JP7196816B2 - Method for manufacturing positive electrode for all-solid-state sodium battery - Google Patents

Method for manufacturing positive electrode for all-solid-state sodium battery Download PDF

Info

Publication number
JP7196816B2
JP7196816B2 JP2019195224A JP2019195224A JP7196816B2 JP 7196816 B2 JP7196816 B2 JP 7196816B2 JP 2019195224 A JP2019195224 A JP 2019195224A JP 2019195224 A JP2019195224 A JP 2019195224A JP 7196816 B2 JP7196816 B2 JP 7196816B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
solid
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019195224A
Other languages
Japanese (ja)
Other versions
JP2021068672A (en
Inventor
紘子 桑田
正人 穂積
伸 後田
啓太 二井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019195224A priority Critical patent/JP7196816B2/en
Publication of JP2021068672A publication Critical patent/JP2021068672A/en
Application granted granted Critical
Publication of JP7196816B2 publication Critical patent/JP7196816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、ナトリウム全固体電池に関する。 The present invention relates to a sodium all-solid-state battery.

リチウムイオン二次電池は、高容量で軽量である特性を生かして、モバイル機器や車載用電源として使用されている。ここで用いられる電解液は漏洩の可能性があるため、該電解液に替えて、固体電解質を使用することが検討されている。 Lithium-ion secondary batteries are used as power sources for mobile devices and vehicles, taking advantage of their high-capacity and light weight characteristics. Since the electrolytic solution used here may leak, the use of a solid electrolyte instead of the electrolytic solution is being studied.

ところが、リチウムは原材料が高騰することが懸念されている。そこで、リチウムに替わる材料として、資源量が豊富なナトリウムを使用したナトリウムイオン全固体電池が注目されている。ナトリウムイオン全固体電池には、ナトリウムイオン伝導性が必要とされる。 However, there is a concern that the price of raw materials for lithium will soar. Therefore, sodium-ion all-solid-state batteries using sodium, which is an abundant resource, are drawing attention as a material to replace lithium. A sodium ion all-solid-state battery requires sodium ion conductivity.

特許文献1には、ナトリウム二次電池において、その正極に、P2型の層状結晶構造を有する正極活物質及び固体電解質が用いられることが開示されている。 Patent Literature 1 discloses that a positive electrode active material having a P2-type layered crystal structure and a solid electrolyte are used in a positive electrode of a sodium secondary battery.

特表2018-514908号公報Japanese Patent Publication No. 2018-514908

ところが、P2型の層状結晶構造の正極活物質と固体電解質との接触部位で反応が起こり、副生成物が生じて界面抵抗が大きくなるため、電池出力が不十分になることがある。 However, a reaction occurs at the contact portion between the positive electrode active material having the P2-type layered crystal structure and the solid electrolyte, and by-products are generated to increase interfacial resistance, resulting in insufficient battery output.

本願は、該実情に鑑みてなされたものであり、P2型の層状結晶構造の正極活物質と固体電解質との界面抵抗を抑制することができるナトリウム全固体電池の正極の製造方法を提供することを主目的とする。 The present application has been made in view of this situation, and provides a method for manufacturing a positive electrode for an all-solid-state sodium battery that can suppress the interfacial resistance between a positive electrode active material having a P2-type layered crystal structure and a solid electrolyte. The main purpose is

本願は上記課題を解決するための一つの手段として、ナトリウム全固体電池の正極を製造する方法であって、P2型の層状結晶構造を有する正極活物質と、NASICON型のリン酸化合物とを混合した後に、300℃以上600℃以下にて熱処理をおこなう工程を有する、正極の製造方法を開示する。 As one means for solving the above problems, the present application provides a method for manufacturing a positive electrode for a sodium all-solid-state battery, which comprises mixing a positive electrode active material having a P2-type layered crystal structure and a NASICON-type phosphate compound. Disclosed is a method for manufacturing a positive electrode, which includes a step of performing heat treatment at 300° C. or higher and 600° C. or lower after heating.

本願が開示するナトリウム全固体電池の正極の製造方法によれば、P2型の層状結晶構造の正極活物質と固体電解質との界面抵抗を抑制することができる。 According to the manufacturing method of the positive electrode of the sodium all-solid-state battery disclosed by the present application, the interfacial resistance between the positive electrode active material having the P2-type layered crystal structure and the solid electrolyte can be suppressed.

本願が開示する正極を備えたナトリウムイオン全固体電池の概略断面図である。1 is a schematic cross-sectional view of a sodium-ion all-solid-state battery with a positive electrode disclosed by the present application; FIG. 実施例及び比較例の結果を表す図である。It is a figure showing the result of an Example and a comparative example.

[ナトリウム全固体電池の正極の製造]
<正極活物質の準備>
正極活物質を準備する。本開示で正極活物質は、P2型の層状結晶構造を有するNaを含む複合酸化物である。
ここで、「Naを含む複合酸化物」とは、Na原子に加えて、Mn、Ni、Co、Fe、Crから選ばれる少なくとも1種類以上を含む遷移金属元素、及びO原子を含むことである。例えば、NaMO(0<x≦1、MはMn、Ni、Co、Fe、Crのうちの少なくとも1種以上)を挙げることができる。
[Production of positive electrode for all-solid-state sodium battery]
<Preparation of positive electrode active material>
Prepare a positive electrode active material. In the present disclosure, the positive electrode active material is a composite oxide containing Na having a P2-type layered crystal structure.
Here, the "complex oxide containing Na" is to contain, in addition to Na atoms, transition metal elements containing at least one selected from Mn, Ni, Co, Fe, and Cr, and O atoms. . For example, Na x MO 2 (0<x≦1, M is at least one of Mn, Ni, Co, Fe, and Cr) can be used.

