JP2021120931A - Electrode active material, production method thereof, and solid-state battery - Google Patents

Electrode active material, production method thereof, and solid-state battery Download PDF

Info

Publication number
JP2021120931A
JP2021120931A JP2020013853A JP2020013853A JP2021120931A JP 2021120931 A JP2021120931 A JP 2021120931A JP 2020013853 A JP2020013853 A JP 2020013853A JP 2020013853 A JP2020013853 A JP 2020013853A JP 2021120931 A JP2021120931 A JP 2021120931A
Authority
JP
Japan
Prior art keywords
active material
electrode active
solid
state battery
ncpf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020013853A
Other languages
Japanese (ja)
Inventor
浩成 南
Ho Seong Nam
浩成 南
博章 泉
Hiroaki Izumi
博章 泉
篤 猪石
Atsushi Inoishi
篤 猪石
重人 岡田
Shigeto Okada
重人 岡田
陽 西尾
Akira Nishio
陽 西尾
康介 中本
Kosuke Nakamoto
康介 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Suzuki Motor Corp
Original Assignee
Kyushu University NUC
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Suzuki Motor Corp filed Critical Kyushu University NUC
Priority to JP2020013853A priority Critical patent/JP2021120931A/en
Publication of JP2021120931A publication Critical patent/JP2021120931A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide an electrode active material with further improved voltage characteristics, a production method thereof, and a solid-state battery.SOLUTION: An electrode active material includes a compound represented by Na3Cr2(PO4)2F3. A solid-state battery comprises the electrode active material including a compound represented by Na3Cr2(PO4)2F3. A production method of the electrode active material includes a mixing step for mixing sodium fluoride and chromium phosphate in a solid phase, and a calcination step for calcining, preferably in the temperature range of 750-775°C, the mixture obtained in the mixing step.SELECTED DRAWING: Figure 5

Description

本発明は、電極活物質、及びその製造方法に関するとともに、この電極活物質を備える全固体電池に関する。 The present invention relates to an electrode active material and a method for producing the same, and also relates to an all-solid-state battery provided with the electrode active material.

リチウムイオン電池は、他の二次電池と比較して高エネルギー密度を有し、携帯機器やモビリティなどでの幅広い分野で使用されている。今後、携帯機器の長時間の使用や高い消費電力、モビリティの航続距離の増加への要望が高まっている。そのため、二次電池の高エネルギー密度化及び安全性への両立が求められており、リチウムイオン電池に替わる次世代電池に期待が高まっている。この候補のひとつが全固体電池である。 Lithium-ion batteries have a higher energy density than other secondary batteries and are used in a wide range of fields such as mobile devices and mobility. In the future, there are increasing demands for long-term use of mobile devices, high power consumption, and an increase in the cruising range of mobility. Therefore, there is a demand for both high energy density and safety of secondary batteries, and expectations are rising for next-generation batteries that will replace lithium-ion batteries. One of these candidates is an all-solid-state battery.

エネルギー密度を向上させるためには、重量当たりの電池の容量を増加させるか、電池の電圧を向上させる必要がある。電池の電圧を向上させるための高電位正極材料として様々な材料が研究されている。しかし、従来のリチウムイオン電池においては、その高い電位で電解液が分解される等の課題がある。全固体電池では、リチウムイオン電池における電解液(可燃性)を固体電解質(不燃性)に置き換えることによる安全面でのメリットだけでなく、脱溶媒和反応が不要な点や、高いリチウムイオン導電率から入出力面でもメリットがある。さらに、固体電解質は高電位でも安定であるものが多く、上記高電位正極材料を使用できるため、高エネルギー密度化にも期待が持てる。 In order to improve the energy density, it is necessary to increase the capacity of the battery per weight or increase the voltage of the battery. Various materials are being studied as high-potential positive electrode materials for improving the voltage of batteries. However, the conventional lithium ion battery has problems such as decomposition of the electrolytic solution at its high potential. In all-solid-state batteries, not only the safety advantage of replacing the electrolyte (flammable) in the lithium-ion battery with the solid electrolyte (non-flammable), but also the fact that desolvation reaction is not required and high lithium-ion conductivity Therefore, there are merits in terms of input and output. Further, many solid electrolytes are stable even at a high potential, and since the above-mentioned high-potential positive electrode material can be used, high energy density can be expected.

全固体電池は、主に正負極の電極材料と固体電解質を積層させることで構成されている。電極材料には、従来の液系リチウムイオン電池用の電極材料が用いられることが多い。また、負極には、チタン酸リチウム等の酸化物やシリコンやスズ等の金属やそれを含んだ酸化物や合金が使用される場合もある。固体電解質としては主に酸化物系や硫化物系のものが使用されており、硫化物系においては、近年では電解液のイオン導電率を上回る固体電解質も開発されている。 The all-solid-state battery is mainly composed of laminating positive and negative electrode materials and a solid electrolyte. As the electrode material, a conventional electrode material for a liquid lithium ion battery is often used. Further, as the negative electrode, an oxide such as lithium titanate, a metal such as silicon or tin, or an oxide or alloy containing the same may be used. Oxide-based and sulfide-based electrolytes are mainly used as the solid electrolyte, and in recent years, solid electrolytes having a sulfide-based electrolyte that exceeds the ionic conductivity of the electrolytic solution have been developed.

