JP7198406B2 - Vacuum Consolidation Method and Vacuum Consolidation Dredging Method and Vertical Drain - Google Patents

Vacuum Consolidation Method and Vacuum Consolidation Dredging Method and Vertical Drain Download PDF

Info

Publication number
JP7198406B2
JP7198406B2 JP2021551170A JP2021551170A JP7198406B2 JP 7198406 B2 JP7198406 B2 JP 7198406B2 JP 2021551170 A JP2021551170 A JP 2021551170A JP 2021551170 A JP2021551170 A JP 2021551170A JP 7198406 B2 JP7198406 B2 JP 7198406B2
Authority
JP
Japan
Prior art keywords
vacuum
consolidation
water
pressure
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021551170A
Other languages
Japanese (ja)
Other versions
JPWO2021065691A1 (en
Inventor
正佳 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2021065691A1 publication Critical patent/JPWO2021065691A1/ja
Application granted granted Critical
Publication of JP7198406B2 publication Critical patent/JP7198406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/10Improving by compacting by watering, draining, de-aerating or blasting, e.g. by installing sand or wick drains

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、高真空による真空圧密工法の圧密時間の縮小と圧密沈下の増大を図った地盤改良と高真空の真空圧密と浚渫を一連の工程で実施する海底土等の真空圧密浚渫工法に関する。 The present invention relates to a vacuum consolidation dredging method for seabed soil, etc., in which ground improvement, high-vacuum vacuum consolidation and dredging are performed in a series of steps, aiming to reduce the consolidation time of the vacuum consolidation method by high vacuum and increase the consolidation settlement.

軟弱な粘性土地盤上に重量の大きな構造物を構築する場合、事前に地盤の沈下,変形や強度の面での改良をするのが一般的である。これの対策工法としてプレロード工法がある。この工法は地盤上にあらかじめ構造物と同等もしくはそれ以上の盛土荷重を載荷し、圧密沈下を生じさせるとともに、地盤の強度増加を図り、その後にこの盛土荷重を除去して構造物を建設する工法である。通常、プレロード工法は圧密排水距離を短縮して圧密促進を図る鉛直ドレーン工法を併用する。
1949年頃スウェーデンのKjellmanは盛土荷重の代わりに大気圧を用いた大気圧載荷工法を発案した。その基本となるシステムは、鉛直ドレーンを改良区域内に打設し、その頭部を排水層で繋いで地表面を覆う。次にその排水層全面を気密シートで覆い、その端部を地盤内に埋設することで改良区域内の気密を確保する。そして排水層内を真空ポンプで減圧し続け、吸い出された地盤内の間隙水と空気を外部に排出する。
1960年代に「大気圧載荷工法」と銘打って我が国(日本)に技術導入された「真空圧密工法」は、地盤内の減圧技術の低さもあって長い低迷期があった。しかし、近年、真空ポンプ、気密性の高いシートや真空圧状態でも良好な透水性を保つドレーン材などの開発が進んだ。これにより、真空圧密工法は圧密促進の載荷盛土ができないような軟弱地盤にドレーンを打設し、載荷盛土高3.5m程度以上の荷重効果の期待ができる利点が改めて注目され、多くの施工実績を有するようになった。
我が国(日本)で真空圧密工法の発展に寄与した工法としては、1992年に初めて本格的な真空圧密工法を実用化したN&H(reNewal&Highquality)強制圧密脱水工法がある。これは真空圧の下で損失水頭の少ないドレーン(プラスティックドレーン)、漏気しない気密シート(塩化ビニール製)などの部材を改良し、真空駆動装置、真空圧密システムを開発・導入した施工 システムによって高品質・短工期・低コスト、周辺環境に及ぼす影響の低減などを実現した工法とされている。(例えば、非特許文献1参照)
また、2002年に、高真空N&H(reNewal&Highquality)工法を開発。これ以前の工法は気水分離真空タンクが改良区域外に設置されていて、ここで水と空気を分離していた。したがって、地盤沈下にともなって、水の揚程が大きくなり、真空圧密改良地盤の深度が浅くなる。これに対して前記工法は気水分離タンクを改良区域内に設置して、揚程の増大を抑えた方式である。この方式の採用によって、真空圧密で最も重要な「安定した高い真空圧を、地盤に作用させ続けることができるようになったとある。(例えば、非特許文献1参照)
ただし、空気と水の分離方法は1972年から1973年にかけて真空圧密工法の海底実験で実施されている。海底の地盤改良は当初から水深分の揚程がある。気水分離方式でなければ水深が10mを超えていたら真空圧密工法は成立しない。必然として海底では気水分離方式となる。(例えば、非特許文献2参照)
真空圧密工法の発展に寄与したもう一つの工法としては、キャップ付きドレーン工法がある。通常の真空圧密工法は気密性を保つために気密シートを使用する。当該工法では排水ホースを予め取り付けたキャップ付きドレーンを、負圧シール効果が得られる1m程度の深度(粘性土層)まで鉛直に打ち込むことで気密性を確保する。したがって、鉛直ドレーン打設の一工程で気密効果が得られることから、施工の省力化が図られ、コストダウンと工期短縮ができる。また、気密シートが不要であるため、通常工法では困難だった水面下の地盤改良にも適用できるようになったとある。(例えば、特許文献1参照)
海底地盤の真空圧を活用した工法として真空圧密浚渫工法がある。これは真空圧密と浚渫を一連とした工法である。この工法は気密載荷函体と称する鋼製箱型で地盤の圧密載荷及び浚渫のバケットの役割をする装置が使用される。気密載荷函体の構造は底面開口の箱型構造で内部天井面に薄型の真空タンクを設け、これの直下にドレーン機能のある函体隔壁分割して複数の隔室を形成し、隔室上面には透水性蓋を設け、前記函体の外部上面の中央部分には気水分離気密タンク及び函体タワーが取付けられている。(例えば、特許文献2参照)
真空圧密浚渫工法の作業工程は、気密載荷函体を海底等にセットする据付け工程、次に圧密工程,浚渫工程,浚渫土の運搬工程に分けられる。浚渫工程は当該函体が抱え込んだ中詰土を海底等から吊り上げ,そして函体から押出す工程である。この吊り上げを浚渫土の積み込み、中詰土の押し出しを浚渫土の積み下ろしに相当する。
当該函体は海底にセットされると気密性が確保される。そして、海底土は気密載荷函体の中詰状態となる。圧密工程では海底土を底面開口の当該函体で浚渫可能な強度以上、すなわち、浚渫対象となる海底粘性土の含水比が液性限界以下になるように圧密の進行を図り、浚渫工程では中詰土の上下面の真空圧力差(真空吸引)を利用する。このとき中詰土は上面だけが吊り上げられて残り全部が落下しては意味がない。従って、中詰土は自重で分離して落下しない強度が必要となる。この中詰土の一体条件は模型実験で検証した結果、中詰土の含水比を液性限界以下まで圧密することで得られる強度である。
これにより底面開口の気密載荷函体によって圧密と浚渫を一連の工程とする工法を実現している。当該工法は航路の維持浚渫にも利用される。従って、圧密時間のさらなる短縮が課題となっている。
粘土地盤の圧密時間の短縮は、Terzaghi理論に基づき圧密排水距離の短縮を図った鉛直ドレーン工法が基本的な工法である。これに対して、粘土地盤の圧密沈下を増大させる方法が圧密増加荷重により粘土の間隙水の流出駆動力を高める方法である。そして、粘土地盤の圧密時間の短縮と圧密沈下の増大の両方を同時にさせる方法が粘土の水分保持力を一時的に低下させる方法である。前者の方法は載荷盛土あるいは真空圧密によるプレロード工法である。後者の方法で知られているものは、粘土を電気的に乱す方法である。この方法の特徴は、粘土を電気的に乱すことで圧密増加荷重を加えなくても、土被り圧により急速に圧密進行することにある。ただし、この方法は電気エネルギーを膨大に消費することから実用化されていない。(例えば、非特許文献3参照)
When constructing a heavy structure on soft cohesive ground, it is common to improve ground settlement, deformation, and strength in advance. As a countermeasure method for this, there is a preload method. In this construction method, an embankment load equal to or greater than that of the structure is applied on the ground in advance to cause consolidation settlement and increase the strength of the ground, and then the embankment load is removed to construct the structure. is. Normally, the preloading method uses a vertical drain method to shorten the consolidation drainage distance and promote consolidation.
Around 1949, Kjellman of Sweden invented the atmospheric pressure loading method using atmospheric pressure instead of embankment load. The basic system is to install a vertical drain in the improved area, connect the head with a drainage layer and cover the ground surface. Next, the entire surface of the drainage layer is covered with an airtight sheet, and the end of the sheet is buried in the ground to ensure airtightness in the improved area. Then, the vacuum pump continues to reduce the pressure in the drainage layer, and the pore water and air in the ground that are sucked out are discharged to the outside.
The "vacuum consolidation method", which was introduced to Japan under the name of "atmospheric pressure loading method" in the 1960s, had a long period of stagnation due to the low level of pressure reduction technology in the ground. However, in recent years, there has been progress in the development of vacuum pumps, highly airtight sheets, and drain materials that maintain good water permeability even under vacuum pressure. As a result, the vacuum consolidation method draws attention again for its advantage of placing a drain in soft ground where it is not possible to create a loaded embankment that promotes consolidation, and the effect of a loaded embankment height of approximately 3.5m or more can be expected. now have
As a construction method that contributed to the development of the vacuum consolidation method in our country (Japan), there is the N&H (reNew & High quality) forced consolidation and dehydration method, which was put into practical use for the first time in 1992. This is achieved by improving parts such as a drain (plastic drain) with low water head loss under vacuum pressure, an airtight sheet (made of vinyl chloride) that does not leak, and developing and introducing a vacuum driving device and a vacuum consolidation system. It is said to be a construction method that achieves quality, short construction period, low cost, and reduction of impact on the surrounding environment. (For example, see Non-Patent Document 1)
In 2002, we also developed the high vacuum N&H (reNew & High quality) construction method. In the previous construction method, a steam-water separation vacuum tank was installed outside the improvement area, and water and air were separated here. Therefore, as the ground subsides, the lift of water increases, and the depth of the vacuum-consolidated ground becomes shallower. On the other hand, the above construction method is a method in which the steam separation tank is installed in the improved area to suppress the increase in lift. By adopting this method, it is said that the most important thing in vacuum consolidation, "a stable high vacuum pressure can be continuously applied to the ground."
However, the method of separating air and water was carried out from 1972 to 1973 in a seabed experiment of the vacuum consolidation method. Ground improvement on the seabed has a lifting head corresponding to the water depth from the beginning. If the water depth exceeds 10m, the vacuum consolidation method will not work unless the air-water separation method is used. Inevitably, the air-water separation method is used on the seabed. (For example, see Non-Patent Document 2)
Another method that contributed to the development of the vacuum consolidation method is the capped drain method. A normal vacuum consolidation method uses an airtight sheet to maintain airtightness. In this construction method, a capped drain with a drainage hose attached in advance is driven vertically to a depth of about 1 m (cohesive soil layer) to ensure the airtightness. Therefore, an airtight effect can be obtained in a single process of placing a vertical drain, so labor can be saved in construction, and costs can be reduced and the construction period can be shortened. In addition, since an airtight sheet is not required, it is now possible to apply it to ground improvement under water, which was difficult with conventional construction methods. (For example, see Patent Document 1)
There is a vacuum consolidation dredging method as a construction method that utilizes the vacuum pressure of the seabed ground. This is a construction method that combines vacuum consolidation and dredging. This construction method uses a steel box type device called an airtight loading box that acts as a bucket for consolidation loading and dredging of the ground. The structure of the airtight loading box is a box-shaped structure with an opening at the bottom, and a thin vacuum tank is installed on the inner ceiling surface. is provided with a water-permeable lid, and an air-water separation airtight tank and a box tower are attached to the central portion of the outer upper surface of the box. (For example, see Patent Document 2)
The work process of the vacuum consolidation dredging method is divided into the installation process of setting the airtight loading box on the seabed, etc., the consolidation process, the dredging process, and the transport process of the dredged soil. The dredging process is the process of lifting the filling soil held by the box from the seabed and pushing it out from the box. This lifting corresponds to loading of the dredged soil, and pushing out the filling soil corresponds to loading and unloading of the dredged soil.
When the box is set on the seabed, airtightness is ensured. Then, the seabed soil is packed in the airtight loading box. In the consolidation process, the consolidation is carried out so that the strength of the seabed soil is greater than the strength that can be dredged by the box with the bottom opening, that is, the water content ratio of the seabed cohesive soil to be dredged is less than the liquid limit. Utilizes the vacuum pressure difference (vacuum suction) between the top and bottom surfaces of the clog. At this time, it is meaningless if only the upper surface of the filling soil is lifted and the rest falls down. Therefore, the filling soil must be strong enough not to separate and fall under its own weight. As a result of verification by model experiments, the integral condition of this filling soil is the strength obtained by consolidating the water content ratio of the filling soil below the liquid limit.
This realizes a construction method in which consolidation and dredging are performed as a series of processes using an airtight loading box with an opening at the bottom. This method is also used for maintenance dredging of the channel. Therefore, further shortening of the consolidation time is a subject.
The basic method for shortening the consolidation time of clay ground is the vertical drain method, which shortens the consolidation drainage distance based on the Terzaghi theory. On the other hand, the method of increasing the consolidation settlement of the clay ground is the method of increasing the outflow driving force of the clay pore water by the consolidation increasing load. The method of shortening the consolidation time of the clay ground and increasing the consolidation settlement at the same time is the method of temporarily lowering the water retention capacity of the clay. The former method is a preloading method by embankment loading or vacuum consolidation. A known method of the latter is the method of electrically disturbing the clay. The feature of this method is that by electrically disturbing the clay, the consolidation progresses rapidly by the overburden pressure without applying a consolidation increasing load. However, this method has not been put to practical use because it consumes a large amount of electrical energy. (For example, see Non-Patent Document 3)