正極活物質が、P2型の層状結晶構造を有していることは、X線回折(XRD)測定等により確認することができる。 It can be confirmed by X-ray diffraction (XRD) measurement or the like that the positive electrode active material has a P2-type layered crystal structure.

正極活物質は、例えばMn源、Ni源、Co源等の遷移金属元素を含む酸性混合液と、Na源を含む塩基性混合液とを混ぜて加熱撹拌し、その後に濾過することで前駆体を得て、この前駆体をさらなるNa源と混ぜて700℃以上1000℃以下、好ましくは900℃で加熱反応させることで得ることができる。加熱反応が700℃より低い温度になるとO3型の結晶構造となる。 The positive electrode active material is prepared, for example, by mixing an acidic mixed liquid containing a transition metal element such as a Mn source, a Ni source, and a Co source and a basic mixed liquid containing a Na source, heating and stirring, and then filtering to obtain a precursor. It can be obtained by mixing this precursor with an additional Na source and heat-reacting it at 700°C or higher and 1000°C or lower, preferably 900°C. When the temperature of the heating reaction is lower than 700°C, an O3 type crystal structure is obtained.

正極活物資の形状は、取扱い性が良いという観点から粒子状であることが好ましい。正極活物質の粒子の平均粒径(D50)は、特に限定されないが、0.5μm以上20μm以下とすることができる。
本願において、粒子の平均粒径は、特記しない限り、レーザー回折・散乱式粒子径分布測定により測定される体積基準のメディアン径(D50)の値である。また、メディアン径(D50)とは、粒径の小さい粒子から順に並べた場合に、粒子の累積体積が全体の半分(50%)となる径(体積平均径)である。
The shape of the positive electrode active material is preferably particulate from the viewpoint of ease of handling. The average particle diameter (D50) of the particles of the positive electrode active material is not particularly limited, but can be 0.5 μm or more and 20 μm or less.
In the present application, unless otherwise specified, the average particle diameter of particles is the value of the volume-based median diameter (D50) measured by laser diffraction/scattering particle size distribution measurement. The median diameter (D50) is the diameter (volume average diameter) at which the cumulative volume of particles becomes half (50%) of the total when the particles are arranged in order from the smallest particle diameter.

<複合活物質の合成>
上記準備した正極活物質に、Na原子、Zr原子、Si原子、P原子、及びO原子を含んだNASICON型のリン酸化合物を混合して熱処理することにより複合活物質を得る。
本開示ではこの熱処理は300℃以上600℃以下で行われる。
この範囲内の温度で熱処理することにより、得られた複合活物質を正極に用いたときに界面抵抗を小さくすることができ、出力の大きい全固体電池とすることができる。これは当該温度範囲内での熱処理により、正極活物質に副生成物の生成を抑制する効果のある被膜が形成されるためであると考えられる。そして、この被膜により副生成物の生成が抑えられて界面抵抗の上昇が抑制されると推測する。
<Synthesis of Composite Active Material>
A composite active material is obtained by mixing a NASICON-type phosphoric acid compound containing Na, Zr, Si, P, and O atoms with the positive electrode active material prepared above and heat-treating the mixture.
In the present disclosure, this heat treatment is performed at 300° C. or higher and 600° C. or lower.
By heat-treating at a temperature within this range, the interfacial resistance can be reduced when the obtained composite active material is used for the positive electrode, and an all-solid-state battery with high output can be obtained. It is believed that this is because the heat treatment within this temperature range forms a film on the positive electrode active material that has the effect of suppressing the formation of by-products. It is presumed that this coating suppresses the formation of by-products and suppresses the increase in interfacial resistance.

NASICON型の化合物は、MO八面体(Mは、遷移金属であり本開示ではNa、Zr、Si)と、XO四面体(本開示でXは、P)とが頂点を共有して3次元的に配列した構造である。具体的なNASICON型リン酸化合物としては、NaZrSiPO12などが挙げられる。 NASICON - type compounds are 3 It is a structure arranged dimensionally. Specific NASICON-type phosphate compounds include Na 3 Zr 3 Si 3 PO 12 and the like.

NASICON型のリン酸化合物の態様は、取扱い性が良いという観点から粒子状であることが好ましい。また、その粒子の平均粒径(D50)は、特に限定されないが、0.5μm以上2μm以下とすることができる。
この場合には上記した正極活物質の粉末、及び、NASICON型のリン酸化合物の粉末を混合し、これを真空封入して上記した温度範囲内で熱処理することにより複合活物質が合成される。
The embodiment of the NASICON-type phosphate compound is preferably in the form of particles from the viewpoint of good handleability. Also, the average particle diameter (D50) of the particles is not particularly limited, but can be 0.5 μm or more and 2 μm or less.
In this case, the powder of the positive electrode active material and the powder of the NASICON-type phosphoric acid compound are mixed, sealed in a vacuum, and heat-treated within the temperature range described above to synthesize the composite active material.

