JP7195521B2 - How to measure vitamin concentration - Google Patents

How to measure vitamin concentration Download PDF

Info

Publication number
JP7195521B2
JP7195521B2 JP2018117866A JP2018117866A JP7195521B2 JP 7195521 B2 JP7195521 B2 JP 7195521B2 JP 2018117866 A JP2018117866 A JP 2018117866A JP 2018117866 A JP2018117866 A JP 2018117866A JP 7195521 B2 JP7195521 B2 JP 7195521B2
Authority
JP
Japan
Prior art keywords
vitamin
measuring
concentration
blood
vitamin concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018117866A
Other languages
Japanese (ja)
Other versions
JP2019219317A (en
Inventor
渉 岩崎
安史 岩永
信二 鈴木
明信 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Ushio Denki KK
Nagasaki Prefectural Government
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Ushio Denki KK
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Ushio Denki KK, Nagasaki Prefectural Government filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018117866A priority Critical patent/JP7195521B2/en
Publication of JP2019219317A publication Critical patent/JP2019219317A/en
Application granted granted Critical
Publication of JP7195521B2 publication Critical patent/JP7195521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、ビタミン濃度測定方法であって、特に血中のビタミン濃度測定方法に関するものである。 The present invention relates to a method for measuring vitamin concentration, and more particularly to a method for measuring vitamin concentration in blood.

畜産分野では従来から、高品質の牛肉を生産するために、肥育牛のビタミンA量の制御が行われている。一般に、肥育牛の月齢が12ヶ月に達すると、飼料中のビタミンA量を減らす。その結果、当該肥育牛の脂肪交雑が向上する。 In the livestock industry, the amount of vitamin A in fattening cattle has been conventionally controlled in order to produce high-quality beef. Generally, when fattening cattle reach 12 months of age, the amount of vitamin A in the diet is reduced. As a result, marbling of the fattened cattle is improved.

一方で、肥育牛の血中ビタミンA濃度が低下しすぎると、肥育牛の健康状態の悪化(死亡事故、浮腫など)や生産性の低下(体重の増加不良、筋肉水腫の発生など)が起こりやすくなる。 On the other hand, if the blood vitamin A concentration of fattening cattle is too low, the health condition of fattening cattle will deteriorate (fatal accidents, edema, etc.) and productivity will decrease (poor weight gain, muscle edema, etc.). easier.

そこで、肥育牛のビタミンA濃度を、肥育牛の健康状態及び生産性を良好に保ちつつ、脂肪交雑が向上する適切な濃度範囲に制御するために、肥育牛の血中ビタミンA濃度の測定を行う必要がある。 Therefore, in order to control the vitamin A concentration of fattening cattle to an appropriate concentration range that improves marbling while maintaining good health and productivity of fattening cattle, measurement of blood vitamin A concentration of fattening cattle is required. There is a need to do.

従来から、肥育牛の血中ビタミンA濃度の測定には、一般にHPLC法が用いられている。しかしながら、装置等が大型で測定が大がかりとなるため、獣医師等が肥育現場で採取した血液サンプルを持ち帰り、検査機関等において測定される。そのため、検体である血液の採取からビタミンA濃度の測定結果が得られるまでに時間がかかってしまい、適切なタイミングで肥育牛のビタミンA制御ができないことがある。 Conventionally, the HPLC method is generally used to measure the blood vitamin A concentration of fattening cattle. However, since the apparatus and the like are large and the measurement is extensive, a veterinarian or the like takes back a blood sample collected at the fattening site, and the blood sample is measured at a testing institution or the like. As a result, it takes a long time to obtain the results of measuring the vitamin A concentration after the blood sample is collected, and it may not be possible to control vitamin A in fattening cattle at the appropriate timing.

そのため、現状の肥育牛のビタミンA制御は、ビタミンA濃度の測定結果が活かされることなく、生産者の経験(肥育牛の外貌や、活力の観察)により推測された肥育牛の状態に基づき行われていることが多い。よって、肥育牛の個体差、観察不足により、肥育牛の健康事故の発生の回避が難しくなっている。あるいは、血中ビタミンA量が下がっていないという不具合が発生する場合がある。 Therefore, the current vitamin A control of fattening cattle is based on the condition of the fattening cattle estimated from the producer's experience (observation of the appearance and vitality of the fattening cattle) without using the results of measuring the vitamin A concentration. It is often said that Therefore, it is difficult to avoid the occurrence of health accidents in fattening cattle due to individual differences in fattening cattle and lack of observation. Alternatively, there may be a problem that the blood vitamin A level is not lowered.

上記事情により、肥育牛の血中ビタミンA量を定量的に測定可能であって、かつ、サンプル採取当日に測定結果が判明する家畜の血中ビタミンA濃度測定方法が求められている。 In view of the above circumstances, there is a need for a method for measuring the blood vitamin A concentration of livestock that can quantitatively measure the amount of vitamin A in the blood of fattened cattle and that provides the results of the measurement on the day of sample collection.