特許第3777566号Patent No. 3777566 PCT/JP2017/010246PCT/JP2017/010246

真空圧密技術協会「高真空N&H工法-改良型真空圧密工法-技術資料」pp.1-12,2013.4Vacuum Consolidation Technology Association "High Vacuum N&H Construction Method-Improved Vacuum Consolidation Method-Technical Data" pp. 1-12, 2013.4 港湾技研試料:錦海湾における真空圧密工法現地実験 No.476 pp.5-6,Mar.1984Port and Harbor Giken Sample: Field Experiment of Vacuum Consolidation Method in Kinkai Bay No. 476 pp. 5-6, Mar. 1984 「Experimental study on consolidation of marine clays in alternating electric current field」Soils and Foundations Vol.28.No.4,pp.38-46,Dec.1988"Experimental study on consolidation of marine clays in alternating electric current field" Soils and Foundations Vol. 28. No. 4, pp. 38-46, Dec. 1988

真空圧密工法による地盤改良深度の限界は、気密シートの位置を基準点として約10mである。実際の現場における気水分離システムによる気密シート下の減圧は-70~-80kPa(ゲージ圧)程度とされている。つまり、粘性土の間隙水の流出駆動力を高める真空圧の有効活用は70~80%程度である。課題1は気密シート下の減圧を改善して真空圧の活用を限りなく100%に近づけることである。
粘土の水分保持力を一時的に低下させる方法,例えば、粘土を電気的に乱す方法は圧密沈下の促進効果が極めて大きい。課題2は本発明にも粘土の水分保持力を一時的に低下させる方法を取り入れることである。地盤改良深度の限界の10mは、鉛直ドレーン内部が水で満たされている場合である。鉛直ドレーン内部の滞留水が何等かの方法で空気と置き換えができれば10mの限界の壁は無くなる。例えば、改良深度を20m,30mである。課題3は鉛直ドレーン内部の滞留水を空気と置き換える方法である。
The limit of the ground improvement depth by the vacuum consolidation method is about 10m with the position of the airtight sheet as the reference point. The pressure reduction under the airtight sheet by the air-water separation system at the actual site is about -70 to -80 kPa (gauge pressure). In other words, the effective utilization of the vacuum pressure to increase the outflow driving force of the interstitial water of the cohesive soil is about 70 to 80%. Problem 1 is to improve the pressure reduction under the airtight sheet to bring the utilization of the vacuum pressure closer to 100%.
A method of temporarily lowering the water retention capacity of clay, for example, a method of electrically disturbing clay, has a very large effect of promoting consolidation settlement. Problem 2 is to incorporate a method for temporarily lowering the water retention capacity of clay in the present invention as well. The ground improvement depth limit of 10m is when the inside of the vertical drain is filled with water. If the stagnant water inside the vertical drain can be replaced with air in some way, the 10m limit wall will disappear. For example, the improved depth is 20m and 30m. Problem 3 is a method of replacing stagnant water inside the vertical drain with air.