ただし、正極活物質及びNASICON型のリン酸化合物の両方が粒子状である必要はなく、いずれかを液相として混ぜ和せて上記温度範囲内で熱処理することで複合活物質を合成することもできる。 However, both the positive electrode active material and the NASICON-type phosphoric acid compound do not have to be in the form of particles, and a composite active material can be synthesized by mixing one of them as a liquid phase and heat-treating it within the above temperature range. can.

<固体電解質の準備>
固体電解質はナトリウムイオン伝導性を有する固体電解質であればよく特に限定されることはなく、種々の固体電解質を適用することができる。
例えば、NaMXが挙げられる。ここで、Mは、Yb、Y、In又はLaであり、Xは、Cl、BrまたはIである。より具体的には、NaYbCl6、NaYbBr、NaYbI、NaYCl、NaYBr、NaYI、NaInCl6、NaInBr、NaInI、NaLaCl6、NaLaBr、NaLaIが挙げられる。
その他、NaPS、NaSbSや、NaYSi12、NaAlSi1032、Na86Al86Si16384、及び、NaCB10とNaCB1112との混合物等も挙げられる。
<Preparation of solid electrolyte>
The solid electrolyte is not particularly limited as long as it has sodium ion conductivity, and various solid electrolytes can be applied.
For example, Na3MX6 is mentioned . where M is Yb, Y, In or La and X is Cl, Br or I; More specifically, Na3YbCl6 , Na3YbBr6 , Na3YbI6 , Na3YCl6 , Na3YBr6 , Na3YI6 , Na3InCl6 , Na3InBr6 , Na3InI6 , Na3LaC16 , Na3LaBr6 , Na3LaI6 .
In addition, Na 3 PS 4 , Na 3 SbS 4 , Na 5 YSi 4 O 12 , Na 6 Al 6 Si 10 O 32 , Na 86 Al 86 Si 16 O 384 , and NaCB 9 H 10 and NaCB 11 H 12 and the like.

<正極活物質層の作製>
正極活物質層は、上記合成した複合活物質、固体電解質、及び、必要に応じて導電材、結着材により正極活物質層を作製する。正極活物質層の作製方法は特に限定されるものではなく、乾式で、又は、湿式で作製可能である。すなわち、上記の成分を溶媒に添加してスラリーとし、当該スラリーを基材(後述の正極集電体又は固体電解質層であってもよい。)の表面に塗布した後に乾燥させることによって、所定の厚み(例えば、0.1μm以上1mm以下)を有する正極活物質層を湿式で作製できる。または、上記の成分を乾式混合し、プレス成形する等して正極活物質層を得てもよい。
<Preparation of positive electrode active material layer>
The positive electrode active material layer is produced from the composite active material synthesized above, the solid electrolyte, and, if necessary, a conductive material and a binder. The method for producing the positive electrode active material layer is not particularly limited, and it can be produced by a dry method or a wet method. That is, the above components are added to a solvent to prepare a slurry, and the slurry is applied to the surface of a substrate (which may be a positive electrode current collector or a solid electrolyte layer described later) and then dried to obtain a predetermined A positive electrode active material layer having a thickness (for example, 0.1 μm or more and 1 mm or less) can be produced by a wet process. Alternatively, the positive electrode active material layer may be obtained by dry-mixing the above components and subjecting the mixture to press molding.

正極活物質層における正極活物質(P2型の結晶構造を有する正極活物質)が正極活物質層に占める体積割合は特に限定されることはないが45体積%以上であることが好ましく、60体積%以上がより好ましい。 The volume ratio of the positive electrode active material (positive electrode active material having a P2 type crystal structure) in the positive electrode active material layer to the positive electrode active material layer is not particularly limited, but is preferably 45% by volume or more, and is preferably 60% by volume. % or more is more preferable.