電池のエネルギー密度を高める上で、高電圧正極材料の採用は一つの方法となる。ナトリウムイオン電池で最も高い電位を示す正極材料として、平均作動電圧が4.8V程度を示すNaNi(POが知られている(特許文献1)。しかし、Niは比較的高価な遷移金属であり、新たな材料系の探索が求められていた。一方、ナトリウムイオン電池用の高電圧正極材料として、Na(PO(M=Ti、V、Fe)も知られている(特許文献2)。しかし、これらのうち、最も高い電圧を示すNa(POを用いても、その平均動作電圧は4V程度にとどまっていた。また、近年、NaCr(POが4.5V(vs.Na)の高電位を示すことが報告されたが(非特許文献1)、さらに高電位の電極材料が依然として望まれている。 Adoption of a high-voltage positive electrode material is one method for increasing the energy density of a battery. As a positive electrode material showing the highest potential in a sodium ion battery, Na 4 Ni 3 (PO 4 ) 2 P 2 O 7 having an average operating voltage of about 4.8 V is known (Patent Document 1). However, Ni is a relatively expensive transition metal, and a search for a new material system has been required. On the other hand, Na 3 M 2 (PO 4 ) 2 F 3 (M = Ti, V, Fe) is also known as a high-voltage positive electrode material for sodium ion batteries (Patent Document 2). However, even when Na 3 V 2 (PO 4 ) 2 F 3 showing the highest voltage among these was used, the average operating voltage was only about 4 V. Further, in recent years, it has been reported that Na 3 Cr 2 (PO 4 ) 3 exhibits a high potential of 4.5 V (vs. Na) (Non-Patent Document 1), but an electrode material having a higher potential is still desired. ing.

特表2019−505954号公報Special Table 2019-505954 特開2013−089391号公報Japanese Unexamined Patent Publication No. 2013-08391

K. Kawai et al., “High-Voltage Cr4+/Cr3+ Redox Couple in Polyanion Compounds”, ACS Appl. Energy Mater., 2018, 1, 3, 928-931K. Kawai et al., “High-Voltage Cr4 + / Cr3 + Redox Couple in Polyanion Compounds”, ACS Appl. Energy Mater., 2018, 1, 3, 928-931

そこで本発明は、上記の問題点に鑑み、更に向上した電圧特性を有する電極活物質、その製造方法、及び全固体電池を提供することを目的とする。 Therefore, in view of the above problems, it is an object of the present invention to provide an electrode active material having further improved voltage characteristics, a method for producing the same, and an all-solid-state battery.

上記の目的を達成するために、本発明は、その一態様として、電極活物質であって、NaCr(POで表される化合物を含むものである。 In order to achieve the above object, one embodiment of the present invention comprises an electrode active material, which is a compound represented by Na 3 Cr 2 (PO 4 ) 2 F 3.

本発明は、また別の態様として、全固体電池であって、NaCr(POで表される化合物を含む電極活物質を備えるものである。 In another aspect, the present invention comprises an all-solid-state battery comprising an electrode active material containing a compound represented by Na 3 Cr 2 (PO 4 ) 2 F 3.

本発明は、更に別の態様として、電極活物質を製造する方法であって、フッ化ナトリウムとリン酸クロムと固相で混合する混合工程と、前記混合工程で得られた混合物を焼成する焼成工程とを含むものである。 Another aspect of the present invention is a method for producing an electrode active material, which comprises a mixing step of mixing sodium fluoride and chromium phosphate in a solid phase, and firing of the mixture obtained in the mixing step. It includes steps.

このように、本発明によれば、NaCr(POで表される化合物を電極活物質として用いることで、更に向上した電圧特性を有する電極活物質、その製造方法、及び全固体電池を提供することができる。 As described above, according to the present invention , by using the compound represented by Na 3 Cr 2 (PO 4 ) 2 F 3 as the electrode active material, the electrode active material having further improved voltage characteristics, the production method thereof, and the like. And all-solid-state batteries can be provided.

本発明に係る電極活物質を製造する方法の一実施の形態を示すフロー図である。It is a flow chart which shows one Embodiment of the method for manufacturing the electrode active material which concerns on this invention. 本発明に係る全固体電池の一実施の形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the all-solid-state battery which concerns on this invention. 本発明に係る全固体電池の別の実施の形態を示す模式図である。It is a schematic diagram which shows another embodiment of the all-solid-state battery which concerns on this invention. 実施例に用いた評価用コインセルを模式的に示す分解図である。It is an exploded view which shows typically the evaluation coin cell used in an Example. 実施例のXRD測定結果の回析パターンとICSD及びICDDからの標準パターンとを表すグラフである。It is a graph which shows the diffraction pattern of the XRD measurement result of an Example, and the standard pattern from ICSD and ICDD. 実施例の充放電試験結果を、従来例の参考値とともに示すグラフである。It is a graph which shows the charge / discharge test result of an Example together with the reference value of a conventional example. 実施例のサイクル特性試験結果を示すグラフである。It is a graph which shows the cycle characteristic test result of an Example.

以下、添付図面を参照して、本発明に係る電極活物質、その製造方法、及び全固体電池の各実施の形態について説明する。 Hereinafter, the electrode active material according to the present invention, a method for producing the same, and each embodiment of the all-solid-state battery will be described with reference to the accompanying drawings.

