JP7201958B2 - 方策作成装置、制御装置、方策作成方法、及び、方策作成プログラム - Google Patents

方策作成装置、制御装置、方策作成方法、及び、方策作成プログラム Download PDF

Info

Publication number
JP7201958B2
JP7201958B2 JP2020562349A JP2020562349A JP7201958B2 JP 7201958 B2 JP7201958 B2 JP 7201958B2 JP 2020562349 A JP2020562349 A JP 2020562349A JP 2020562349 A JP2020562349 A JP 2020562349A JP 7201958 B2 JP7201958 B2 JP 7201958B2
Authority
JP
Japan
Prior art keywords
policy
state
action
quality
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020562349A
Other languages
English (en)
Other versions
JPWO2020137019A1 (ja
Inventor
友紀子 ▲高▼橋
拓也 平岡
慶雅 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical NEC Corp
Publication of JPWO2020137019A1 publication Critical patent/JPWO2020137019A1/ja
Application granted granted Critical
Publication of JP7201958B2 publication Critical patent/JP7201958B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/028Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using expert systems only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/029Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks and expert systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、方策作成装置、制御装置、方策作成方法、及び、方策作成プログラムに関し、特に、方策を作成する方策作成装置、制御装置、方策作成方法、及び、方策作成プログラムに関する。
加工プラント等における作業員は、素材から製品を作成するまでの作業手順を熟知することによって、質の高い製品を加工することができる。たとえば、その作業手順において、作業員は、素材を、加工機械を使って加工する。良い製品を加工するための作業手順は、作業員ごとにノウハウとして蓄えられている。しかし、その作業手順を熟知している作業員から他の作業員にノウハウを伝授するためには、熟練した作業員が、加工機械等の使い方や、材料の量、材料を加工機械に投入するタイミング等を他の作業員に伝授する必要がある。このため、ノウハウを伝授するためには、長い時間と、多くの作業を要する。
そのノウハウを機械学習によって学習する方法として、非特許文献1に例示されているように強化学習法が用いられることがある。この場合、強化学習法においては、そのノウハウを表す方策を、モデルという形で表す。非特許文献1においては、そのモデルをニューラルネットワークによって表している。
Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction., The MIT Press, 2017
しかし、ノウハウがどのように表現されたのかをユーザが理解することは困難である。この理由は、非特許文献1に例示されている強化学習法においては、ノウハウを表す方策をニューラルネットワークによって表しており、さらに、ニューラルネットワークによって作成されるモデルをユーザが解読することが難しいからである。
本開示の目的は、このような課題を解決するためになされたものであり、質が高く、かつ、視認性が高い方策を作成することが可能な方策作成装置、制御装置、方策作成方法、及び、方策作成プログラムを提供することにある。
本開示にかかる方策作成装置は、対象の状態を判定する条件と当該状態における動作とが組み合わされたルールを所定の個数分含む方策を、複数作成する方策作成手段と、作成された前記複数の方策それぞれについて、前記方策に従って、前記対象の状態が第1状態から第2状態になるまでの動作を決定する動作決定手段と、前記第1状態と前記第2状態との間の状態と、所望の状態との差異に従って、決定された前記動作の質を決定し、決定された前記動作の質に基づいて、前記複数の方策それぞれについて前記方策の質を決定する方策評価手段と、作成された前記複数の方策の中から、決定された前記質が高い方策を選択する方策選択手段とを備える。
また、本開示にかかる方策作成方法は、対象の状態を判定する条件と当該状態における動作とが組み合わされたルールを所定の個数分含む方策を、複数作成し、作成された前記複数の方策それぞれについて、前記方策に従って、前記対象の状態が第1状態から第2状態になるまでの動作を決定し、前記第1状態と前記第2状態との間の状態と、所望の状態との差異に従って、決定された前記動作の質を決定し、決定された前記動作の質に基づいて、前記複数の方策それぞれについて前記方策の質を決定し、作成された前記複数の方策の中から、決定された前記質が高い方策を選択する。
また、本開示にかかる方策作成プログラムは、対象の状態を判定する条件と当該状態における動作とが組み合わされたルールを所定の個数分含む方策を、複数作成する機能と、作成された前記複数の方策それぞれについて、前記方策に従って、前記対象の状態が第1状態から第2状態になるまでの動作を決定する機能と、前記第1状態と前記第2状態との間の状態と、所望の状態との差異に従って、決定された前記動作の質を決定し、決定された前記動作の質に基づいて、前記複数の方策それぞれについて前記方策の質を決定する機能と、作成された前記複数の方策の中から、決定された前記質が高い方策を選択する機能とをコンピュータに実現させる。
本開示によれば、質が高く、かつ、視認性が高い方策を作成することが可能な方策作成装置、制御装置、方策作成方法、及び、方策作成プログラムを提供できる。
第1の実施形態に係る方策作成装置の構成を示すブロック図である。 第1の実施形態に係る方策作成装置によって実行される方策作成方法の流れを示すフローチャートである。 第1の実施形態に係る対象の一例を概念的に表す図である。 第1の実施形態に係る方策情報の一例を概念的に表す図である。 第1の実施形態に係る方策情報の一例を概念的に表す図である。 第1の実施形態に係る方針に従い動作を決定する処理を概念的に表す図である。 第1の実施形態に係る方策評価情報記憶部に格納されている方策評価情報の一例を概念的に表す図である。 第1の実施形態に係る方策作成部における処理の流れを示すフローチャートである。 第1の実施形態に係る方策の初期状態を概念的に表す図である。 第1の実施形態に係る方策に含まれているパラメータを概念的に表す図である。 第1の実施形態に係る方策評価部における処理の流れを示すフローチャートである。 第1の実施形態において、倒立振り子を例題として用いた場合において、方策の質を評価した結果を表す図である。 第1の実施形態において、倒立振り子を例題として用いた場合において、方策の質を評価した結果を表す図である。 倒立振り子を例題として用いた場合において、第1の実施形態に係る方策作成装置が作成した方策を概念的に表す図である。 第2の実施形態に係る方策作成装置の構成を示すブロック図である。 第2の実施形態に係る方策作成装置によって実行される方策作成方法の流れを示すフローチャートである。 各実施形態に係る方策作成装置を実現可能な計算処理装置のハードウェア構成例を概略的に示すブロック図である。
(第1の実施形態)
以下、実施形態について、図面を参照しながら説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
図1は、第1の実施形態に係る方策作成装置101の構成を示すブロック図である。また、図2は、第1の実施形態に係る方策作成装置101によって実行される方策作成方法の流れを示すフローチャートである。なお、図2に示したフローチャートについては、後述する。
図1を参照しながら、本発明の第1の実施形態に係る方策作成装置101が有する構成について詳細に説明する。第1の実施形態に係る方策作成装置101は、方策作成部102と、動作決定部103と、方策評価部104と、方策選択部105とを有する。方策評価部104は、動作評価部108と、総合評価部109とを有する。方策作成装置101は、さらに、分布更新部106と、方策評価情報記憶部107とを有していてもよい。方策作成部102、動作決定部103、方策評価部104及び方策選択部105は、それぞれ、方策作成手段、動作決定手段、方策評価手段及び方策選択手段としての機能を有する。また、動作評価部108及び総合評価部109は、それぞれ、動作評価手段及び総合評価手段としての機能を有する。分布更新部106及び方策評価情報記憶部107は、それぞれ、分布更新手段及び方策評価情報記憶手段としての機能を有する。
方策作成装置101は、たとえば、制御装置150において処理を実行する。制御装置150は、方策作成装置101と、制御部151とを有する。制御部151は、方策作成装置101によって作成された方策に従って決定された動作に従い、対象170に関する制御を実行する。
方策作成装置101において、方策作成部102は、対象170に関して施す動作を決定するための方策を作成する。ここで、方策作成部102は、方策を示す情報である方策情報を生成する。方策の詳細については、図4または図5を参照しながら後述する。
図3は、第1の実施形態に係る対象170の一例を概念的に表す図である。図4は、第1の実施形態に係る方策情報の一例を概念的に表す図である。図5は、第1の実施形態に係る方策情報の一例を概念的に表す図である。図3~図5の詳細については、後述する。
図6は、第1の実施形態に係る方針に従い動作を決定する処理を概念的に表す図である。図6に例示されているように、方策作成装置101において、動作決定部103は、対象170の状態(state)を表す情報を取得する。そして、動作決定部103は、作成された方策(policy)に従い、この対象170に関して施す動作(action)を決定する。対象170(target)の状態は、たとえば、対象170を観測しているセンサが出力した観測値を用いて表すことができる。たとえば、センサは、温度センサ、位置センサ、速度センサ、または、加速度センサ等である。なお、図6に例示された方策については、図4を用いて後述する。
たとえば、対象170が自動運転車両等の車両である場合、動作決定部103は、たとえば、エンジンの回転数や、車両の速度や、周囲の状況等の観測値(特徴量)を取得する。動作決定部103は、これらの観測値(特徴量)に基づき、図2を参照しながら後述するような処理を実行することによって、動作を決定する。具体的には、動作決定部103は、ハンドルを右に回す、アクセルを踏む、ブレーキを踏む等の動作を決定する。制御部151は、動作決定部103によって決定された動作に従い、アクセル、ハンドル、または、ブレーキを制御する。