導電材を用いる場合にはその種類については特に限定されるものではなく、ナトリウムイオン全固体電池の導電材として公知のものをいずれも採用できる。例えば、炭素材料が好ましく、特に結晶性の高い炭素材料が好ましい。炭素材料の結晶性が高いと、ナトリウムイオンが炭素材料に挿入され難くなり、ナトリウムイオン挿入による不可逆容量を低減できるからである。その結果、サイクル特性に一層優れるナトリウムイオン全固体電池を得ることができる。炭素材料の結晶性は、例えば層間距離d002及びD/G比で規定できる。層間距離d002とは、炭素材料における(002)面の面間隔をいい、具体的にはグラフェン層間の距離に該当する。層間距離d002は、例えばCuKα線を用いたX線回折(XRD)法により得られるピークから求めることができる。D/G比とは、ラマン分光測定(波長532nm)において観察される、1590cm-1付近のグラファイト構造に由来するG-bandのピーク強度に対する、1350cm-1付近の欠陥構造に由来するD-bandのピーク強度をいう。本発明においては、例えば、d002の上限が好ましくは3.54Å以下、より好ましくは3.50Å以下である。下限は通常3.36Å以上である。また、D/G比の上限が好ましくは0.90以下、より好ましくは0.80以下、さらに好ましくは0.50以下、特に好ましくは0.20以下である。正極活物質層における導電材の含有量は、特に限定されるものではない。 When a conductive material is used, its type is not particularly limited, and any known conductive material for sodium ion all-solid-state batteries can be employed. For example, a carbon material is preferable, and a highly crystalline carbon material is particularly preferable. This is because if the carbon material has high crystallinity, it becomes difficult for sodium ions to be inserted into the carbon material, and the irreversible capacity due to sodium ion insertion can be reduced. As a result, a sodium-ion all-solid-state battery with even better cycle characteristics can be obtained. The crystallinity of the carbon material can be defined, for example, by the interlayer distance d002 and the D/G ratio. The interlayer distance d002 refers to the interplanar distance between (002) planes in the carbon material, and specifically corresponds to the distance between graphene layers. The interlayer distance d002 can be determined from peaks obtained by, for example, an X-ray diffraction (XRD) method using CuKα rays. The D / G ratio is observed in Raman spectrometry (wavelength 532 nm), relative to the peak intensity of the G-band derived from the graphite structure near 1590 cm -1 , the D-band derived from the defect structure near 1350 cm -1 is the peak intensity of In the present invention, for example, the upper limit of d002 is preferably 3.54 Å or less, more preferably 3.50 Å or less. The lower limit is usually 3.36 Å or more. Also, the upper limit of the D/G ratio is preferably 0.90 or less, more preferably 0.80 or less, still more preferably 0.50 or less, and particularly preferably 0.20 or less. The content of the conductive material in the positive electrode active material layer is not particularly limited.

結着材を用いる場合には、化学的、電気的に安定なものであれば特に限定されるものではないが、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系結着材、スチレンブタジエンゴム(SBR)等のゴム系結着材、ポリプロピレン(PP)、ポリエチレン(PE)等のオレフィン系結着材、カルボキシメチルセルロース(CMC)等のセルロース系結着材等を挙げることができる。正極における結着材の含有量は、特に限定されるものではない。 When a binder is used, it is not particularly limited as long as it is chemically and electrically stable. binding materials, rubber-based binders such as styrene-butadiene rubber (SBR), olefin-based binders such as polypropylene (PP) and polyethylene (PE), and cellulose-based binders such as carboxymethyl cellulose (CMC); can be done. The content of the binder in the positive electrode is not particularly limited.

<正極の作製>
上記正極活物質層に正極集電体が積層されて正極とされる。ただし、正極活物質層に含まれる材料によっては、正極集電体を省略できる場合もある。この場合、正極活物質層自体が単独で正極となる。
正極集電体の材料としては、例えばステンレス鋼、アルミニウム、ニッケル、鉄、チタン及びカーボン等を挙げることができる。正極集電体の形状は、例えば、箔状、メッシュ状、多孔質状等を挙げることができる。
<Preparation of positive electrode>
A positive electrode current collector is laminated on the positive electrode active material layer to form a positive electrode. However, depending on the material contained in the positive electrode active material layer, the positive electrode current collector may be omitted in some cases. In this case, the positive electrode active material layer itself becomes the positive electrode.
Examples of materials for the positive electrode current collector include stainless steel, aluminum, nickel, iron, titanium and carbon. Examples of the shape of the positive electrode current collector include a foil shape, a mesh shape, and a porous shape.

[ナトリウムイオン全固体電池]
上記のようにして製造された正極は全固体電池の正極に適用することができる。本願の正極の製造方法により製造された正極は、正極活物質と固体電解質との界面抵抗を低く抑えることができ、その結果電池出力を高めることができる。
[Sodium-ion all-solid-state battery]
The positive electrode manufactured as described above can be applied to the positive electrode of an all-solid battery. The positive electrode manufactured by the positive electrode manufacturing method of the present application can keep the interfacial resistance between the positive electrode active material and the solid electrolyte low, and as a result, can increase the battery output.

図1に、本開示の正極の製造方法により製造された正極20(正極活物質層22及び正極集電体24)を備えた、ナトリウムイオン全固体電池100の概略断面図を示す。図1に示したナトリウムイオン全固体電池100は、正極活物質層22、負極活物質層32、正極活物質層22と負極活物質層32との間に形成された固体電解質層10、正極活物質層22の集電を行う正極集電体24、及び負極活物質層32の集電を行う負極集電体34を有する。上記のように正極活物質層22と正極集電体24とが正極20を構成している。また、負極活物質層32と負極集電体34とが負極30を構成する。 FIG. 1 shows a schematic cross-sectional view of a sodium ion all-solid-state battery 100 including a positive electrode 20 (a positive electrode active material layer 22 and a positive electrode current collector 24) manufactured by the positive electrode manufacturing method of the present disclosure. The sodium ion all-solid-state battery 100 shown in FIG. It has a positive current collector 24 that collects current for the material layer 22 and a negative current collector 34 that collects current for the negative electrode active material layer 32 . As described above, the cathode active material layer 22 and the cathode current collector 24 constitute the cathode 20 . In addition, the negative electrode active material layer 32 and the negative electrode current collector 34 constitute the negative electrode 30 .

<固体電解質層10>
本形態で固体電解質層10は、上記正極に含まれる固体電解質と同様の固体電解質により構成することができる。固体電解質層の厚みは、電池の構成によって適宜調整され、特に限定されるものではなく、通常0.1μm以上1mm以下である。
<Solid electrolyte layer 10>
In this embodiment, the solid electrolyte layer 10 can be made of the same solid electrolyte as the solid electrolyte contained in the positive electrode. The thickness of the solid electrolyte layer is appropriately adjusted depending on the configuration of the battery and is not particularly limited, and is usually 0.1 μm or more and 1 mm or less.

