JP7201512B2 - Fiber reinforced sheet and manufacturing method thereof - Google Patents
Fiber reinforced sheet and manufacturing method thereof Download PDFInfo
- Publication number
- JP7201512B2 JP7201512B2 JP2019069038A JP2019069038A JP7201512B2 JP 7201512 B2 JP7201512 B2 JP 7201512B2 JP 2019069038 A JP2019069038 A JP 2019069038A JP 2019069038 A JP2019069038 A JP 2019069038A JP 7201512 B2 JP7201512 B2 JP 7201512B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- reinforced sheet
- resin
- rib
- thermoplastic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/30—Wind power
Landscapes
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Molding Of Porous Articles (AREA)
Description
本発明は、炭素繊維束を含む繊維強化シートに関する。 The present invention relates to a fiber-reinforced sheet containing carbon fiber bundles.
一般に、繊維強化シートでは、強化繊維束中に樹脂を含浸させ、樹脂と強化繊維とを一体化させることで、高い性能を発現している。 In general, a fiber-reinforced sheet exhibits high performance by impregnating a reinforcing fiber bundle with a resin and integrating the resin and the reinforcing fiber.
強化繊維束中に含浸される樹脂としては、熱硬化性樹脂及び熱可塑性樹脂等が挙げられる。高分子量の熱硬化性樹脂や、一般の熱可塑性樹脂の溶融粘度は高い。溶融粘度が高い樹脂を強化繊維束中に含浸させることは容易ではない。このため、繊維強化シートを各種の形状に成形することは容易ではなく、特に大型の繊維強化シートを成形することは容易ではない。 Thermosetting resins, thermoplastic resins, and the like can be used as resins impregnated into the reinforcing fiber bundles. High-molecular-weight thermosetting resins and general thermoplastic resins have high melt viscosities. It is not easy to impregnate a reinforcing fiber bundle with a resin having a high melt viscosity. For this reason, it is not easy to mold fiber-reinforced sheets into various shapes, and in particular, it is not easy to mold large-sized fiber-reinforced sheets.
下記の特許文献1には、樹脂未含浸部からなる基材部に、少なくとも1つのリブ部を備え、該リブ部が、炭素繊維強化熱可塑性樹脂複合体からなる表層と、熱可塑性樹脂からなるコア部とを備える繊維強化シートが開示されている。更に段落110には軽量化のために、芯部の樹脂に気泡を備えていてもよいことが開示されている。
In
本発明者等は、検討の結果、特許文献1に記載された繊維強化シートを用いて、リブ長さが1m以上の繊維強化シートを押出成形で製造しようとした際に、コア部に含まれる熱可塑性樹脂の収縮によって発生する張力によって、繊維強化シートの長手方向に反りが発生するという問題や、反りによって基材とコア部との密着性が不十分となり機械強度が低下してしまうという問題を見いだした。
As a result of investigation, the present inventors found that when attempting to manufacture a fiber-reinforced sheet having a rib length of 1 m or more by extrusion molding using the fiber-reinforced sheet described in
本発明の目的は、上記課題に鑑み、反りが少なく、機械強度に優れた長尺の繊維強化シート及びその製造方法を提供することにある。 SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a long fiber-reinforced sheet that is less warped and has excellent mechanical strength, and a method for producing the same.
本発明者等は、鋭意検討の結果、コア部に含まれる熱可塑性樹脂の収縮量に相当する量の発泡倍率とすることで、発泡熱可塑性樹脂を用いることによる機械特性の低下を抑制しつつ、繊維強化シートの反りを改善できることを見いだした。即ち、本発明の要旨は下記の通りである。 As a result of intensive studies, the present inventors have found that by setting the expansion ratio to an amount corresponding to the amount of shrinkage of the thermoplastic resin contained in the core portion, while suppressing the deterioration of mechanical properties due to the use of the foamed thermoplastic resin. , can improve the warpage of fiber reinforced sheets. That is, the gist of the present invention is as follows.
[1]基材部に対し、炭素繊維と熱可塑性樹脂を含む少なくとも1つのリブ部を備え、
前記リブ部が、炭素繊維強化熱可塑性樹脂複合体からなるスキン部と、
熱可塑性樹脂からなるコア部とを備える、繊維強化シートであって、
前記コア部の樹脂発泡倍率が1.05倍~2.0倍である、繊維強化シート。
[1] At least one rib portion containing carbon fiber and thermoplastic resin is provided on the base portion,
a skin portion in which the rib portion is made of a carbon fiber reinforced thermoplastic resin composite;
A fiber-reinforced sheet comprising a core portion made of a thermoplastic resin,
A fiber-reinforced sheet, wherein the resin foaming ratio of the core portion is 1.05 to 2.0 times.
[2]前記基材部が、樹脂未含浸繊維束部又は樹脂を含浸していない表面を有する樹脂部分含浸部を含む、[1]の繊維強化シート。 [2] The fiber-reinforced sheet according to [1], wherein the base material portion includes a resin-unimpregnated fiber bundle portion or a partially resin-impregnated portion having a surface not impregnated with resin.
[3]前記基材部が、ガラスマット層又はガラスロービング層の何れかの層を含む、[1]または[2]の繊維強化シート。 [3] The fiber-reinforced sheet of [1] or [2], wherein the base material includes either a glass mat layer or a glass roving layer.
[4]前記基材部が、不飽和ポリエステル樹脂を部分含浸されている[1]~[3]の何れかの繊維強化シート。 [4] The fiber-reinforced sheet according to any one of [1] to [3], wherein the base material is partially impregnated with an unsaturated polyester resin.
[5]前記コア部の熱可塑性樹脂に、中空のアクリル粒子を含む、[1]~[4]の何れかの繊維強化シート。 [5] The fiber-reinforced sheet according to any one of [1] to [4], wherein the thermoplastic resin of the core portion contains hollow acrylic particles.