課題1は真空圧の活用を限りなく100%に近づけることである。従来の真空圧密工法は気密状態とした改良区域地盤内に気水分離真空タンクを設置し、鉛直ドレーンを介して空気・水を気水分離真空タンクに集め、排水装置で水を外部に排出すると共に真空装置で真空引きする。このようにして地盤沈下と共に気水分離真空タンクも沈下するので、真空ポンプの揚程の増加を防いでいる。これは重要な対策である。しかし、気水分離システムだけでは本発明の工法が求める高真空に至る減圧はできない。これの主な原因は水蒸気圧である。
周知のように水は沸騰しなくても蒸発する。特に水蒸気は真空中では活発に発生する。水が気体(水蒸気)に変わるときは体積が激増する。それ故に水蒸気の発生は真空圧に対して大きな加圧として作用する。この影響は極めて大きく気水分離システムだけでは全く不十分であり、水蒸気圧の課題解決が必要となる。本発明の解決手段は真空圧密システムの真空経路にコールドトラップを組み込むことである。
本発明の真空圧密システムの真空経路は、真空関連装置の直列接続からネットワーク接続へと進む。直列接続の真空経路は、気密状態とした改良区域地盤の間隙水を吸引する鉛直ドレーンから気水分離真空タンクを経由して増強真空タンク,コールドトラップ,真空ポンプの順で真空関連装置を直列に接続する。ネットワーク接続の真空経路は、気水分離真空タンクを経由した後、複数の真空経路に分岐してそれぞれ真空装置を直列に接続し、さらに、それぞれの増強真空タンクが並列となるように真空経路を連絡してネットワークを形成する。
気水分離真空タンクの役割は、空気,水を分離し、水はここに設置された排水装置で外部へ排出する。コールドトラップの役割は、鉛直ドレーン及び気水分離真空タンクで発生した水蒸気を冷却して氷(霜)の状態で捕集する。これにより水蒸気の負荷が真空ポンプに及ばないようにして真空ポンプを最大限に機能させる。増強真空タンクは気水分離真空タンクの容積の数倍ある。このタンクの役割は、気水分離真空タンクを所定の真空圧とするには相応の真空引時間が必要である。そこで増強真空タンクは気水分離真空タンクに先行して真空引して所定の真空圧を確保しておき、気水分離真空タンクの真空引きを迅速に行うために使う。
増強真空タンクのネットワークの意図は、コールドトラップは水蒸気を氷として固着させるので次の稼動に備えて氷を溶かす工程を必要とする。つまり、真空経路は気水分離真空タンクに開かれて稼働する真空経路と閉じて次の稼動に備える真空経路が必要である。また、本発明の工法が求める高真空圧を確保するにあたり、必要に応じて真空装置の複数の真空経路を同時に稼働させることができる。
本発明の真空圧密工法は、第1,第2,第3段階へと進む。第1段階の本発明の真空圧密工法は、気密シート下の減圧の有効活用を限りなく100%に近づけることである。大規模な地盤改良における本発明の真空圧密システムは、ネットワーク接続の真空経路が使われる。真空経路に発生する水蒸気はコールドトラップで回収することで真空ポンブを最大限に機能させ、間隙水の現状温度が沸点となる限界の真空圧を超えない高真空圧を増強真空タンクで迅速に確保することで圧密時間の短縮と圧密沈下の増大を図る。
水の沸騰は1気圧(ゲージ圧:0.0kPa)では100℃である。例えば、間隙水の温度が13℃とするならば、沸点が13℃となる0.015気圧(ゲージ圧:-99.8kPa)が間隙水の現状温度が沸点となる限界の真空圧である。ここで云う真空圧とは、粘土の間隙水の表面にかかる圧力で外圧と同義で使っている。
課題2の圧密沈下の促進効果を大きく高める解決手段は、粘土の間隙水の流出駆動力を高める方法に加えて、粘土の水分保持力を一時的に低下させる方法を併用する。前者は本発明の真空圧密工法の第一段階である。後者は、改良区域地盤の粘土の間隙水の現状温度が沸点となる真空圧まで増強真空タンクで迅速に減圧して間隙水を沸騰させる。(正確には粘土の間隙水及び吸着水の一部である)実際の工程では、粘土の水分保持力を一時的に低下させてから、間隙水の現状温度が沸点となる限界の真空圧を超えない高真空圧の真空圧密工法を実施する。
沸騰は間隙水全体に無数の気泡を発生させて粘土の水分保持力を激減させる。発生した気泡は真空中で水蒸気となり急激に体積増加し、真空圧に対して減圧とは逆の加圧に作用する。真空装置の減圧よりも水蒸気の加圧が勝れば、真空圧は沸点を保持できなくなり沸騰は停止する。しかし、真空圧密工法の必要な沸騰時間は数十秒~数分で良い。一時的に低下した粘土の水分保持力の回復には少なくとも数時間かかる。この間に圧密は急激に進行する。つまり、真空装置は常に間隙水圧の温度が沸点となる真空圧を保持する必要はない。必要以上の沸騰は水蒸気圧で真空圧を逆に加圧させるので避けるべきである。
第2段階の本発明の真空圧密工法は、課題1,2を解決した状態である。すなわち、間隙水の現状温度が沸点となるまで真空圧を迅速に減圧することで間隙水を沸騰させ、間隙水に発生した無数の気泡の作用により粘性土の水分保持力を一時的に低下させたならば、真空圧を間隙水が沸騰する限界の真空圧を超えない高真空圧にして間隙水の蒸発を抑制し、これを安定的に継続することで、減圧沸騰と真空圧密の相乗効果で圧密時間の大幅な短縮と圧密沈下の増大を図る。ここで、減圧沸騰と真空圧密を併用する地盤改良工法は、以降「真空沸騰圧密工法」と称する。なお、第2段階の真空沸騰圧密工法は鉛直ドレーンに滞留水があると、直接に粘土の間隙水に高真空圧が伝わらないので間隙水を沸騰させることが極めて困難になる。
課題3の解決手段は鉛直ドレーン内部に滞留している間隙水(以降滞留水)を空気に置換える方法である。本発明の真空圧密工法に使用する鉛直ドレーンは、濾過材で被覆されて内径と外径がぴったり合う大小二種類の中空の硬質多孔管,抜出し防止器具,フレキシブル管、そして水中を自重で沈降する緩衝粒子から構成される。大小二種類の中空の硬質多孔管(ドレーン)を交互に差込み、ドレーンの抜出し防止器具を取り付けて順次連結することで、地盤沈下に追随して収縮するドレーン本体を形成し、ドレーン本体の先端部にはコンプレッサーに繋がる圧気管と接続するフレキシブル管を取り付け、ドレーン本体にはこれの内部の移動に限定された緩衝粒子を封入する。ここで、抜出し防止器具とは大小二種類の中空の硬質多孔管が抜け出さないように一定の長さの線材で連結する器具である。また、ドレーン本体に沿って先端部に取付ける圧縮空気を送る管をフレキシブル管とした理由は、この管も地盤沈下に追随する必要があるためである。
鉛直ドレーンの内部の滞留水の排除方法は、滞留水を緩衝粒子と共に圧縮空気で鉛直ドレーン先端部から頂部へと噴き上げることで滞留水を気水分離気密タンクへと送り出し、滞留水を空気に置き換える。これにより本発明の真空圧密工法は、地盤改良深度を大幅に拡大する。また、本発明の真空圧密工法の鉛直ドレーンの打設方法は、ドレーン打設機でドレーン先端部を掴んで打設する。従って、打設終了時の鉛直ドレーンは伸び切った状態である。
ここで緩衝粒子の役割は、圧縮空気が滞留水を一体として押し上げる緩衝層となる。滞留水を鉛直ドレーンの頂部へと噴き上げるとき、圧縮空気は緩衝粒子が無いと滞留水を突き抜け、滞留水の半分以上が残留する。従って、緩衝粒子は滞留水を噴き上げるときにはドレーン先端部に自重で堆積している必要がある。緩衝粒子は重すぎても都合が悪く、比重は1.3~1.5程度が適当である。また、緩衝層の厚さは鉛直ドレーン管の内径の5倍~10倍程度が適当である。また、緩衝粒子が粒子である必要性は、本発明の鉛直ドレーンは内径の異なる中空の硬質多孔管が交互に連結されている。また、鉛直ドレーンは地盤沈下に伴い多少の曲げも生じる。もしも、緩衝層を一つの排水用ピストンで代用したならば、水中沈降が不能となることが起こるだろう。
第3段階の本発明の真空圧密工法は、鉛直ドレーンの内部の滞留水を空気に置き換えて地盤改良深度の拡大を図り、且つ減圧沸騰と真空圧密の相乗効果で圧密時間の大幅な短縮と圧密沈下の増大を図る真空圧密工法である。鉛直ドレーンに滞留水があると間隙水を沸騰させる高真空圧を伝達することが極めて困難になる。従って、第3段階の真空圧密工法は、第2段階の真空圧密工法と鉛直ドレーンの内部の滞留水を空気に置き換える工法の併用となる。
第3段階の本発明の真空圧密工法は、前述の鉛直ドレーン及びネットワーク真空経路の真空圧密システムを用いる。当該真空圧密工法は、圧密速度が低下したならば、気水分離真空タンクの下流側(真空ポンプ側)の真空経路を閉じ、圧縮空気の放出管とフレキシブル管を開き、圧縮空気で鉛直ドレーンに滞留している間隙水を緩衝粒子と共に鉛直ドレーン先端部から頂部へと噴き上げることで間隙水を気水分離真空タンクへと送り出す。滞留した間隙水を空気に置き換えたならば、圧縮空気の放出管とフレキシブル管を閉じ、気水分離真空タンクの下流側の真空経路を開き、間隙水の現状温度が沸点となるまで真空圧を増強真空タンクで一気に減圧することで間隙水を沸騰させる。間隙水に発生した無数の気泡の作用により粘性土の水分保持力を一時的に低下させたならば、真空圧を間隙水が沸騰する限界の真空圧を超えない高真空圧にして間隙水の蒸発を抑制し、これを安定的に維持することを断続して繰り返す。
当該真空圧密工法の必要な沸騰時間は数十秒~数分で良い。一時的に低下した粘土の水分保持力の回復には少なくとも数時間かかる。鉛直ドレーンの内部の滞留水を空気に置き換えた時点では、気水分離真空タンクは常圧の状態である。このため、ネットワーク真空経路の増強真空タンクは、事前に間隙水の現状温度が沸点となる高真空圧を確保しておき、迅速に鉛直ドレーン,気水分離真空タンクを所定の高真空圧に減圧する。
本発明の真空圧密工法の真空圧密システムは、改良区域地盤及びこの地盤を気密状態とする方法を限定しない。例えば、底面開口の気密載荷函体を用いた海底地盤等の真空圧密浚渫工法においては、この工法の圧密工程にネットワーク真空経路の真空圧密システムが適用される。ただし、海底の真空圧密は大気圧に加えて水圧が載荷される。従って、真空圧密浚渫工法で水深が大きい場合は、粘性土地盤に大きな過剰間隙水圧が発生するので間隙水を迅速に沸騰させるのは困難である。この場合は間隙水の現状温度が沸点となる限界の真空圧を超えない高真空圧による真空圧密工法で実施するのが良い。
海底地盤等の真空圧密浚渫工法は、所定の真空圧(間隙水を沸騰させる真空圧)を超えない限界の高真空圧を各真空装置の相互バックアップにより、迅速且つ安定的に持続することで圧密時間の短縮と圧密沈下の増大を図る。真空圧密浚渫工法は本発明の真空圧密システムにより、底面開口の気密載荷函体で海底地盤等を浚渫可能な強度まで極めて短い時間で圧密し、さらには圧密沈下の増大により浚渫土の発生の抑制を大きく図ることができる。
Problem 1 is to bring the utilization of vacuum pressure as close to 100% as possible. In the conventional vacuum consolidation method, a steam-water separation vacuum tank is installed in the airtight improved zone ground, air and water are collected in the steam-water separation vacuum tank via a vertical drain, and the water is discharged outside with a drainage device. It is vacuumed with a vacuum device. In this way, as the ground subsides, the steam-water separation vacuum tank also subsides, preventing an increase in the pump head of the vacuum pump. This is an important countermeasure. However, the air-water separation system alone cannot reduce the pressure to the high vacuum required by the construction method of the present invention. The main cause of this is water vapor pressure.
As we all know, water evaporates without boiling. In particular, water vapor is actively generated in a vacuum. When water turns into gas (steam), its volume increases dramatically. The generation of water vapor therefore acts as a large pressurization against the vacuum pressure. This effect is extremely large, and the steam separation system alone is completely insufficient, and it is necessary to solve the problem of water vapor pressure. The solution of the present invention is to incorporate a cold trap in the vacuum path of the vacuum consolidation system.
The vacuum path of the vacuum consolidation system of the present invention proceeds from a series connection of vacuum related devices to a network connection. The series-connected vacuum path starts from the vertical drain that sucks the pore water in the airtight improvement zone ground, passes through the air-water separation vacuum tank, and then connects the vacuum-related equipment in series in the order of the enhanced vacuum tank, the cold trap, and the vacuum pump. Connecting. After passing through the air-water separation vacuum tank, the network-connected vacuum path branches into multiple vacuum paths to connect vacuum devices in series. Get in touch and network.
The role of the air-water separation vacuum tank is to separate air and water, and the water is discharged to the outside through a drainage device installed here. The function of the cold trap is to cool the water vapor generated in the vertical drain and the vapor separation vacuum tank and collect it in the form of ice (frost). This allows the vacuum pump to perform at its maximum by not overloading the vacuum pump with water vapor. The enhanced vacuum tank has several times the volume of the steam separation vacuum tank. As for the role of this tank, a certain amount of vacuuming time is required to bring the vapor-water separation vacuum tank to a predetermined vacuum pressure. Therefore, the enhanced vacuum tank is evacuated prior to the vapor separation vacuum tank to ensure a predetermined vacuum pressure, and is used to quickly evacuate the vapor separation vacuum tank.
The intent of the network of boosted vacuum tanks is that the cold trap will trap water vapor as ice, requiring a step to melt the ice in preparation for the next run. In other words, it is necessary to have a vacuum path that is open to the steam-water separation vacuum tank for operation and a vacuum path that is closed to prepare for the next operation. Further, in securing the high vacuum pressure required by the construction method of the present invention, a plurality of vacuum paths of the vacuum apparatus can be operated simultaneously as required.
The vacuum consolidation method of the present invention proceeds to first, second and third stages. The first step of the vacuum consolidation method of the present invention is to bring the effective use of the reduced pressure under the airtight sheet to as close to 100% as possible. The vacuum consolidation system of the present invention in large scale soil improvement uses a networked vacuum path. The water vapor generated in the vacuum path is recovered by a cold trap to maximize the function of the vacuum pump, and the enhanced vacuum tank quickly secures a high vacuum pressure that does not exceed the limit vacuum pressure at which the current temperature of the interstitial water becomes the boiling point. This will shorten the consolidation time and increase the consolidation settlement.
The boiling point of water is 100° C. at 1 atmosphere (gauge pressure: 0.0 kPa). For example, if the temperature of the interstitial water is 13° C., 0.015 atm (gauge pressure: −99.8 kPa) at which the boiling point is 13° C. is the limit vacuum pressure at which the current temperature of the interstitial water becomes the boiling point. The vacuum pressure mentioned here is the pressure applied to the surface of the interstitial water of the clay, and is used synonymously with the external pressure.
A means for solving the problem 2, which greatly enhances the acceleration effect of consolidation settlement, uses a method of temporarily lowering the water retention capacity of the clay in addition to a method of increasing the outflow driving force of the interstitial water of the clay. The former is the first step of the vacuum consolidation method of the present invention. The latter boils the interstitial water by rapidly depressurizing it in an intensifying vacuum tank to a vacuum pressure at which the current temperature of the interstitial water of clay in the improved zone ground becomes the boiling point. (Precisely, it is part of the pore water and adsorbed water of the clay) In the actual process, the water retention capacity of the clay is temporarily lowered, and then the vacuum pressure is reduced to the limit at which the current temperature of the pore water becomes the boiling point. Implement a vacuum consolidation method with a high vacuum pressure that does not exceed