<正極20>
正極20は正極活物質層22及び正極集電体23を有し、上記した正極の製造方法により製造された正極が適用される。
<Positive electrode 20>
The positive electrode 20 has a positive electrode active material layer 22 and a positive electrode current collector 23, and a positive electrode manufactured by the above-described method for manufacturing a positive electrode is applied.

<負極活物質層32>
負極活物質層32には、負極活物質が含まれている。より具体的には、負極活物質の他、任意に固体電解質、導電材、結着材を含み得る。固体電解質は上記正極の製造方法で説明した固体電解質と同様に考えることができる。
<Negative electrode active material layer 32>
The negative electrode active material layer 32 contains a negative electrode active material. More specifically, in addition to the negative electrode active material, it may optionally contain a solid electrolyte, a conductive material, and a binder. The solid electrolyte can be considered in the same manner as the solid electrolyte described in the manufacturing method of the positive electrode.

(負極活物質)
負極活物質については特に限定されるものではなく、ナトリウムイオン全固体電池の負極活物質として公知のものをいずれも採用できる。例えば、ナトリウム金属やナトリウム合金等のナトリウムを含む金属材料;グラファイト、ハードカーボン、カーボンブラック等の炭素材料;チタン酸ナトリウム等のナトリウム-遷移金属複合酸化物;SiOx等のナトリウム以外の元素からなる酸化物;等が挙げられる。負極活物質は正極活物質と同様に粒子状であることが好ましい。
(Negative electrode active material)
The negative electrode active material is not particularly limited, and any known negative electrode active material for sodium ion all-solid-state batteries can be employed. For example, metal materials containing sodium such as sodium metal and sodium alloys; carbon materials such as graphite, hard carbon and carbon black; sodium-transition metal composite oxides such as sodium titanate; oxides composed of elements other than sodium such as SiOx things; and the like. The negative electrode active material is preferably particulate like the positive electrode active material.

(導電材及び結着材)
負極活物質層32では、正極活物質層22に採用可能な導電材や結着材を採用できる。導電材や結着材は任意成分であり、その含有量も特に限定されるものではない。
(Conductive material and binder)
In the negative electrode active material layer 32, a conductive material and a binder that can be used in the positive electrode active material layer 22 can be used. The conductive material and the binder are optional components, and their contents are not particularly limited.

負極活物質層32の作製方法としては特に限定されるものではなく、正極活物質層22と同様に、乾式で、又は、湿式で作製可能である。 The method for producing the negative electrode active material layer 32 is not particularly limited, and it can be produced by a dry method or a wet method as in the case of the positive electrode active material layer 22 .

(負極集電体34)
負極活物質層32には、通常、負極集電体34が備えられている。負極集電体34の材料としては、例えばステンレス鋼、アルミニウム、ニッケル、銅及びカーボン等を挙げることができる。負極集電体34の形状は、例えば、箔状、メッシュ状、多孔質状等を挙げることができる。負極集電体34を上記した負極活物質層32に積層することで容易に負極30を作製することができる。ただし、負極活物質層32に含まれる材料によっては、負極集電体34を省略できる場合もある。この場合、負極活物質層32自体が負極30となる。
(Negative electrode current collector 34)
The negative electrode active material layer 32 is usually provided with a negative electrode current collector 34 . Examples of materials for the negative electrode current collector 34 include stainless steel, aluminum, nickel, copper, and carbon. Examples of the shape of the negative electrode current collector 34 include a foil shape, a mesh shape, a porous shape, and the like. By laminating the negative electrode current collector 34 on the negative electrode active material layer 32 described above, the negative electrode 30 can be easily manufactured. However, depending on the material contained in the negative electrode active material layer 32, the negative electrode current collector 34 may be omitted in some cases. In this case, the negative electrode active material layer 32 itself becomes the negative electrode 30 .

<全固体電池の製造>
全固体電池の製造は特に限定されることはないが、例えば次のような方法が挙げられる。
1つの方法としては、上記の製造方法で得た正極活物質層となる成分を溶媒に添加してスラリーとし、当該スラリーを、固体電解質層の一方の面に塗布した後乾燥させ、同様に、負極となる成分を溶媒に添加してスラリーとし、当該スラリーを、固定電解質層の他方の面に塗布した後乾燥させることが挙げられる。そしてその後に正極集電体層及び負極集電体層を積層する。
その他の方法としては、固体電解質層を作製した後に、当該成型体の一方の面に上記のように作製した正極活物質層、他方の面に負極活物質層を重ねて積層体とし、この積層体に圧力を加えて、焼結を行うことが挙げられる。そしてその後に正極集電体層及び負極集電体層を積層する。
<Manufacturing of all-solid-state battery>
Although the production of the all-solid-state battery is not particularly limited, for example, the following method can be used.
One method is to add the components to be the positive electrode active material layer obtained by the above-described manufacturing method to a solvent to prepare a slurry, apply the slurry to one surface of the solid electrolyte layer, and then dry it. For example, a negative electrode component is added to a solvent to form a slurry, and the slurry is applied to the other surface of the fixed electrolyte layer and then dried. After that, the positive electrode current collector layer and the negative electrode current collector layer are laminated.
As another method, after producing a solid electrolyte layer, the positive electrode active material layer produced as described above is laminated on one surface of the molded body, and the negative electrode active material layer is laminated on the other surface to form a laminate. For example, sintering is performed by applying pressure to the body. After that, the positive electrode current collector layer and the negative electrode current collector layer are laminated.