先ず、本発明に係る電極活物質を製造する方法の一実施の形態について説明する。図1に示すように、本実施の形態の製造方法は、クロム源とリン酸源からリン酸クロムを得る第1のフロー10と、このリン酸クロムとナトリウム源、フッ素源とからNaCr(POで表される化合物(略号:NCPF)を得る第2のフロー20とを含む。 First, an embodiment of a method for producing an electrode active material according to the present invention will be described. As shown in FIG. 1, in the production method of the present embodiment, Na 3 Cr is obtained from a first flow 10 for obtaining chromium phosphate from a chromium source and a phosphoric acid source, and from the chromium phosphate, a sodium source, and a fluorine source. 2 (PO 4 ) 2 Includes a second flow 20 for obtaining a compound (abbreviation: NCPF) represented by F 3.

第1のフロー10は、図1に示すように、先ず、撹拌工程11では、クロム源である硝酸クロム(Cr(NO)とリン酸源であるリン酸水素二アンモニウム((NHHPO)とを水に添加して混合、撹拌して混合液を得る。クロム源とリン酸源は、化学量論比で1:2の割合が好ましい。なお、クロム源とリン酸源は、上記の化合物に限定されず、例えば、クロム源としては、CrやCr(SO4などのクロム系材料を用いることができ、リン酸源としては、HPOやNHPOなどのリン酸源系材料を用いることができる。撹拌工程11は、例えば70℃から90℃の範囲の温度で行うことが好ましく、撹拌時間は、例えば60分から2時間の範囲が好ましい。 In the first flow 10, as shown in FIG. 1, first, in the stirring step 11, chromium nitrate (Cr (NO 3 ) 3 ) as a chromium source and diammonium hydrogen phosphate ((NH 4 )) as a phosphoric acid source. ) 2 HPO 4 ) is added to water, mixed and stirred to obtain a mixed solution. The ratio of the chromium source and the phosphoric acid source is preferably 1: 2 in stoichiometric ratio. The chromium source and the phosphoric acid source are not limited to the above compounds. For example, as the chromium source, a chromium-based material such as Cr 2 O 3 or Cr 2 (SO 4 ) 3 can be used, and phosphoric acid can be used. As the source, a phosphoric acid source-based material such as H 3 PO 4 or NH 4 H 2 PO 4 can be used. The stirring step 11 is preferably performed at a temperature in the range of, for example, 70 ° C. to 90 ° C., and the stirring time is preferably in the range of, for example, 60 minutes to 2 hours.

次に、蒸発乾固工程12で、撹拌工程11で得られた混合液を加熱し、蒸発乾固させて固形物を得る。加熱温度は、例えば100℃から120℃の範囲が好ましい。仮焼成工程13では、蒸発乾固工程12で得られた固形物を、大気雰囲気下で仮焼成する。仮焼成の温度は、例えば400℃から500℃の範囲が好ましく、仮焼成の時間は、例えば2時間から4時間の範囲が好ましい。粉砕工程14では、これにより得られた固形物を粉砕して粉末を得る。そして、本焼成工程15では、粉砕工程14で得た粉末を、大気雰囲気下で本焼成を行い、粉末状のリン酸クロム(CrPO)を得る。本焼成の温度は、例えば1000℃から1200℃の範囲が好ましく、本焼成の時間は、例えば12時間から24時間の範囲が好ましい。 Next, in the evaporation-drying step 12, the mixed solution obtained in the stirring step 11 is heated and evaporated to dryness to obtain a solid substance. The heating temperature is preferably in the range of, for example, 100 ° C to 120 ° C. In the tentative firing step 13, the solid matter obtained in the evaporation-drying step 12 is tentatively fired in an air atmosphere. The temperature of the tentative firing is preferably in the range of, for example, 400 ° C. to 500 ° C., and the time of the tentative firing is preferably in the range of, for example, 2 hours to 4 hours. In the pulverization step 14, the solid matter thus obtained is pulverized to obtain a powder. Then, in the main firing step 15, the powder obtained in the crushing step 14 is main fired in an air atmosphere to obtain powdered chromium phosphate (CrPO 4 ). The temperature of the main firing is preferably in the range of 1000 ° C. to 1200 ° C., and the time of the main firing is preferably in the range of 12 hours to 24 hours, for example.

第2のフロー20では、ハンドミル混合工程21で、第1のフロー10で得た粉末状のリン酸クロムと、ナトリウム源およびフッ素源である粉末状のフッ化ナトリウム(NaF)とを大気雰囲気下、ハンドミルで混合し、粉末状の混合物を得る。リン酸クロムとフッ化ナトリウムは、化学量論比で2:3の割合が好ましい。粉末状の混合物は、ペレット状に成型する。そして、焼成工程22で、このペレットを不活性雰囲気下で焼成する。焼成温度は、750℃から950℃の範囲が好ましく、特に、単相のNCPFを得るためには、750℃から775℃の範囲がより好ましい。不活性雰囲気は、例えばアルゴンガスや窒素ガスなどを用いることが好ましい。焼成の時間は、例えば2時間から6時間の範囲が好ましい。粉砕工程23では、これにより得られた焼成物を粉砕し、粉末状のNCPFを得る。 In the second flow 20, the powdered chromium phosphate obtained in the first flow 10 in the hand mill mixing step 21 and the powdered sodium fluoride (NaF) as a sodium source and a fluorine source are subjected to an air atmosphere. , Mix with a hand mill to obtain a powdery mixture. The ratio of chromium phosphate to sodium fluoride is preferably 2: 3 in stoichiometric ratio. The powdery mixture is molded into pellets. Then, in the firing step 22, the pellets are fired in an inert atmosphere. The firing temperature is preferably in the range of 750 ° C. to 950 ° C., and more preferably in the range of 750 ° C. to 775 ° C. in order to obtain a single-phase NCPF. As the inert atmosphere, for example, argon gas, nitrogen gas, or the like is preferably used. The firing time is preferably in the range of, for example, 2 hours to 6 hours. In the pulverization step 23, the fired product thus obtained is pulverized to obtain a powdered NCPF.