[6]前記スキン部の炭素繊維強化熱可塑性樹脂複合体が、一方向性連続繊維を含むプリプレグシートである、[1]~[5]の何れかの繊維強化シート。 [6] The fiber-reinforced sheet according to any one of [1] to [5], wherein the carbon fiber-reinforced thermoplastic resin composite of the skin portion is a prepreg sheet containing unidirectional continuous fibers.
[7]前記リブ部の幅が0.3~2cmであり、高さが0.3~7cmであり、長さが10cm以上である、[1]~[6]の何れかの繊維強化シート。 [7] The fiber-reinforced sheet according to any one of [1] to [6], wherein the rib portion has a width of 0.3 to 2 cm, a height of 0.3 to 7 cm, and a length of 10 cm or more. .
[8]前記リブ部の長手方向垂直断面形状において、リブ部の頂点が湾曲形状である、[1]~[7]の何れかの繊維強化シート。 [8] The fiber-reinforced sheet according to any one of [1] to [7], wherein, in the cross-sectional shape of the rib portion perpendicular to the longitudinal direction, the vertex of the rib portion has a curved shape.
[9]繊維強化シートを製造する方法であって、
炭素繊維強化熱可塑性樹脂複合体と、
熱可塑性樹脂100重量部に対し、発泡剤を0.1~4質量部含む熱可塑性樹脂組成物と、
基材部と、
を押出成形して、前記基材部の表面に少なくとも1つの凸状部を形成することを含む、繊維強化シートの製造方法。
[9] A method for producing a fiber-reinforced sheet, comprising:
a carbon fiber reinforced thermoplastic resin composite;
A thermoplastic resin composition containing 0.1 to 4 parts by mass of a foaming agent with respect to 100 parts by weight of the thermoplastic resin;
a base material;
to form at least one convex portion on the surface of the substrate portion.
[10]押出成形時の金型温度が200~240℃である、[9]の繊維強化シートの製造方法。 [10] The method for producing a fiber-reinforced sheet according to [9], wherein the mold temperature during extrusion molding is 200 to 240°C.
[11]前記第1保護層形成溶液が、変性シリコーン樹脂およびエポキシ硬化剤を含む第1液剤と、エポキシ樹脂および変性シリコーン重合触媒を含む第2液剤とからなり、前記第1液剤と前記第2液剤とを混合して第1保護層形成溶液を調製する工程を含む、[7]~[10]いずれかの表面保護方法。 [11] The first protective layer forming solution comprises a first liquid containing a modified silicone resin and an epoxy curing agent, and a second liquid containing an epoxy resin and a modified silicone polymerization catalyst. The surface protection method according to any one of [7] to [10], comprising the step of mixing with a liquid agent to prepare a first protective layer forming solution.
本発明の繊維強化シートは成形体に反りがなく、基材とリブ部との接着強度に優れるため、風車等の構造物の仕切り部材(シアウェブ)等に好ましく用いられる。
また、基材部が接着剤との界面接着強度に優れる素材の場合は、コンクリート構造物、金属構造物、樹脂構造物に、繊維強化シートを接着することで、対象物の機械強度を向上させることができる。
より具体的には、既存建築物の柱や壁面に本発明の繊維強化シートを接着することで耐震性を向上させることや、船、電車、自動車等の構造部に繊維強化シートを接着することで、従来の構造部材よりも軽量化することができる。
The fiber-reinforced sheet of the present invention is preferably used as a partitioning member (sheer web) for structures such as windmills, etc., because the molded article does not warp and the adhesive strength between the substrate and the rib portion is excellent.
In addition, if the base material is made of a material that has excellent interfacial adhesion strength with an adhesive, the mechanical strength of the target object can be improved by bonding the fiber reinforced sheet to the concrete structure, metal structure, or resin structure. be able to.
More specifically, the fiber-reinforced sheet of the present invention is adhered to the pillars and walls of existing buildings to improve earthquake resistance, and the fiber-reinforced sheet is adhered to the structural parts of ships, trains, automobiles, and the like. and can be made lighter than conventional structural members.
以下、図面を参照して本発明を実施する好ましい形態の一例について説明する。ただし、下記の実施形態は本発明を説明するための例示であり、本発明は下記の実施形態に何ら限定されるものではない。 An example of a preferred mode for carrying out the present invention will be described below with reference to the drawings. However, the following embodiments are examples for explaining the present invention, and the present invention is not limited to the following embodiments.
<1.繊維強化シート>
図1は、繊維強化シート1の一実施形態を説明するための図である。図1に示すように、繊維強化シート1は、シート状の基材部10と、基材部10上に設けられた複数のリブ部11とを有している。そして、リブ部11は表面側のスキン部12に被覆されたコア部13から構成されている。
<1. Fiber Reinforced Sheet>
FIG. 1 is a diagram for explaining an embodiment of a fiber-reinforced
図2は、繊維強化シートの斜視図である。複数のリブ部11は、基材部10に沿った第1方向d1に配列されている。各リブ部11は、第1方向d1に直交して基材部10に沿った第2方向d2に直線状に延在している。即ち、繊維強化シート1の長手方向(第1方向d1)に対して垂直な方向に、線状のリブ部11が延在するように繊維強化シート1が形成されている。したがって、配列方向に隣り合う二つのリブ部11の間に、リブ部11が存在しない基材部10からなる層が存在する。
FIG. 2 is a perspective view of a fiber-reinforced sheet. The plurality of
本発明の繊維強化シートの長さは特に限定されないが、長い程反りが発生しやすい観点から通常10cm以上、好ましくは50cm以上、より好ましくは100cm以上、更に好ましくは200cm以上であり、一方上限は通常50m以下、好ましくは10m以下、より好ましくは5m以下である。 Although the length of the fiber-reinforced sheet of the present invention is not particularly limited, it is usually 10 cm or longer, preferably 50 cm or longer, more preferably 100 cm or longer, and still more preferably 200 cm or longer, from the viewpoint that the longer the sheet, the more likely warpage occurs. It is usually 50 m or less, preferably 10 m or less, more preferably 5 m or less.