また、たとえば、対象170が発電機である場合、動作決定部103は、たとえば、タービンの回転数や、燃焼炉の温度や、燃焼炉の圧力等の観測値(特徴量)を取得する。動作決定部103は、これらの観測値(特徴量)に基づき、図2を参照しながら後述するような処理を実行することによって、動作を決定する。具体的には、動作決定部103は、燃料の量を増やす、燃料の量を減らす等の動作を決定する。制御部151は、動作決定部103によって決定された動作に従い、燃料の量を調整するバルブを閉める、あるいは、バルブを開く等の制御を実行する。
以降の説明においては、観測の種類(速度、回転数等)を、特徴パラメータ(または、特徴量)と表し、当該種類に関して観測された値を、特徴パラメータ値(または、特徴量の値)と表すこともある。方策作成装置101は、決定した動作の質(quality)に関する高低を表す動作評価情報を取得する。方策作成装置101は、取得した動作評価情報に基づき、質の高い方策を作成する。方策は、図4及び図5に例示されているように、対象170がある状態である場合に、当該対象170に関して施す動作を決定する基である情報を表す。方策については、図4及び図5を参照しながら後述する。
図7は、第1の実施形態に係る方策評価情報記憶部107に格納されている方策評価情報の一例を概念的に表す図である。図7に例示されているように、方策評価情報記憶部107には、ある方策を表す識別子(identifier、以降「ID」と表す)と、当該ある方策に関して算出された評価情報とが関連付けされた方策評価情報を格納することができる。評価情報については、図11を参照しながら後述する。
たとえば、図7に例示された方策評価情報において、識別子「ID1(方策1)」と、評価情報「200」とが関連付けされている。これは、識別子「ID1」が表す方策に関して、当該方策の質を表す評価情報が「200」であることを表す。また、図7に例示された方策評価情報において、識別子「ID3(方策3)」と、評価情報「-40」とが関連付けされている。これは、識別子「ID3」が表す方策に関して、当該方策の質を表す評価情報が「-40」であることを表す。
以降の説明においては、説明の便宜上、評価情報が大きな値であるほど対応する方策の質が高く、評価情報が小さな値であるほど対応する方策の質が低いとする。この場合、図7に例示された方策評価情報は、例えば、方策1の質が方策3の質よりも高いことを表している。また、方策評価情報は、たとえば、さらに、識別子が表す方策(たとえば、図4、図5に例示したもの)等を表す情報を含んでいてもよい。すなわち、方策評価情報は、上述した例に限定されない。
次に、図3を参照しながら本願明細書にて用いる用語について説明する。図3に例示された対象170は、棒状の振り子と、振り子に対してトルクを加えることが可能な回転軸とを含む。状態Iは、対象170の初期状態を表し、振り子が回転軸の下方に存在している。状態VIは、対象170の終了状態を表し、振り子が回転軸の上方に倒立して存在している。動作A乃至動作Fは、振り子に対してトルクを加える力を表している。また、状態I乃至状態VIは、対象170の状態を表している。また、対象170の状態について、第1状態から第2状態に至るまでの各状態を総称して、「エピソード」と表す。エピソード(episode)は、必ずしも、初期状態から終了状態までの各状態を表していなくともよく、たとえば、状態IIから状態IIIまでの各状態、または、状態IIIから状態VIまでの各状態を表していてもよい。
方策作成装置101は、たとえば、状態Iから開始して状態VIを実現し得る一連の動作を決定する方策(図4及び図5に例示)を、動作に対する動作評価情報に基づき作成する。なお、方策作成装置101が方策を作成する処理については、図8を参照しながら後述する。
次に、図4を参照しながら、方策作成装置101が作成する方策情報について説明する。方策情報は、対象170に関して施す動作を決定する情報である。具体的には、方策情報は、動作と、動作を実行するか否かを判定する条件とが関連付けされたルールを、少なくとも1つ以上含んでいる。当該条件は、対象170の状態を判定する条件である。なお、「ルール」については後述する。
図4に例示された木構造にて、非終端ノードには、対象170に関して施す動作を決定するための条件(「x<2」、「y<2」、及び、「y<1」)を表す情報が配置されている。ここで、「非終端ノード」とは、根ノード及び中間ノード、つまり葉ノード(終端ノード)以外のノードである。
また、説明の便宜上、対象170の状態が、2つの特徴パラメータx、yを用いて表されているとする。特徴パラメータxは、たとえば、対象170の位置を表す。特徴パラメータyは、たとえば、対象170の速度を表す。対象170の状態を表す特徴パラメータの個数は、2つでなくともよく、1つであってもよいし、3つ以上であってもよい。また、方策情報は、対象170の状態に関して観測された特徴パラメータを全て含んでいるとは限らず、当該観測された特徴パラメータのうち一部だけを含んでいてもよい。例えば、方策情報は、特徴パラメータxのみを含んでもよい。
図4に例示するように、対象170に関して方策情報に従い施す動作は、当該対象170の状態を表す特徴パラメータに関する観測値(特徴パラメータ値)に基づき決定される。ここで、例えば、対象170が、特徴パラメータxの値が1、及び、特徴パラメータyの値が3である状態であるとする。この場合、方策作成装置101は、当該状態を表す各特徴パラメータ値(x=1、y=3)を入力する。次に、方策作成装置101は、まず、根ノードにおいて、条件「x<2」が成立しているか否かを判定する。この場合、「x<2」であるため(条件「x<2」にてYES)、方策作成装置101は、中間ノードにおいて、条件「y<2」が成立しているか否かを判定する。この場合、「y≧2」であるため(条件「y<2」にてNO)、方策作成装置101は、動作「turn」を決定する。
また、例えば、対象170が、特徴パラメータxの値が3、及び、特徴パラメータyの値が1である状態であるとする。この場合、方策作成装置101は、当該状態を表す各特徴パラメータ値(x=3、y=1)を入力する。次に、方策作成装置101は、まず、根ノードにおいて、条件「x<2」が成立しているか否かを判定する。この場合「x≧2」であるため(条件「x<2」にてNO)、方策作成装置101は、中間ノードにおいて、条件「y<1」が成立しているか否かを判定する。この場合、「y=1」であるため(条件「y<1」にてNO)、方策作成装置101は、動作「pull」を決定する。
言い換えると、木構造における非終端ノード(たとえば、「x<2」、「y<1」、「y<2」)それぞれには、状態を判定する条件が配置されている。また、木構造における葉ノード(終端ノード)には、対象170が当該条件に応じた状態である場合における動作が配置されている。したがって、動作の個数が所定の個数であれば、当該動作を判定する方策を表す木構造は、所定の個数分のルールを含んでいる。ここで、「ルール」とは、ある動作に至るまでの条件の集合である。図4の例において、例えば、動作「turn」に関するルールは、「x<2が成り立ち、かつ、y<2が成り立っていない」場合には、動作「turn」を選択するというルールである。また、例えば、動作「pull」に関するルールは、「x<2が成り立っておらず、かつ、y<1が成り立っていない」場合には、動作「pull」を選択するというルールである。
なお、木構造において、根ノード(この例では「x<2」)から各葉ノードまでの距離は一定である必要はなく、当該距離が相互に異なっていてもよい。また、方策情報は、必ずしも木構造を用いて表されている必要はなく、図5に例示されるように、対象170に関して施す動作を決定するルールを、少なくとも1つ以上含んでいてもよい。
また、対象170に関して施す動作は、当該対象170の状態に影響を及ぼし得る。したがって、対象170が当該動作の影響を受けることによって、対象170の状態は、第1状態から第2状態に変化する場合がある。この場合、上述したような方策情報において、動作を実行するか否かを判定する条件が、第1状態を表しているとみなすこともできる。また、対象170が第1状態にある場合に動作を施すことによって第2状態が生じるため、方策情報において、葉ノードに動作を表す情報が配置される代わりに、葉ノードに第2状態(すなわち、対象170の次状態)を表す情報が配置されていてもよい。
また、方策情報は、図5に例示されているように、ルールを所定の個数個含んでいるリスト形式に従い表されていてもよい。図5に例示されている方策情報は、「IF(x<2 AND y<3)THEN push」なるルールを含んでいる。当該ルールは、観測値xが2未満であり、かつ、観測値yが3未満である場合には、対象170に関して動作「push」を施すことを決定することを表している。また、図5に例示されている方策情報は、「IF(w<1) THEN pull」なるルールを含んでいる。当該ルールは、観測値wが1未満である場合には、対象170に関して動作「pull」を施すことを決定することを表している。
なお、図5に例示されているルールの他に、条件が閾値ではなく値そのものや状態の判別で表記される、「IF(x=2 AND y=STOP)THEN push」などといったルールを含んでいてもよい。すなわち、方策情報は、図4及び図5に例示される例に限定されない。なお、図5に記載されたθφ、θ及びθについては、後述する。
次に、図2を参照しながら、本発明の第1の実施形態に係る方策作成装置101における処理について詳細に説明する。方策作成部102は、ある分布(確率分布)に従い、複数の方策を作成する(ステップS102)。ステップS102における処理については、図8を参照しながら詳述する。ここで、「分布」は、例えばガウス分布であってもよい。なお、最初のS102の処理では、分布のパラメータ(平均値及び標準偏差等)は、任意の(つまりランダムな)値であり得る。
次に、動作決定部103は、方策作成部102によって作成された方策に従い動作を決定し、方策評価部104は、決定された動作の質に基づき、当該方策の質を評価する(ステップS103)。方策評価部104は、方策作成部102によって作成された各方策に関して、当該方策の質を評価する。ステップS103における処理にて、方策評価部104は、たとえば、図3を参照しながら上述したようなエピソードに含まれている状態の質に基づき、当該動作の質を決定してもよい。図3を参照しながら上述したように、ある状態にて施される動作は、対象170における次状態と対応付けすることが可能である。このため、方策評価部104は、状態(次状態)の質を、当該状態(次状態)を実現する動作の質として用いる。状態の質は、たとえば、図3に例示されているような倒立振り子の例においては、目標状態(たとえば、終了状態;倒立状態)と、当該状態との差異を表す値によって表すことができる。なお、ステップS103における処理の詳細については、図11を参照しながら後述する。