このようにして得られたNCPFは、4.7V(vs.Na)と高電位であることから、電極活物質として優れた性能を発揮することができる。なお、類似した組成のNaCr(PO(略号:NCP)が4.5V(vs.Na)と高電位であることが知られているが、NCPFは、上述したように単相で得るためには焼成温度の範囲が非常に狭く、単相での合成が難しいことから、電池材料として電気化学的な評価がされてこなかった。また、NCPFは、高電位であるとともに、NCPと比較して分子量が小さいため、理論容量も高いと考えられる。 Since the NCPF thus obtained has a high potential of 4.7 V (vs. Na), it can exhibit excellent performance as an electrode active material. It is known that Na 3 Cr 2 (PO 4 ) 3 (abbreviation: NCP) having a similar composition has a high potential of 4.5 V (vs. Na), but NCPF is simply as described above. Since the firing temperature range is very narrow to obtain in phase and it is difficult to synthesize in a single phase, it has not been electrochemically evaluated as a battery material. Further, NCPF has a high potential and a smaller molecular weight than NCP, so that it is considered that the theoretical capacity is also high.

よって、本発明に係る電極活物質の一実施の形態は、NCPFを含むものである。NCPFは、上述したように、電極活物質として優れた性能を発揮することができる。また、NCPFは、例えば、セルの正極用の電極活物質として用いることで、セル電圧を向上させることができる。セルとしては、例えば、全固体電池でもよいし、液系のナトリウムイオン二次電池でもよい。 Therefore, one embodiment of the electrode active material according to the present invention includes NCPF. As described above, NCPF can exhibit excellent performance as an electrode active material. Further, NCPF can improve the cell voltage by using it as an electrode active material for the positive electrode of the cell, for example. The cell may be, for example, an all-solid-state battery or a liquid-based sodium-ion secondary battery.

次に、本発明に係る全固体電池の実施形態について説明する。第1の実施形態の全固体電池30は、図2に示すように、正極層31と、負極層32と、正極層31と負極層32との間に位置する固体電解質層33とを備える。正極層31は、上述したNCPFを電極活物質として含む。また、正極層31は、NCPFの他に、例えば、導電助剤や、バインダー、固体電解質を含んでもよい。導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック等の高導電性カーボンブラック、黒鉛、コークスや、Ni粉末、Cu粉末、Ag粉末等の金属粉末等がある。バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダーや、スチレンブタジエンゴム(SBR)等のゴム系バインダーがある。正極層31中の正極活物質であるNCPFの含有率については、例えば70重量%から95重量%が好ましい。 Next, an embodiment of the all-solid-state battery according to the present invention will be described. As shown in FIG. 2, the all-solid-state battery 30 of the first embodiment includes a positive electrode layer 31, a negative electrode layer 32, and a solid electrolyte layer 33 located between the positive electrode layer 31 and the negative electrode layer 32. The positive electrode layer 31 contains the above-mentioned NCPF as an electrode active material. Further, the positive electrode layer 31 may contain, for example, a conductive auxiliary agent, a binder, and a solid electrolyte in addition to NCPF. Examples of the conductive auxiliary agent include highly conductive carbon black such as acetylene black and Ketjen black, graphite and coke, and metal powder such as Ni powder, Cu powder and Ag powder. Examples of the binder include a fluorine-based binder such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), and a rubber-based binder such as styrene-butadiene rubber (SBR). The content of NCPF, which is the positive electrode active material, in the positive electrode layer 31 is preferably, for example, 70% by weight to 95% by weight.

固体電解質層33は、硫化物系ナトリウム含有固体電解質材料や、酸化物系ナトリウム含有固体電解質材料を含む。硫化物系ナトリウム含有固体電解質材料としては、例えば、NaPS、NaPS−NaSiS、NaS−P、NaS−SiS、NaS−GeSなどがある。また、酸化物系ナトリウム含有固体電解質材料としては、例えば、NASICON型のNaZrSiPO12や、NaZr1.880.12SiPO11.94や、Na1+xZrSixP3−x12(2≦x≦2.5)などがある。なお、これら硫化物系または酸化物系のナトリウム含有固体電解質材料、及びその他の固体電解質材料を、必要により、正極層31中に含有させてもよい。 The solid electrolyte layer 33 contains a sulfide-based sodium-containing solid electrolyte material and an oxide-based sodium-containing solid electrolyte material. Examples of the sulfide-based sodium-containing solid electrolyte material include Na 3 PS 4 , Na 3 PS 4- Na 4 SiS 4 , Na 2 SP 2 S 5 , Na 2 S-SiS 2 , and Na 2 S-GeS 2. and so on. Examples of the oxide-based sodium-containing solid electrolyte material include NASICON type Na 3 Zr 2 Si 2 PO 12 , Na 3 Zr 1.88 Y 0.12 Si 2 PO 11.94 , and Na 1 + x Zr 2. There are SixP 3-x O 12 (2 ≦ x ≦ 2.5) and the like. If necessary, these sulfide-based or oxide-based sodium-containing solid electrolyte materials and other solid electrolyte materials may be contained in the positive electrode layer 31.