Boiling generates numerous air bubbles throughout the interstitial water and drastically reduces the water retention capacity of the clay. The generated bubbles turn into water vapor in a vacuum, and the volume of the air bubbles increases rapidly. If the pressurization of water vapor exceeds the decompression of the vacuum device, the vacuum pressure cannot maintain the boiling point and boiling stops. However, the boiling time required for the vacuum consolidation method may be several tens of seconds to several minutes. It takes at least several hours to restore the temporarily reduced water holding capacity of the clay. Consolidation progresses rapidly during this time. In other words, the vacuum device does not always need to maintain the vacuum pressure at which the temperature of the pore water pressure becomes the boiling point. Boiling more than necessary should be avoided because the water vapor pressure will reverse the vacuum pressure.
The vacuum consolidation method of the second stage of the present invention is in a state in which the problems 1 and 2 are solved. In other words, the vacuum pressure is rapidly reduced until the current temperature of the pore water reaches the boiling point, causing the pore water to boil. If so, the vacuum pressure should be set to a high vacuum pressure that does not exceed the limit vacuum pressure at which interstitial water boils, suppressing the evaporation of interstitial water. to significantly shorten the consolidation time and increase the consolidation settlement. Here, the ground improvement method using both vacuum boiling and vacuum consolidation is hereinafter referred to as "vacuum boiling consolidation method". In the second stage of the vacuum boiling consolidation method, if water remains in the vertical drain, the high vacuum pressure is not directly transmitted to the interstitial water of the clay, making it extremely difficult to boil the interstitial water.
A means for solving the problem 3 is a method of replacing interstitial water (hereinafter, stagnant water) stagnant inside the vertical drain with air. The vertical drain used in the vacuum consolidation method of the present invention consists of hollow hard perforated pipes of two types, large and small, which are covered with a filtering material and whose inner and outer diameters are exactly the same, a pull-out prevention device, a flexible pipe, and sinks in water under its own weight. Consists of buffer particles. By inserting two types of large and small hollow rigid perforated pipes (drain) alternately, attaching devices to prevent the drain from coming out, and connecting them in sequence, a drain body that shrinks following land subsidence is formed, and the tip of the drain body is formed. is attached with a flexible tube that connects to a pneumatic tube that connects to the compressor, and the drain body contains cushioning particles that are limited to movement inside it. Here, the pull-out prevention device is a device that connects two kinds of large and small hollow rigid perforated pipes with a wire rod of a certain length so that they do not slip out. Also, the reason why the pipe for sending compressed air attached to the tip along the drain body is a flexible pipe is that this pipe also needs to follow the ground subsidence.
The method of removing stagnant water inside the vertical drain is to send the stagnant water to the air-water separation airtight tank by blowing stagnant water together with buffer particles from the tip of the vertical drain to the top with compressed air, and replacing the stagnant water with air. . As a result, the vacuum consolidation method of the present invention greatly expands the ground improvement depth. Further, in the method for placing a vertical drain in the vacuum consolidation method of the present invention, the tip of the drain is gripped by a drain placing machine and placed. Therefore, the vertical drain at the end of casting is in a fully extended state.
Here, the role of the buffer particles is to act as a buffer layer in which the compressed air pushes up the stagnant water together. When the stagnant water is jetted to the top of the vertical drain, the compressed air penetrates the stagnant water without the buffer particles, leaving more than half of the stagnant water. Therefore, the buffer particles must be deposited on the tip of the drain by their own weight when the stagnant water is blown up. It is not convenient for the buffer particles to be too heavy, and a suitable specific gravity is about 1.3 to 1.5. Also, the thickness of the buffer layer is suitably about 5 to 10 times the inner diameter of the vertical drain pipe. Moreover, the need for the buffer particles to be particles is due to the fact that the vertical drain of the present invention has hollow rigid perforated tubes with different inner diameters that are alternately connected. In addition, vertical drains may bend slightly due to land subsidence. If the buffer layer were replaced by a single draining piston, submersion failure would occur.
In the third step, the vacuum consolidation method of the present invention, the stagnant water inside the vertical drain is replaced with air to expand the ground improvement depth, and the synergistic effect of vacuum boiling and vacuum consolidation greatly shortens the consolidation time and consolidates. This is a vacuum consolidation method to increase subsidence. Stagnant water in the vertical drain makes it extremely difficult to deliver the high vacuum pressure that boils the pore water. Therefore, the vacuum consolidation method of the third stage is used in combination with the vacuum consolidation method of the second stage and the method of replacing the stagnant water inside the vertical drain with air.
The third step, the vacuum consolidation method of the present invention, uses the vertical drain and network vacuum path vacuum consolidation system described above. In the vacuum consolidation method, when the consolidation speed decreases, the vacuum path on the downstream side (vacuum pump side) of the steam separation vacuum tank is closed, the compressed air discharge pipe and flexible pipe are opened, and the compressed air is sent to the vertical drain. By blowing up the remaining pore water together with the buffer particles from the tip of the vertical drain to the top, the pore water is sent to the air-water separation vacuum tank. After replacing the stagnant pore water with air, close the compressed air discharge pipe and flexible pipe, open the vacuum path downstream of the air-water separation vacuum tank, and increase the vacuum pressure until the current temperature of the pore water reaches the boiling point. The interstitial water is boiled by reducing the pressure at once in the enhanced vacuum tank. If the water retention capacity of the cohesive soil is temporarily reduced by the action of countless air bubbles generated in the pore water, the vacuum pressure is increased to a high vacuum pressure that does not exceed the limit vacuum pressure at which the pore water boils. The process of suppressing evaporation and maintaining it stably is repeated intermittently.
The boiling time required for the vacuum consolidation method may be several tens of seconds to several minutes. It takes at least several hours to restore the temporarily reduced water holding capacity of the clay. At the time when the residual water inside the vertical drain is replaced with air, the steam-water separation vacuum tank is in a state of normal pressure. For this reason, the enhanced vacuum tank in the network vacuum path secures a high vacuum pressure at which the current temperature of the interstitial water becomes the boiling point in advance, and quickly decompresses the vertical drain and the steam-water separation vacuum tank to a predetermined high vacuum pressure. do.
The vacuum consolidation system of the vacuum consolidation method of the present invention does not limit the improved zone ground and the method of making this ground airtight. For example, in the vacuum consolidation dredging method for seabed ground using an airtight loading box with a bottom opening, a vacuum consolidation system with a network vacuum path is applied to the consolidation process of this method. However, seafloor vacuum consolidation is loaded with water pressure in addition to atmospheric pressure. Therefore, when the water depth is large in the vacuum consolidation dredging method, it is difficult to quickly boil the pore water because a large excess pore water pressure is generated in the cohesive soil. In this case, it is preferable to use a vacuum consolidation method using a high vacuum pressure that does not exceed the critical vacuum pressure at which the current temperature of the interstitial water becomes the boiling point.
The vacuum consolidation dredging method for submarine ground, etc. is consolidation by rapidly and stably sustaining a maximum vacuum pressure that does not exceed a predetermined vacuum pressure (vacuum pressure that boils pore water) by mutual backup of each vacuum device. Aim to shorten the time and increase the consolidation settlement. The vacuum consolidation dredging method uses the vacuum consolidation system of the present invention to consolidate the seabed ground, etc. to a strength that enables dredging in an extremely short period of time, and to suppress the generation of dredged soil by increasing consolidation settlement. can be made larger.

