ferrate was fired in the same manner as in Example 1 except that strontium carbonate, calcium carbonate, barium carbonate and iron (III) oxide were weighed and mixed so that the composition ratio shown in Table 1 was obtained. obtained as

得られた鉄酸ストロンチウムカルシウムバリウムの(110)面の結晶子サイズと共に、得られた酸素吸着剤の温度550℃、600℃、650℃及び700℃における単位重量当たりの酸素吸着量と、上記各温度における単位重量当たりの酸素吸着量の合計量と、温度600℃における単位重量当たりの酸素吸着量に対する温度550℃、650℃及び700℃における単位重量当たりの酸素吸着量の割合を表1に示す。 Along with the crystallite size of the (110) plane of the obtained strontium calcium barium ferrate, the oxygen adsorption amount per unit weight of the obtained oxygen adsorbent at temperatures of 550 ° C., 600 ° C., 650 ° C. and 700 ° C., and each of the above Table 1 shows the total amount of oxygen adsorption per unit weight at temperature and the ratio of the oxygen adsorption amount per unit weight at temperatures of 550°C, 650°C and 700°C to the oxygen adsorption amount per unit weight at a temperature of 600°C. .

比較例1~4
表1に示す組成比となるように、炭酸ストロンチウム、炭酸カルシウム、炭酸バリウム及び酸化鉄(III)をそれぞれ秤量し、混合した以外は、実施例1と同様にして、鉄酸ストロンチウムカルシウムバリウムを焼成物として得た。
Comparative Examples 1-4
Strontium calcium barium ferrate was fired in the same manner as in Example 1, except that strontium carbonate, calcium carbonate, barium carbonate, and iron (III) oxide were weighed and mixed so that the composition ratios shown in Table 1 were obtained. obtained as an object.

比較例5
表1に示す組成比となるように、炭酸ストロンチウム、炭酸カルシウム、炭酸バリウム及び酸化鉄を秤量し、混合すると共に、焼成温度を950℃とした以外は、実施例1と同様にして、鉄酸ストロンチウムカルシウムバリウムを焼成物として得た。
Comparative example 5
Strontium carbonate, calcium carbonate, barium carbonate and iron oxide were weighed and mixed so that the composition ratio shown in Table 1 was obtained. Strontium calcium barium was obtained as a fired product.

上記比較例1~5にて得られた鉄酸ストロンチウムカルシウムバリウムの(110)面の結晶子サイズと共に、得られた酸素吸着剤の温度550℃、600℃、650℃及び700℃における単位重量当たりの酸素吸着量と、上記各温度における単位重量当たりの酸素吸着量の合計量と、温度600℃における単位重量当たりの酸素吸着量に対する温度550℃、650℃及び700℃における単位重量当たりの酸素吸着量の割合を表1に示す。 Per unit weight of the obtained oxygen adsorbent at temperatures of 550 ° C., 600 ° C., 650 ° C. and 700 ° C. and the total amount of oxygen adsorption per unit weight at each temperature, and the oxygen adsorption per unit weight at temperatures of 550 ° C., 650 ° C. and 700 ° C. with respect to the oxygen adsorption amount per unit weight at a temperature of 600 ° C. Amount percentages are shown in Table 1.

Figure 0007202220000001
Figure 0007202220000001

比較例1はSCaFからなる酸素吸着剤を示し、650~700℃における酸素吸着量が小さい。これに対して、本発明に係る実施例1~4による酸素吸着剤はいずれも、600℃における単位重量当たりの酸素吸着量が10cmを超えていると共に、温度600℃における酸素吸着量の単位重量当たりの酸素吸着量に対する温度550℃、650℃及び700℃における単位重量当たりの酸素吸着量の割合が70%以上であって、かくして、温度550℃、600℃、650℃及び700℃における単位重量当たりの酸素吸着量の合計量が35cm以上である。 Comparative Example 1 shows an oxygen adsorbent made of SCaF, which has a small oxygen adsorption amount at 650 to 700°C. In contrast, all of the oxygen adsorbents according to Examples 1 to 4 according to the present invention have an oxygen adsorption amount per unit weight at 600°C exceeding 10 cm 3 and a unit of oxygen adsorption amount at a temperature of 600°C. The ratio of the oxygen adsorption amount per unit weight at temperatures of 550 ° C., 650 ° C. and 700 ° C. to the oxygen adsorption amount per weight is 70% or more. The total amount of oxygen adsorption per weight is 35 cm 3 or more.