負極層32は、伝導イオンであるNaイオンの吸蔵および放出が可能な負極活物質を含む。このような負極活物質としては、例えば、炭素系活物質や、チタン酸化物系活物質等を挙げることができる。炭素系活物質としては、ハードカーボン、グラフェンなどがある。その他の活物質では、チタン酸化物系活物質のTiOなど、Si系活物質、Sn系活物質、その他には、NaTi、NaTi(PO、Na(PO、Na15Snなどが挙げられる。また、負極層32は、必要により、上述した導電助剤や、硫化物系または酸化物系のナトリウム含有固体電解質材料、及びその他の固体電解質材料を含んでもよい。 The negative electrode layer 32 contains a negative electrode active material capable of occluding and releasing Na ions, which are conduction ions. Examples of such a negative electrode active material include a carbon-based active material and a titanium oxide-based active material. Examples of carbon-based active materials include hard carbon and graphene. Other active materials include Si-based active materials such as titanium oxide-based active material TiO 2 , Sn-based active materials, and others, Na 2 Ti 3 O 7 , NaTi 2 (PO 4 ) 3 , Na 3 V 2 (PO 4 ) 3 , Na 15 Sn 4, and the like can be mentioned. Further, the negative electrode layer 32 may contain the above-mentioned conductive auxiliary agent, a sulfide-based or oxide-based sodium-containing solid electrolyte material, and other solid electrolyte materials, if necessary.

全固体電池30は、必要により、正極層31に正極集電体(図示省略)や負極層32に負極集電体(図示省略)を備えてもよい。正極集電体および負極集電体の材料としては、例えば、プラチナ、銅、ステンレス鋼、ニッケル、チタン、アルミニウムなどを用いることができる。 The all-solid-state battery 30 may include a positive electrode current collector (not shown) in the positive electrode layer 31 and a negative electrode current collector (not shown) in the negative electrode layer 32, if necessary. As the material of the positive electrode current collector and the negative electrode current collector, for example, platinum, copper, stainless steel, nickel, titanium, aluminum and the like can be used.

また、第2の実施形態の全固体電池40は、図3に示すように、2つの集電体41a、bと、これら2つの集電体41a、bの間に位置する単相型全固体電池層42とを備える。単相型全固体電池層42は、正極と負極と固体電解質とが同一材料からなるものである。これにより、電極と固体電解質との間の界面抵抗が無くなり、優れた電池特性を得ることができる。単相型全固体電池層42は、NCPFを含む。単相型全固体電池層42は、NCPFの他、上記を例とした導電助剤や固体電解質材料などを含んでもよい。 Further, as shown in FIG. 3, the all-solid-state battery 40 of the second embodiment is a single-phase all-solid-state battery located between two current collectors 41a and b and these two current collectors 41a and b. It includes a battery layer 42. In the single-phase all-solid-state battery layer 42, the positive electrode, the negative electrode, and the solid electrolyte are made of the same material. As a result, the interfacial resistance between the electrode and the solid electrolyte is eliminated, and excellent battery characteristics can be obtained. The single-phase all-solid-state battery layer 42 includes NCPF. In addition to NCPF, the single-phase all-solid-state battery layer 42 may contain a conductive auxiliary agent, a solid electrolyte material, or the like as described above.

集電体41の材料としては、第1の実施形態の全固体電池30と同様に、例えば、プラチナ、銅、ステンレス鋼、ニッケル、チタン、アルミニウムなどを用いることができる。 As the material of the current collector 41, for example, platinum, copper, stainless steel, nickel, titanium, aluminum and the like can be used as in the all-solid-state battery 30 of the first embodiment.

[1.NaCr(PO(略号:NCPF)の合成]
単相のNCPFを得るために、2段階のフローを経てNCPFを合成した。第1のフローでは、40%硝酸クロム水溶液[Cr(NOaq、純度:40%以上、純正化学社製]とリン酸水素二アンモニウム[(NHHPO、純度:99.0%以上、Wako社製]とを化学量論比1:2の割合で水に添加し、約80℃の温度で約2時間にわたり撹拌して混合液を得た。この混合液を約120℃に加熱し、蒸発乾固した後、大気雰囲気下、約400℃の温度を約3時間、仮焼成を行った。これにより得られた固形物を粉砕し、大気雰囲気下、約1000℃の温度で約12時間、本焼成を行い、CrPOの粉末を得た。
[1. Synthesis of Na 3 Cr 2 (PO 4 ) 2 F 3 (abbreviation: NCPF)]
NCPF was synthesized through a two-step flow to obtain a single-phase NCPF. In the first flow, 40% aqueous chromium nitrate solution [Cr 2 (NO 3 ) 3 aq, purity: 40% or more, manufactured by Junsei Chemical Co., Ltd.] and diammonium hydrogen phosphate [(NH 4 ) 2 HPO 4 , purity: 99. .0% or more, manufactured by Wako] was added to water at a ratio of chemical ratio of 1: 2, and the mixture was stirred at a temperature of about 80 ° C. for about 2 hours to obtain a mixed solution. This mixed solution was heated to about 120 ° C., evaporated to dryness, and then calcined at a temperature of about 400 ° C. for about 3 hours in an air atmosphere. The solid matter thus obtained was crushed and subjected to main firing at a temperature of about 1000 ° C. for about 12 hours in an air atmosphere to obtain a powder of CrPO 4.