<2.基材部>
本発明の繊維強化シート1において、基材部10の厚みは、特に限定されないが、通常2.0cm以下であることが好ましく、より好ましくは1.0cm以下、特に好ましくは0.5cm以下である。なお、基材部10の厚みが均一でないときは、基材部全体の平均厚みを厚みとする。
<2. Base Material>
In the fiber-reinforced
本発明の基材部10は、リブ部と接着出来る材料であれば特に限定されない。例えば、熱可塑性樹脂や熱硬化性樹脂を含む樹脂シート;鉄、アルミ等の金属シート;ガラスシート、ガラス繊維や炭素繊維からなる繊維状基材;等が挙げられ、リブ部に用いられる熱可塑性樹脂との接着強度の観点から繊維状基材が好ましく、コスト面からガラス繊維を含む繊維状基材がより好ましい。また、基材部10は1層であっても2層以上であってもよい。
The
例えば、ガラス繊維を含む繊維状基材の形態としては、サフェースマット、ガラスマット、ガラスクロス、ロービングクロスの何れでもよく、熱可塑性樹脂との接着性の観点から織物構造を備えるガラスクロス又はロービングクロスが好ましく、ロービングクロスがより好ましい。 For example, the form of the fibrous base material containing glass fibers may be surface mat, glass mat, glass cloth, or roving cloth. A cloth is preferred, and a roving cloth is more preferred.
本発明の基材部10は、リブ部との接着性及び基材部の機械強度の観点から、ガラス繊維層が2層以上含まれていてもよく、ガラスクロス層とロービングクロス層を少なくとも備えることがより好ましい。リブ部と接触する層にガラスクロス層を備えることが更に好ましい。また、外観やガラス繊維の飛散性(皮膚刺激性)を低減するために、3層以上の構成とした上で、ガラスロービング層の両面をガラスクロス層としてもよい。
From the viewpoint of adhesion to the rib portion and mechanical strength of the base portion, the
本発明の基材部10は、樹脂に含浸されていてもよいし、未含浸部を備えていてもよいが、基材部をコンクリートや、金属、樹脂からなる構造部材に接着するためには、基材部10は樹脂未含浸部を備えることが好ましく、基材部10のリブ部11を備える面の反対面が樹脂未含浸であることがより好ましく、リブ部との接着面及び繊維層の接着面以外の箇所で樹脂が含浸していない状態が更に好ましい。
The
基材部が樹脂に含浸されている場合、用いる樹脂としては、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド樹脂等の熱可塑性樹脂や、フェノール系樹脂、エポキシ系樹脂等の熱硬化性樹脂が挙げられ、ガラス繊維との接着材の観点からポリオレフィン系樹脂、ポリエステル系樹脂、エポキシ系樹脂が好ましく用いられ、ポリエステル系樹脂がより好ましく、不飽和ポリエステル系樹脂が更に好ましい。 When the base material is impregnated with a resin, the resin to be used includes, for example, thermoplastic resins such as polyolefin resins, polyester resins and polyamide resins, and thermosetting resins such as phenol resins and epoxy resins. Polyolefin resins, polyester resins, and epoxy resins are preferably used from the viewpoint of adhesives with glass fibers, polyester resins are more preferable, and unsaturated polyester resins are still more preferable.
<3.リブ部>
本発明の繊維強化シート1において、基材部10上に設けられたリブ部11の高さは、繊維強化シート1が第2方向d2に折れ曲がらない高さであることが好ましい。具体的には通常0.3cm以上、好ましくは0.8cm以上、より好ましくは1.2cm以上、特に好ましくは2.0cm以上であり、上限は特に限定されないが通常7cm以下、好ましくは5.1cm以下、より好ましくは4.0cm以下、更に好ましくは3.0cm以下である。
<3. Rib part>
In the fiber-reinforced
リブ部11の高さが上記範囲であると、繊維強化シート1が第2方向d2に対して垂直方向への応力に対し、高い曲げ強度を備える。なお、リブ部11の高さとは、リブ部12が存在しない基材部10の表面から、リブ部11の頂点部に存在するスキン部12の表面までを測定した長さである。
When the height of the
また、リブ部11の幅は、リブ部の高さに合わせて任意に調整することが出来るが、通常0.3cm以上、好ましくは0.5cm以上、より好ましくは0.8cm以上、特に好ましくは1.0cm以上であり、上限は特に限定されないが通常5.0cm以下、好ましくは3.0cm以下、より好ましくは2.0cm以下である。
The width of the
リブ部11の幅が上記範囲であると、繊維強化シート1が第2方向d2に対して垂直方向への応力に対し、高い曲げ強度を備える。なお、リブ部11の幅とは、リブ部12が存在しない基材部10の表面から、リブ部11の頂点部に存在するスキン部12の表面までを測定した長さである。
When the width of the
また、リブ部11の長さは、長い程反りが発生しやすい観点から通常10cm以上、好ましくは50cm以上、より好ましくは100cm以上、更に好ましくは200cm以上であり、一方上限は通常50m以下、好ましくは10m以下、より好ましくは5m以下である。
In addition, the length of the
押出成形で製造する場合は、実質的に長さの上限はなく、目的とする用途に応じて切断すればよい。 When manufactured by extrusion molding, there is substantially no upper limit to the length, and the length may be cut according to the intended use.