そこで、例えば、エタノール等のたんぱく変性液とヘキサン等の脂溶成分抽出液と抗酸化剤とを混合した混合液に、家畜の全血を添加し攪拌混合液を得て、この攪拌混合液を遠心分離して得られる脂溶成分抽出液層の吸光度測定を行い、当該脂溶成分抽出液層に抽出されているビタミンA量を測定する方法が提案されている(特許文献1)。しかし、この方法では遠心分離工程が採用されているため、手間がかかり、肥育現場で前記工程を実施することは困難である。よって、この方法は普及しなかった。 Therefore, for example, livestock whole blood is added to a mixture obtained by mixing a protein denaturation solution such as ethanol, a fat-soluble component extract such as hexane, and an antioxidant to obtain a stirred mixed solution, and this stirred mixed solution is obtained. A method for measuring the amount of vitamin A extracted in the fat-soluble component extract layer by measuring the absorbance of the fat-soluble component extract layer obtained by centrifugation has been proposed (Patent Document 1). However, since this method employs a centrifugal separation step, it is troublesome and difficult to carry out at the fattening site. Therefore, this method did not spread.

また、家畜の全血を、エタノール等の極性有機溶媒とヘキサン等の非極性溶媒を含有する有機溶媒に添加して混合液を得て、この混合液を保持する容器を作業者の手で振り相分離させ、相分離された混合液の浮遊物層(上部層)を蛍光光度法で測定し、当該浮遊物層に抽出されているビタミンA量を測定する方法も提案されている(特許文献2)。特許文献2に開示されている方法は、遠心分離する工程が不要であり、小型の蛍光光度計があれば、肥育現場の傍で測定可能となる。 In addition, livestock whole blood is added to an organic solvent containing a polar organic solvent such as ethanol and a non-polar solvent such as hexane to obtain a mixed liquid, and a container holding this mixed liquid is shaken by the operator. A method has also been proposed in which phase separation is performed, the floating layer (upper layer) of the phase-separated mixed liquid is measured by fluorescence photometry, and the amount of vitamin A extracted in the floating layer is measured (Patent document 2). The method disclosed in Patent Document 2 does not require a centrifugal separation step, and can be measured near the fattening site if a small fluorometer is available.

特開2010-230447号公報JP 2010-230447 A 特表2010-503838号公報Japanese Patent Publication No. 2010-503838

しかしながら、特許文献2の測定方法を検証したところ、図6に示す通り、実際のビタミンA濃度との相関性が悪く、蛍光強度からビタミンA濃度を算出することが困難であることが分かった。図6は、縦軸が特許文献2の測定方法により得られた蛍光強度であり、6頭の牛A-Fの測定結果の蛍光強度を棒グラフで示している。牛A-CはビタミンA濃度が低い状態であり、牛D-FはビタミンA濃度が高い状態であることが予め分かっているサンプルであるが、得られた蛍光強度はいずれも同程度であった。 However, when the measurement method of Patent Document 2 was verified, as shown in FIG. 6, it was found that the correlation with the actual vitamin A concentration was poor and it was difficult to calculate the vitamin A concentration from the fluorescence intensity. In FIG. 6, the vertical axis is the fluorescence intensity obtained by the measurement method of Patent Document 2, and the fluorescence intensity of the measurement results of six cows A to F is shown in a bar graph. Cows A to C have low vitamin A concentrations, while cows D to F are samples known to have high vitamin A concentrations. rice field.

そこで、本発明においては、より高精度に、血中ビタミンA濃度を定量的にオンサイトで測定可能なビタミン濃度測定方法等を提供することを目的とする。 Therefore, it is an object of the present invention to provide a vitamin concentration measuring method and the like capable of quantitatively measuring the blood vitamin A concentration on-site with higher accuracy.

本発明の第1の観点は、血中のビタミン濃度を測定するビタミン濃度測定方法であって、脂溶性ビタミンを抽出する抽出溶媒と測定対象である血液とを含み、極性プロトン性溶媒を含まない混合液を撹拌する撹拌工程と、前記撹拌工程で撹拌した前記混合液の前記抽出溶媒の層に光を照射し、前記抽出溶媒の層からの光の光強度を測定する測定工程と、前記測定工程で測定された光強度からビタミン濃度を算出する算出工程とを含む、ビタミン濃度測定方法である。 A first aspect of the present invention is a method for measuring vitamin concentration in blood, which contains an extraction solvent for extracting fat-soluble vitamins and blood to be measured, and does not contain a polar protic solvent. a stirring step of stirring the mixed solution; a measurement step of irradiating the extraction solvent layer of the mixed solution stirred in the stirring step with light to measure the light intensity of the light from the extraction solvent layer; and a calculating step of calculating the vitamin concentration from the light intensity measured in the step.

本発明の第2の観点は、第1の観点のビタミン濃度測定方法であって、前記抽出溶媒は、非極性溶媒及び/又は極性非プロトン性溶媒である、ビタミン濃度測定方法である。 A second aspect of the present invention is the vitamin concentration measuring method according to the first aspect, wherein the extraction solvent is a nonpolar solvent and/or a polar aprotic solvent.

本発明の第3の観点は、第2の観点のビタミン濃度測定方法であって、前記抽出溶媒は、誘電率50以下の非極性溶媒である。 A third aspect of the present invention is the vitamin concentration measuring method according to the second aspect, wherein the extraction solvent is a non-polar solvent having a dielectric constant of 50 or less.

本発明の第4の観点は、第2の観点のビタミン濃度測定方法であって、前記非極性溶媒として、アルカン、シクロアルカン、芳香族化合物、クロロホルム、酢酸エチル、及び、塩化メチレンからなる化合物群のうち、少なくとも1つを含む。 A fourth aspect of the present invention is the vitamin concentration measuring method of the second aspect, wherein the nonpolar solvent is a compound group consisting of alkanes, cycloalkanes, aromatic compounds, chloroform, ethyl acetate, and methylene chloride. including at least one of

本発明の第5の観点は、第2から第4のいずれかの観点のビタミン濃度測定方法であって、前記極性非プロトン性溶媒として、ニトリル、ケトン、テトラヒドロフラン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、及び、エーテルからなる化合物群のうち、少なくとも1つを含む。 A fifth aspect of the present invention is the method for measuring vitamin concentration according to any one of the second to fourth aspects, wherein the polar aprotic solvent is nitrile, ketone, tetrahydrofuran, dimethylsulfoxide, N,N-dimethyl At least one compound group consisting of formamide and ether is included.