真空圧による地盤改良工法において、高真空とする減圧は鉛直ドレーン及び気水分離真空タンクで発生する水蒸気の加圧作用の影響が極めて大きい。そこで、本発明の真空圧密システムは、気水分離真空タンクから真空ポンプに至る真空経路の中間に増強真空タンク,コールドトラップの順で加えた。さらに、このような真空経路を複数設けてネットワーク経路とすることで高真空圧の確保を容易いにし、従来の真空圧密工法と比較して20~30%程度の真空圧の有効活用を高めるという効果をもたらした。
また、鉛直ドレーンに滞留した粘性土地盤の間隙水(滞留水)を空気と置き換えることで、真空圧密工法による地盤改良の限界深度10mを大きく拡大するという効果をもたらした。(例えば30m)さらには、鉛直ドレーンの滞留水の除去で、間隙水を沸騰させる高真空圧を直接粘性土地盤に伝達することができ、減圧沸騰と真空圧密の相乗効果で圧密時間の大幅な短縮と圧密沈下の増大を図る真空圧密工法を実現するという効果をもたらした。
In the ground improvement method using vacuum pressure, the decompression to high vacuum is greatly affected by the pressurization action of water vapor generated in the vertical drain and the steam-water separation vacuum tank. Therefore, in the vacuum consolidation system of the present invention, an enhanced vacuum tank and a cold trap are added in this order in the middle of the vacuum path from the steam separation vacuum tank to the vacuum pump. Furthermore, by providing a plurality of such vacuum paths as a network path, it is easy to secure a high vacuum pressure, and compared to the conventional vacuum consolidation method, the effect of increasing the effective utilization of the vacuum pressure by about 20 to 30%. brought
In addition, by replacing the pore water (accumulated water) in the viscous ground that has accumulated in the vertical drain with air, it has the effect of greatly expanding the limit depth of 10 m for ground improvement by the vacuum consolidation method. (e.g. 30m) Furthermore, by removing stagnant water in the vertical drain, the high vacuum pressure that boils the interstitial water can be transmitted directly to the cohesive soil. It brought about the effect of realization of vacuum consolidation method for shortening and increasing consolidation settlement.