<4.スキン部>
本発明のリブ部11はスキン部12とコア部13を備え、外層がスキン部12、芯層がコア部13であることが好ましい。スキン部13は炭素繊維と熱可塑性樹脂を含む炭素繊維強化熱可塑性樹脂複合体からなり、炭素繊維に熱可塑性樹脂が含浸されたプリプレグシートであることが好ましい。
<4. Skin>
The
(4.1炭素繊維)
本発明のスキン部13に用いる炭素繊維としては、例えば、PAN系炭素繊維、PITCH系炭素繊維などが挙げられ、PAN系炭素繊維が好ましく用いられる。炭素繊維の平均径は、4μm以上が好ましく、6μm以上がより好ましい。また、炭素繊維の平均径は、30μm以下が好ましく、20μm以下がより好ましい。なお、本発明において、平均径とは、ランダムに選択した100個の炭素繊維の繊維径の相加平均値である。また、繊維径とは、繊維の長さ方向に直交する方向に沿った断面において、この断面(略円形)の直径のことをいう。
(4.1 carbon fiber)
Examples of carbon fibers used for the
各炭素繊維は、一般的に単繊維(フィラメント)であり、また、炭素繊維は複数集まって炭素繊維束(トウ)を構成する。好ましくは炭素繊維束を用いることが好ましい。 Each carbon fiber is generally a single fiber (filament), and a plurality of carbon fibers together form a carbon fiber bundle (tow). Carbon fiber bundles are preferably used.
各炭素繊維束を構成している炭素繊維の本数(ストランド一本あたりに含まれるフィラメントの数)は、通常1000本以上、好ましくは3000本以上、より好ましくは12000本以上、更に好ましくは24000本以上であり、一方上限は特に限定されないが、通常100000本以下、好ましくは50000本以下、より好ましくは48000本以下、特に好ましくは30000本以下である。 The number of carbon fibers constituting each carbon fiber bundle (the number of filaments contained per strand) is usually 1,000 or more, preferably 3,000 or more, more preferably 12,000 or more, and still more preferably 24,000. Although the upper limit is not particularly limited, it is usually 100,000 or less, preferably 50,000 or less, more preferably 48,000 or less, and particularly preferably 30,000 or less.
一般に炭素繊維束のフィラメント数が増える程、フィラメントあたりの機械物性及び樹脂の含浸性も低下する傾向にあるが、同様に炭素繊維束の重量あたりの価格も低下するため、用途に応じて適切なフィラメント数の炭素繊維束を選択することができる。 In general, as the number of filaments in a carbon fiber bundle increases, the mechanical properties and resin impregnability per filament tend to decrease, but the price per unit weight of the carbon fiber bundle also decreases. Carbon fiber bundles with filament counts can be selected.
炭素繊維束を用いる場合、一方向連続繊維を用いる場合は、48000本以上100000本以下が、織物の炭素繊維束を用いる場合は12000本以上48000本以下が好ましく用いられる。 When using carbon fiber bundles, when using unidirectional continuous fibers, the number is preferably 48,000 or more and 100,000 or less, and when using woven carbon fiber bundles, the number is preferably 12,000 or more and 48,000 or less.
炭素繊維束は、様々な形態で使用されてもよい。例えば、複数の繊維束が一方向に配向されてなる一方向連続繊維(UniDirection繊維)、複数の繊維束が織られて形成された織物、繊維束が編まれて形成された編物、複数の繊維束と熱可塑性樹脂繊維からなる不織布などの形態で使用されるとよい。これらの中では、一方向連続繊維及び織物が好ましく、縦横方向に高い機械物性を持つ織物がより好ましい。織物は、平織、綾織及び朱子織などで織られればよく、等方性を備える平織又は綾織りが好ましい。また、編物としては、各繊維配向方向に繊維が直進性をもった形で配置されるノンクリンプファブリックが好ましい。 Carbon fiber bundles may be used in various forms. For example, unidirectional continuous fibers in which a plurality of fiber bundles are oriented in one direction (UniDirection fibers), woven fabrics formed by weaving a plurality of fiber bundles, knitted fabrics formed by knitting fiber bundles, and a plurality of fibers It may be used in the form of a non-woven fabric made of bundles and thermoplastic resin fibers. Among these, unidirectional continuous fibers and woven fabrics are preferred, and woven fabrics having high mechanical properties in the longitudinal and transverse directions are more preferred. The woven fabric may be woven by plain weave, twill weave, satin weave, or the like, and isotropic plain weave or twill weave is preferable. Moreover, as the knitted fabric, a non-crimp fabric in which fibers are arranged in a straight manner in each fiber orientation direction is preferable.
また、炭素繊維織物の場合の目付は、通常20~800g/m2であり、100~40g/m2が好ましい。炭素繊維束の目付が20g/m2以上であると、本発明の開繊炭素繊維束より形成された繊維強化複合材料の機械的強度が向上する。また、炭素繊維束の目付が800g/m2以下であると、炭素繊維間にマトリックス樹脂を均一に含浸させることができ、繊維強化複合材料の機械的強度が向上する。目付は、より好ましくは150~300g/m2である。 The basis weight of the carbon fiber fabric is usually 20-800 g/m 2 , preferably 100-40 g/m 2 . When the basis weight of the carbon fiber bundle is 20 g/m 2 or more, the mechanical strength of the fiber-reinforced composite material formed from the spread carbon fiber bundle of the present invention is improved. Further, when the basis weight of the carbon fiber bundle is 800 g/m 2 or less, the carbon fibers can be uniformly impregnated with the matrix resin, and the mechanical strength of the fiber-reinforced composite material is improved. The basis weight is more preferably 150-300 g/m 2 .
(4.2熱可塑性樹脂)
スキン部12に含まれる熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、アクリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、芳香族ポリエーテルケトンなどが挙げられ、繊維間に含浸する際に影響する粘度と機械物性のバランスがよいポリオレフィン系樹脂や、粘度が高いが耐薬品性に優れる塩化ビニル樹脂、耐熱性に芳香族ポリエーテルケトンが好ましい。ポリオレフィン系樹脂としては、例えば、ポリエチレン系樹脂及びポリプロピレン系樹脂が挙げられる。
(4.2 Thermoplastic resin)
Examples of thermoplastic resins contained in the
ポリプロピレン系樹脂としては、特に限定されず、例えば、プロピレン単独重合体、プロピレンと他のオレフィンとの共重合体などが挙げられる。プロピレンと他のオレフィンとの共重合体は、ブロック共重合体、ランダム共重合体の何れであってもよい。なお、プロピレンと共重合されるオレフィンとしては、例えば、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-ノネン、1-デセンなどのα-オレフィンなどが挙げられる。 The polypropylene-based resin is not particularly limited, and examples thereof include propylene homopolymers and copolymers of propylene and other olefins. Copolymers of propylene and other olefins may be either block copolymers or random copolymers. Examples of olefins to be copolymerized with propylene include α- - olefins and the like.