比較例2による酸素吸着剤は、ペロブスカイト型酸化物におけるバリウムの組成比yが本発明にて規定する上限値を超えているので、550~700℃の範囲において、温度にかかわらず、酸素吸着性能において著しく劣っている。 In the oxygen adsorbent according to Comparative Example 2, the composition ratio y of barium in the perovskite-type oxide exceeds the upper limit specified in the present invention. significantly inferior in

比較例3~5による酸素吸着剤はいずれも、そのバリウム組成比yは、本発明が規定する範囲内にある。しかし、比較例3による酸素吸着剤は、鉄の組成比zが本発明が規定する上限値よりも大きく、高温領域(700℃)における酸素吸着量が著しく小さい。 All of the oxygen adsorbents according to Comparative Examples 3 to 5 have a barium composition ratio y within the range defined by the present invention. However, in the oxygen adsorbent according to Comparative Example 3, the iron composition ratio z is larger than the upper limit specified by the present invention, and the oxygen adsorption amount in the high temperature range (700° C.) is extremely small.

反対に、比較例4による酸素吸着剤は、鉄の組成比zが本発明が規定する下限値よりも小さく、550~700℃の範囲において、温度にかかわらず、酸素吸着性能に劣っている。 On the contrary, the oxygen adsorbent according to Comparative Example 4 has an iron composition ratio z smaller than the lower limit specified by the present invention, and is inferior in oxygen adsorption performance in the range of 550 to 700° C. regardless of the temperature.

比較例5による酸素吸着剤は、バリウムの組成比yと鉄の組成比zはいずれも、本発明が規定する範囲内にあるが、結晶子サイズが本発明の規定する下限値よりも小さいので、550~700℃の範囲において、温度にかかわらず、酸素吸着性能に劣っている。 In the oxygen adsorbent according to Comparative Example 5, both the composition ratio y of barium and the composition ratio z of iron are within the ranges specified by the present invention, but the crystallite size is smaller than the lower limit specified by the present invention. , in the range of 550 to 700° C., the oxygen adsorption performance is inferior regardless of the temperature.

Claims (2)

組成式(I)
Sr(1-x-y) CaBaFe3-δ
で表され、式中、x、y及びzはそれぞれ
0.1500≦x≦0.3000、
0.0002≦y≦0.0140及び
0.9775≦z≦1.0000
を満たす数であり、δは酸素欠損量であるペロブスカイト型酸化物からなり、X線回折測定結果から得られる(110)面の結晶子サイズが700Å以上である酸素吸着剤。
Composition formula (I)
Sr (1-xy) Ca x Bay Fe z O 3-δ
where x, y and z are respectively 0.1500≦x≦0.3000,
0.0002≤y≤0.0140 and 0.9775≤z≤1.0000
is a number that satisfies the requirements, δ is the amount of oxygen deficiency, and is made of a perovskite-type oxide, and the crystallite size of the (110) plane obtained from X-ray diffraction measurement is 700 Å or more.
請求項1に記載の酸素吸着剤であって、x、y及びzがそれぞれ、
0.2000≦x≦0.2500、
0.0003≦y≦0.0060及び
0.9775≦z≦0.9950
を満たす数である酸素吸着剤。


2. The oxygen adsorbent of claim 1, wherein x, y and z are each
0.2000≦x≦0.2500,
0.0003≤y≤0.0060 and 0.9775≤z≤0.9950
Oxygen adsorbent that is a number that satisfies


JP2019041063A 2019-03-06 2019-03-06 oxygen adsorbent Active JP7202220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019041063A JP7202220B2 (en) 2019-03-06 2019-03-06 oxygen adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019041063A JP7202220B2 (en) 2019-03-06 2019-03-06 oxygen adsorbent

Publications (2)

Publication Number Publication Date
JP2020142194A JP2020142194A (en) 2020-09-10
JP7202220B2 true JP7202220B2 (en) 2023-01-11

Family

ID=72355241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019041063A Active JP7202220B2 (en) 2019-03-06 2019-03-06 oxygen adsorbent

Country Status (1)

Country Link
JP (1) JP7202220B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022037955A (en) 2020-08-26 2022-03-10 株式会社日立製作所 System for selecting learning model

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837278A (en) 2009-03-18 2010-09-22 中国科学院大连化学物理研究所 Oxygen adsorbent, preparation method and application thereof
JP2017154922A (en) 2016-03-01 2017-09-07 Dowaエレクトロニクス株式会社 Perovskite type composite oxide powder and manufacturing method therefor
JP2018196843A (en) 2017-05-22 2018-12-13 堺化学工業株式会社 Manufacturing method of oxygen adsorbent molded body and oxygen adsorbent composition therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645909A (en) * 1987-06-29 1989-01-10 Sakai Chemical Industry Co Carbonate of alkaline-earth metal
JP4721967B2 (en) * 2006-07-06 2011-07-13 吸着技術工業株式会社 Oxygen production method and apparatus by pressure swing method using high temperature oxygen adsorbent
JP2011016684A (en) * 2009-07-08 2011-01-27 Hokkaido Univ Oxygen deficit perovskite-type metal oxide excellent in oxygen storage capability, exhaust gas purifying catalyst and functional ceramic containing the metal oxide, and method and apparatus using the metal oxide
JP6028081B1 (en) * 2015-10-02 2016-11-16 東京瓦斯株式会社 Oxygen adsorbent, oxygen production apparatus using oxygen adsorbent, and oxygen production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837278A (en) 2009-03-18 2010-09-22 中国科学院大连化学物理研究所 Oxygen adsorbent, preparation method and application thereof
JP2017154922A (en) 2016-03-01 2017-09-07 Dowaエレクトロニクス株式会社 Perovskite type composite oxide powder and manufacturing method therefor
JP2018196843A (en) 2017-05-22 2018-12-13 堺化学工業株式会社 Manufacturing method of oxygen adsorbent molded body and oxygen adsorbent composition therefor

Also Published As

Publication number Publication date
JP2020142194A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
Gálvez et al. Physico-chemical changes in Ca, Sr and Al-doped La–Mn–O perovskites upon thermochemical splitting of CO 2 via redox cycling
Klande et al. Effect of A-site lanthanum doping on the CO2 tolerance of SrCo0. 8Fe0. 2O3−-δ oxygen-transporting membranes
US20090206297A1 (en) Oxygen excess type metal oxide, ceramic for oxygen storage and/or an oxygen selective membrane, and methods and apparatuses using said metal oxide
Abu-Zied et al. Fabrication, characterization, and electrical conductivity properties of Pr6O11 nanoparticles
CN105536447B (en) A kind of application of the Ca-Ti ore type film of Fluorin doped in oxygen separating
JP7202220B2 (en) oxygen adsorbent
Ezbiri et al. High redox performance of Y 0.5 Ba 0.5 CoO 3− δ for thermochemical oxygen production and separation
Balaguer et al. Oxygen permeation and stability of CaTi0. 73Fe0. 18Mg0. 09O3− δ oxygen-transport membrane
Pfaff Chemical synthesis of calcium stannates from peroxo precursors
US9269880B2 (en) High ZT bismuth-doped perovskite thermoelectrics
JP7264390B2 (en) Oxygen-excess metal oxide, oxygen adsorption/desorption device and oxygen concentrator
CN106861602A (en) A kind of oxygen absorbent
JP7235261B2 (en) Oxygen-excess metal oxide, method for producing and regenerating the same, and oxygen concentrator and oxygen adsorption/desorption device
JP6680180B2 (en) Perovskite oxide capable of operating at low temperature and method for producing the same
JP6658038B2 (en) Low temperature operable perovskite-type oxide adsorbent and method for producing the same
Kim et al. Preparation and oxygen permeability of ReBaCo2O5+ δ (Re= Pr, Nd, Y) ceramic membranes
JP7304592B2 (en) Metal oxide, oxygen adsorption/desorption device, oxygen concentrator, and method for producing metal oxide
JP4320531B2 (en) Mixed conductive composite oxide for oxygen separation and method for producing the same
JP2017185483A (en) Low temperature operable perovskite type oxide oxygen adsorption material, manufacturing method therefor, and oxygen separation method
Wei et al. Effects of Praseodymium Doping on Conductivity and Oxygen Permeability of Cobalt-Free Perovskite-Type Oxide BaFeO3− δ
JP7310228B2 (en) Oxygen-rich metal oxide
Lee et al. Phase formation and electrical conductivity of Ba-doped LaScO3
Magnone et al. Oxygen adsorption properties of La 12x Sr x Co 12y Fe y O 32d oxides: Effect of strontium (x) and iron (y) dopant contents
JP2020049412A (en) Perovskite type oxide oxygen absorber capable of low temperature actuation, and manufacturing method and oxygen separation method therefor
CN115992387A (en) Stable cubic crystal perovskite structure for ceramic ionic membrane element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221223

R150 Certificate of patent or registration of utility model

Ref document number: 7202220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150