次に、第2のフローでは、これに粉末状のフッ化ナトリウム[NaF、純度:99.0%以上、FUJIFILM Wako社製)を2:3の化学量論比で、大気雰囲気下、ハンドミルで混合した。これにより得られた混合物をペレット状に成型した。そして、このペレットをアルゴン雰囲気下、約2時間、焼成を行った。焼成温度は、700℃、750℃、775℃、800℃、850℃、950℃と6つの異なる温度で行った。それぞれ得られた焼成物は粉砕して粉末とし、以下の測定の試料に使用した。 Next, in the second flow, powdered sodium fluoride [NaF, purity: 99.0% or more, manufactured by FUJIFILM Wako) was added to this in a stoichiometric ratio of 2: 3 by a hand mill in an air atmosphere. Mixed. The resulting mixture was molded into pellets. Then, this pellet was calcined in an argon atmosphere for about 2 hours. The firing temperature was 700 ° C., 750 ° C., 775 ° C., 800 ° C., 850 ° C., 950 ° C., and 6 different temperatures. The obtained calcined products were pulverized into powders and used as samples for the following measurements.

[2.X線回析(XRD)測定]
各焼成温度で得た試料について、X線回折測定装置(Rigaku社製、品番:MiniFlex 600)を用いてそれらの回析パターンを得た。結果を図5に示す。なお、リファレンスとして、無機結晶構造データベース(ICSD)または国際回折データセンター(ICDD)に登録されているNaCr(PO、NaCr(PO、NaCr(PO、Na(CrF)、Cr(CrO(Cr13)、CrPO、Crの各回析パターンを同時に示す。
[2. X-ray diffraction (XRD) measurement]
For the samples obtained at each firing temperature, their diffraction patterns were obtained using an X-ray diffraction measuring device (manufactured by Rigaku, product number: MiniFlex 600). The results are shown in FIG. As a reference, Na 3 Cr 2 (PO 4 ) 2 F 3 and Na 3 Cr 2 (PO 4 ) 3 and Na 5 Cr registered in the Inorganic Crystal Structure Database (ICSD) or the International Center for Diffraction Data (ICDD). (PO 4 ) 2 F 2 , Na 3 (CrF 6 ), Cr 2 (CrO 4 ) 2 (Cr 4 O 13 ), CrPO 4 , Cr 2 O 3 diffraction patterns are shown at the same time.

図5に示すように、750℃及び775℃の焼成温度で得た試料の回析パターンは、ICSDに登録されているNaCr(PO(略号:NCPF)の回析パターンとピークが一致し、NCPFが単相で得られたことがわかる。一方、700℃の焼成温度では、2θが約21°、26°、37°に中程度の強度のピークがあり、試料中に複数の化合物が存在していると考えられる。また、800℃〜950℃の焼成温度では、2θが約25°から27°の範囲や、37°などに弱いピークが複数あり、試料中に複数の化合物が存在していると考えられる。 As shown in FIG. 5, the diffraction pattern of the sample obtained at the firing temperatures of 750 ° C. and 775 ° C. is the diffraction pattern of Na 3 Cr 2 (PO 4 ) 2 F 3 (abbreviation: NCPF) registered in ICSD. The pattern and peak match, indicating that NCPF was obtained in a single phase. On the other hand, at a firing temperature of 700 ° C., 2θ has moderate intensity peaks at about 21 °, 26 °, and 37 °, and it is considered that a plurality of compounds are present in the sample. Further, at the firing temperature of 800 ° C. to 950 ° C., 2θ has a plurality of weak peaks in the range of about 25 ° to 27 ° and 37 °, and it is considered that a plurality of compounds are present in the sample.

[3.充放電測定]
焼成温度を750℃として得た試料(実施例)について、電極活物質としての電圧特性を試験するため、当該試料(NCPF)にバインダーとしてアセチレンブラック(AB)、ポリテトラフルオロエチレン(PTFE)を重量%でNCPF:AB:PTFE=70:25:5で添加して電極ペレット(直径10mm)を作製した。そして、これを正極として、図4に示すように、ナトリウム金属を負極とした評価用コインセル50を作製した。評価用コインセル50は、上蓋51、スペーサー52、正極53、チタンメッシュ54、セパレータ55、負極56、スペーサー57、ガスケット58、下蓋59を順に重ねて、電解液(図示省略)を封入したものである。
[3. Charge / discharge measurement]
In order to test the voltage characteristics of the sample (Example) obtained at a firing temperature of 750 ° C. as an electrode active material, acetylene black (AB) and polytetrafluoroethylene (PTFE) were added to the sample (NCPF) as binders by weight. %, NCPF: AB: PTFE = 70: 25: 5 was added to prepare electrode pellets (diameter 10 mm). Then, as shown in FIG. 4, an evaluation coin cell 50 using this as a positive electrode and a sodium metal as a negative electrode was produced. The evaluation coin cell 50 is formed by stacking an upper lid 51, a spacer 52, a positive electrode 53, a titanium mesh 54, a separator 55, a negative electrode 56, a spacer 57, a gasket 58, and a lower lid 59 in this order, and enclosing an electrolytic solution (not shown). be.