芳香族ポリエーテルケトンとしては、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等が挙げられ、ポリエーテルエーテルケトンが耐熱性と機械物性の観点から好ましく用いられる。 Examples of the aromatic polyether ketone include polyether ether ketone, polyether ketone ketone, etc. Polyether ether ketone is preferably used from the viewpoint of heat resistance and mechanical properties.
(4.3炭素繊維強化熱可塑性樹脂複合体)
炭素繊維強化熱可塑性樹脂複合体は、上記した炭素繊維と、熱可塑性樹脂とを含み、炭素繊維を熱可塑性樹脂で含浸したプリプレグシートであることが好ましい。これらプリプレグシートは積層して用いてもよい。
(4.3 Carbon fiber reinforced thermoplastic resin composite)
The carbon fiber-reinforced thermoplastic resin composite preferably contains the above-described carbon fibers and a thermoplastic resin, and is a prepreg sheet in which the carbon fibers are impregnated with the thermoplastic resin. These prepreg sheets may be laminated for use.
炭素繊維強化熱可塑性樹脂複合体中に含まれる炭素繊維の配向は、一方向性の炭素繊維のみであってもよいし、1方向性炭素繊維を含むプリプレグを配向が異なる方向に並べた上で積層してもよいし、織物のように2軸に配向している炭素繊維を用いてもよい。 The orientation of the carbon fibers contained in the carbon fiber reinforced thermoplastic resin composite may be unidirectional carbon fibers only, or prepregs containing unidirectional carbon fibers are arranged in different orientations and It may be laminated, or biaxially oriented carbon fibers such as woven fabric may be used.
炭素繊維強化熱可塑性樹脂複合体における、炭素繊維の含有量は10~70体積%が好ましく、20~60体積%がより好ましく、30~50体積%が更に好ましい。繊維強化複合材料において、マトリックス樹脂の含有量は、30~90体積%が好ましく、40~80体積%が好ましく、30~60体積%が更に好ましい。 The carbon fiber content in the carbon fiber reinforced thermoplastic resin composite is preferably 10 to 70% by volume, more preferably 20 to 60% by volume, and even more preferably 30 to 50% by volume. In the fiber-reinforced composite material, the content of the matrix resin is preferably 30-90% by volume, preferably 40-80% by volume, more preferably 30-60% by volume.
熱可塑性樹脂を炭素繊維に含浸させる方法は、特に限定されない。例えば、溶融樹脂をシートダイなどを用いてフィルム状に押出し、炭素繊維に積層した後に、加熱しながら圧縮することにより熱可塑性樹脂を炭素繊維に含浸させる方法(フィルム含浸法)や、ダイから熱可塑性樹脂と炭素繊維を一度に引き抜く押出成形方法などが挙げられ、生産性の観点からフィルム含浸法が好ましく用いられる。 The method for impregnating the carbon fiber with the thermoplastic resin is not particularly limited. For example, a method of extruding a molten resin into a film using a sheet die or the like, laminating it on carbon fibers, and then compressing while heating to impregnate the carbon fibers with a thermoplastic resin (film impregnation method), or a method of extruding a thermoplastic resin from a die Examples include an extrusion molding method in which a resin and carbon fibers are pulled out at once, and a film impregnation method is preferably used from the viewpoint of productivity.
(5.コア部)
本発明のコア部13は、発泡倍率が1.05倍~2.0倍の発泡熱可塑性樹脂からなる。発泡倍率は、1.1倍以上が好ましく、1.15倍以上がより好ましい、一方上限は1.8倍以下が好ましく、1.6倍以下がより好ましく、1.5倍以下が更に好ましく、1,3倍以下が特に好ましい。
(5. Core part)
The
コア部に含まれる樹脂の発泡倍率が上記範囲であると、リブ部の機械強度を保持したまま、コア部の樹脂収縮による反りや基板との接着性低下を抑制することができる。 When the foaming ratio of the resin contained in the core portion is within the above range, it is possible to suppress warping due to resin shrinkage in the core portion and a decrease in adhesiveness to the substrate while maintaining the mechanical strength of the rib portion.
本発明のコア部を構成する熱可塑性樹脂は、繊維強化シートの機械強度、特に繊維強化シートの長尺方向(巻き取りおよび巻き出し方向)と垂直の方向の機械強度を向上させる機能を有するものであるため、適度な強度を有している材料から構成されることが好ましく、成形性や加工性の観点からは、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド樹脂等が挙げられる。また熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂を用いることができ、機械強度の観点からポリオレフィン系樹脂が好ましく、ポロプロピレン系樹脂がより好ましい。 The thermoplastic resin constituting the core portion of the present invention has the function of improving the mechanical strength of the fiber reinforced sheet, particularly the mechanical strength of the fiber reinforced sheet in the direction perpendicular to the longitudinal direction (winding and unwinding directions). Therefore, it is preferably composed of a material having an appropriate strength, and from the viewpoint of moldability and processability, polyolefin resin, polyester resin, polyamide resin, and the like can be mentioned. As the thermosetting resin, epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, and polyurethane resin can be used. From the viewpoint of mechanical strength, polyolefin resin is preferable, and polypropylene resin is more preferable.