本発明の第6の観点は、第1の観点のビタミン濃度測定方法であって、前記抽出溶媒は、ノルマルヘキサン、トルエン、テトラヒドロフラン、及び、アセトニトリルからなる化合物群のうち、少なくとも1つを含む。 A sixth aspect of the present invention is the vitamin concentration measuring method of the first aspect, wherein the extraction solvent contains at least one of the compound group consisting of normal hexane, toluene, tetrahydrofuran, and acetonitrile.

本発明の第7の観点は、第6の観点のビタミン濃度測定方法であって、前記抽出溶媒は、ノルマルヘキサンである。 A seventh aspect of the present invention is the vitamin concentration measuring method according to the sixth aspect, wherein the extraction solvent is normal hexane.

本発明の第8の観点は、第1から第7のいずれかの観点のビタミン濃度測定方法であって、前記血液は、血球を含む。 An eighth aspect of the present invention is the vitamin concentration measuring method according to any one of the first to seventh aspects, wherein the blood contains blood cells.

本発明の第9の観点は、第8の観点のビタミン濃度測定方法であって、前記血液は、全血である。 A ninth aspect of the present invention is the vitamin concentration measuring method according to the eighth aspect, wherein the blood is whole blood.

本発明の第10の観点は、第1から第9のいずれかの観点のビタミン濃度測定方法であって、前記測定工程において、照射する光が300nmから350nmの波長の光であり、測定する光が400nmから600nmの波長の光である、ビタミン濃度測定方法である。 A tenth aspect of the present invention is the vitamin concentration measuring method according to any one of the first to ninth aspects, wherein in the measuring step, the irradiated light has a wavelength of 300 nm to 350 nm, and the light to be measured is is light with a wavelength of 400 nm to 600 nm.

本発明の第11の観点は、第10の観点のビタミン濃度測定方法であって、前記測定工程において、測定する光が470nmから560nmの波長の光である、ビタミン濃度測定方法である。 An eleventh aspect of the present invention is the vitamin concentration measuring method according to the tenth aspect, wherein in the measuring step, light to be measured has a wavelength of 470 nm to 560 nm.

本発明の第12の観点は、第1から第11のいずれかの観点のビタミン濃度測定方法であって、前記ビタミンは、ビタミンAであり、前記血液は、肥育牛由来の血液である。 A twelfth aspect of the present invention is the vitamin concentration measuring method according to any one of the first to eleventh aspects, wherein the vitamin is vitamin A and the blood is blood derived from fattening cattle.

本発明の各観点によれば、血中のビタミン濃度を定量的に高精度にオンサイトで測定することが可能になる。延いては、ビタミンA濃度を測定する回数及び頭数を増やすことができ、肉質にばらつきがない牛の肥育が可能になる。 According to each aspect of the present invention, it is possible to quantitatively and accurately measure vitamin concentrations in blood on-site. As a result, the number of times and the number of cows whose vitamin A concentration is measured can be increased, and fattening of cattle with uniform meat quality becomes possible.

なお、従来の測定方法では、血液等の生体試料中の低分子成分を分析する場合、極性プロトン性溶媒であるエタノールを用いて試料中の蛋白質を除く工程が必要であると考えられていた。特許文献1においても、0012段落に蛋白変性液の影響により蛍光が低下する旨の記載があるにも関わらず、蛋白変性液を加えて測定しており、蛋白変性工程は測定精度を上げるために必要だと考えられていたと思われる。 In conventional measurement methods, when analyzing low-molecular-weight components in biological samples such as blood, it was considered necessary to remove proteins in the sample using ethanol, which is a polar protic solvent. Even in Patent Document 1, although there is a description in paragraph 0012 that fluorescence decreases due to the influence of the protein denaturation solution, the measurement is performed by adding the protein denaturation solution, and the protein denaturation step is performed to increase the measurement accuracy. thought to have been necessary.

しかしながら、図1に示す通り、極性プロトン性溶媒であるエタノールを用いて蛋白変性工程を行う従来の測定方法より、蛋白変性工程を行わない本発明のビタミンA濃度測定方法の方が、HPLCによる測定結果との相関性が良い。これは、エタノールを添加することに起因する余計な夾雑物(阻害物質)の混入が抑制されるため、結果的にS/N比が上がるためである。すなわち、ヘキサン+全血の場合は、得られる測定信号は小さくなるが、光測定法として高感度測定可能な蛍光法を採用することで、高精度な測定を実現可能となる。従来のようにエタノールを用いた場合、血球を破壊して夾雑物が混入していたが、エタノールのような極性プロトン性溶媒以外の溶媒を用いることで血球の破壊が抑制されたためと考えられる。これは、本発明の発明者らによって初めて明らかにされたことであり、従来技術と比較した有利な効果といえる。 However, as shown in FIG. 1, the vitamin A concentration measurement method of the present invention, which does not involve a protein denaturation step, is better than the conventional measurement method, which involves a protein denaturation step using ethanol, which is a polar protic solvent. Good correlation with results. This is because the contamination of unnecessary contaminants (inhibitory substances) due to the addition of ethanol is suppressed, resulting in an increase in the S/N ratio. That is, in the case of hexane+whole blood, although the measurement signal obtained is small, highly accurate measurement can be realized by adopting a fluorescence method capable of highly sensitive measurement as an optical measurement method. When ethanol was used as in the past, blood cells were destroyed and contaminants were mixed, but it is thought that the destruction of blood cells was suppressed by using a solvent other than a polar protic solvent such as ethanol. This was first clarified by the inventors of the present invention, and can be said to be an advantageous effect compared with the prior art.