<その他の構成>
電池ケースとしては、一般的な電池ケースを使用でき、特に限定されない。例えば、ステンレス製の電池ケースを挙げることができる。また、ナトリウムイオン全固体電池の形状としては、例えば、コイン型、ラミネート型、円筒型及び角型等を挙げることができる。
<Other configurations>
A general battery case can be used as the battery case, and the battery case is not particularly limited. For example, a battery case made of stainless steel can be mentioned. Moreover, examples of the shape of the sodium ion all-solid-state battery include a coin type, a laminate type, a cylindrical type, a rectangular type, and the like.

以下、実施例を用いて本開示の正極の製造方法について説明する。 Hereinafter, the method for manufacturing the positive electrode of the present disclosure will be described using examples.

[正極活物質の作製]
<第1の溶液(酸性混合液)の作製>
硝酸マンガン4水和物(Mn(NO・4HO、シグマアルドリッチジャパン)5.02g、硝酸ニッケル6水和物(Ni(NO・6HO、ナカライテスク株式会社)2.40g、及び、硝酸コバルト6水和物(Co(NO・6HO、シグマアルドリッチジャパン)3.60gを純水33.0gに溶解し、第1の溶液である酸性混合液を得た。
<第2の溶液(塩基性混合液)の作製>
炭酸ナトリウム(NaCO、シグマアルドリッチジャパン)4.25gを純水40.0gに溶解し、アンモニア水(NHOH、キシダ化学株式会社)2mLを加えて撹拌して第2の溶液である塩基性混合液を得た。
<前駆体の合成>
第1の溶液44.0gと第2の溶液45.0gとを共沈させ1晩、加熱撹拌を行った。合成された前駆体を吸引ろ過により洗浄して乾燥させた。
<正極活物質の合成>
得られた前駆体と炭酸ナトリウム(NaCO、シグマアルドリッチジャパン)を混ぜ、大気雰囲気中で900℃で反応させ、P2型の層状結晶構造であるNa0.7Mn0.5Ni0.2Co0.3の正極活物質を得た。
[Preparation of positive electrode active material]
<Preparation of first solution (acidic mixed solution)>
Manganese nitrate tetrahydrate (Mn(NO 3 ) 2.4H 2 O, Sigma-Aldrich Japan) 5.02 g, nickel nitrate hexahydrate (Ni(NO 3 ) 2.6H 2 O, Nacalai Tesque Co., Ltd.) 2 .40 g and 3.60 g of cobalt nitrate hexahydrate (Co(NO 3 ) 2.6H 2 O , Sigma-Aldrich Japan) were dissolved in 33.0 g of pure water to prepare an acidic mixed solution as the first solution. Obtained.
<Preparation of second solution (basic mixed solution)>
4.25 g of sodium carbonate (Na 2 CO 3 , Sigma-Aldrich Japan) is dissolved in 40.0 g of pure water, and 2 mL of ammonia water (NH 4 OH, Kishida Chemical Co., Ltd.) is added and stirred to form a second solution. A basic mixture was obtained.
<Synthesis of precursor>
44.0 g of the first solution and 45.0 g of the second solution were coprecipitated and heated and stirred overnight. The synthesized precursor was washed by suction filtration and dried.
<Synthesis of positive electrode active material>
The obtained precursor and sodium carbonate (Na 2 CO 3 , Sigma-Aldrich Japan) were mixed and reacted at 900° C. in an air atmosphere to form Na 0.7 Mn 0.5 Ni 0.7 Mn 0.5 Ni 0.5 having a P2-type layered crystal structure . A cathode active material of 2Co0.3O2 was obtained.

[複合活物質の合成]
得られた正極活物質とNASICON型のリン酸化合物であるNaZrSiPO12の粉末とを混合し、これを真空封入して決められた温度で熱処理し、複合活物質を得た。ここで、決められた温度は、実施例1が300℃、実施例2が400℃、実施例3が500℃、実施例4が600℃、比較例1が200℃、比較例2が700℃である。
なお、全ての例についてX線回折装置(Ultima IV、株式会社リガク)により結晶構造を調べ、全ての正極活物質がP2型の層状結晶構造であることが確認された。
[Synthesis of Composite Active Material]
The positive electrode active material thus obtained was mixed with powder of Na 3 Zr 2 Si 2 PO 12 , which is a NASICON type phosphoric acid compound, and the mixture was sealed in a vacuum and heat-treated at a predetermined temperature to obtain a composite active material. . Here, the determined temperatures are 300°C for Example 1, 400°C for Example 2, 500°C for Example 3, 600°C for Example 4, 200°C for Comparative Example 1, and 700°C for Comparative Example 2. is.
The crystal structure of all the examples was examined with an X-ray diffraction device (Ultima IV, Rigaku Corporation), and it was confirmed that all the positive electrode active materials had a P2-type layered crystal structure.