本発明の発泡倍率のコア部13を製造する方法としては、公知の発泡成形方法であれば特に限定されないが、ガス発泡や発泡剤を加えた後に加熱する方法が挙げられ、発泡倍率を微細に制御できる観点から、発泡剤を含む熱可塑性樹脂組成物を加熱し、発泡熱可塑性樹脂とする方法が好ましい。
The method for producing the
発泡剤としては、熱分解によってガス化する熱分解性発泡剤や、低沸点化合物を熱可塑性バルーン材に導入した熱膨張性中空粒子等が挙げられ、均一な気泡が得られる観点から熱膨張性中空粒子が好ましく用いられる。 Examples of the foaming agent include thermally decomposable foaming agents that are gasified by thermal decomposition, and thermally expandable hollow particles obtained by introducing a low boiling point compound into a thermoplastic balloon material. Hollow particles are preferably used.
発泡剤を含む熱可塑性樹脂組成物中の発泡剤の含有量は、熱可塑性樹脂100重量部に対して、通常0.1質量部以上、好ましくは0.3質量部以上、より好ましくは0.5質量部以上であり、一方上限は通常4質量部以下、好ましくは3質量部以下、より好ましくは2質量部以下、更に好ましくは1.5質量部以下である。発泡剤含有量を上記範囲とすることで、得られる発泡性樹脂組の発泡倍率を本願規定の範囲に制御しやすくなる。 The content of the foaming agent in the thermoplastic resin composition containing the foaming agent is usually 0.1 parts by mass or more, preferably 0.3 parts by mass or more, more preferably 0.1 part by mass or more, based on 100 parts by weight of the thermoplastic resin. It is 5 parts by mass or more, while the upper limit is usually 4 parts by mass or less, preferably 3 parts by mass or less, more preferably 2 parts by mass or less, and still more preferably 1.5 parts by mass or less. By setting the content of the foaming agent within the above range, it becomes easier to control the foaming ratio of the obtained foamable resin group within the range specified in the present application.
<6.繊維強化シートの製造方法>
上記繊維強化シートの成形方法としては、熱可塑性樹脂を用いる場合の方法として、加熱により樹脂を軟化させた状態でロールフォーミング成形を行う方法や、押出成形を行う方法、整形後に曲げ加工を行う方法等が挙げられる。長尺品の製造が可能という点で押出成形法が好ましく用いられる。
<6. Method for producing a fiber-reinforced sheet>
As a method for molding the fiber-reinforced sheet, when using a thermoplastic resin, there is a method of performing roll forming molding in a state where the resin is softened by heating, a method of performing extrusion molding, and a method of performing bending after shaping. etc. The extrusion molding method is preferably used because it enables the production of long products.
押出成形法の例として、スキン部13を金型内でリブ形状に成形した後、スキン部にコア部となる樹脂を充填させる。コア部となる樹脂は押出混練機を用いて、樹脂を連続的に射出することができる。そして、スキン部13とコア部11を押出成形金型内で加熱し一体とした後に、基材部とリブ部とを接触させて融着する方法が挙げられる。
As an example of the extrusion molding method, after the
これら金型から排出された繊維強化シートは冷却しながら、押出物を引き取ることで、長尺成形品を得ることができる。 A long molded product can be obtained by collecting the extrudate while cooling the fiber-reinforced sheet discharged from these molds.
コア部とスキン部を押出成形金型内で一体化する方法を用いる場合の金型温度は、通常200度以上、好ましくは205度以上であり、一方上限は通常240度以下、好ましくは230度以下、より好ましくは220度以下である。 When using the method of integrating the core part and the skin part in the extrusion molding die, the mold temperature is usually 200°C or higher, preferably 205°C or higher, while the upper limit is usually 240°C or lower, preferably 230°C. Below, more preferably 220 degrees or less.
金型温度が上記範囲であると、スキン部とリブ部の接着強度が向上するとともに、樹脂の収縮が低減され、結果として得られる繊維強化シートの反りが低減される傾向にある。 When the mold temperature is within the above range, the bonding strength between the skin portion and the rib portion is improved, and shrinkage of the resin is reduced, which tends to reduce warpage of the fiber-reinforced sheet obtained as a result.
以下、本発明を実施例により更に詳細に説明するが、これらの例により本発明が限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
<原料>
(スキン部)
[炭素繊維]
CF:台湾プラスチックス社製 商品名「TC-35 12K」(PAN系炭素繊維束、フィラメント数:24000本、UD繊維)
[繊維強化熱可塑性樹脂複合体]
CFプリプレグ:CFにポリプロピレン樹脂を含浸させたUDプリプレグ
<raw materials>
(Skin part)
[Carbon fiber]
CF: Trade name “TC-35 12K” manufactured by Taiwan Plastics Co., Ltd. (PAN-based carbon fiber bundle, number of filaments: 24000, UD fiber)
[Fiber-reinforced thermoplastic resin composite]
CF prepreg: UD prepreg in which polypropylene resin is impregnated in CF
(コア部)
[熱可塑性樹脂]
PP:プライムポリマー社製E111G(ホモポリプロピレン樹脂)
[発泡粒子]
AD:積水化学社製アドバンセルEM P501E1(シェル部:アクリルニトリル、コア部:低沸点炭化水素)
(core part)
[Thermoplastic resin]
PP: Prime Polymer E111G (homopolypropylene resin)
[Expanded particles]
AD: Advancel EM P501E1 manufactured by Sekisui Chemical Co., Ltd. (shell part: acrylonitrile, core part: low boiling point hydrocarbon)
(基材部)
GF基材:北陸ファイバーグラス社製RC800(ガラスロービングクロス)
(Base material)
GF base material: RC800 (glass roving cloth) manufactured by Hokuriku Fiber Glass Co., Ltd.
<評価方法>
(発泡倍率)
発泡樹脂のみを採取し、比重計でかさ比重を測定し、未発泡の樹脂との比重差から発泡倍率を計算した。
<Evaluation method>
(Expansion ratio)
Only the foamed resin was sampled, the bulk specific gravity was measured with a hydrometer, and the expansion ratio was calculated from the difference in specific gravity from the unfoamed resin.