特に、本発明の第8及び第9の観点によれば、血液をフィルタリングする特別な装置が不要である。そのため、肥育現場等の装置の設置が期待できない場所においてビタミン濃度を速やかに測定することが可能となる。 In particular, according to the eighth and ninth aspects of the present invention, no special device for filtering blood is required. Therefore, it is possible to quickly measure the vitamin concentration in a place such as a fattening site where installation of an apparatus cannot be expected.

また、本発明の第10及び第11の観点によれば、ビタミン濃度の測定におけるS/N比が向上し、さらに高精度な測定が可能になる。 Moreover, according to the tenth and eleventh aspects of the present invention, the S/N ratio in the measurement of vitamin concentration is improved, and more accurate measurement becomes possible.

ここで、肥育牛は、ビタミン濃度を測定する時期には飼料に草を混ぜず、ビタミンAの前駆物質であって測定ノイズになり得るβ-カロテンの血中濃度が下がっている。そのため、本発明の第12の観点によれば、特にS/N比が向上し、さらに高精度なビタミンAの濃度測定が可能となる。 Here, in fattening cattle, grass is not mixed in the feed during the time of vitamin concentration measurement, and the blood concentration of β-carotene, which is a precursor of vitamin A and can cause measurement noise, is lowered. Therefore, according to the twelfth aspect of the present invention, the S/N ratio is particularly improved, and the concentration of vitamin A can be measured with higher accuracy.

蛍光法による測定結果とHPLC法による測定結果の相関を示す図である。FIG. 4 is a diagram showing the correlation between the measurement results by the fluorescence method and the measurement results by the HPLC method; 本発明のビタミンA濃度測定方法による牛A-Fの蛍光強度を示す図である。FIG. 4 is a diagram showing fluorescence intensities of cows A to F according to the vitamin A concentration measuring method of the present invention. 本発明のビタミンA濃度測定方法による血中ビタミンA濃度との相関の強さを示す図である。FIG. 2 is a diagram showing the strength of correlation with blood vitamin A concentration by the method for measuring vitamin A concentration of the present invention. 470~560nmの波長域の蛍光強度とHPLCの測定結果の相関を示す図である。FIG. 4 is a diagram showing the correlation between fluorescence intensity in the wavelength range of 470 to 560 nm and HPLC measurement results. (a)ヘキサン、(b)トルエン、(c)THF、(d)アセトニトリルを用いた場合の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum at the time of using (a) hexane, (b) toluene, (c) THF, and (d) acetonitrile. 従来のビタミンA濃度測定方法による牛A-Fの蛍光強度を示す図である。FIG. 10 is a diagram showing fluorescence intensities of cows A to F according to a conventional vitamin A concentration measurement method.

以下、図面を参照して、本発明のビタミンA濃度測定方法の実施例について述べる。 Examples of the vitamin A concentration measuring method of the present invention are described below with reference to the drawings.

本発明のビタミンA濃度測定方法は、下記の手順で行う。
(1)家畜(肥育牛)から測定対象となる血液を採取する。
(2)採取した全血をヘキサン(本願請求項の「抽出溶媒」の一例)に添加し混合液を得る。
(3)混合液を撹拌する(本願請求項の「撹拌工程」の一例)。
(4)撹拌後に層分離した上側層を蛍光法で測定する(本願請求項の「測定工程」の一例)。
(5)測定結果から、ビタミンA濃度を算出する(本願請求項の「算出工程」の一例)。
The vitamin A concentration measuring method of the present invention is carried out according to the following procedure.
(1) Collect blood to be measured from livestock (fattened cattle).
(2) The collected whole blood is added to hexane (an example of the “extraction solvent” in the claims of the present application) to obtain a mixture.
(3) Stir the mixture (an example of the "stirring step" in the claims of the present application).
(4) Measure the separated upper layer after stirring by a fluorescence method (an example of the "measurement step" in the claims of the present application).
(5) Calculate the vitamin A concentration from the measurement results (an example of the "calculation step" in the claims of the present application).

手順(4)の蛍光測定では、ビタミンAが抽出されている上記混合液の分離層の上側層に対して、励起波長330nmで蛍光測定を行った。 In the fluorescence measurement of procedure (4), the fluorescence measurement was performed on the upper layer of the separation layer of the mixed liquid in which vitamin A was extracted at an excitation wavelength of 330 nm.

また、手順(3)の攪拌を終えて静置すると、混合液はすぐに相分離した。これは、エタノールを添加していないためである。具体的には、1秒程度で分離した。よって、手順(3)の攪拌の後、すぐに光学測定を行うことが可能である。 Moreover, when the stirring in step (3) was finished and the mixture was allowed to stand, phase separation occurred immediately. This is because no ethanol was added. Specifically, it separated in about 1 second. Therefore, optical measurement can be performed immediately after the stirring in step (3).