上蓋51、下蓋59、及び2枚のスペーサー52、58は、いずれもステンレス鋼のものを用いた。なお、上蓋側のスペーサー52にはチタンメッシュを積層させ、下蓋側のスペーサー57にはニッケルメッシュを積層させた。セパレータ55には、Celgard社製のセパレータ(直径19mm、厚さ24μm)を用い、ガスケット58には、ポリプロピレン(PP)を用いた。負極56には、ナトリウム金属箔(直径10mm)を用いた。電解液には、1M NaPF/エチレンカーボネート(EC)−ジメチルカーボネート(DMC)(体積比でEC:DEC=1:1)を用いた。この評価用コインセル50の電圧特性を測定した。 The upper lid 51, the lower lid 59, and the two spacers 52 and 58 were all made of stainless steel. A titanium mesh was laminated on the spacer 52 on the upper lid side, and a nickel mesh was laminated on the spacer 57 on the lower lid side. A separator (diameter 19 mm, thickness 24 μm) manufactured by Celgard was used as the separator 55, and polypropylene (PP) was used as the gasket 58. A sodium metal foil (diameter 10 mm) was used for the negative electrode 56. As the electrolytic solution, 1M NaPF 6 / ethylene carbonate (EC) -dimethyl carbonate (DMC) (EC: DEC = 1: 1 in volume ratio) was used. The voltage characteristics of the evaluation coin cell 50 were measured.

充放電試験装置(ナガノ社製、品番:BTS2004H)を用いて、電位規制:4.9−2.5V、充電容量規制:127.6mAh/g(理論容量)で、評価用コインセル50の充放電試験を行った。その結果を図6、図7に示す。図6のx軸とy軸は、ナトリウム金属の負極から見た電位と、正極の放電容量を示す。放電容量は、金属重量当たりの値である。なお、図6には、特許文献2に記載されている同様の試験におけるNaTi(PO、Na(PO、NaFe(POのそれぞれの初回の放電曲線を合わせて示した。 Charging / discharging of the evaluation coin cell 50 using a charging / discharging test device (manufactured by Nagano Co., Ltd., product number: BTS2004H) with potential regulation: 4.9-2.5V and charging capacity regulation: 127.6mAh / g (theoretical capacity). The test was conducted. The results are shown in FIGS. 6 and 7. The x-axis and y-axis of FIG. 6 indicate the potential seen from the negative electrode of sodium metal and the discharge capacity of the positive electrode. The discharge capacity is a value per metal weight. Note that FIG. 6 shows Na 3 Ti 2 (PO 4 ) 2 F 3 and Na 3 V 2 (PO 4 ) 2 F 3 and Na 3 Fe 2 (PO 4 ) in the same test described in Patent Document 2. ) The initial discharge curves of 2 F 3 are shown together.

図6の実施例の初回および2回目(2サイクル目)の放電曲線が示すように、NCPFは4.7V(vs.Na)と、上述した従来例のものよりも高電圧であった。実施例および従来例の電圧特性について、更に非特許文献1に記載のNaCr(PO(略号:NCP)も合わせて、表1にまとめる。実施例のNCPFは、従来例のNCPと比較して分子量が小さいため、理論容量も高いと考えられる。 As shown by the first and second (second cycle) discharge curves of the example of FIG. 6, the NCPF was 4.7 V (vs. Na), which was higher than that of the conventional example described above. The voltage characteristics of Examples and Conventional Examples are also summarized in Table 1 together with Na 3 Cr 2 (PO 4 ) 3 (abbreviation: NCP) described in Non-Patent Document 1. Since the NCPF of the example has a smaller molecular weight than that of the conventional NCPF, it is considered that the theoretical capacity is also high.

Figure 2021120931
Figure 2021120931

また、図7に示すように、実施例のNCPFは、初期のクーロン効率が低い値であったが、サイクル数を重ねることによりクーロン効率が約55%にまで上昇した。一方、放電容量はサイクル数を重ねることにより低下した。しかし、同様に高電圧材料であるNCPと比較して、最大2電子のナトリウムが抜けると仮定すると、NCPFの理論容量は大きいと考えられる。上記の試験での放電容量の測定値が低いのは、NCPFが高電圧材料であるため、従来の電解液ではその高い電圧で分解が進行してしまったからと考えられる。 Further, as shown in FIG. 7, the NCPF of the example had a low initial Coulomb efficiency, but the Coulomb efficiency increased to about 55% by repeating the number of cycles. On the other hand, the discharge capacity decreased as the number of cycles increased. However, it is considered that the theoretical capacity of NCPF is large, assuming that sodium of up to 2 electrons is released as compared with NCP, which is also a high-voltage material. It is considered that the reason why the measured value of the discharge capacity in the above test is low is that since NCPF is a high-voltage material, decomposition proceeds at that high voltage in the conventional electrolytic solution.