[固体電解質の合成]
不活性雰囲気下で、硫化ナトリウム(NaS、シグマアルドリッチジャパン)、硫化アンチモン(Sbシグマアルドリッチジャパン)、硫黄(S、アルファ・エイサー)をmol比で3:2:1の割合で秤量後にこれを混合した。この混合体をメカニカルミリング処理、不活性雰囲気下で合成し、NaSbS固体電解質を得た。
[Synthesis of solid electrolyte]
Sodium sulfide (Na 2 S, Sigma-Aldrich Japan), antimony sulfide (Sb 2 S 3 Sigma-Aldrich Japan), sulfur (S, Alpha Acer) in a molar ratio of 3:2:1 under an inert atmosphere. This was mixed after weighing. This mixture was subjected to mechanical milling and synthesized under an inert atmosphere to obtain a Na 3 SbS 4 solid electrolyte.

[正極の作製]
合成した複合活物質、合成した固体電解質、及び、導電材(本例ではカーボン)を質量で50:45:5の比率で測り取り、乳鉢で混合し、直径φ11、厚さ50μmの円柱状の正極活物質層を得た。
得られた正極活物質層に円柱状のステンレスからなる集電体を積層し、正極とした。
[Preparation of positive electrode]
The synthesized composite active material, the synthesized solid electrolyte, and the conductive material (carbon in this example) were weighed out at a mass ratio of 50:45:5, mixed in a mortar, and formed into a cylindrical shape having a diameter of φ11 and a thickness of 50 μm. A positive electrode active material layer was obtained.
A cylindrical current collector made of stainless steel was laminated on the obtained positive electrode active material layer to form a positive electrode.

[負極の作製]
オイル漬けにされたナトリウム金属(シグマアルドリッチジャパン)を加工して円盤状とし、これに円柱状のステンレスからなる集電体を積層して負極とした。
[Preparation of negative electrode]
Sodium metal (Sigma-Aldrich Japan) immersed in oil was processed into a disk shape, and a cylindrical current collector made of stainless steel was layered on this to form a negative electrode.

[固体電解質層の作製]
固体電解質層は、上記正極活物質層に用いた固体電解質により作製した。具体的には、円環状(ドーナツ状)の評価セルの下側に円柱状のステンレスをはめ、さらにその下に円柱状のステンレスを保護する冶具をおく。固体電解質を円環状の評価セルの環内(穴の中)に入れ、円柱状のステンレスで上側にふたをし、さらに上に円柱状のステンレスを保護する冶具をはめ、6トンでプレスをして押し固めて作製した。
[Preparation of Solid Electrolyte Layer]
The solid electrolyte layer was made from the solid electrolyte used for the positive electrode active material layer. Specifically, a cylindrical stainless steel piece is fitted to the lower side of an annular (doughnut-shaped) evaluation cell, and a jig for protecting the cylindrical stainless steel piece is placed below it. The solid electrolyte was placed in the ring (inside the hole) of the toroidal evaluation cell, the upper side was covered with a cylindrical stainless steel, and a jig for protecting the cylindrical stainless steel was fitted on top, and pressed at 6 tons. It was made by pressing and hardening.

[全固体電池の作製]
以上により得られた固体電解質層の一方に正極、他方に負極を積層して全固体電池とした。これをガラスデシケータに封入した。
[Fabrication of all-solid-state battery]
A positive electrode was laminated on one side of the solid electrolyte layer obtained above, and a negative electrode was laminated on the other side to form an all-solid-state battery. This was sealed in a glass desiccator.

[評価]
各例に対して界面抵抗の測定を行った。この測定は各例の全固体電池に、開回路電圧に対して±10mVの電圧を印加し、0.01Hz以上1MHz以下の範囲において界面抵抗を測定した。表1及び図2に結果を示す。
[evaluation]
Interfacial resistance was measured for each example. This measurement applied a voltage of ±10 mV with respect to the open circuit voltage to the all-solid-state battery of each example, and measured the interfacial resistance in the range of 0.01 Hz or more and 1 MHz or less. The results are shown in Table 1 and FIG.

Figure 0007196816000001
表1、図2からわかるように、複合活物質を作製する際の熱処理温度が界面抵抗に大きく影響していることがわかった。
Figure 0007196816000001
As can be seen from Table 1 and FIG. 2, it was found that the heat treatment temperature in producing the composite active material greatly affects the interfacial resistance.

100 ナトリウムイオン全固体電池
10 固体電解質層
22 正極活物質層
24 正極集電体
32 負極活物質層
34 負極集電体
100 Sodium ion all-solid battery 10 Solid electrolyte layer 22 Positive electrode active material layer 24 Positive electrode current collector 32 Negative electrode active material layer 34 Negative electrode current collector

Claims (1)