(反り量)
地面に対して平行な定盤上にリブ部の長さ3.1mの繊維強化シートを、リブ部が下面になるように置き、定盤からリブ部の間の空間が、垂直方向に最大となる地点の距離をハイドゲージで測定した。この結果を反り量とした。
(Amount of warpage)
A fiber reinforced sheet with a rib length of 3.1m is placed on a surface plate parallel to the ground so that the rib portion faces downward, and the space between the surface plate and the rib portion is maximized in the vertical direction. The distance between the points was measured with a Hyde gauge. This result was taken as the amount of warpage.
(曲げ剛性)
480mmのリブ数1本の繊維強化シートを作成し、リブ部頂点を下側に向けた状態で3点曲げ試験を実施した。試験条件は下記の通りである。
支点間距離:400mm
中央圧子 降下速度:5.0mm/min
中央圧子 半径:75mmR
(bending stiffness)
A fiber reinforced sheet having a length of 480 mm and one rib was prepared, and a three-point bending test was performed with the top of the rib directed downward. The test conditions are as follows.
Distance between fulcrums: 400mm
Central indenter descent speed: 5.0 mm/min
Central indenter Radius: 75mmR
(リブ重量)
繊維強化シートから1mのリブを基材部毎切り出し、重量計で測定した。
(rib weight)
A 1 m rib was cut out from the fiber reinforced sheet for each base material portion and measured with a weight scale.
[実施例1]
スキン層となるCFプリプレグ3層を積層し、リブ頂点が下面となるような形状に型枠を用いて成形した後、225度に設定した押出成形金型内に導入した。次に金型内で、前記スキン層が充填されるように、PP100重量部にAD1重量部を含む樹脂組成物を200度にて上部から射出し続けた。
そして、押出成形金型から排出されたリブ部材が冷却される前に、リブ部材の頂点と反対面とGF基材と接触させ続けることで、リブ部とGF基材とを融着した。
上記押出成形行程を連続的に行うことで、長尺の繊維強化シートを製造することができた。
[Example 1]
Three layers of CF prepreg to be the skin layer were laminated, and after molding into a shape in which the top of the rib was on the bottom surface using a mold, it was introduced into an extrusion molding die set at 225 degrees. Next, in the mold, a resin composition containing 100 parts by weight of PP and 1 part by weight of AD was continuously injected from above at 200 degrees so as to fill the skin layer.
Then, before the rib member ejected from the extrusion mold was cooled, the rib portion and the GF substrate were fused by keeping the opposite surface of the rib member in contact with the GF substrate.
A long fiber-reinforced sheet could be produced by continuously performing the extrusion molding process.
得られた繊維強化シートを、上述の通り曲げ剛性、リブ重量、反り量を評価し、表1に示す。また、射出時点の発泡樹脂を別途採取し、発泡倍率を評価した。 The resulting fiber-reinforced sheet was evaluated for bending rigidity, rib weight, and amount of warpage as described above. Table 1 shows the results. In addition, the foamed resin at the time of injection was separately sampled, and the foaming ratio was evaluated.
[実施例2]
押出成形金型温度を210度に変更した以外は実施例1と同様に繊維強化シートを製造した。得られた繊維強化シートの反り量を評価し、表1に示す。また、射出時点の発泡樹脂を別途採取し、発泡倍率を評価した。
[Example 2]
A fiber-reinforced sheet was produced in the same manner as in Example 1, except that the temperature of the extrusion mold was changed to 210°C. The amount of warpage of the obtained fiber reinforced sheet was evaluated and shown in Table 1. In addition, the foamed resin at the time of injection was separately sampled, and the foaming ratio was evaluated.
[比較例1]
コア部に相当する樹脂組成物にADを添加しなかった以外は実施例1と同様に繊維強化シートを製造した。
[Comparative Example 1]
A fiber-reinforced sheet was produced in the same manner as in Example 1, except that AD was not added to the resin composition corresponding to the core portion.
[比較例2]
コア部に相当する樹脂組成物のAD添加量を5部とした以外は実施例1と同様に繊維強化シートを製造した。得られた繊維強化シートを、上述の通り曲げ剛性、リブ重量、反り量を評価し、表1に示す。また、射出時点の発泡樹脂を別途採取し、発泡倍率を評価した。
[Comparative Example 2]
A fiber-reinforced sheet was produced in the same manner as in Example 1, except that the AD addition amount of the resin composition corresponding to the core portion was changed to 5 parts. The resulting fiber-reinforced sheet was evaluated for bending rigidity, rib weight, and amount of warpage as described above. Table 1 shows the results. In addition, the foamed resin at the time of injection was separately sampled, and the foaming ratio was evaluated.
比較例1と、比較例2との対比から、リブ重量の軽減効果が見込まれる程度にコア部を発泡させると、曲げ剛性が大幅に低下することがわかった。また、比較例1、実施例1との対比から、微発泡樹脂をコア部に用いた繊維強化シートは曲げ剛性を十分に保ちながら反り量を大幅に低減出来ることがわかった。
そして、同じ微発泡樹脂をコア部に用いた繊維強化シートであっても、金型温度を制御することで、更なる反り量の低減効果が得られることがわかった。
From the comparison between Comparative Examples 1 and 2, it was found that if the core portion was foamed to such an extent that the effect of reducing the rib weight could be expected, the flexural rigidity would be greatly reduced. Further, from the comparison with Comparative Example 1 and Example 1, it was found that the fiber reinforced sheet using the microfoamed resin in the core portion can significantly reduce the amount of warpage while sufficiently maintaining bending rigidity.
It was also found that even with a fiber-reinforced sheet using the same microfoamed resin in the core portion, a further effect of reducing the amount of warpage can be obtained by controlling the mold temperature.