次に、方策選択部105は、方策評価部104によって評価された質に基づき、複数の方策の中から、質が高い方策を選択する(ステップS104)。方策選択部105は、たとえば、複数の方策の中から、当該質が上位である方策を選択する。または、方策選択部105は、たとえば、複数の方策の中から、当該質が平均以上である方策を選択する。または、方策選択部105は、たとえば、複数の方策の中から、当該質が所望の質以上である方策を選択する。あるいは、方策選択部105は、ステップS101からステップS106までの繰り返しにおいて作成した方策の中から、最も質が高い方策を選択してもよい。なお、方策を選択する処理は、上述した例に限定されない。
次に、分布更新部106は、ステップS102にて方策を作成する基である分布を更新する(ステップS105)。分布更新部106は、たとえば、方策選択部105によって選択された方策に含まれる各パラメータに関して、当該パラメータ値の平均と標準偏差とを算出することによって、分布を更新する。すなわち、分布更新部106は、方策選択部105によって選択された方策を表す方策パラメータを用いて、当該方策パラメータに関する分布を更新する。なお、方策パラメータについては後述する。
ステップS101(ループ始まり)からステップS106(ループ終わり)までの繰り返し処理は、たとえば、所与の反復回数分繰り返される。または、当該繰り返し処理は、方策の質が所望の基準以上になるまで繰り返されてもよい。ステップS101からステップS106までの処理を繰り返し実行することによって、方策を作成する基である分布は、次第に、対象170に関する観測値を反映した分布に近付いていく傾向があるため、対象170に応じた方策を作成することができる。
動作決定部103は、対象170の状態を表す観測値を入力し、入力した観測値と、最も質が高い方策とに従い、対象170に関して施す動作を決定してもよい。制御部151は、さらに、動作決定部103が決定した動作に従い、対象170に関して施す動作を制御してもよい。
次に、図8、図9、及び、図10を参照しながら、方策を算出する処理(図2のS102)について説明する。図8は、第1の実施形態に係る方策作成部102における処理の流れを示すフローチャートである。図9は、第1の実施形態に係る、方策の初期状態を概念的に表す図である。図10は、第1の実施形態に係る、方策に含まれているパラメータを概念的に表す図である。
方策作成部102は、図9に例示されているような方策の初期状態を入力する。方策の初期状態は、対象170に関して施す動作(四角形にて例示、動作211乃至動作214)の個数と、当該動作を実施するか否かを判定する条件(六角形にて例示、条件201乃至条件203)の個数とを含んでいる。この例では、動作の個数は4であり、条件の個数は3である。言い換えると、方策作成部102は、対象170に関して施す動作の個数と、当該動作を実施するか否かを判定する条件の個数とを入力する。ここで、動作の個数を2個(ただし、Dは自然数)と表した場合、図4に例示されているような木構造を有する方策においては、条件の個数は、(2-1)個と表すことができる。この場合には、方針は、2個のルールを含んでいる。なお、図9に例示されているように、方策の初期状態においては、条件及び動作は、決定されていない。また、図4に例示されているような木構造を有する方策においては、Dは木の深さに等しい。また、図4に例示されているような木構造を有する方策においては、上述したように、「動作」は葉ノードに対応し、「条件」は非終端ノードに対応する。このように、予め定められた構造(ノード数)の木構造で方策を表すことで、効率的に、視認性のよい方策を作成することができる。
また、方策作成部102は、図8に例示されている処理を行った結果として、図10に例示されているような方策を作成する。図10においては、図9における動作211には「動作1」、動作212には「動作2」、動作213には「動作3」、及び、動作214には「動作4」が、それぞれ、算出されている。また、図9における条件201には「x<2」、条件202には「y<2」、及び、条件203には「y<1」が、それぞれ、算出されている。なお、動作1~動作4には、条件に従ったときに実現される「状態(次状態)」を定義してもよい。この場合、現在の状態(第1状態)から次状態(第2状態)に至るまでの動作は、一意であってもよいし、任意であってもよい。現在の状態(第1状態)から次状態(第2状態)に至るまでの動作が一意である場合、葉ノードには、動作211~動作214の代わりに、次状態が定義されてもよい。
ここで、説明の便宜上、方策を表す方策パラメータとして、動作(状態)を表すパラメータをθ、条件における特徴量を表すパラメータをθφ、及び、条件における特徴量に関する判定基準を表すパラメータをθと表す。方策作成部102は、後述する図8に示された処理に従い、パラメータθφ、パラメータθ、および、パラメータθを順に参照し、方策における条件及び動作(状態)を決定する。図10における例において、方策作成部102は、パラメータθφの値から条件における特徴量を決定する(図10において円で囲まれたもの)。次に、方策作成部102は、パラメータθの値から特徴量に関する判定基準(すなわち、閾値)を決定する(図10において三角形で囲まれたもの)。次に、方策作成部102は、パラメータθの値から動作(状態)を決定する(図10において破線の四角形で囲まれたもの)。
なお、図5に例示された方策に関しても、同様に、条件における特徴量を表すパラメータθφ、特徴量に関する判定基準を表すパラメータθ、及び、動作(状態)を表すパラメータθを用いて、方策を表すことができる。つまり、図5における例において、方策作成部102は、パラメータθφの値から条件における特徴量を決定する(図5において楕円で囲まれたもの)。次に、方策作成部102は、パラメータθの値から特徴量に関する判定基準(すなわち、閾値)を決定する(図5において三角形で囲まれたもの)。次に、方策作成部102は、パラメータθの値から動作を決定する(図5において破線の四角形で囲まれたもの)。
ここで、方策作成部102は、後述するS111,S112及びS113の処理において、方策パラメータ(パラメータθφ、パラメータθ及びパラメータθ)の値を、ある分布(たとえば、確率分布)に従って与える。方策パラメータが従う分布は、例えばガウス分布であってもよい。あるいは、方策パラメータが従う分布は、必ずしもガウス分布である必要はなく、一様分布、二項分布、または、多項分布等の分布であってもよい。また、各方策パラメータに関する分布は、互いに同じ分布である必要はなく、方策パラメータごとに異なる分布であってもよい。例えば、パラメータθφが従う分布と、パラメータθが従う分布とは、互いに異なってもよい。または、各方策パラメータに関する分布は、平均、及び、標準偏差が相互に異なる分布であってもよい。すなわち、当該分布は、上述した例に限定されない。以下の例では、各方策パラメータがガウス分布に従うとする。
次に、ある分布に従い、各方策パラメータの値を算出する処理について説明する。説明の便宜上、ある方策パラメータに関する分布が、平均がμであり、標準偏差がσであるガウス分布であるとする。ただし、μは実数であり、σは正の実数であるとする。また、μ、及び、σは、方策パラメータごとに異なる値であってもよいし、同じ値であってもよい。方策作成部102は、後述するS111,S112及びS113の処理において、ガウス分布に従い、方策パラメータの値(方策パラメータ値)を算出する。方策作成部102は、たとえば、当該ガウス分布に従い、各方策パラメータ値(パラメータθφ、パラメータθ及びパラメータθ)をランダムに1つ作成する。方策作成部102は、たとえば、乱数、または、ある乱数種を用いた擬似乱数を用いて、当該ガウス分布に従った値となるよう、方策パラメータ値を算出する。言い換えると、方策作成部102は、当該ガウス分布に従った乱数を、方策パラメータの値として算出する。このように、方策を予め定められた分布に従う方策パラメータで表現し、分布に従って各方策パラメータを算出することで方策におけるルール(条件及び動作)を決定することで、より効率的に、方策を表現することができる。
図8のフローチャートの各処理について説明する。まず始めに、方策作成部102は、各条件における特徴量を算出する(図8におけるステップS111)。この処理について説明する。説明の便宜上、対象170に関してF種類の観測値(特徴量)が観測されているとする(但し、Fは自然数)。つまり、ある条件に対する特徴量の候補がF種類あることになる。
方策作成部102は、たとえば、木構造を幅優先にて辿る順に、特徴量を決定する。ここで、条件における特徴量を表すパラメータθφは、(条件の個数×F)個の値を有しているとする。なお、図9のような木構造を有する方策の例では、「条件の個数」は、非終端ノード数(2-1)である。したがって、パラメータθφは、以下の式1のように、(2-1)行F列のマトリクス形式で表すことができる。
(式1)
Figure 0007201958000001
ここで、上記の式1のマトリクスの各行が条件(非終端ノード)に対応し、各列が特徴量の種類に対応する。したがって、図9の木構造の例において、F=5個の特徴量の種類の条件で方策を作成する場合、上記式1は、3行5列のマトリクスとなる。また、上述したように、方策作成部102は、(条件の個数×F)個のパラメータθφの値を、それぞれ、ガウス分布等の分布(確率分布)に従うように算出する。なお、方策作成部102は、(条件の個数×F)個それぞれのパラメータθφを、互いに異なるガウス分布(つまり平均値及び標準偏差の少なくとも一方が異なるガウス分布)に従うように算出してもよい。したがって、例えば、上記の式1において、パラメータθφ (n,f)が従う分布は、パラメータθφ (n,F)が従う分布とは異なり得る。
方策作成部102は、ある条件に関する特徴量を決定する場合に、パラメータθφからある条件に対応するF個のパラメータを確認する。そして、方策作成部102は、当該条件に対応するF個のパラメータθφの値の中である規則、例えば最も大きい値を選択するという規則に従い、パラメータθφに対応する特徴量を決定する。例えば、上記の式1において、条件1(条件201)のパラメータθφ (1,1)~θφ (1,F)においてθφ (1,2)の値が最も大きい場合、方策作成部102は、条件1(条件201)における特徴量として、θφ (1,2)に対応する特徴量を決定する。
なお、方策作成部102は、たとえば、F種類の特徴量のうち、特徴量を表すパラメータθφの値の大きさが上位(たとえば、上位5%、10%等)の中から特徴量を選択してもよい。このような処理を実行することによって、多くの情報量を含む特徴量を選択することができるため、対象170の状態を効果的に判定する基準を作成することができる。
次に、方策作成部102は、各条件に関して決定した特徴量に関して、判定基準を表す閾値を算出する(図8におけるステップS112)。方策作成部102は、ガウス分布等の分布(確率分布)に従った値θを算出する。ここで、図9のような木構造の方策を作成する場合、パラメータθは、以下の式2のように、条件nに関する判定基準を決定するためのパラメータθ (n)を成分とする1行(2-1)列のマトリクス形式で表され得る。
(式2)
Figure 0007201958000002
ここで、図9の木構造の例において方策を作成する場合、上記式2は、1行3列のマトリクスとなる。なお、方策作成部102は、(2-1)個それぞれのパラメータθを、互いに異なるガウス分布(つまり平均値及び標準偏差の少なくとも一方が異なるガウス分布)に従うように算出してもよい。したがって、例えば、上記の式2において、パラメータθ (n)が従う分布は、パラメータθ (1)が従う分布とは異なり得る。