図1は、ビタミンA濃度の蛍光法による測定結果とHPLC法による測定結果の相関を示す図である。縦軸は蛍光強度、横軸はHPLC法の測定結果であり、四角のマーカーはエタノールを用いて蛋白変性工程を行う従来の測定方法(以下、「エタノール+ヘキサン+全血」とも記載する。)による測定結果、円のマーカーは蛋白質変性工程を行わない本発明のビタミンA濃度測定方法(以下、「ヘキサン+全血」とも記載する。)による測定結果である。 FIG. 1 is a diagram showing the correlation between the results of measurement of vitamin A concentration by fluorescence method and the result of measurement by HPLC method. The vertical axis is the fluorescence intensity, the horizontal axis is the measurement result of the HPLC method, and the square marker is a conventional measurement method in which ethanol is used to perform a protein denaturation step (hereinafter also referred to as "ethanol + hexane + whole blood"). , and circle markers are the results obtained by the method for measuring vitamin A concentration according to the present invention (hereinafter also referred to as "hexane + whole blood") without a protein denaturation step.

図示される通り、従来のエタノール+ヘキサン+全血より、本発明のヘキサン+全血の方が、HPLC法による測定結果との相関性が良い。なお、HPLC法は、一般にビタミンA濃度の測定に用いられている方法であり、装置等が大型で測定が大がかりであるが、精度の良い測定方法である。そのため、肥育現場での測定には適さないが、今回は従来方法と本発明方法の精度を比較し確認するために用いた。また、HPLC法は質量差を利用したクロマトグラフィーであるため、光測定法とは異なり、アルコールを添加してもビタミンA濃度を良好に測定できる。 As shown in the figure, the hexane + whole blood of the present invention has a better correlation with the measurement results by the HPLC method than the conventional ethanol + hexane + whole blood. The HPLC method is a method generally used for measuring vitamin A concentration, and although the apparatus and the like are large and the measurement is large-scale, it is a highly accurate measurement method. Therefore, it is not suitable for measurement at a fattening site, but this time it was used to compare and confirm the accuracy of the conventional method and the method of the present invention. In addition, since the HPLC method is a chromatography using mass difference, unlike the photometric method, the vitamin A concentration can be measured well even if alcohol is added.

ヘキサン+全血の場合は、エタノール+ヘキサン+全血の場合と比較して、抽出されるビタミンAの絶対抽出量が減少し、検出信号(蛍光強度)が小さくなる。しかし、エタノールを添加することに起因する余計な夾雑物(阻害物質)の混入が抑制されるため、結果的にS/N比が上がる。すなわち、ヘキサン+全血の場合は、得られる測定信号は小さくなるが、光測定法として高感度測定可能な蛍光法を採用することで、高精度な測定を実現可能となる。これは、本発明の発明者らによって初めて明らかにされたことであり、従来技術と比較した有利な効果といえる。 In the case of hexane+whole blood, the absolute amount of extracted vitamin A is reduced and the detection signal (fluorescence intensity) is smaller than in the case of ethanol+hexane+whole blood. However, since the contamination of unnecessary contaminants (inhibitory substances) due to the addition of ethanol is suppressed, the S/N ratio increases as a result. That is, in the case of hexane+whole blood, although the measurement signal obtained is small, highly accurate measurement can be realized by adopting a fluorescence method capable of highly sensitive measurement as an optical measurement method. This was first clarified by the inventors of the present invention, and can be said to be an advantageous effect compared with the prior art.

図2は、縦軸が本発明のビタミンA濃度測定方法で得られた蛍光強度であり、6頭の牛A-Fの測定結果の蛍光強度を棒グラフで示している。牛A-CはビタミンA濃度が低い状態であり、牛D-FはビタミンA濃度が高い状態であることが予め分かっているサンプルである。図示される通り、牛D-Fは、牛A-Cに比べて高い蛍光強度を示した。つまり、ヘキサン+全血の場合、従来のエタノール+ヘキサン+全血の場合に比べて、実際のビタミンA濃度と得られる蛍光強度が良い相関を示すため、蛍光強度からビタミンA濃度を精度よく算出できる可能性が高いことが分かった。 In FIG. 2, the vertical axis represents the fluorescence intensity obtained by the vitamin A concentration measurement method of the present invention, and the fluorescence intensity of the measurement results of six cows A to F is shown in a bar graph. Cows A to C are samples with low vitamin A concentrations, while cows D to F are samples known to have high vitamin A concentrations. As shown, cows DF showed higher fluorescence intensity than cows AC. In other words, in the case of hexane + whole blood, compared to the conventional case of ethanol + hexane + whole blood, the actual vitamin A concentration and the obtained fluorescence intensity show a good correlation, so the vitamin A concentration can be accurately calculated from the fluorescence intensity. It turned out to be possible.

エタノールは水素結合を行う。つまり、特定の物質と結合して、当該特定物質が液中に溶けやすくする。すなわち、エタノールは液中に物質が溶けている状態を制御する。よって、エタノールを添加することにより、ビタミンA以外の阻害物質(ベータカロテンなど)も溶媒(エタノール+ヘキサン+全血)内に溶けてしまっていると考えられる。そのため、ビタミンA濃度の高低に対する蛍光強度の相関が殆ど無いという結果が得られたものと思われる。 Ethanol makes hydrogen bonds. In other words, it binds to a specific substance to make the specific substance more soluble in liquid. That is, ethanol controls the state in which substances are dissolved in liquid. Therefore, it is considered that inhibitors other than vitamin A (such as beta-carotene) are also dissolved in the solvent (ethanol+hexane+whole blood) by adding ethanol. Therefore, it is considered that the result that there is almost no correlation between the fluorescence intensity and the level of the vitamin A concentration was obtained.

また、上記した肥育牛の場合、採取後の全血を使用することが可能である。分離することなく全血を用いることができるため、血液採取後、速やかに肥育現場で血中ビタミンA濃度を測定することが可能である。全血としては、肥育牛から採取して何も処理をしていない状態のものを使用したが、乾燥させたもの又は凍結させたものを用いても良い。また、全血ではなく、遠心分離等により血球成分を取り除いた血漿や血清についても測定可能である。 In addition, in the case of the fattening cattle described above, it is possible to use whole blood after collection. Since whole blood can be used without separation, blood vitamin A concentration can be measured immediately after blood collection at the site of fattening. As whole blood, blood collected from fattening cattle and not treated in any way was used, but dried or frozen blood may also be used. Plasma or serum from which blood cell components have been removed by centrifugation or the like can also be measured instead of whole blood.

図3は、縦軸が実施例1の手順(4)で測定した血中ビタミンA濃度との相関の強さ、横軸が波長を示す図である。励起波長は330nmである。図3に示される通り、470~560nmの波長域において蛍光が最大になることが分かった。 FIG. 3 is a diagram in which the vertical axis indicates the strength of the correlation with the blood vitamin A concentration measured in the procedure (4) of Example 1, and the horizontal axis indicates the wavelength. The excitation wavelength is 330 nm. As shown in FIG. 3, it was found that fluorescence peaked in the wavelength range of 470-560 nm.

図4は、470~560nmの波長域の蛍光強度とHPLCの測定結果の相関を示す図である。ピークの全波長域の蛍光強度を用いた場合と比較して、相関係数が高くなることが分かった。そのため、手順(4)において、蛍光波長として470~560nmの波長域を用いると、さらに高精度な測定が可能になる。 FIG. 4 is a diagram showing the correlation between the fluorescence intensity in the wavelength range of 470 to 560 nm and the HPLC measurement results. It was found that the correlation coefficient was higher than when the fluorescence intensity of the entire wavelength range of the peak was used. Therefore, in procedure (4), the use of the wavelength range of 470 to 560 nm as the fluorescence wavelength enables more accurate measurement.

続いて、実施例1の手順(2)で用いるヘキサンの代わりに、有機溶媒(非プロトン性極性溶媒)を用いて測定を行った。図5に、(a)ノルマルヘキサン、(b)トルエン、(c)テトラヒドロフラン(THF)、(d)アセトニトリルを用いた場合の蛍光スペクトルを示す。それぞれ、4頭の牛A-Dの全血サンプルの測定結果の蛍光スペクトルと、有機溶媒自体の蛍光スペクトルを示している。なお、極性の高低は、ノルマルヘキサン、トルエン、THF、アセトニトリルの順に昇順となる。 Subsequently, instead of hexane used in the procedure (2) of Example 1, an organic solvent (aprotic polar solvent) was used for measurement. FIG. 5 shows fluorescence spectra when using (a) normal hexane, (b) toluene, (c) tetrahydrofuran (THF), and (d) acetonitrile. Fluorescence spectra of measurement results of whole blood samples of four cows AD and fluorescence spectra of the organic solvent itself are shown, respectively. The polarity is in ascending order of normal hexane, toluene, THF, and acetonitrile.

図5に示される通り、ビタミンA濃度が異なる牛A-Dの各サンプルの蛍光スペクトルは、それぞれピークの高さが異なり、特に(a)ヘキサンにおいてピークの高さが大きく異なる。蛍光強度とビタミンA濃度に良い相関がみられるためには、抽出溶媒として(a)ヘキサンが最も好ましいが、他の有機溶媒でも蛍光強度とビタミンA濃度とが相関を示す可能性があることが分かった。抽出溶媒としていずれの有機溶媒を使用した場合でも、励起波長が300~350nmの場合、測定蛍光波長域は、いずれもほぼ400~600nmであった。 As shown in FIG. 5, the fluorescence spectra of the bovine samples A to D with different vitamin A concentrations have different peak heights, especially in (a) hexane, the peak heights are significantly different. In order to obtain a good correlation between fluorescence intensity and vitamin A concentration, (a) hexane is the most preferable extraction solvent, but it is possible that other organic solvents may also exhibit a correlation between fluorescence intensity and vitamin A concentration. Do you get it. When any organic solvent was used as the extraction solvent, the measured fluorescence wavelength range was approximately 400 to 600 nm when the excitation wavelength was 300 to 350 nm.

そのため、抽出溶媒として、誘電率50以下の非極性溶媒及び/又は極性非プロトン性溶媒を使用しても良いと考えられる。 Therefore, it is thought that a nonpolar solvent and/or a polar aprotic solvent with a dielectric constant of 50 or less may be used as an extraction solvent.

非極性溶媒としては、例えば、アルカン、シクロアルカン、芳香族化合物、クロロホルム、酢酸エチル及び/又は塩化メチレンを使用できる。アルカンであれば、特にC5~C12アルカン、なかでもノルマルヘキサンを使用することが好ましい。シクロアルカンであれば、特にシクロヘキサンを使用することが好ましい。芳香族化合物であれば、特に、トルエン及び/又はベンゼンを使用することが好ましい。 As non-polar solvents, for example alkanes, cycloalkanes, aromatics, chloroform, ethyl acetate and/or methylene chloride can be used. Among alkanes, it is preferable to use C5-C12 alkanes, especially normal hexane. Among cycloalkanes, it is preferred to use cyclohexane. Among aromatic compounds, it is particularly preferred to use toluene and/or benzene.