上記結果から、微発泡樹脂をコア部に用いることで、成形後の樹脂の収縮を発泡部分が吸収し、繊維強化シートの反りを低減することが出来たと考える。 From the above results, it is thought that by using the microfoamed resin in the core portion, the foamed portion could absorb the shrinkage of the resin after molding, and the warpage of the fiber reinforced sheet could be reduced.
1 繊維強化シート
11 リブ部
12 スキン部
13 コア部
REFERENCE SIGNS
Claims (8)
前記リブ部が、炭素繊維強化熱可塑性樹脂複合体からなるスキン部と、
熱可塑性樹脂からなるコア部とを備える、繊維強化シートであって、
前記コア部の樹脂発泡倍率が1.05倍~2.0倍である、繊維強化シート。 At least one rib portion containing carbon fiber and thermoplastic resin is provided for the base portion,
a skin portion in which the rib portion is made of a carbon fiber reinforced thermoplastic resin composite;
A fiber-reinforced sheet comprising a core portion made of a thermoplastic resin,
A fiber-reinforced sheet, wherein the resin foaming ratio of the core portion is 1.05 to 2.0 times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019069038A JP7201512B2 (en) | 2019-03-29 | 2019-03-29 | Fiber reinforced sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019069038A JP7201512B2 (en) | 2019-03-29 | 2019-03-29 | Fiber reinforced sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020163809A JP2020163809A (en) | 2020-10-08 |
JP7201512B2 true JP7201512B2 (en) | 2023-01-10 |
Family
ID=72714694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019069038A Active JP7201512B2 (en) | 2019-03-29 | 2019-03-29 | Fiber reinforced sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7201512B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240149540A1 (en) * | 2021-03-30 | 2024-05-09 | Toray Industries, Inc. | Flat lightweight member and method of producing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000062073A (en) | 1998-08-17 | 2000-02-29 | Sekisui Chem Co Ltd | Method for decorating/molding fiber reinforced profile molded product |
JP2000212543A (en) | 1999-01-27 | 2000-08-02 | Sekisui Chem Co Ltd | After photo-post curing adhesive reinforcing sheet for structure, reinforced structure and production method of reinforced structure |
JP2016187947A (en) | 2015-03-30 | 2016-11-04 | 積水化成品工業株式会社 | Method for producing bead expanded molding, bead expanded molding, method for producing resin composite, and resin composite |
WO2017056683A1 (en) | 2015-09-30 | 2017-04-06 | 積水化学工業株式会社 | Fiber-reinforced sheet and structure |
WO2017209300A1 (en) | 2016-06-03 | 2017-12-07 | 積水化学工業株式会社 | Sheet and rod-shaped member |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6056115B2 (en) * | 1981-03-16 | 1985-12-09 | 日産自動車株式会社 | Reinforcement material |
-
2019
- 2019-03-29 JP JP2019069038A patent/JP7201512B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000062073A (en) | 1998-08-17 | 2000-02-29 | Sekisui Chem Co Ltd | Method for decorating/molding fiber reinforced profile molded product |
JP2000212543A (en) | 1999-01-27 | 2000-08-02 | Sekisui Chem Co Ltd | After photo-post curing adhesive reinforcing sheet for structure, reinforced structure and production method of reinforced structure |
JP2016187947A (en) | 2015-03-30 | 2016-11-04 | 積水化成品工業株式会社 | Method for producing bead expanded molding, bead expanded molding, method for producing resin composite, and resin composite |
WO2017056683A1 (en) | 2015-09-30 | 2017-04-06 | 積水化学工業株式会社 | Fiber-reinforced sheet and structure |
WO2017209300A1 (en) | 2016-06-03 | 2017-12-07 | 積水化学工業株式会社 | Sheet and rod-shaped member |
Also Published As
Publication number | Publication date |
---|---|
JP2020163809A (en) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6481778B2 (en) | Composite structure and manufacturing method thereof | |
JP5722732B2 (en) | Method for producing isotropic random mat for forming thermoplastic composite material | |
RU2705952C2 (en) | Reinforcement by fibers of anisotropic foam materials | |
CN101394979B (en) | Production method of fiber-reinforced resin | |
JPH043766B2 (en) | ||
JP2006213059A (en) | Method for manufacturing frp composite | |
KR102212735B1 (en) | Manufacturing method of composite structure and manufacturing method of integrated composite structure | |
JP6801321B2 (en) | Laminated base material for rib molding | |
KR102362036B1 (en) | Carbon fiber-reinforced resin composite material | |
CN107406610A (en) | The fiber reinforcement of foamed material containing foaming agent | |
JP7201512B2 (en) | Fiber reinforced sheet and manufacturing method thereof | |
US20180093430A1 (en) | Fiber-reinforced sheet and structure | |
JP4984973B2 (en) | Manufacturing method of fiber reinforced resin | |
US20220227079A1 (en) | Cold Press Molded Body Containing Carbon Fiber and Glass Fiber, and Manufacturing Method Thereof | |
JP7344472B2 (en) | Reinforced fiber tape material and its manufacturing method, reinforced fiber laminate and fiber reinforced resin molded product using reinforced fiber tape material | |
EP3815894B1 (en) | Laminated body | |
CN113677512A (en) | Dual expansion foam for closed mold composite manufacture | |
JP5864324B2 (en) | Method for producing fiber reinforced composite | |
JP7082966B2 (en) | Fiber-reinforced foamed particle molded product and its manufacturing method | |
JP7548017B2 (en) | Fiber-reinforced composites and sandwich structures | |
JP7543913B2 (en) | Fiber-reinforced composites and sandwich structures | |
JP2021049692A (en) | Fiber-reinforced composite panel | |
KR102270330B1 (en) | Flexible cores for machining or manufacturing composite parts or materials | |
JP3124301B2 (en) | Manufacturing method of composite molded products | |
JP7422587B2 (en) | Resin foams and resin composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221222 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7201512 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |