JP7201010B2 - 飛行体用の電動アクチュエータ装置及び駆動方法 - Google Patents

飛行体用の電動アクチュエータ装置及び駆動方法 Download PDF

Info

Publication number
JP7201010B2
JP7201010B2 JP2020572152A JP2020572152A JP7201010B2 JP 7201010 B2 JP7201010 B2 JP 7201010B2 JP 2020572152 A JP2020572152 A JP 2020572152A JP 2020572152 A JP2020572152 A JP 2020572152A JP 7201010 B2 JP7201010 B2 JP 7201010B2
Authority
JP
Japan
Prior art keywords
motor
motor driver
aircraft
inner rotor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020572152A
Other languages
English (en)
Other versions
JPWO2020166337A1 (ja
Inventor
敏明 山下
英夫 安達
尚志 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2020166337A1 publication Critical patent/JPWO2020166337A1/ja
Application granted granted Critical
Publication of JP7201010B2 publication Critical patent/JP7201010B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本発明は、飛行体に使用される電動アクチュエータ装置及び駆動方法に関する。
飛行体の中には、特に機体全備重量が100kg以上となるマルチコプタ(ドローン)タイプの電動型飛行体がある。マルチコプタタイプの電動型飛行体は、従来のシングルロータ型のヘリコプターのようなエンジンベースの飛行体と比較した場合に、特に推進エンジン部のメンテナンス性やCO排出抑制という観点で優れた特性を有する。
このため、重量を有する大型の電動飛行体については、将来の都市航空交通(アーバンエアモビリティ)という位置づけを中心としつつも、いわゆる『空飛ぶクルマ』実現に向けた技術課題の具体的な抽出や安全性確保手法の検討、さらには法規制の改善など様々な議論が進められている。
特に『空飛ぶクルマ』を実現するための主な技術課題としては、搭載可能なバッテリの高密度化とともに、電動モータとモータドライバの最適化により、100kg以上の機体を自由に飛行させるのに十分な出力を確保しつつも機体に十分搭載可能な重量範囲で電動アクチュエータシステムを実現することが挙げられる。
一般に電動モータ単体を大出力化した場合には、その動作原理から物理法則的に重量増は避けられない状況である。
このため、大型の電動モータでは、モータドライバとの組み合わせの中で機能配分を最適化することで軽量化を実現する必要がある。これまでは、電動モータの組み合わせ手法や、モータ単体の機構改善アプローチなどが支配的となっている。
このような飛行体の電動モータに関して、特許文献1~3に示される技術が知られている。
特許文献1に示される飛行装置は、モータ、駆動軸、プロペラ等からなるスラスタ、本体から延びるアーム部のアーム駆動部及び姿勢制御部を備える。
これらの構成の中で、スラスタは、アーム部の先端に設けられて推進力を発生する。アーム駆動部は、アーム部のうち少なくとも1つを、三次元的に複合的に駆動して、スラスタの相互間における位置関係を変更する。姿勢制御部は、アーム駆動部で変更されたスラスタ相互の位置関係に基づいて、スラスタの推進力を制御する。
特許文献2に示されるモータ制御装置は、充電回路を構成する電源スイッチ、平滑コンデンサ及び放電回路を有する電源回路を具備する。
電源スイッチは、モータ制御装置が起動された直後に平滑コンデンサに大きな突入電流が流れることを防止するとともに、充電電流を制限しながら平滑コンデンサをプリチャージする。また、この電源スイッチは、モータ制御装置の起動時にはオン/オフ状態(スイッチング動作)、インバータ動作時にはオン状態(導通状態)、停止時にはオフ状態(非導通状態)となる。
特許文献3に示される過電圧抑制装置は、モータにより生成された電力をバッテリに回生するモータ駆動装置における過電圧を抑制する。
また、特許文献3では、回生電圧(インバータ電圧)がバッテリの過電圧判定用しきい値の電圧を超えた場合に、モータの力行側に対して、逆方向(後進方向、逆転方向)に該モータを駆動するPWM駆動信号を出力する。これにより、特許文献3では、モータに逆トルクを発生させ、回生電力をモータにより消費させて、バッテリ及び駆動回路内の電圧上昇を抑制している。
日本国特開2018-144732号公報 日本国特開2015-216776号公報 日本国特開2012-005179号公報
特許文献1の飛行体では、高トルクを出力することを目的にモータ径を大口径化した場合に、モータ全体の質量もトルク出力の増大に応じて大幅に増加してしまう。このため、特許文献1の飛行体では、モータの高トルク出力化と軽量化とを同時に実現することは困難となる。
また、特許文献2及び3では、モータを安定化させるための技術が示されているが、これら技術を、無人飛行体にどのように組み込むかについての記載はない。特許文献2及び3は、風など外乱条件による飛行体自体の制御、および、飛行体の飛行状態の変化に伴うモータ負荷の変動に応じた適切な駆動制御により当該飛行体を安定的に飛行させる技術を開示するものではない。
この発明は、上述した事情に鑑みてなされた。この発明の目的の一例は、モータ径を大きくしながらもアクチュエータとしては高出力、安定化及び軽量化を同時に達成可能となる飛行体用の電動アクチュエータ装置及び駆動方法を提供することである。
本発明の第1態様による飛行体用の電動アクチュエータ装置は、前記飛行体に搭載されかつ前記飛行体の推力を発生するインナーロータモータと、前記インナーロータモータに駆動信号を供給するモータドライバと、前記飛行体の動力源となる飛行体電源と、前記モータドライバに対して、前記飛行体電源から前記モータドライバへ供給する電流を制御するための信号を出力する拡張機能モジュールと、を具備する。前記拡張機能モジュールは、前記モータドライバに対して、前記モータドライバが起動した時の突入電流を制限するための信号を出力する突入制限モジュールと、前記モータドライバに対して、前記インナーロータモータが減速した時に発生する回生電力による電圧上昇を防止するための信号を出力する回生処理モジュールと、前記モータドライバに対して、前記インナーロータモータが減速した時に発生する回生電力に起因する電流の逆流を防止するための信号を出力する逆流防止モジュールと、の少なくともいずれか一つを有する。
本発明の第2態様による飛行体用の電動アクチュエータ装置の駆動方法は、前記飛行体用の電動アクチュエータ装置の駆動方法であって、前記電動アクチュエータ装置は、前記飛行体に搭載し前記飛行体の推力を発生するインナーロータモータと、前記インナーロータモータに駆動信号を供給するモータドライバと、前記飛行体の動力源となる飛行体電源と、を具備し、前記駆動方法は、前記モータドライバに対して、前記飛行体電源から前記モータドライバへ供給する電流を制御するための信号を出力する、ことを具備する。前記信号を出力することは、前記モータドライバに対して、前記モータドライバが起動した時の突入電流を制限するための信号を出力することと、前記モータドライバに対して、前記インナーロータモータが減速した時に発生する回生電力による電圧上昇を防止するための信号を出力することと、前記モータドライバに対して、前記インナーロータモータが減速した時に発生する回生電力に起因する電流の逆流を防止するための信号を出力することと、の少なくともいずれか一つを有する。
本発明の実施形態によれば、飛行体用の電動アクチュエータ装置の高出力、安定化及び軽量化を達成することができる。
本発明の実施形態に係る飛行体用の電動アクチュエータ装置の概略構成図である。 本発明の第一実施形態に係る飛行体用の電動アクチュエータ装置の概略構成図である。 本発明の第一実施形態を採用したことにより構成されたモータのコイルとマグネットとの関係を示す図である。
本発明の実施形態に係る飛行体用の電動アクチュエータ装置100について図1を参照して説明する。
この電動アクチュエータ装置100は、インナーロータモータ1、モータドライバ2、飛行体電源3及び拡張機能モジュール4を具備する。インナーロータモータ1、モータドライバ2、飛行体電源3及び拡張機能モジュール4は、いずれも飛行体A内に設置される。飛行体Aとしては、航空機など有人飛行体又はドローンなどの無人の大型飛行体が想定される。
インナーロータモータ1は、飛行体Aに対して推力を発生するために設置される。
モータドライバ2はインナーロータモータ1を駆動するための駆動信号を生成して出力するために設けられている。
飛行体電源3は飛行体Aの動力源となる。
拡張機能モジュール4は、飛行体電源3からモータドライバ2へ供給する電流を制御する等のために設けられている。
拡張機能モジュール4は、突入制限モジュール5、回生処理モジュール6及び逆流防止モジュール7の少なくともいずれかにより構成される。
突入制限モジュール5は、モータドライバ2に対してドライバ起動時の突入電流を制限するために設けられる。
回生処理モジュール6は、モータドライバ2に対してモータ減速時に発生する回生電力による電圧上昇を防止するために設けられる。
逆流防止モジュール7は、モータドライバ2に対してモータ減速時に発生する回生電力に起因する電流の逆流を防止するために設けられる。
以上のように構成された電動アクチュエータ装置100では、インナーロータモータ(インナーロータ型のモータ)1について、ドライバ起動時の突入電流を制限する突入制限モジュール5と、モータ減速時の電圧上昇による他軸動作への影響を防止する回生処理モジュール6と、モータ減速時の回生電力が飛行体電源(電源)3側へ戻ることによる電源電圧の上昇を防止する逆流防止モジュール7とを、モータ制御用のモータドライバ2に組み合わせて設置するようにしている。
そして、このような電動アクチュエータ装置100では、インナーロータモータの直径を高出力化のため増加させた上で、ステータ側に配置するスロット(コイル)の数を軽量化のため可能な限り低減しながらもロータ側に配置する極数(マグネットの数)をできる限り多極化する構成が可能となる。
その結果、本発明の実施形態に係る電動アクチュエータ装置100では、モータ径を大きくしながらも、インナーロータモータ1の高出力、安定化及び軽量化を同時に達成することが可能となる。
(第一の実施形態)
上記構成をさらに具体化した本発明の第一実施形態について、図2及び図3を参照して説明する。
この電動アクチュエータ装置101は、インナーロータモータ11、モータドライバ12、飛行体電源13及び拡張機能モジュール(拡張機能部、拡張機能手段)14を具備し、飛行体A1内に搭載される。
さらに飛行体A1は、飛行制御モジュール20をさらに具備する。飛行制御モジュール20は、モータドライバ12から出力されたモータ状態検出信号S3と、飛行体Aの飛行体状態検出器21から出力された飛行体A1の状態(飛行体A1のダイナミクスに応じた)を示す飛行体状態検出信号21Aとに基づき、モータドライバ12をフィードバック制御する。飛行制御モジュール20の詳細については後述する。飛行体状態検出器21は、飛行体A1のダイナミクスに応じて飛行体状態検出器21により取得されてもよい。
インナーロータモータ11は、飛行体A1に対して推力を発生するために設置される。インナーロータモータ11の状態は、センサ検出信号11Aとしてモータドライバ12に出力される。
インナーロータモータ11は、図3に示されるように、インナーロータモータ11のステータ30側に多数設置された各スロットのコイル32と、インナーロータモータ11のロータ31側に多数設置されたマグネット33とを有する。このインナーロータモータ11は、モータドライバ12から出力されたモータ駆動信号S1に従い、コイル32に電流を流すことで、マグネット33との間でトルクを発生させ、ロータを適宜回転させる。
このとき、インナーロータモータ11は、ロータの回転速度や回転数などをインナーロータモータ11内に搭載するセンサ34で検出し、検出された情報をセンサ検出信号11Aとしてモータドライバ12へ出力する。これにより、モータドライバ12はインナーロータモータ11の状態を検出する。
モータドライバ12は、インナーロータモータ11を駆動するためのモータ駆動信号S1、拡張機能モジュール14に対して電力供給を行わせるモータドライバ電源出力信号S2、飛行制御モジュール20に対してインナーロータモータ11の状態を示すモータ状態検出信号S3を出力するために設けられている。
モータドライバ電源出力信号S2は、飛行体電源13に対して電流を出力させるために拡張機能モジュール14に出力される信号である。
また、モータ状態検出信号S3は、インナーロータモータ11の状態を示す信号であって、飛行制御モジュール20に対して出力される。
このモータドライバ12は、インナーロータモータ11から出力されるセンサ検出信号11A、拡張機能モジュール14から出力されるモータドライバ電源入力信号14A(後述する)、及び飛行制御モジュール20がから出力されるインナーロータモータ駆動制御指令信号20A(後述する)に基づき、モータ駆動信号S1、モータドライバ電源出力信号S2及びモータ状態検出信号S3を出力するとともに、これら信号の出力をフィードバック制御する。
飛行体電源13は飛行体A1の動力源となる。飛行体電源13は、飛行体電源信号13Aにより電力を供給する。
拡張機能モジュール14は、飛行体電源13からモータドライバ12へ供給する電流を制御するために設けられている。拡張機能モジュール14は、モータドライバ電源入力信号14Aにより電力を供給する。
拡張機能モジュール14は、突入制限モジュール(突入制限部、突入制限手段)15、回生処理モジュール(回生処理部、回生処理手段)16及び逆流防止モジュール(逆流防止部、逆流防止手段)17により構成される。拡張機能モジュール14は、突入制限モジュール15、回生処理モジュール16及び逆流防止モジュール17のうちの1つ又は2つにより構成されてもよい。
突入制限モジュール15は、モータドライバ12に対してドライバ起動時の突入電流を制限するために設けられる。
回生処理モジュール16は、モータドライバ12に対してモータ減速時に発生する回生電力による電圧上昇を防止するために設けられる。
逆流防止モジュール17は、モータドライバ12に対してモータ減速時に発生する回生電力に起因する電流の逆流を防止するために設けられる。
そして、以上のような拡張機能モジュール14は、飛行体電源13から出力される飛行体電源信号13Aと、モータドライバ12から出力されるモータドライバ電源出力信号S2とに基づき、突入制限モジュール15、回生処理モジュール16及び逆流防止モジュール17を介して、モータドライバ12を駆動するモータドライバ電源入力信号14Aを出力する。
さらに、拡張機能モジュール14では、インナーロータモータ11からのセンサ検出信号11Aに基づいてインナーロータモータ11の状態が減速状態か、起動状態かをモータドライバ12で検出し生成するモータドライバ電源出力信号S2と、飛行体電源13が生成した飛行体電源信号13Aとから、突入制限モジュール15、回生処理モジュール16及び逆流防止モジュール17を介してモータドライバ電源入力信号14Aを生成する。
飛行制御モジュール20は、飛行体A1の姿勢を解析する飛行体状態検出器21によって取得できる飛行体状態検出信号21Aと、モータドライバ12から出力されたインナーロータモータ11の状態を示すモータ状態検出信号S3とから、モータドライバ12により駆動されるインナーロータモータ11をフィードバック制御するためのインナーロータモータ駆動制御指令信号20Aを生成しかつ出力する。
飛行体状態検出器21は、飛行体A1の速度、軌道、姿勢、安定性等の状態量を飛行体に搭載した各種センサによって検出し、その検出結果を、飛行体状態検出信号21Aとして飛行制御モジュール20に出力する。
そして、本実施形態では、上記のようなモータの駆動効率化により、以下のような構成を実現することができる。
すなわち、本実施形態のインナーロータモータ11は、図3に示されるように、直径(R)φ270mm以上のモータ径(図3はφ300mm)を有することができる。すなわち、ステータ30は、直径(R)φ270mm以上のロータを収容する内部空間を有する。
また、インナーロータモータ11では、ステータ30側に装着した46スロット以下(図3は36スロット)のコイル32と、ロータ31側に装着した10極以上(図3は32極)の永久磁石からなるマグネット33と、ロータの回転角を検出するセンサ34によって構成される。
一般に、直径Rがφ270mm以上のモータ径によって30kWの出力を実現するためには、46スロット以上のコイルに、10極以上のマグネットを組み合わせなければならないが、その場合のインナーロータモータ単体の質量は23kg程度となる。
しかしながら、本実施形態ではインナーロータモータ11の出力を30kWとしながらも、そのインナーロータモータ単体の質量を10kg以下とするため、モータ径をφ300mmまで拡大しながら重量源となるステータ30側に設置するコイルの数を36スロットまで低減化すると同時に、ロータ31側に設置するマグネットを32極まで多極化することができる。
この結果、本実施形態のインナーロータモータ11では、モータ径としては大きくなってしまうものの、30kWの高出力と10kgの軽量化が同時に達成可能となる。
次に、図2及び図3に示す本実施形態の動作について、具体例として3000rpm(rotations per minute)でインナーロータモータ11を駆動する場合について説明する。
まず、飛行体電源13により生成される飛行体電源信号13Aが、拡張機能モジュール14を介してモータドライバ電源入力信号14Aとしてモータドライバ12へ入力される。
このとき、モータドライバ12では、インナーロータモータ駆動制御指令信号20Aと、モータドライバ電源入力信号14Aとからモータ駆動信号S1を生成するとともに、モータ駆動信号S1をインナーロータモータ11に対して出力し、インナーロータモータ11を回転駆動させる。
その後、モータドライバ12では、モータ駆動信号S1により回転駆動されたインナーロータモータ11の状態を示すセンサ検出信号11Aに基づき、モータドライバ電源出力信号S2とモータ状態検出信号S3とを生成する。
このとき、飛行制御モジュール20では、このモータ状態検出信号S3とともに、飛行体状態検出器21から飛行体A1の状態を示す飛行体状態検出信号21Aを取り込み、これら検出信号で示される情報に基づき、インナーロータモータ駆動制御指令信号20Aを生成する。
一方、拡張機能モジュール14は、モータドライバ12が生成したモータドライバ電源出力信号S2から、モータドライバ12が起動時なのか、インナーロータモータ11が減速時なのかを判定する。
このとき、拡張機能モジュール14では、ドライバ起動時には、突入制限モジュール15からの出力に基づきモータドライバ電源入力信号14Aを出力し、また、モータ減速時には、回生処理モジュール16と逆流防止モジュール17の出力に基づきモータドライバ電源入力信号14Aを出力する。
その結果、モータドライバ12は、インナーロータモータ11に対して、飛行制御モジュール20にて生成されるインナーロータモータ駆動制御指令信号20Aを、拡張機能モジュール14にて生成されるモータドライバ電源入力信号14Aに応じて適切に出力できるようになり、インナーロータモータ11の最適な駆動が可能となる。
従って、本実施形態によれば、結果的に、30kWの高出力と10kgの軽量化を同時に達成したインナーロータモータ11に対して、飛行制御モジュール20と拡張機能モジュール14とをモータドライバ12に適宜組み込むことで、インナーロータモータ11が外部環境からの外乱を受けた場合でも、設定した3000rpmに対して安定的な回転速度制御を適切かつ確実に達成できる。
すなわち、本実施形態では、これらモータドライバ12、飛行制御モジュール20、拡張機能モジュール14及びインナーロータモータ11を組み合わせるという独自の技術により、大型飛行体向け電動アクチュエータを安定的に駆動できる。
以上詳細に説明したように本実施形態の電動アクチュエータ装置101では、インナーロータモータ(インナーロータ型のモータ)11について、ドライバ起動時の突入電流を制限する突入制限モジュール15と、モータ減速時の電圧上昇による他軸動作への影響を防止する回生処理モジュール16と、モータ減速時の回生電力が飛行体電源13側へ戻ることによる電源電圧の上昇を防止する逆流防止モジュール17とを、モータ制御用のモータドライバ12に組み合わせて設置する。
そして、このような電動アクチュエータ装置101では、インナーロータモータ11の直径Rを高出力化のため増加させた上で、ステータ30側に配置するスロット(コイル32)の数を軽量化のため可能な限り低減しながらもロータ側に配置する極数(マグネット33の数)をできる限り多極化する構成が可能となる。
その結果、本実施形態の電動アクチュエータ装置101では、モータ径を大きくしながらも、インナーロータモータ11の高出力、安定化及び軽量化を同時に達成可能となる。
なお、上記実施形態では、拡張機能モジュール14を設けることで、インナーロータモータ11のステータ30がφ270mm以上のモータ径を有し、ステータ30側に装着したコイルを46スロット以下とし、ロータ31側に装着したマグネットを10極以上とする構成を実現できる。
上記実施形態のインナーロータモータ11では、モータ径をφ300mm、コイル32の数を36スロット、マグネット33の数を32極とする構成を採用した。
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
この出願は、2019年2月13日に出願された日本国特願2019-023371を基礎とする優先権を主張し、その開示の全てをここに取り込む。
本発明の実施形態は、大型の飛行体に適用される電動アクチュエータ装置及び駆動方法に関する。
1 インナーロータモータ
2 モータドライバ
3 飛行体電源
4 拡張機能モジュール
5 突入制限モジュール
6 回生処理モジュール
7 逆流防止モジュール
11 インナーロータモータ
12 モータドライバ
13 飛行体電源
14 拡張機能モジュール
15 突入制限モジュール
16 回生処理モジュール
17 逆流防止モジュール
20 飛行制御モジュール
21 飛行体状態検出器
30 ステータ
31 ロータ
32 スロット(コイル)
33 極(マグネット)
34 センサ
100 電動アクチュエータ装置
101 電動アクチュエータ装置
A 飛行体
A1 飛行体