図1は本発明の真空圧密工法の実施の一例を示す鉛直断面図である。
図2は気水分離真空タンクの鉛直断面図である。
図3は鉛直ドレーンの鉛直断面図である。
図4は本発明の真空圧密システムの一例を示す説明図である。
図5は真空圧密浚渫船の一例の正面図である。
図6は同浚渫船が気密載荷函体を海底に据え付けた状態の正面図である。
FIG. 1 is a vertical sectional view showing an example of implementation of the vacuum consolidation method of the present invention.
FIG. 2 is a vertical sectional view of the steam-water separation vacuum tank.
FIG. 3 is a vertical sectional view of a vertical drain.
FIG. 4 is an explanatory diagram showing an example of the vacuum consolidation system of the present invention.
FIG. 5 is a front view of an exemplary vacuum consolidation dredger.
FIG. 6 is a front view of the dredger with the airtight loading box installed on the seabed.

以下、本発明の実施の形態を図1~図6に基づいて説明する。
図1は本発明方法における陸上軟弱地盤の真空圧密工法の実施の一例を示す簡略な鉛直断面図である。図において、1は気密シート,7は軟弱地盤で、軟弱地盤7の改良区域の地表面を気密シート1で覆って気密状態とする。2は鉛直ドレーン,3aは真空管路,3bは圧気管路,4aは気水分離真空タンクである。気水分離真空タンク4aは改良区域外に設置されている。このため図示されていないが、真空管路3a,圧気管路3bには不同沈下対策のフレキシブルジョイントが取り付けてある。
図2は気水分離真空タンク4aの鉛直断面図である。図において、3cは圧縮空気放出管,3dは排水管である。軟弱地盤7の間隙水と空気は鉛直ドレーン2を介して真空管路3aを経由し、気水分離真空タンク4aに集められて空気と水に分離される。水は排水装置4e(排水ポンプ)により外部に排出される。
図3は鉛直ドレーン2の鉛直断面図である。図の(a)は鉛直ドレーン2の上部、(b)は下部の鉛直断面図である。図において、本発明工法に使用する鉛直ドレーン2の構造は、ドレーン本体2a,ドレーンの抜出し防止器具2b,圧縮空気のフレキシブル管2c,緩衝粒子2dから成る。2a1はドレーン本体2aの大口径ドレーン,2a2は小口径ドレーンである。ドレーン本体2aは2種類のドレーンを交互に差し込み、抜出し防止器具2bを取り付けて順次連結することで、地盤沈下に追随して収縮する機能がある鉛直ドレーン2となる。また、ドレーン本体2aの先端部には軟質のフレキシブル管2cが結合している。鉛直ドレーン2の内部に滞留した間隙水の排除方法は、ドレーン先端部から圧縮空気を噴き上げることで緩衝粒子2dと共に間隙水を気水分離真空タンク4aへと排除し、滞留した間隙水を空気に置き換える。ここで、図に示したドレーンの抜出し防止器具2bはワイヤーロープで一定以上の抜け出しができないようにしたタイプである。
図4は本発明の工法における真空圧密システムの一例の概略説明図である。システムは真空装置系統(真空管路3a)と加圧装置系統(圧気管路3b)に分かれる。図4に示す真空管路3aは、鉛直ドレーン2から気水分離真空タンク4aを経由した後、二つに分岐した例である。二つに分岐した真空管路3aは増強真空タンク4b,コールドトラップ4c,真空ポンプ4dを直列に連結し、さらに、それぞれの増強真空タンク4bが並列となるように真空管路3aを連結して増強真空タンク4bのネットワークを形成する。図の4fはコンプレッサーで、圧気管路3bで鉛直ドレーン2のフレキシブル管2cに連結する。
図5は真空圧密浚渫船の一例の正面図,図6は同真空圧密浚渫船が気密載荷函体を海底に据え付けた状態の正面図である。図において、5は真空圧密浚渫船,5aは台船,5b台船連結門型梁,5cはタワーガイドである。6はタワー式気密載荷函体,6aは気密載荷函体,6bは函体タワー,6cは気水分離気密タンクである。8は海面,9海底地盤(海底土)である。なお、真空圧密浚渫船5の気水分離気密タンク6cは真空だけではなく加圧状態とすることもあるので真空タンクではなく気密タンクと称している。なお、海底地盤(海底土)等の真空圧密浚渫工法の圧密工程では、間隙水の現状温度が沸点となる限界の真空圧を超えない高真空圧による真空圧密工法が利用される。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 6. FIG.
FIG. 1 is a schematic vertical sectional view showing an example of implementation of a vacuum consolidation method for land soft ground according to the method of the present invention. In the figure, 1 is an airtight sheet, 7 is soft ground, and the ground surface of the improved area of the soft ground 7 is covered with the airtight sheet 1 to make it airtight. 2 is a vertical drain, 3a is a vacuum line, 3b is a pneumatic line, and 4a is a steam-water separation vacuum tank. The steam-water separation vacuum tank 4a is installed outside the improvement area. For this reason, although not shown, flexible joints are attached to the vacuum line 3a and air pressure line 3b to prevent uneven subsidence.
FIG. 2 is a vertical sectional view of the steam-water separation vacuum tank 4a. In the figure, 3c is a compressed air discharge pipe, and 3d is a drain pipe. Interstitial water and air in the soft ground 7 pass through the vertical drain 2 and the vacuum pipe line 3a, are collected in the air-water separation vacuum tank 4a, and are separated into air and water. Water is discharged outside by a drainage device 4e (drainage pump).
FIG. 3 is a vertical sectional view of the vertical drain 2. FIG. (a) of the figure is an upper portion of the vertical drain 2, and (b) is a vertical sectional view of the lower portion. In the figure, the structure of the vertical drain 2 used in the construction method of the present invention consists of a drain body 2a, a drain pull-out preventing device 2b, a compressed air flexible tube 2c, and cushioning particles 2d. 2a1 is a large-diameter drain of the drain body 2a, and 2a2 is a small-diameter drain. Two types of drains are alternately inserted into the drain body 2a, attached with a pull-out preventing device 2b, and sequentially connected to form a vertical drain 2 having a function of contracting following land subsidence. A soft flexible tube 2c is connected to the tip of the drain body 2a. The pore water remaining inside the vertical drain 2 is removed by blowing compressed air from the tip of the drain to remove the pore water together with the buffer particles 2d into the air-water separation vacuum tank 4a, and the remaining pore water is released into the air. replace. Here, the device 2b for preventing the drain from falling out shown in the figure is of a type in which a wire rope prevents the drain from being pulled out more than a certain amount.
FIG. 4 is a schematic illustration of an example of a vacuum consolidation system in the construction method of the present invention. The system is divided into a vacuum system (vacuum line 3a) and a pressure system (air pressure line 3b). The vacuum line 3a shown in FIG. 4 is an example branched into two after passing through the steam-water separation vacuum tank 4a from the vertical drain 2. As shown in FIG. The two branched vacuum lines 3a connect an enhanced vacuum tank 4b, a cold trap 4c, and a vacuum pump 4d in series. Form a network of tanks 4b. A compressor 4f in FIG.
FIG. 5 is a front view of an example of a vacuum consolidation dredger, and FIG. 6 is a front view of the same vacuum consolidation dredger with an airtight loading box installed on the seabed. In the figure, 5 is a vacuum consolidation dredger, 5a is a barge, 5b is a barge connecting gate beam, and 5c is a tower guide. 6 is a tower-type airtight loading box, 6a is an airtight loading box, 6b is a box tower, and 6c is an air-water separation airtight tank. 8 is the sea surface, and 9 is the seabed ground (marine soil). Incidentally, the air-water separation airtight tank 6c of the vacuum consolidation dredger 5 is called an airtight tank rather than a vacuum tank because it may be in a pressurized state as well as in a vacuum state. In addition, in the consolidation process of the vacuum consolidation dredging method for seabed ground (seabed soil), etc., a vacuum consolidation method with high vacuum pressure that does not exceed the limit vacuum pressure at which the current temperature of pore water becomes the boiling point is used.