極性非プロトン性溶媒としては、例えば、ニトリル、ケトン、テトラヒドロフラン、ジメチルスルホキシド、N,Nージメチルホルムアミド及び/又はエーテルを使用できる。ニトリルであれば、特にアセトニトリルを使用することが好ましい。ケトンであれば、特にアセトンを使用することが好ましい。エーテルであれば、特にジエチルエーテルを使用することが好ましい。 As polar aprotic solvents for example nitriles, ketones, tetrahydrofuran, dimethylsulfoxide, N,N-dimethylformamide and/or ethers can be used. Among nitriles, it is particularly preferred to use acetonitrile. Among ketones, it is preferred to use acetone in particular. Among ethers, it is particularly preferred to use diethyl ether.

なお、上記実施例では、肥育牛における血中ビタミンA濃度の測定を例として示したが、ビタミンA以外の血中ビタミンも、ヘキサンもしくはヘキサン以外の低極性非プロトン性溶媒と血液とを混合することにより抽出し、蛍光測定により濃度測定することが可能である。すなわち、血液と抽出溶媒(誘電率50以下の非極性溶媒及び/又は極性非プロトン性溶媒)とを混合し攪拌することにより、上記(1)~(5)の測定手順に準じて、血中のビタミン濃度を測定可能となる。

In the above example, measurement of blood vitamin A concentration in fattening cattle was shown as an example, but blood vitamins other than vitamin A were obtained by mixing blood with hexane or a low-polarity aprotic solvent other than hexane. It is possible to extract by means of fluorometry and determine the concentration by fluorometry. That is, by mixing and stirring blood and an extraction solvent (nonpolar solvent and/or polar aprotic solvent with a dielectric constant of 50 or less), blood It becomes possible to measure the vitamin concentration of

Claims (12)

肥育牛の血中のビタミン濃度を測定するビタミン濃度測定方法であって、
脂溶性ビタミンを抽出する抽出溶媒と測定対象である肥育牛の血液とを含み、極性プロトン性溶媒を含まない混合液を撹拌する撹拌工程と、
前記撹拌工程で撹拌した前記混合液の前記抽出溶媒の層に光を照射し、前記抽出溶媒の層からの光の光強度を測定する測定工程と、
前記測定工程で測定された光強度からビタミン濃度を算出する算出工程とを含む、ビタミン濃度測定方法。
A vitamin concentration measuring method for measuring the blood vitamin concentration of fattening cattle , comprising:
A stirring step of stirring a mixture containing an extraction solvent for extracting fat-soluble vitamins and the blood of a fattening cattle to be measured, but not containing a polar protic solvent;
a measurement step of irradiating the extraction solvent layer of the mixture stirred in the stirring step with light to measure the light intensity of the light from the extraction solvent layer;
and a calculating step of calculating the vitamin concentration from the light intensity measured in the measuring step.
前記抽出溶媒は、非極性溶媒及び/又は極性非プロトン性溶媒である、請求項1記載のビタミン濃度測定方法。 The vitamin concentration measuring method according to claim 1, wherein the extraction solvent is a non-polar solvent and/or a polar aprotic solvent. 前記抽出溶媒は、誘電率50以下の非極性溶媒である、請求項2記載のビタミン濃度測定方法。 3. The method of measuring vitamin concentration according to claim 2, wherein said extraction solvent is a non-polar solvent having a dielectric constant of 50 or less. 前記非極性溶媒として、アルカン、シクロアルカン、芳香族化合物、クロロホルム、酢酸エチル、及び、塩化メチレンからなる化合物群のうち、少なくとも1つを含む、請求項2記載のビタミン濃度測定方法。 3. The method of measuring vitamin concentration according to claim 2, wherein the nonpolar solvent includes at least one of a compound group consisting of alkanes, cycloalkanes, aromatic compounds, chloroform, ethyl acetate, and methylene chloride. 前記極性非プロトン性溶媒として、ニトリル、ケトン、テトラヒドロフラン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、及び、エーテルからなる化合物群のうち、少なくとも1つを含む、請求項2から4のいずれかに記載のビタミン濃度測定方法。 5. The polar aprotic solvent according to any one of claims 2 to 4, wherein at least one of the compound group consisting of nitriles, ketones, tetrahydrofuran, dimethylsulfoxide, N,N-dimethylformamide, and ethers is included. vitamin concentration measurement method. 前記抽出溶媒は、ノルマルヘキサン、トルエン、テトラヒドロフラン、及び、アセトニトリルからなる化合物群のうち、少なくとも1つを含む、請求項1記載のビタミン濃度測定方法。 2. The method of measuring vitamin concentration according to claim 1, wherein said extraction solvent contains at least one of a compound group consisting of normal hexane, toluene, tetrahydrofuran, and acetonitrile. 前記抽出溶媒は、ノルマルヘキサンである、請求項6記載のビタミン濃度測定方法。 7. The method of measuring vitamin concentration according to claim 6, wherein said extraction solvent is normal hexane. 前記血液は、血球を含む、請求項1から7のいずれかに記載のビタミン濃度測定方法。 The vitamin concentration measuring method according to any one of claims 1 to 7, wherein said blood contains blood cells. 前記血液は、全血である、請求項8記載のビタミン濃度測定方法。 9. The method of measuring vitamin concentration according to claim 8, wherein said blood is whole blood. 前記測定工程において、照射する光が300nmから350nmの波長の光であり、測定する光が400nmから600nmの波長の光である、請求項1から9のいずれかに記載のビタミン濃度測定方法。 10. The vitamin concentration measuring method according to any one of claims 1 to 9, wherein in said measuring step, the light to be irradiated is light with a wavelength of 300 nm to 350 nm, and the light to be measured is light with a wavelength of 400 nm to 600 nm. 前記測定工程において、測定する光が470nmから560nmの波長の光である、請求項10記載のビタミン濃度測定方法。 11. The vitamin concentration measuring method according to claim 10, wherein in said measuring step, the light to be measured has a wavelength of 470 nm to 560 nm. 前記脂溶性ビタミンは、ビタミンAであ、請求項1から11のいずれかに記載のビタミン濃度測定方法。
The vitamin concentration measuring method according to any one of claims 1 to 11, wherein said fat-soluble vitamin is vitamin A.
JP2018117866A 2018-06-21 2018-06-21 How to measure vitamin concentration Active JP7195521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018117866A JP7195521B2 (en) 2018-06-21 2018-06-21 How to measure vitamin concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018117866A JP7195521B2 (en) 2018-06-21 2018-06-21 How to measure vitamin concentration