ナトリウム全固体電池の正極を製造する方法であって、
Na原子に加えて、Mn、Ni、Co、Fe、Crから選ばれる少なくとも1種類以上を含む遷移金属元素、及びO原子を含み、P2型の層状結晶構造を有する正極活物質と、NASICON型のリン酸化合物とを混合した後に、300℃以上600℃以下にて熱処理をおこなって複合活物質を合成し、前記複合活物質にナトリウムイオン伝導性を有する固体電解質を混合する工程を有する、正極の製造方法。
A method for manufacturing a positive electrode for a sodium all-solid-state battery, comprising:
A positive electrode active material having a P2-type layered crystal structure containing Na atoms, a transition metal element containing at least one selected from Mn, Ni, Co, Fe, and Cr, and O atoms; After mixing with a phosphoric acid compound, heat treatment is performed at 300 ° C. or higher and 600 ° C. or lower to synthesize a composite active material, and the composite active material is mixed with a solid electrolyte having sodium ion conductivity . A method for manufacturing a positive electrode.
JP2019195224A 2019-10-28 2019-10-28 Method for manufacturing positive electrode for all-solid-state sodium battery Active JP7196816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019195224A JP7196816B2 (en) 2019-10-28 2019-10-28 Method for manufacturing positive electrode for all-solid-state sodium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019195224A JP7196816B2 (en) 2019-10-28 2019-10-28 Method for manufacturing positive electrode for all-solid-state sodium battery

Publications (2)

Publication Number Publication Date
JP2021068672A JP2021068672A (en) 2021-04-30
JP7196816B2 true JP7196816B2 (en) 2022-12-27

Family

ID=75637513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019195224A Active JP7196816B2 (en) 2019-10-28 2019-10-28 Method for manufacturing positive electrode for all-solid-state sodium battery

Country Status (1)

Country Link
JP (1) JP7196816B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115498154A (en) * 2022-09-22 2022-12-20 深圳市贝特瑞新能源技术研究院有限公司 Positive electrode material, preparation method thereof and sodium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160653A (en) 2013-01-23 2014-09-04 Tokyo Univ Of Science Complex metal oxide, sodium secondary battery positive electrode active material, sodium secondary battery positive electrode, and sodium secondary battery
WO2017073457A1 (en) 2015-10-28 2017-05-04 日本電気硝子株式会社 Positive electrode active material for sodium-ion secondary cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160653A (en) 2013-01-23 2014-09-04 Tokyo Univ Of Science Complex metal oxide, sodium secondary battery positive electrode active material, sodium secondary battery positive electrode, and sodium secondary battery
WO2017073457A1 (en) 2015-10-28 2017-05-04 日本電気硝子株式会社 Positive electrode active material for sodium-ion secondary cell

Also Published As

Publication number Publication date
JP2021068672A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
Xu et al. A novel NASICON‐typed Na4VMn0. 5Fe0. 5 (PO4) 3 cathode for high‐performance Na‐ion batteries
Wang et al. NASICON-structured NaTi2 (PO4) 3@ C nanocomposite as the low operation-voltage anode material for high-performance sodium-ion batteries
Bak et al. Spinel LiMn 2 O 4/reduced graphene oxide hybrid for high rate lithium ion batteries
Doeff et al. Titanate anodes for sodium ion batteries
CA2846472C (en) Positive electrode active material for sodium battery, and method of producing the same
Wu et al. MnO nanorods on graphene as an anode material for high capacity lithium ion batteries
Klee et al. Improved Surface Stability of C+ M x O y@ Na3V2 (PO4) 3 Prepared by Ultrasonic Method as Cathode for Sodium-Ion Batteries
KR102066256B1 (en) Zn ion secondary battery having VO2(B) particles as electrode active material
Sekhar et al. Custom designed ZnMn 2 O 4/nitrogen doped graphene composite anode validated for sodium ion battery application
Li et al. Ionothermal synthesis and rate performance studies of nanostructured Li 3 V 2 (PO 4) 3/C composites as cathode materials for lithium-ion batteries
JP2021048137A (en) Cathode active material for lithium secondary battery
Yang et al. Hierarchical ultrafine Ni3V2O8 nanoparticles anchored on rGO as high‐performance anode materials for lithium‐ion batteries
JP2012099245A (en) Nonaqueous electrolyte secondary battery
Amedzo-Adore et al. Chemically lithiated layered VOPO4 by a microwave-assisted hydrothermal method and its electrochemical properties in rechargeable Li-ion batteries and supercapacitor applications
Chchiyai et al. Synthesis and electrochemical properties of Mn-doped porous Mg0. 9Zn0. 1Fe2− xMnxO4 (0≤ x≤ 1.25) spinel oxides as anode materials for lithium-ion batteries
JP7196816B2 (en) Method for manufacturing positive electrode for all-solid-state sodium battery
Huang et al. Single crystal polyoxoniobate derived NbO/Cu nanocrystalline@ N-doped carbon loaded onto reduced graphene oxide enabling high rate and high capacity Li/Na storage
JP7267163B2 (en) Positive electrodes for all-solid-state batteries and all-solid-state batteries
JP2014032864A (en) Sulfide solid electrolyte material and solid state battery using the same
JP2021012792A (en) Solid electrolyte for sodium ion battery
JP7469920B2 (en) Positive electrode for all-solid-state battery and all-solid-state battery
WO2020255489A1 (en) Anode material, anode and battery cell
JP2020024780A (en) All-solid battery and manufacturing method thereof
JP2021120931A (en) Electrode active material, production method thereof, and solid-state battery
Wu et al. Synthesis of a full range Fe-doped ZnFe x Co 2− x O 4 and its application as anode material for lithium-ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R151 Written notification of patent or utility model registration

Ref document number: 7196816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151