1 気密シート
2 鉛直ドレーン
2a ドレーン本体
2b ドレーンの抜出し防止器具
2c 圧縮空気のフレキシブル管
2d 緩衝粒子
3a 真空管路
3b 圧気管路
4a 気水分離真空タンク
4b 増強真空タンク
4c コールドトラップ
4d 真空ポンプ
5 真空圧密浚渫船
6 タワー式気密載荷函体
7 軟弱地盤
9 海底地盤(海底土)
1 Airtight sheet 2 Vertical drain 2a Drain main body 2b Drain extraction prevention device 2c Flexible tube for compressed air 2d Buffer particles 3a Vacuum conduit 3b Air pressure conduit 4a Air-water separation vacuum tank 4b Enhanced vacuum tank 4c Cold trap 4d Vacuum pump 5 Vacuum consolidation Dredger 6 Tower-type airtight loading box 7 Soft ground 9 Seabed ground (marine soil)

Claims (7)

真空圧密工法において、当該工法の真空圧密システムの真空関連装置は、気水分離真空タンクと真空ポンプの間に増強真空タンク,コールドトラップの順番で設置し、真空経路に発生する水蒸気はコールドトラップで回収することで真空ポンプを最大限に機能させ、間隙水の現状温度が沸点となる限界の真空圧を超えない高真空圧を増強真空タンクで迅速に確保することで圧密時間の短縮と圧密沈下の増大を図ることを特徴とする真空圧密工法。 In the vacuum consolidation method, the vacuum related equipment of the vacuum consolidation system of the method is installed in the order of the enhanced vacuum tank and the cold trap between the steam separation vacuum tank and the vacuum pump, and the water vapor generated in the vacuum path is the cold trap. By recovering the water, the vacuum pump functions to the maximum, and the enhanced vacuum tank quickly secures a high vacuum pressure that does not exceed the limit vacuum pressure at which the current temperature of the pore water becomes the boiling point, shortening the consolidation time and consolidation settlement. A vacuum consolidation method characterized by increasing the 真空圧密工法において、当該工法の真空圧密システムの真空関連装置は、気水分離真空タンクと真空ポンプの間に増強真空タンク,コールドトラップの順番で設置し、真空経路に発生する水蒸気はコールドトラップで回収することで真空ポンプを最大限に機能させ、間隙水の現状温度が沸点となるまで真空圧を増強真空タンクで迅速に減圧することで間隙水を沸騰させ、間隙水に発生した無数の気泡の作用により粘性土の水分保持力を一時的に低下させたならば、真空圧を間隙水が沸騰する限界の真空圧を超えない高真空圧にして間隙水の蒸発を抑制し、これを安定的に維持することで、減圧沸騰と真空圧密の相乗効果で圧密時間の大幅な短縮と圧密沈下の増大を図ることを特徴とする真空圧密工法。 In the vacuum consolidation method, the vacuum related equipment of the vacuum consolidation system of the method is installed in the order of the enhanced vacuum tank and the cold trap between the steam separation vacuum tank and the vacuum pump, and the water vapor generated in the vacuum path is the cold trap. By recovering, the vacuum pump functions to the maximum, and the vacuum pressure is increased until the current temperature of the interstitial water reaches the boiling point. If the water retention capacity of the cohesive soil is temporarily reduced by the action of the A vacuum consolidation method characterized by a synergistic effect of reduced pressure boiling and vacuum consolidation to significantly shorten the consolidation time and increase the consolidation settlement. 真空圧密工法に使用する鉛直ドレーンにおいて、当該鉛直ドレーンは、濾過材で被覆されて内径と外径がぴったり合う大小二種類の中空の硬質多孔管,抜出し防止器具,フレキシブル管,そして水中を自重で沈降する緩衝粒子から成り、大小二種類の中空の硬質多孔管を交互に差込み、抜出し防止器具を取り付けて順次連結することで、地盤沈下に追随して収縮するドレーン本体を形成し、ドレーン本体の先端部にはコンプレッサーに繋がる圧気管と接続するフレキシブル管を取り付け、ドレーン本体にはこれの内部の移動に限定された緩衝粒子を封入することを構成要件とする鉛直ドレーン。 In the vertical drain used in the vacuum consolidation method, the vertical drain is covered with a filter material and consists of two types of large and small hollow rigid perforated pipes with matching inner and outer diameters, pull-out prevention devices, flexible pipes, and water under its own weight. It consists of sedimenting buffer particles, and two types of large and small hollow rigid perforated tubes are alternately inserted, attached with a pull-out prevention device, and connected in sequence to form a drain body that shrinks with the ground subsidence. A vertical drain with a flexible tube attached to the tip that connects to a pressure tube connected to a compressor, and a drain body containing cushioning particles that restrict movement inside the tube. 請求項1及び2の真空圧密工法において、当該工法の真空圧密システムの真空経路は、改良区域地盤の間隙水を吸引するドレーンから気水分離真空タンクを経由した後、複数の真空経路に分岐して増強真空タンク,コールドトラップ,真空ポンプを直列に接続し、さらに、それぞれの分岐した真空経路の増強真空タンクが並列となるように真空経路を連絡してネットワークを形成し、所定の真空圧を各増強真空タンクの相互バックアップにより迅速且つ安定的に持続することを特徴とする真空圧密工法。 In the vacuum consolidation method of claims 1 and 2, the vacuum path of the vacuum consolidation system of the method is branched into a plurality of vacuum paths after passing through a steam-water separation vacuum tank from a drain for sucking pore water from the improvement area ground. The enhanced vacuum tank, cold trap, and vacuum pump are connected in series, and the vacuum paths are connected so that the enhanced vacuum tanks of each branched vacuum path are parallel to form a network, and a predetermined vacuum pressure is achieved. A vacuum consolidation method characterized by rapid and stable maintenance through mutual backup of each reinforced vacuum tank. 請求項3の鉛直ドレーンを使用する真空圧密工法において、鉛直ドレーンの内部に滞留した間隙水の排除方法は、間隙水を緩衝粒子と共に圧縮空気でドレーン先端部からドレーンの頂部へと噴き上げることで間隙水を気水分離真空タンクへと送り出し、滞留した間隙水を空気に置き換えることで地盤改良深度を大幅に拡大すること特徴とする真空圧密工法。 In the vacuum consolidation method using a vertical drain according to claim 3, the method for removing the interstitial water that has accumulated inside the vertical drain is to blow up the interstitial water together with the buffer particles from the tip of the drain to the top of the drain with compressed air. A vacuum consolidation method characterized by sending water to a steam-water separation vacuum tank and replacing stagnant pore water with air to greatly expand the ground improvement depth. 請求項3の鉛直ドレーンを使用する請求項2の真空圧密工法において、圧密速度が低下したならば、気水分離真空タンクの下流側の真空経路を閉じ、圧縮空気の放出管とフレキシブル管を開き、圧縮空気で鉛直ドレーンに滞留している間隙水を緩衝粒子と共に鉛直ドレーン先端部から頂部へと噴き上げることで間隙水を気水分離真空タンクへと送り出し、滞留した間隙水を空気に置き換えたならば、圧縮空気の放出管とフレキシブル管を閉じ、気水分離真空タンクの下流側の真空経路を開き、間隙水の現状温度が沸点となるまで真空圧を増強真空タンクで迅速に減圧することで間隙水を沸騰させ、間隙水に発生した無数の気泡の作用により粘性土の水分保持力を一時的に低下させたならば、真空圧を間隙水が沸騰する限界の真空圧を超えない高真空圧に維持して間隙水の蒸発を抑制し、これを安定的に維持することを断続的に繰り返すことで、地盤改良深度の拡大を図り、且つ減圧沸騰と真空圧密の相乗効果で圧密時間の大幅な短縮と圧密沈下の増大を図ることを特徴とする真空圧密工法。 In the vacuum consolidation method of claim 2 using the vertical drain of claim 3, if the consolidation speed decreases, the vacuum path downstream of the steam-water separation vacuum tank is closed and the compressed air discharge pipe and flexible pipe are opened. If compressed air is used to blow up the pore water remaining in the vertical drain together with the buffer particles from the tip of the vertical drain to the top, the pore water is sent to the air-water separation vacuum tank, and the retained pore water is replaced with air. For example, by closing the compressed air discharge pipe and flexible pipe, opening the vacuum path on the downstream side of the air-water separation vacuum tank, and quickly reducing the vacuum pressure with the boosting vacuum tank until the current temperature of the pore water reaches the boiling point. If the pore water is boiled and the water retention capacity of the cohesive soil is temporarily reduced by the action of countless bubbles generated in the pore water, the vacuum pressure does not exceed the limit vacuum pressure at which the pore water boils. By intermittently repeating the process of maintaining the pressure to suppress the evaporation of pore water and stably maintaining this, the depth of ground improvement can be expanded and the consolidation time can be shortened by the synergistic effect of boiling under reduced pressure and vacuum consolidation. The vacuum consolidation method is characterized by a significant shortening and an increase in consolidation settlement. 請求項4記載の真空圧密システムによる底面開口の気密載荷函体を用いた海底土等の真空圧密浚渫工法において、所定の高真空圧を各真空関連装置のネットワークの相互バックアップにより、迅速且つ安定的に持続することで圧密時間の大幅な短縮と圧密沈下の増大を図り、前記底面開口の気密載荷函体で海底土等を浚渫可能な強度まで極めて短い時間で圧密し、さらには圧密沈下の増大により浚渫土の発生の抑制を大きく図ることを特徴とする真空圧密浚渫工法。 In the vacuum consolidation dredging method for seabed soil etc. using the airtight loading box with the bottom opening by the vacuum consolidation system according to claim 4, a predetermined high vacuum pressure is quickly and stably provided by mutual backup of the network of each vacuum related device. In order to significantly shorten the consolidation time and increase the consolidation settlement, the airtight loading box with the bottom opening consolidates the seabed soil, etc. to a strength that can be dredged in an extremely short time, and further increases the consolidation settlement. A vacuum consolidation dredging method characterized by greatly suppressing the generation of dredged soil by
JP2021551170A 2019-10-03 2020-09-16 Vacuum Consolidation Method and Vacuum Consolidation Dredging Method and Vertical Drain Active JP7198406B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019192293 2019-10-03
JP2019192293 2019-10-03
PCT/JP2020/036153 WO2021065691A1 (en) 2019-10-03 2020-09-16 Vacuum consolidation method, vacuum consolidation dredging method, and vertical drain