10 第1のフロー
20 第2のフロー
30、40 全固体電池
31 正極層
32 負極層
33 固体電解質層
41 集電体
42 単相型全固体電池層
50 評価用コインセル
51 上蓋
52、57 スペーサー
53 正極
54 チタンメッシュ
55 セパレータ
56 負極
58 ガスケット
59 下蓋
10 First flow 20 Second flow 30, 40 All-solid-state battery 31 Positive electrode layer 32 Negative electrode layer 33 Solid electrolyte layer 41 Current collector 42 Single-phase all-solid-state battery layer 50 Evaluation coin cell 51 Top lid 52, 57 Spacer 53 Positive electrode 54 Titanium mesh 55 Separator 56 Negative electrode 58 Gasket 59 Lower lid

Claims (5)

NaCr(POで表される化合物を含む電極活物質。 An electrode active material containing a compound represented by Na 3 Cr 2 (PO 4 ) 2 F 3. 前記電極活物質が正極用の電極活物質である請求項1に記載の電極活物質。 The electrode active material according to claim 1, wherein the electrode active material is an electrode active material for a positive electrode. 請求項1又は2に記載の電極活物質を備える全固体電池。 An all-solid-state battery comprising the electrode active material according to claim 1 or 2. 電極活物質を製造する方法であって、
フッ化ナトリウムとリン酸クロムとを固相で混合する混合工程と、
前記混合工程で得られた混合物を焼成する焼成工程と
を含む方法。
It is a method of manufacturing electrode active material.
A mixing step of mixing sodium fluoride and chromium phosphate in a solid phase,
A method including a firing step of firing a mixture obtained in the mixing step.
前記焼成工程における焼成温度が750〜775℃の範囲である請求項4に記載の方法。 The method according to claim 4, wherein the firing temperature in the firing step is in the range of 750 to 775 ° C.
JP2020013853A 2020-01-30 2020-01-30 Electrode active material, production method thereof, and solid-state battery Pending JP2021120931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020013853A JP2021120931A (en) 2020-01-30 2020-01-30 Electrode active material, production method thereof, and solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020013853A JP2021120931A (en) 2020-01-30 2020-01-30 Electrode active material, production method thereof, and solid-state battery

Publications (1)

Publication Number Publication Date
JP2021120931A true JP2021120931A (en) 2021-08-19

Family

ID=77269959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020013853A Pending JP2021120931A (en) 2020-01-30 2020-01-30 Electrode active material, production method thereof, and solid-state battery

Country Status (1)

Country Link
JP (1) JP2021120931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002888A1 (en) 2021-07-21 2023-01-26 セイコーグループ株式会社 Electric wave transmission device and wireless communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002888A1 (en) 2021-07-21 2023-01-26 セイコーグループ株式会社 Electric wave transmission device and wireless communication system

Similar Documents

Publication Publication Date Title
US10879562B2 (en) Solid electrolyte, preparation method thereof, and all-solid-state battery employing the same
JP4684727B2 (en) Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR101691774B1 (en) Positive electrode active material for sodium batteries and method for producing same
JP7182633B2 (en) Solid electrolyte for lithium-ion electrochemical cells
WO2020045634A1 (en) Method for manufacturing sulfide solid electrolyte, sulfide solid electrolyte, all-solid battery, and method for selecting raw material compound used to manufacture sulfide solid electrolyte
JP2018172277A (en) Doped nickelate compounds
Tong et al. Unveiling Zn substitution and carbon nanotubes enwrapping in Na3V2 (PO4) 3 with high performance for sodium ion batteries: Experimental and theoretical study
JP5699876B2 (en) Sodium ion battery active material and sodium ion battery
JP2013041749A (en) Battery system
Nanthagopal et al. An encapsulation of nitrogen and sulphur dual-doped carbon over Li [Ni0. 8Co0. 1Mn0. 1] O2 for lithium-ion battery applications
US20170054176A1 (en) Anode compositions for sodium-ion batteries and methods of making same
JP7212318B2 (en) Positive electrode active material for sodium ion secondary battery
Nan et al. Amorphous VPO4/C with the enhanced performances as an anode for lithium ion batteries
Han et al. A Low-Cost Liquid-Phase Method of Synthesizing High-Performance Li6PS5Cl Solid-Electrolyte
JP7197834B2 (en) Positive electrode active material for sodium ion secondary battery
US11575131B2 (en) Anode electrode active material for sodium secondary battery comprising nickel cobalt molybdenum oxide, anode electrode for sodium secondary battery comprising same, sodium secondary battery including anode electrode for sodium secondary battery, and method for manufacturing same
JP2021120931A (en) Electrode active material, production method thereof, and solid-state battery
JP2012104280A (en) Sintered body for battery, all-solid lithium battery, and method for manufacturing sintered body for battery
JP2019040752A (en) All solid secondary battery
KR20210150718A (en) Sodium halide-based solid electrolyte, preparation method thereof and all-solid battery comprising the same
JP5544981B2 (en) Method for producing electrode active material
JP2014032864A (en) Sulfide solid electrolyte material and solid state battery using the same
JP5625746B2 (en) Solid electrolyte sintered body and all solid lithium battery
JP2021068672A (en) Manufacturing method of positive electrode of sodium all-solid-state battery
JP2020031010A (en) Negative electrode active material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240521