Claims (7)

  1. 飛行体用の電動アクチュエータ装置であって、
    前記飛行体に搭載されかつ前記飛行体の推力を発生するインナーロータモータと、
    前記インナーロータモータに駆動信号を供給するモータドライバと、
    前記飛行体の動力源となる飛行体電源と、
    前記モータドライバに対して、前記飛行体電源から前記モータドライバへ供給する電流を制御するための信号を出力する拡張機能モジュールと、を具備し、
    前記拡張機能モジュールは、
    前記モータドライバに対して、前記モータドライバが起動した時の突入電流を制限するための信号を出力する突入制限モジュールと、
    前記モータドライバに対して、前記インナーロータモータが減速した時に発生する回生電力による電圧上昇を防止するための信号を出力する回生処理モジュールと、
    前記モータドライバに対して、前記インナーロータモータが減速した時に発生する回生電力に起因する電流の逆流を防止するための信号を出力する逆流防止モジュールとを有し、
    前記モータドライバが生成したモータドライバ電源出力信号からモータドライバが起動時なのか、インナーロータモータが減速時なのかを判定する、
    飛行体用の電動アクチュエータ装置。
  2. 前記飛行体の状態に応じて前記モータドライバをフィードバック制御するためのインナーロータモータ駆動制御指令信号を出力する飛行制御モジュールをさらに具備する請求項1に記載の飛行体用の電動アクチュエータ装置。
  3. 前記飛行制御モジュールは、前記インナーロータモータの状態を示すモータ状態検出信号と、前記飛行体の状態を示す飛行体状態検出信号とに基づき、前記モータドライバをフィードバック制御するための前記インナーロータモータ駆動制御指令信号を出力する請求項2に記載の飛行体用の電動アクチュエータ装置。
  4. 前記インナーロータモータは、ロータ収容空間を内部に有するステータと、前記ステータのロータ収容空間内に回転自在に設けられたロータと、前記ステータに設けられて前記モータドライバを介して通電されるコイルと、前記ロータに設けられて前記コイルへの通電により生じた回転磁界が作用するマグネットとを有し、
    前記モータドライバは、前記コイルに流れる電流を切り替えて前記ロータを回転させる請求項1~3のいずれか1項に記載の飛行体用の電動アクチュエータ装置。
  5. 前記ステータの前記ロータ収容空間は、直径270mm以上のロータを収容する空間を有し、
    前記コイルの数は46以下であり、
    前記マグネットの極数は10以上である請求項4に記載の飛行体用の電動アクチュエータ装置。
  6. 前記飛行体は、有人飛行体又は無人の大型飛行体である請求項1~5のいずれか1項に記載の飛行体用の電動アクチュエータ装置。
  7. 飛行体用の電動アクチュエータ装置の駆動方法であって、
    前記電動アクチュエータ装置は、
    前記飛行体に搭載し前記飛行体の推力を発生するインナーロータモータと、
    前記インナーロータモータに駆動信号を供給するモータドライバと、
    前記飛行体の動力源となる飛行体電源と、
    を具備し、
    前記駆動方法は、
    前記モータドライバに対して、前記飛行体電源から前記モータドライバへ供給する電流を制御するための信号を出力する、ことを具備し、
    前記信号を出力することは、
    前記モータドライバに対して、前記モータドライバが起動した時の突入電流を制限するための信号を出力することと、
    前記モータドライバに対して、前記インナーロータモータが減速した時に発生する回生電力による電圧上昇を防止するための信号を出力することと、
    前記モータドライバに対して、前記インナーロータモータが減速した時に発生する回生電力に起因する電流の逆流を防止するための信号を出力することとを有し、
    前記モータドライバが生成したモータドライバ電源出力信号からモータドライバが起動時なのか、インナーロータモータが減速時なのかを判定する、
    駆動方法。
JP2020572152A 2019-02-13 2020-01-29 飛行体用の電動アクチュエータ装置及び駆動方法 Active JP7201010B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019023371 2019-02-13
JP2019023371 2019-02-13
PCT/JP2020/003207 WO2020166337A1 (ja) 2019-02-13 2020-01-29 飛行体用の電動アクチュエータ装置及び駆動方法