方策作成部102は、算出した値θに対して、以下の式3に示す処理を実行することによって、特徴量に関する判定基準を算出する。
(式3)
(閾値)=(Vmax-Vmin)×g(θ)+Vmin
ただし、Vminは、特徴量に関して観測された値の最小値を表す。Vmaxは、特徴量に関して観測された値の最大値を表す。g(x)は、実数xに対して、0から1までの値を与える関数であって、単調に変化する関数を表す。g(x)は、活性化関数とも呼ばれ、たとえば、シグモイド(sigmoid)関数によって実現される。
したがって、方策作成部102は、ガウス分布等の分布に従ってパラメータθの値を算出する。そして、式3で示すように、方策作成部102は、パラメータθの値を用いて、特徴量に関する観測値の範囲(この例では、VminからVmaxまでの範囲)から、当該特徴量に関する判定基準(閾値)を算出する。
次に、方策作成部102は、当該特徴量を判定する際の不等号を決定する。たとえば、方策作成部102は、ランダムに不等号の向きを決めてもよいし、一定の向きに不等号を決めてもよいし、所定の手順に従い(たとえば、交互に)不等号の向きを決めてもよい。これらの処理の結果、方策作成部102は、各条件における特徴量に関する判定基準を算出する。このような処理を実行することによって、対象170に関する動作を施す状況が不明確な場合であっても、方策作成部102は、対象170の状態を判定する判定基準に含まれている閾値を、効率よく探索することができる。方策作成部102は、このような処理を、条件201乃至条件203(図9に例示)に含まれる特徴量に関して実行する。
次に、方策作成部102は、条件(ルール)ごとに、動作(状態)を算出する(ステップS113)。ここで、動作には、連続値で示される場合と、離散値で示される場合とがある。連続値である場合は、動作を示す値は、対象170の制御値であってもよい。例えば、対象170が図3に示した倒立振り子である場合、トルク値であってもよいし、振り子の角度であってもよい。また、動作が離散値で示される場合、動作を示す値は、動作の種類(図4の「push」,「turn」,「pull」)に対応する値であってもよい。
まず、動作(状態)が連続値である場合の処理について説明する。方策作成部102は、ある動作(図9における動作211乃至動作214のうちの1つの動作)に関して、ガウス分布等の分布(確率分布)に従った値θを算出する。ここで、図9のような木構造の方策を作成する場合、パラメータθは、以下の式4のように、葉ノードl(l=1~2)に関する動作を決定するためのパラメータθ (l)を成分とする1行(2)列のマトリクス形式で表され得る。
(式4)
Figure 0007201958000003
ここで、図9の木構造の例において方策を作成する場合、上記式4は、1行4列のマトリクスとなる。なお、方策作成部102は、2個それぞれのパラメータθを、互いに異なるガウス分布(つまり平均値及び標準偏差の少なくとも一方が異なるガウス分布)に従うように算出してもよい。したがって、例えば、上記の式4において、パラメータθvu (l)が従う分布は、パラメータθ (1)が従う分布とは異なり得る。
方策作成部102は、算出した値θに対して、以下の式5に示す処理を実行することによって、ある条件(ルール)に関する動作を表す動作値を算出する。
(式5)
(動作値)=(Umax-Umin)×h(θ)+Umin
ただし、Uminは、ある動作(状態)を表す値の最小値を表す。Umaxは、ある動作(状態)を表す値の最大値を表す。Umin及びUmaxは、例えばユーザによって予め定められてもよい。h(x)は、実数xに対して、0から1までの値を与える関数であって、単調に変化する関数を表す。h(x)は、活性化関数とも呼ばれ、たとえば、シグモイド関数によって実現されてもよい。
したがって、方策作成部102は、ガウス分布等の分布に従ってパラメータθの値を算出する。そして、式5で示すように、方策作成部102は、パラメータθの値を用いて、観測値の範囲(この例では、UminからUmaxまでの範囲)から、あるルールにおける動作を示す1つの動作値を算出する。このような処理を、方策作成部102は、動作211乃至動作214(図9に例示)に含まれる各動作に関して実行する。
なお、方策作成部102は、上記の式5の「Umax-Umin」について、予め定められた値を用いなくてもよい。方策作成部102は、動作に関する動作値の履歴から、最大の動作値をUmaxとし、最小の動作値をUminとして決定してもよい。あるいは、葉ノードが「状態」で定義されている場合、方策作成部102は、状態を表す観測値の履歴における最大値及び最小値から、ルールにおいて次状態を示す値(状態値)の範囲を決定してもよい。このような処理によって、方策作成部102は、対象170の状態を判定するルールに含まれている動作を、効率よく決定することができる。
次に、動作(状態)が離散値である場合の処理について説明する。説明の便宜上、対象170に関してA種類の動作(状態)があるとする(但し、Aは自然数)。つまり、あるルールに対する動作の候補がA種類あることになる。方策作成部102は、たとえば、葉ノード(図9の動作211~214)の左端から順に、動作(状態)を決定する。ここで、動作(状態)を表すパラメータθは、(葉ノード数×A)個の値を有しているとする。したがって、パラメータθは、以下の式6のように、2行A列のマトリクス形式で表すことができる。
(式6)
Figure 0007201958000004
ここで、上記の式6のマトリクスの各行が葉ノード(終端ノード)に対応し、各列が動作の種類に対応する。したがって、図9の木構造の例において、A=3個の動作の種類の方策を作成する場合、上記式6は、4行3列のマトリクスとなる。また、上述したように、方策作成部102は、(葉ノード数×A)個のパラメータθの値を、それぞれ、ガウス分布等の分布(確率分布)に従うように算出する。なお、方策作成部102は、(葉ノード数×A)個それぞれのパラメータθを、互いに異なるガウス分布(つまり平均値及び標準偏差の少なくとも一方が異なるガウス分布)に従うように算出してもよい。したがって、例えば、上記の式6において、パラメータθ (l,k)が従う分布は、パラメータθφ (l,A)が従う分布とは異なり得る。
方策作成部102は、ある葉ノードにおける動作(条件)を決定する場合に、パラメータθuからある葉ノードに対応するA個のパラメータを確認する。そして、方策作成部102は、当該動作(状態)に対応するパラメータ値の中で、ある規則、例えば最も大きい値を選択するという規則に対応する動作(状態)を決定する。例えば、上記の式6において、葉ノード#1(動作211)のパラメータθ (1,1)~θ (1,A)においてθ (1,2)の値が最も大きい場合、方策作成部102は、葉ノード#1(動作211)における動作として、θ (1,2)に対応する動作を決定する。
図8に示されたステップS111乃至ステップS113における処理の結果、方策作成部102は、1つの方策を作成する。方策作成部102は、そのような処理を繰り返し実行することによって、複数の方策を作成する。ここで、ステップS111乃至ステップS113における処理により作成された各方策において、非終端ノードそれぞれについて、パラメータθφ及びパラメータθが設定される。同様に、作成された各方策において、葉ノードそれぞれについて、パラメータθが設定される。したがって、各方策は、1つの方策パラメータの集合(パラメータθφ、パラメータθ、パラメータθを結合させたもの)で定義され得る。つまり、各方策は、式1、式2及び式4、又は、式1、式2及び式6を用いて定義され得る。なお、方策パラメータはガウス分布等の分布(確率分布)に従ってランダムに算出されるので、複数の方策それぞれにおいて、各方策パラメータの値は異なり得る。したがって、異なる複数の方策が作成され得る。ここで、方策パラメータの集合をθとし、作成される方策の数をb(bは2以上の整数)とすると、方策作成部102は、θ~θにそれぞれ対応する複数の方策を作成することとなる。
次に、図11を参照しながら、方策評価部104が方策の質を評価する処理(図2のS103)について説明する。図11は、第1の実施形態に係る方策評価部104における処理の流れを示すフローチャートである。ここで、作成された複数の方策それぞれについて、図11のフローチャートの処理が実行される。
動作決定部103は、対象170に関して観測された観測値(状態値)を取得する。そして、動作決定部103は、取得した観測値(状態値)に対して、図8に示す処理によって作成された方策の1つに従って、当該状態における動作を決定する(ステップS122)。次に、動作評価部108は、動作決定部103によって決定された動作に関する評価値を表す評価情報を受け取ることによって、動作の評価値を決定する(ステップS123)。動作評価部108は、所望の状態と、当該動作によって生じる状態との差異に従い、当該動作に関する評価値を作成することによって、動作の評価値を決定してもよい。この場合、動作評価部108は、たとえば、当該差異が大きいほど動作に関する質が低く、当該差異が小さいほど動作に関する質が高いことを表す評価値を作成する。そして、動作評価部108は、複数の状態を含むエピソードに関して、各状態を実現する動作の質を、それぞれ決定する(ステップS121乃至ステップS124に示されたループ)。
次に、総合評価部109は、各動作に関する評価値の合計を算出する。すなわち、総合評価部109は、当該方策に従い決定した一連の動作に対する合計値を算出することによって、当該方策に関する評価値を算出する(ステップS125)。これにより、総合評価部109は、1つのエピソードについての当該方策に関する評価値を算出する。なお、総合評価部109は、方策に関して算出した評価値(すなわち、当該方策の質)と、当該方策を表す識別子とが関連付けされた評価情報を作成し、作成した方策評価情報を方策評価情報記憶部107に格納してもよい。
なお、方策評価部104は、図11に例示した処理を複数のエピソードそれぞれに関して実行し、その平均値を算出することによって、当該方策の評価値を算出してもよい。また、動作決定部103は、次の状態を実現する動作を先に決定してもよい。すなわち、動作決定部103が、先に、エピソードに含まれている動作を、当該方策に従って全て求め、動作評価部108が、当該エピソードに含まれている状態の評価値を決める処理を実行してもよい。
具体例を参照しながら、図11に示された処理について説明する。説明の便宜上、1エピソードは、200ステップ(すなわち、201個の状態)で構成されているとする。また、1ステップごとに、各ステップの状態における動作が良好である場合には(+1)、良好でない場合には(-1)なる評価値であるとする。この場合において、ある方策に従って動作を決定したとき、当該方策に関する評価値は、-200から200までの値である。動作が良好である場合か否かは、たとえば、所望の状態と、動作によって到達する状態との差異に基づき決定することができる。つまり、所望の状態と、動作によって到達する状態との差異が予め定められた閾値以下である場合に、動作が良好であると判定されてもよい。
動作決定部103は、評価対象である1つの方策に従い、ある状態に対する動作を決定する。制御部151は、決定された動作を実行する。次に、動作評価部108は、動作決定部103によって決定された動作に関する評価値を算出する。たとえば、動作評価部108は、動作が良好である場合には(+1)、良好でない場合には(-1)なる評価値を算出する。動作評価部108は、200ステップを含む1エピソードにおける各動作に関して、評価値を算出する。