Publications (2)

Publication Number Publication Date
JPWO2021065691A1 JPWO2021065691A1 (en) 2021-04-08
JP7198406B2 true JP7198406B2 (en) 2023-01-04

Family

ID=75336914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021551170A Active JP7198406B2 (en) 2019-10-03 2020-09-16 Vacuum Consolidation Method and Vacuum Consolidation Dredging Method and Vertical Drain

Country Status (2)

Country Link
JP (1) JP7198406B2 (en)
WO (1) WO2021065691A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113463673B (en) * 2021-05-27 2022-09-02 中铁十九局集团第三工程有限公司 High vacuum system combined densification method foundation treatment method and device
CN113235562B (en) * 2021-05-28 2022-06-10 中交投资咨询(北京)有限公司 Soft foundation treatment drainage plate
CN114197442B (en) * 2021-11-29 2023-09-22 中交(天津)生态环保设计研究院有限公司 Environment-friendly efficient dehydration drying method for dredging ultra-soft soil
CN114960608B (en) * 2022-03-22 2023-08-22 温州大学 Alternating bidirectional vacuum preloading consolidation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528743B2 (en) 1991-02-07 1996-08-28 株式会社奥村組 Ground improvement method and drain device
JP2840908B2 (en) 1993-03-10 1998-12-24 東急建設株式会社 Underwater soft ground improvement device and improvement method
JP3058108B2 (en) 1996-12-06 2000-07-04 株式会社大林組 Apparatus and method for reducing water content
JP5521128B1 (en) 2012-05-24 2014-06-11 パナソニック株式会社 Information communication method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132510A (en) * 1976-04-30 1977-11-07 Kajima Corp Method of improving subsoil
JPS54117109A (en) * 1978-03-10 1979-09-11 Onoda Cement Co Ltd Filler of reinforcing agent into soft ground under surface of water
JP2940908B2 (en) * 1996-09-04 1999-08-25 消防庁長官 Aerial transport container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528743B2 (en) 1991-02-07 1996-08-28 株式会社奥村組 Ground improvement method and drain device
JP2840908B2 (en) 1993-03-10 1998-12-24 東急建設株式会社 Underwater soft ground improvement device and improvement method
JP3058108B2 (en) 1996-12-06 2000-07-04 株式会社大林組 Apparatus and method for reducing water content
JP5521128B1 (en) 2012-05-24 2014-06-11 パナソニック株式会社 Information communication method

Also Published As

Publication number Publication date
JPWO2021065691A1 (en) 2021-04-08
WO2021065691A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP7198406B2 (en) Vacuum Consolidation Method and Vacuum Consolidation Dredging Method and Vertical Drain
CN102330424B (en) Vacuum preloading consolidation method for duplex vacuum tube well of blowing filling soft soil
CN102644293B (en) Pile foundation bucket foundation and construction method thereof
CN104790372B (en) Vibration-compressed air-vacuum combination foundation reinforcement system and method
JP6158555B2 (en) Ground improvement method
KR20090015025A (en) Soil improvement method
CN104711967A (en) Method for carrying out combined vacuum preloading treatment on soft foundation by gravel piles
CN104179201A (en) Anti-floating pressure-relief drainage system
CN205636721U (en) Strain equipment that well vacuum preloading consolidated deep soft soil foundation
CN103015455B (en) Bridge pile-bucket combined foundation and construction method thereof
CN106677158B (en) A kind of blowing-filling sludge superficial layer Quick uniform processing method and structure recently
JP5213216B2 (en) Ground improvement method
US20100200516A1 (en) Concurrent disposal and consolidation of dredged sediment using horizontal drains and vacuum loading
CN104047280B (en) Soft foundation sharp separation compacting method
JP2007303270A5 (en)
JP2003261930A (en) Consolidation improvement method for water bottom soft ground
CN103061324A (en) Underground-inflated liquefied foundation treating device and construction method
CN105804045A (en) Equipment for strengthening deep soft soil foundation by vacuum preloading of filter well and method
JP4114944B2 (en) Ground improvement method
CN104762951B (en) Secondary directly discharging type vacuum prepressing processes the construction method of new hydraulically filled sludge epeirogenetic
CN102912787B (en) Vacuum preloading method for fine sand mats and filter tube sealing
CN105735240B (en) A kind of vertical three-dimensional drainage arrangement reinforced for blowing-filling sludge and application method
CN104452734A (en) Rapid soft foundation separation preloading method
JP6622502B2 (en) Subsurface groundwater suction device, method for reducing the volume of mud and sludge in the bottom, methane hydrate recovery device and method in seabed
CN109898558B (en) Flushing and sinking device and flushing and sinking method for immersed tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221125

R150 Certificate of patent or registration of utility model

Ref document number: 7198406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150