Publications (2)

Publication Number Publication Date
JPWO2020166337A1 JPWO2020166337A1 (ja) 2021-10-14
JP7201010B2 true JP7201010B2 (ja) 2023-01-10

Family

ID=72045624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020572152A Active JP7201010B2 (ja) 2019-02-13 2020-01-29 飛行体用の電動アクチュエータ装置及び駆動方法

Country Status (2)

Country Link
JP (1) JP7201010B2 (ja)
WO (1) WO2020166337A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136815A1 (ja) 2015-02-25 2016-09-01 本田技研工業株式会社 電力システム
WO2017200609A1 (en) 2016-05-18 2017-11-23 Airbus Group Hq, Inc. Vertical takeoff and landing aircraft with tilted-wing configurations
WO2018079290A1 (ja) 2016-10-24 2018-05-03 パナソニックIpマネジメント株式会社 飛行装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136815A1 (ja) 2015-02-25 2016-09-01 本田技研工業株式会社 電力システム
WO2017200609A1 (en) 2016-05-18 2017-11-23 Airbus Group Hq, Inc. Vertical takeoff and landing aircraft with tilted-wing configurations
WO2018079290A1 (ja) 2016-10-24 2018-05-03 パナソニックIpマネジメント株式会社 飛行装置

Also Published As

Publication number Publication date
WO2020166337A1 (ja) 2020-08-20
JPWO2020166337A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
EP1863154A2 (en) Actuation system with redundant motor actuators
WO2006054676A1 (ja) 車両駆動システムおよびそれを備える車両
EP2610100A2 (en) Regenerative braking apparatus for an electric vehicle
EP2564684A1 (en) Electric working vehicle
WO2017094823A1 (ja) 航空機の電動タキシングシステム及びその制御方法
US20120013278A1 (en) Resistorless dynamic motor braking system and method
EP3517343B1 (en) Vehicle power assist system
US10965227B2 (en) Electric motor
US20170302138A1 (en) Variable gap electrical machines
JP2006141077A (ja) 車両用駆動装置
CN103974864A (zh) 消除滑触操作过程中电驱动机器的燃料使用的方法和设备
JP4288516B2 (ja) 船舶用ハイブリッド推進システム
JP7201010B2 (ja) 飛行体用の電動アクチュエータ装置及び駆動方法
US20180134353A1 (en) Vessel propulsion apparatus and vessel including the same
JPH1127806A (ja) ハイブリッド自動車の制御装置
US10843576B2 (en) Electric vehicle
JP5515334B2 (ja) ハイブリッド車両の制御装置
EP3680171B1 (en) Rotary wing driving apparatus
KR101473587B1 (ko) 차량의 인휠 구동 시스템
EP2899050B1 (en) Using ac and dc generators with controllers as a regenerative power burn off device
EP3490137B1 (en) Controller for switched reluctance motor
JP6717118B2 (ja) 車載バッテリの冷却装置
US20180222330A1 (en) Using dc motor with a controller as a generator
US20230076465A1 (en) Aircraft propulsion system
CN110733639A (zh) 一种推力器系统及一种两栖航行器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221205

R151 Written notification of patent or utility model registration

Ref document number: 7201010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151