方策評価部104において、総合評価部109は、各ステップについて算出された評価値の合計値を算出することによって、当該1つの方策に関する評価値を算出する。方策評価部104は、たとえば、方策1乃至方策4に関して、以下に示すような評価値を算出したとする。
方策1:200
方策2:-200
方策3:-40
方策4:100
この場合において、方策選択部105は、たとえば、4つの方策のうち、方策評価部104によって算出された評価値が上位50%である2つの方策を選ぶときに、評価値が大きい方策1、及び、方策4を選択する。つまり、方策選択部105は、複数の方策の中から、質が高い方策を選択する(図2のS104)。
分布更新部106は、方策選択部105によって選択された、質の高い方策に含まれる各方策パラメータに関して、当該パラメータ値の平均と標準偏差とを算出する。これにより、分布更新部106は、各方策パラメータが従うガウス分布等の分布(確率分布)を更新する(図2のS105)。そして、更新された分布を用いて、再度、図2の処理が行われる。つまり、方策作成部102は、更新された分布を用いて、図8に示した処理を実行して、再度、複数(b個)の方策を作成する。そして、動作決定部103は、再度作成された複数の方策それぞれについて、方策に従う動作を決定し、方策評価部104は、再度作成された複数の方策それぞれについて、評価値を決定する。
このように、質の高い方策を用いて分布を更新していくので、方策パラメータが従う分布における平均値μが、より質の高い方策を実現し得るような値に近づき得る。さらに、方策パラメータが従う分布における標準偏差σが、より小さくなり得る。したがって、分布の幅は、更新されるにつれて、より狭くなり得る。これにより、方策作成部102は、更新された分布を用いることで、より評価値の高い(質の高い)方策を表現する方策パラメータを算出する可能性が高くなる。言い換えると、方策作成部102が、更新された分布を用いて方策パラメータを算出することで、質の高い方策を作成する可能性が高くなる。したがって、図2に示すような処理を繰り返すことで、方策の評価値が、向上し得る。そして、例えば、このような処理を予め定められた回数繰り返して、得られた複数の方策のうち、評価値が最大となる方策を、対象170に関する方策として決定してもよい。これにより、質の高い方策を得ることが可能となる。
なお、動作決定部103は、方策評価情報記憶部107に格納されている方策評価情報の中から、評価値が最も大きな(すなわち、質が最も高い)方策を表す識別子を特定し、特定した識別子が表す方策に従い、当該動作を決定してもよい。つまり、方策作成部102は、再度複数の方策を作成する際に、例えば、更新された分布を用いて(b-1)個の方策を作成し、残りの1個を、過去に作成された方策のうちで評価値が最も大きな方策を抽出してもよい。そして、動作決定部103は、更新された分布を用いて作成された(b-1)個の方策と、過去に作成された方策のうちで評価値が最も大きな方策とについて、動作を決定してもよい。このようにすることで、過去に評価値の高かった方策が、分布が更新されていった後であっても評価が比較的高かった場合に、その方策を適切に選択することができる。したがって、質の高い方策をより効率的に作成することが可能となる。
図3に例示された倒立振り子の例において、動作が良好であるか否かの判定は、当該動作によって生じた状態と、振り子が倒立した状態VIとの差異に基づき行う。たとえば、当該状態によって生じた状態が状態IIIであるとすると、状態VIにおける振り子の方向と、状態IIIにおける振り子の方向とのなす角に基づいて、動作が良好であるか否かの判定を行う。
また、上述した例において、方策評価部104は、エピソードに含まれている各状態に基づいて方策を評価した。しかしながら、動作を実行することによって将来到達しうる状態を予測し、予測した状態と、所望の状態との差異を算出することによって、当該方策を評価してもよい。言い換えると、方策評価部104は、動作を実行することによって決定される状態に関する評価値の見積もり値(または、期待値)に基づき、方策を評価してもよい。また、方策評価部104は、ある方策に関して、複数のエピソードを用いて図11に示された処理を繰り返し実行することによって、各エピソードに関する方策の評価値を算出し、その平均値(中央値等)を算出してもよい。すなわち、方策評価部104が実行する処理は上述した例に限定されない。
次に、第1の実施形態に係る方策作成装置101に関する効果について説明する。第1の実施形態に係る方策作成装置101によれば、質が高くかつ、視認性が高い方策を作成することができる。この理由は、方策作成装置101が、所定の個数のルールを含む方策を、対象170に適合するように作成するからである。
まず、図12及び図13を参照しながら、第1の実施形態に係る方策作成装置101が、上述したような効果のうち、質が高いという効果を奏する理由について説明する。図12及び図13は、第1の実施形態において、倒立振り子(図3に例示)を例題として用いた場合において、方策の質を評価した結果を表す図である。
図12及び図13の横軸は、図4における方策を表す決定木の深さを表し、右側であるほど、決定木が深いことを表す。図12及び図13の縦軸は、方策の質を表し、上側であるほど質が高く、下側であるほど質が低いことを表している。点線は、ニューラルネットワークを用いて方策を作成した場合に到達した最高の質を表している。折れ線は、本実施形態に係る方策作成装置101が、各決定木の深さにて作成した方策の質を表している。図12は、トレーニングデータに対する方策の質を表している。図13は、テストデータに対する方策の質を表している。
図12において、点線と折れ線とを比較すると、決定木の深さが3以上の方策において、点線と折れ線とが同等の質であることが示されている。これは、本実施形態に係る方策作成装置101は、決定木の深さが3以上の方策で、ニューラルネットワークを用いた場合に達成しうる最高の質と同程度の方策を作成したことを表す。同様に、図13において、点線と折れ線とを比較すると、決定木の深さが3以上の方策において、点線と折れ線とが同等の質であることが示されている。これは、本実施形態に係る方策作成装置101は、決定木の深さが3以上の方策で、ニューラルネットワークを用いた場合に達成しうる最高の質と同程度の方策を作成したことを表す。したがって、方策作成装置101は、トレーニングデータ及びテストデータのいずれの場合にも、決定木の深さが3以上の方策において、ニューラルネットワークを用いた場合に達成しうる最高の質と同程度の方策を作成することができる。
次に、図14を参照しながら、第1の実施形態に係る方策作成装置101が、上述したような効果のうち、視認性が高い方策を作成するという効果を奏する理由について説明する。図14は、倒立振り子を例題として用いた場合において、第1の実施形態に係る方策作成装置101が作成した方策を概念的に表す図である。
倒立振り子(図3に例示)の例の場合に、図14の例では、深さが3(D=3)の決定木で方策を表している。したがって、方策作成装置101は、図14に例示されているように、7個(=2-1)の条件と、8個(=2)の動作と含む方策を用いて、対象170に適した方策を作成している。図14においては、決定木の深さ(階層の深さ)は、「3」であるので、決定木の木構造は、比較的浅く、したがってユーザが容易に理解可能な程度に簡単な構造である。さらに、図14においては、各ノードにおいて、条件を表すパラメータ、及び、動作(次の状態)を表すパラメータが、明示的に示されている。したがって、図14に示された方策では、対象170に関して施す動作を決定する際の判定処理が明確に示されているので、ユーザは、当該方策に従い、たとえば、動作を決定する際にどの観測値が起因しているのかを、視覚的に容易に特定することができる。したがって、第1の実施形態に係る方策作成装置101によれば、質が高くかつ、視認性が高い方策を作成することができる。
なお、「対象170の状態」という言葉を用いて、方策作成装置101における処理を説明したが、状態は、必ずしも、対象170の実際の状態である必要はない。例えば、対象170の状態をシミュレーションしたシミュレータによって算出された結果を表す情報であってもよい。この場合、制御部151は、シミュレータで実現され得る。
(第2の実施形態)
次に、第2の実施形態について説明する。
図15は、第2の実施形態に係る方策作成装置101の構成を示すブロック図である。以下、図15を参照しながら、第2の実施形態に係る方策作成装置201が有する構成について詳細に説明する。
第2の実施形態に係る方策作成装置201は、方策作成部202と、動作決定部203と、方策評価部204と、方策選択部205とを有する。方策作成部202は、図1等を参照しながら説明したような方策作成部102が有している機能と同様な機能によって実現することができる。動作決定部203は、図1等を参照しながら説明したような動作決定部103が有している機能と同様な機能によって実現することができる。方策評価部204は、図1等を参照しながら説明したような方策評価部104が有している機能と同様な機能によって実現することができる。方策選択部205は、図1等を参照しながら説明したような方策選択部105が有している機能と同様な機能によって実現することができる。したがって、方策作成装置201は、図1等を参照しながら説明したような方策作成装置101が有している機能と同様な機能によって実現することができる。そして、方策作成装置201は、対象に関して施す動作を決定する方策を、決定した当該動作に関する質に基づき作成する。
図16は、第2の実施形態に係る方策作成装置201によって実行される方策作成方法の流れを示すフローチャートである。図16を参照しながら、第2の実施形態に係る方策作成装置201における処理について詳細に説明する。
方策作成部202は、対象の状態を判定する条件と当該状態における動作とが組み合わされたルールを所定の個数分含む方策を、複数作成する(ステップS201)。方策作成部202は、たとえば、対象170の状態に関して観測された観測値に基づき、対象170の状態を判定する条件と、当該条件に応じた動作を決定する。あるいは、方策作成部202は、たとえば、対象170の状態に関して観測された観測値に基づき、対象170の状態を判定する条件と、当該条件に応じた状態の次に生じる次状態とを特定し、特定した次状態に至るための動作を決定してもよい。方策作成部202は、特定した条件と、決定した動作とが組み合わされたルールを作成する。そして、方策作成部202は、このルールを所定の個数含むような方策を、複数作成する。
動作決定部203は、方策作成部202によって作成された複数の方策それぞれについて、方策に従って、対象170の状態が第1状態から第2状態になるまでの動作を決定する(ステップS202)。方策評価部204は、第1状態と第2状態との間の状態と、所望の状態と差異に従って、決定された動作の質を決定し、決定された動作の質に基づいて、複数の方策それぞれについて方策の質を決定する(ステップS203)。なお、所望の状態は、対象の目的となり得る状態を表す。
次に、方策選択部205は、作成された複数の方策の中から、決定された質が高い方策を選択する(ステップS204)。具体的には、方策選択部205は、複数の方策の中から、質が最も高い方策、または、質が比較的高い(すなわち、質が上位の)方策を選択する。ここで、「質が上位の方策」とは、たとえば、複数の方策のうち、質が高いほうから数えて5%、10%、15%等までに含まれている方策であってもよい。また、「質が上位の方策」とは、たとえば、b個の方策のうち、質が高い上位m個(mはbよりも小さい整数)の方策であってもよい。
次に、本発明の第2の実施形態に係る方策作成装置201に関する効果について説明する。第2の実施形態に係る方策作成装置201によれば、質が高くかつ、視認性が高い方策を作成することができる。この理由は、方策作成装置201が、所定の個数のルールを含む方策を、対象に適合するように作成するからである。
(ハードウェア構成例)
上述した各実施形態に係る方策作成装置を、1つの計算処理装置(情報処理装置、コンピュータ)を用いて実現するハードウェア資源の構成例について説明する。但し、各実施形態に係る方策作成装置は、物理的または機能的に少なくとも2つの計算処理装置を用いて実現されてもよい。また、各実施形態に係る方策作成装置は、専用の装置として実現されてもよいし、汎用の情報処理装置で実現されてもよい。
図17は、各実施形態に係る方策作成装置を実現可能な計算処理装置のハードウェア構成例を概略的に示すブロック図である。計算処理装置20は、CPU21(Central Processing Unit;中央処理演算装置)、揮発性記憶装置22、ディスク23、不揮発性記録媒体24、及び、通信IF27(IF:Interface)を有する。したがって、各実施形態に係る方策作成装置は、CPU21、揮発性記憶装置22、ディスク23、不揮発性記録媒体24、及び、通信IF27を有しているといえる。計算処理装置20は、入力装置25及び出力装置26に接続可能であってもよい。計算処理装置20は、入力装置25及び出力装置26を備えていてもよい。また、計算処理装置20は、通信IF27を介して、他の計算処理装置、及び、通信装置と情報を送受信することができる。
不揮発性記録媒体24は、コンピュータが読み取り可能な、たとえば、コンパクトディスク(Compact Disc)、デジタルバーサタイルディスク(Digital Versatile Disc)である。また、不揮発性記録媒体24は、USB(Universal Serial Bus)メモリ、ソリッドステートドライブ(Solid State Drive)等であってもよい。不揮発性記録媒体24は、電源を供給しなくても係るプログラムを保持し、持ち運びを可能にする。なお、不揮発性記録媒体24は、上述した媒体に限定されない。また、不揮発性記録媒体24の代わりに、通信IF27及び通信ネットワークを介して、係るプログラムが供給されてもよい。
揮発性記憶装置22は、コンピュータが読み取り可能であって、一時的にデータを記憶することができる。揮発性記憶装置22は、DRAM(dynamic random Access memory)、SRAM(static random Access memory)等のメモリ等である。
すなわち、CPU21は、ディスク23に格納されているソフトウェア・プログラム(コンピュータ・プログラム:以下、単に「プログラム」と称する)を、実行する際に揮発性記憶装置22にコピーし、演算処理を実行する。CPU21は、プログラムの実行に必要なデータを揮発性記憶装置22から読み取る。表示が必要な場合、CPU21は、出力装置26に出力結果を表示する。外部からプログラムを入力する場合、CPU21は、入力装置25からプログラムを取得する。CPU21は、上述した図1または図15に示される各構成要素の機能(処理)に対応する方策作成プログラム(図2、図8、図11、または、図16)を解釈し実行する。CPU21は、上述した各実施形態において説明した処理を実行する。言い換えると、上述した図1または図15に示される各構成要素の機能は、ディスク23又は揮発性記憶装置22に格納された方策作成プログラムを、CPU21が実行することによって実現され得る。
すなわち、各実施形態は、上述した方策作成プログラムによっても成し得ると捉えることができる。さらに、上述した方策作成プログラムが記録されたコンピュータが読み取り可能な不揮発性の記録媒体によっても、本発明の各実施形態は成し得ると捉えることができる。
(変形例)
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上述したフローチャートにおいて、各処理(ステップ)の順序は、適宜、変更可能である。また、複数ある処理(ステップ)のうちの1つ以上は、省略されてもよい。
また、上述した実施の形態では、方策パラメータごとに、つまり、式1、式2、式4、式6で示すパラメータθφ、パラメータθ、および、パラメータθの成分ごとに、独立した分布(確率分布)に従って、各方策パラメータの値を算出するとした。つまり、分布更新部106は、方策パラメータごとに、独立して、各方策パラメータに対応する分布について平均値及び標準偏差を算出して、分布を更新するとした。しかしながら、本実施の形態は、このような構成に限られない。方策パラメータそれぞれに相関がある場合、共分散を用いて、分布を更新してもよい。この場合、式1、式2、式4、式6に対して分散共分散行列を適用してもよい。
上述したように、方策プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
以上、上述した実施形態を模範的な例として本発明を説明した。しかし、本発明は、上述した実施形態には限定されない。すなわち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
対象の状態を判定する条件と当該状態における動作とが組み合わされたルールを所定の個数分含む方策を、複数作成する方策作成手段と、
作成された前記複数の方策それぞれについて、前記方策に従って、前記対象の状態が第1状態から第2状態になるまでの動作を決定する動作決定手段と、
前記第1状態と前記第2状態との間の状態と、所望の状態との差異に従って、決定された前記動作の質を決定し、決定された前記動作の質に基づいて、前記複数の方策それぞれについて前記方策の質を決定する方策評価手段と、
作成された前記複数の方策の中から、決定された前記質が高い方策を選択する方策選択手段と
を備える方策作成装置。
(付記2)
前記方策は、予め定められた少なくとも1つの分布に従う方策パラメータで表され、
前記方策作成手段は、前記分布に従って前記方策パラメータの値を算出することで、前記方策における前記条件及び前記動作のそれぞれを決定する
付記1に記載の方策作成装置。
(付記3)
前記方策選択手段によって選択された前記方策パラメータから、当該方策パラメータに関する前記分布を更新する分布更新手段
をさらに備え、
前記方策作成手段は、前記分布更新手段によって更新された前記分布に従って前記方策パラメータの値を算出することで、前記方策を作成する
付記2に記載の方策作成装置。
(付記4)
前記ルールにおける前記条件は、前記対象に関する複数の種類の特徴量のうちの少なくとも一部の種類の特徴量と、当該特徴量に関する観測値を判定する判定基準とを含み、
前記方策作成手段は、前記分布に従って算出された前記特徴量に関する前記方策パラメータに基づいて、前記条件における前記特徴量を選択する
付記2又は3に記載の方策作成装置。
(付記5)
前記方策作成手段は、前記一部の種類の特徴量それぞれについて前記特徴量に関する前記方策パラメータを算出し、前記方策パラメータのうち大きさが上位のものに関する前記特徴量を、前記条件における前記特徴量として選択する
付記4に記載の方策作成装置。
(付記6)
前記方策作成手段は、前記特徴量の観測値の範囲と、前記分布に従って算出された前記判定基準に関する前記方策パラメータに基づいて、前記条件における前記選択された特徴量に関する前記判定基準を算出する
付記4又は5に記載の方策作成装置。
(付記7)
前記方策作成手段は、前記ルールにおける前記動作に関する前記方策パラメータを前記分布に従って算出し、算出された前記動作に関する前記方策パラメータに基づいて、前記ルールにおける前記動作を決定する
付記2から6のいずれか1項に記載の方策作成装置。
(付記8)
前記方策作成手段は、前記方策を、終端ノードと前記終端ノードとは異なる非終端ノードとで構成される木構造に従って作成し、
前記木構造における前記非終端ノードには、前記条件が配置され、
前記木構造における終端ノードには、当該終端ノードに至る前記非終端ノードに配置された前記条件に応じた前記動作が配置されている
付記1から7のいずれか1項に記載の方策作成装置。
(付記9)
前記方策評価手段によって決定された前記方策の質と、前記方策を表す識別子とが関連付けされた方策評価情報を格納する方策評価情報記憶手段
をさらに備え、
前記方策評価手段は、決定した前記方策の質と、前記方策の識別子とを関連付けされた前記方策評価情報を前記方策評価情報記憶手段に格納し、
前記動作決定手段は、前記方策評価情報記憶手段に格納されている前記方策評価情報の中から、最も質が高い前記方策と関連付けされた前記識別子を選択し、選択した前記識別子が表す前記方策に従い、前記動作を決定する
付記1から8のいずれか1項に記載の方策作成装置。
(付記10)
付記1から9のいずれか1項に記載の方策作成装置と、
前記方策作成装置によって決定された前記動作に従って前記対象に関する制御を行う制御部と
を備える制御装置。
(付記11)
対象の状態を判定する条件と当該状態における動作とが組み合わされたルールを所定の個数分含む方策を、複数作成し、
作成された前記複数の方策それぞれについて、前記方策に従って、前記対象の状態が第1状態から第2状態になるまでの動作を決定し、
前記第1状態と前記第2状態との間の状態と、所望の状態との差異に従って、決定された前記動作の質を決定し、決定された前記動作の質に基づいて、前記複数の方策それぞれについて前記方策の質を決定し、
作成された前記複数の方策の中から、決定された前記質が高い方策を選択する
方策作成方法。
(付記12)
対象の状態を判定する条件と当該状態における動作とが組み合わされたルールを所定の個数分含む方策を、複数作成する機能と、
作成された前記複数の方策それぞれについて、前記方策に従って、前記対象の状態が第1状態から第2状態になるまでの動作を決定する機能と、
前記第1状態と前記第2状態との間の状態と、所望の状態との差異に従って、決定された前記動作の質を決定し、決定された前記動作の質に基づいて、前記複数の方策それぞれについて前記方策の質を決定する機能と、
作成された前記複数の方策の中から、決定された前記質が高い方策を選択する機能と
をコンピュータに実現させる方策作成プログラムが格納された非一時的なコンピュータ可読媒体。
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2018年12月27日に出願された日本出願特願2018-244598を基礎とする優先権を主張し、その開示の全てをここに取り込む。
101 方策作成装置
102 方策作成部
103 動作決定部
104 方策評価部
105 方策選択部
106 分布更新部
107 方策評価情報記憶部
108 動作評価部
109 総合評価部
150 制御装置
151 制御部
170 対象
201 方策作成装置
202 方策作成部
203 動作決定部
204 方策評価部
205 方策選択部
211 動作
212 動作
213 動作
214 動作

Claims (10)

  1. 対象の状態を判定する条件と当該状態における動作とが組み合わされたルールを所定の個数分含む方策を、複数作成する方策作成手段と、
    作成された前記複数の方策それぞれについて、前記方策に従って、前記対象の状態が第1状態から第2状態になるまでの動作を決定する動作決定手段と、
    前記第1状態と前記第2状態との間の状態と、所望の状態との差異に従って、決定された前記動作の質を決定し、決定された前記動作の質に基づいて、前記複数の方策それぞれについて前記方策の質を決定する方策評価手段と、
    作成された前記複数の方策の中から、決定された前記質が高い方策を選択する方策選択手段と
    を備える方策作成装置。
  2. 前記方策は、予め定められた少なくとも1つの分布に従う方策パラメータで表され、
    前記方策作成手段は、前記分布に従って前記方策パラメータの値を算出することで、前記方策における前記条件及び前記動作のそれぞれを決定する
    請求項1に記載の方策作成装置。
  3. 前記方策選択手段によって選択された前記方策パラメータから、当該方策パラメータに関する前記分布を更新する分布更新手段
    をさらに備え、
    前記方策作成手段は、前記分布更新手段によって更新された前記分布に従って前記方策パラメータの値を算出することで、前記方策を作成する
    請求項2に記載の方策作成装置。
  4. 前記ルールにおける前記条件は、前記対象に関する複数の種類の特徴量のうちの少なくとも一部の種類の特徴量と、当該特徴量に関する観測値を判定する判定基準とを含み、
    前記方策作成手段は、前記分布に従って算出された前記特徴量に関する前記方策パラメータに基づいて、前記条件における前記特徴量を選択する
    請求項2又は3に記載の方策作成装置。
  5. 前記方策作成手段は、前記ルールにおける前記動作に関する前記方策パラメータを前記分布に従って算出し、算出された前記動作に関する前記方策パラメータに基づいて、前記ルールにおける前記動作を決定する
    請求項2から4のいずれか1項に記載の方策作成装置。
  6. 前記方策作成手段は、前記方策を、終端ノードと前記終端ノードとは異なる非終端ノードとで構成される木構造に従って作成し、
    前記木構造における前記非終端ノードには、前記条件が配置され、
    前記木構造における終端ノードには、当該終端ノードに至る前記非終端ノードに配置された前記条件に応じた前記動作が配置されている
    請求項1から5のいずれか1項に記載の方策作成装置。
  7. 前記方策評価手段によって決定された前記方策の質と、前記方策を表す識別子とが関連付けされた方策評価情報を格納する方策評価情報記憶手段
    をさらに備え、
    前記方策評価手段は、決定した前記方策の質と、前記方策の識別子とを関連付けされた前記方策評価情報を前記方策評価情報記憶手段に格納し、
    前記動作決定手段は、前記方策評価情報記憶手段に格納されている前記方策評価情報の中から、最も質が高い前記方策と関連付けされた前記識別子を選択し、選択した前記識別子が表す前記方策に従い、前記動作を決定する
    請求項1から6のいずれか1項に記載の方策作成装置。
  8. 請求項1から7のいずれか1項に記載の方策作成装置と、
    前記方策作成装置によって決定された前記動作に従って前記対象に関する制御を行う制御部と
    を備える制御装置。
  9. 演算装置と記憶装置とを有するコンピュータによって実現される方策作成装置によって実行される方策作成方法であって、
    前記方策作成装置によって、対象の状態を判定する条件と当該状態における動作とが組み合わされたルールを所定の個数分含む方策を、複数作成し、
    前記方策作成装置によって、作成された前記複数の方策それぞれについて、前記方策に従って、前記対象の状態が第1状態から第2状態になるまでの動作を決定し、
    前記方策作成装置によって、前記第1状態と前記第2状態との間の状態と、所望の状態との差異に従って、決定された前記動作の質を決定し、決定された前記動作の質に基づいて、前記複数の方策それぞれについて前記方策の質を決定し、
    前記方策作成装置によって、作成された前記複数の方策の中から、決定された前記質が高い方策を選択する
    方策作成方法。
  10. 演算装置と記憶装置とを有するコンピュータによって実現される方策作成装置によって実現される方策作成プログラムであって、当該方策作成プログラムは、前記記憶装置に格納され、
    対象の状態を判定する条件と当該状態における動作とが組み合わされたルールを所定の個数分含む方策を、複数作成する機能と、
    作成された前記複数の方策それぞれについて、前記方策に従って、前記対象の状態が第1状態から第2状態になるまでの動作を決定する機能と、
    前記第1状態と前記第2状態との間の状態と、所望の状態との差異に従って、決定された前記動作の質を決定し、決定された前記動作の質に基づいて、前記複数の方策それぞれについて前記方策の質を決定する機能と、
    作成された前記複数の方策の中から、決定された前記質が高い方策を選択する機能と
    前記コンピュータの前記演算装置に実現させる方策作成プログラム。
JP2020562349A 2018-12-27 2019-09-10 方策作成装置、制御装置、方策作成方法、及び、方策作成プログラム Active JP7201958B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018244598 2018-12-27
JP2018244598 2018-12-27
PCT/JP2019/035576 WO2020137019A1 (ja) 2018-12-27 2019-09-10 方策作成装置、制御装置、方策作成方法、及び、方策作成プログラムが格納された非一時的なコンピュータ可読媒体

Publications (2)

Publication Number Publication Date
JPWO2020137019A1 JPWO2020137019A1 (ja) 2021-11-04
JP7201958B2 true JP7201958B2 (ja) 2023-01-11

Family

ID=71127807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020562349A Active JP7201958B2 (ja) 2018-12-27 2019-09-10 方策作成装置、制御装置、方策作成方法、及び、方策作成プログラム

Country Status (3)

Country Link
US (1) US11841689B2 (ja)
JP (1) JP7201958B2 (ja)
WO (1) WO2020137019A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102461732B1 (ko) * 2019-07-16 2022-11-01 한국전자통신연구원 강화 학습 방법 및 장치
JP7541442B2 (ja) * 2020-03-19 2024-08-28 Lineヤフー株式会社 生成装置、生成方法及び生成プログラム
WO2022029821A1 (ja) * 2020-08-03 2022-02-10 日本電気株式会社 方策作成装置、制御装置、方策作成方法、及び、プログラムが格納された非一時的なコンピュータ可読媒体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2621658B2 (ja) 1992-11-10 1997-06-18 オムロン株式会社 ルール生成装置および方法
JP2003233503A (ja) 2002-02-08 2003-08-22 Kobe University 強化学習システムおよびその方法
JP2012208902A (ja) 2011-03-30 2012-10-25 Honda Motor Co Ltd 最適制御システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282149A (en) * 1991-06-03 1994-01-25 Abbott Laboratories Adaptive scheduling system and method for a biological analyzer with reproducible operation time periods
JPH05282149A (ja) 1992-04-02 1993-10-29 Akita Pref Gov メタルールの動的生成方法
US6356158B1 (en) * 2000-05-02 2002-03-12 Xilinx, Inc. Phase-locked loop employing programmable tapped-delay-line oscillator
USRE40866E1 (en) * 2000-09-27 2009-08-04 Huron Ip Llc System, method, and architecture for dynamic server power management and dynamic workload management for multiserver environment
US20030214388A1 (en) * 2002-05-20 2003-11-20 Stuart James Riley RFID deployment system
JP4830787B2 (ja) * 2006-10-25 2011-12-07 日本電気株式会社 移動体通信システム、コアネットワーク装置及びそれらに用いるmbmsデータ送信方法
US9262643B2 (en) * 2010-02-22 2016-02-16 Sookasa Inc. Encrypting files within a cloud computing environment
US8566517B1 (en) * 2011-10-06 2013-10-22 Crossroads Systems, Inc. System, method and computer program product for optimization of tape performance using distributed file copies
US8918586B1 (en) * 2012-09-28 2014-12-23 Emc Corporation Policy-based storage of object fragments in a multi-tiered storage system
US9588704B2 (en) * 2014-12-23 2017-03-07 Commvault Systems, Inc. Secondary storage operation instruction tags in information management systems
US20170206353A1 (en) * 2016-01-19 2017-07-20 Hope Bay Technologies, Inc. Method and system for preventing malicious alteration of data in computer system
US11435705B2 (en) * 2016-06-10 2022-09-06 Nec Corporation Control objective integration system, control objective integration method and control objective integration program
JP7279445B2 (ja) * 2019-03-20 2023-05-23 富士通株式会社 予測方法、予測プログラムおよび情報処理装置
US11650551B2 (en) * 2019-10-04 2023-05-16 Mitsubishi Electric Research Laboratories, Inc. System and method for policy optimization using quasi-Newton trust region method
JP7363407B2 (ja) * 2019-11-21 2023-10-18 オムロン株式会社 追加学習装置、方法、及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2621658B2 (ja) 1992-11-10 1997-06-18 オムロン株式会社 ルール生成装置および方法
JP2003233503A (ja) 2002-02-08 2003-08-22 Kobe University 強化学習システムおよびその方法
JP2012208902A (ja) 2011-03-30 2012-10-25 Honda Motor Co Ltd 最適制御システム

Also Published As

Publication number Publication date
US11841689B2 (en) 2023-12-12
US20220100154A1 (en) 2022-03-31
JPWO2020137019A1 (ja) 2021-11-04
WO2020137019A1 (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
JP7201958B2 (ja) 方策作成装置、制御装置、方策作成方法、及び、方策作成プログラム
US11429854B2 (en) Method and device for a computerized mechanical device
KR102166105B1 (ko) 신경망 및 신경망 트레이닝의 방법
JP5068637B2 (ja) 製造プロセスにおける操業と品質の関連解析装置、解析方法、プログラム、及びコンピュータ読み取り可能な記録媒体
JP6077617B1 (ja) 最適な速度分布を生成する工作機械
TWI655587B (zh) 神經網路及神經網路訓練的方法
JP7152938B2 (ja) 機械学習モデル構築装置および機械学習モデル構築方法
JP2020191096A5 (ja) 推論方法、推論プログラム、モデル生成方法、モデル生成プログラム、推論装置及び学習装置
WO2022029821A1 (ja) 方策作成装置、制御装置、方策作成方法、及び、プログラムが格納された非一時的なコンピュータ可読媒体
KR20170140625A (ko) 운전자의 주행 패턴 인식 시스템 및 방법
JP7176285B2 (ja) 訓練データ評価装置、訓練データ評価方法、およびプログラム
WO2020255370A1 (ja) 加工条件探索装置およびワイヤ放電加工機
JP2000339005A (ja) 制御対象の最適化制御方法及び制御装置
JP2020021301A (ja) 訓練データ評価装置、訓練データ評価方法、およびプログラム
JP7378309B2 (ja) 作業装置
JP2021197032A (ja) 制御装置、方法及びプログラム
JPWO2022038729A5 (ja) ルール生成装置、ルール生成方法、及び制御プログラム
JP6785741B2 (ja) 最適化装置、交通信号制御システム、パラメータ探索装置、最適化方法、及びプログラム
JP5581753B2 (ja) プラント制御装置、そのモデル予測制御装置
KR102695503B1 (ko) 예측 모델을 이용한 공정 조건을 도출하기 위한 장치 및 이를 위한 방법
JP2014118013A (ja) タイヤ接地端形状の予測方法、タイヤ接地端形状の予測装置及びタイヤ接地端の予測プログラム
WO2024203905A1 (ja) 条件予測方法、プログラム、および装置
JP7360016B2 (ja) データ処理方法、データ処理装置、及びプログラム
US12099935B2 (en) Technical knowledge prediction apparatus, method, and program
EP3852024A1 (en) Information processing apparatus, information processing method, and information processing program

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221208

R150 Certificate of patent or registration of utility model

Ref document number: 7201958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150