Publications (2)

Publication Number Publication Date
JP2019219317A JP2019219317A (en) 2019-12-26
JP7195521B2 true JP7195521B2 (en) 2022-12-26

Family

ID=69096251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018117866A Active JP7195521B2 (en) 2018-06-21 2018-06-21 How to measure vitamin concentration

Country Status (1)

Country Link
JP (1) JP7195521B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230447A (en) 2009-03-26 2010-10-14 Hiroshima Prefecture Method and apparatus for measuring concentration of vitamin a and beta-carotene in blood of domestic animals
JP2011515667A (en) 2008-03-19 2011-05-19 シュヴァイゲルト,フロリアン Method for extracting and detecting fat-soluble components from biological materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165833A (en) * 1989-02-28 1991-07-17 Isamu Horikoshi Novel suspending method and composite obtained thereby

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515667A (en) 2008-03-19 2011-05-19 シュヴァイゲルト,フロリアン Method for extracting and detecting fat-soluble components from biological materials
JP2010230447A (en) 2009-03-26 2010-10-14 Hiroshima Prefecture Method and apparatus for measuring concentration of vitamin a and beta-carotene in blood of domestic animals

Also Published As

Publication number Publication date
JP2019219317A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
Dugo et al. Determination of Cd (II), Cu (II), Pb (II), and Zn (II) content in commercial vegetable oils using derivative potentiometric stripping analysis
Yu et al. Determination of fluoroquinolones in milk, honey and water samples by salting out-assisted dispersive liquid-liquid microextraction based on deep eutectic solvent combined with MECC
Dasenaki et al. Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography–tandem mass spectrometry
Posyniak et al. Dispersive solid-phase extraction for the determination of sulfonamides in chicken muscle by liquid chromatography
Fletcher et al. Measurement of fluorescent lipid peroxidation products in biological systems and tissues
van de Riet et al. Simultaneous determination of residues of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in farmed aquatic species by liquid chromatography/mass spectrometry
CN102980961B (en) Pretreatment method of detection on malachite green, crystal violet and residues of malachite green and crystal violet in eels
Moral et al. Determination of benzimidazolic fungicides in fruits and vegetables by supramolecular solvent-based microextraction/liquid chromatography/fluorescence detection
Guillén-Casla et al. Determination of serotonin and its precursors in chocolate samples by capillary liquid chromatography with mass spectrometry detection
Naito et al. Oxidative stress markers
Stolker et al. Determination of cannabinoids in cannabis products using liquid chromatography–ion trap mass spectrometry
Airado-Rodríguez et al. Determination of trans-resveratrol in red wine by adsorptive stripping square-wave voltammetry with medium exchange
La Pera et al. Derivative potentiometric stripping analysis (dPSA) used for the determination of cadmium, copper, lead, and zinc in Sicilian olive oils
Jánská et al. Appraisal of “classic” and “novel” extraction procedure efficiencies for the isolation of polycyclic aromatic hydrocarbons and their derivatives from biotic matrices
Ferioli et al. Determination of (E)‐10‐hydroxy‐2‐decenoic acid content in pure royal jelly: A comparison between a new CZE method and HPLC
Roudaut et al. High-performance liquid chromatographic method with fluorescence detection for the screening and quantification of oxolinic acid, flumequine and sarafloxacin in fish
Yuan et al. Fast, simple, and sensitive high‐performance liquid chromatography method for measuring vitamins a and E in human blood plasma
del Pilar Godoy‐Caballero et al. Simple and fast determination of phenolic compounds from different varieties of olive oil by nonaqueous capillary electrophoresis with UV‐visible and fluorescence detection
CA3193454A1 (en) Apparatus and method for determination of banned substances
JP7195521B2 (en) How to measure vitamin concentration
CN107422057A (en) A kind of disposable method for determining five kinds of antisepsis antistaling agents in fruit simultaneously
US6429021B1 (en) Antioxidant activity profile assay
Bernal et al. Trace analysis of flubendiamide in bee pollen using enhanced matrix removal-lipid sorbent clean-up and liquid chromatography-electrospray ionization mass spectrometry
Arribas et al. Application of matrix solid-phase dispersion to the propham and maleic hydrazide determination in potatoes by differential pulse voltammetry and HPLC
RU2546530C1 (en) Method for quantitation of blood penzapyrene by liquid chromatography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220929

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221018

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221206

R150 Certificate of patent or registration of utility model

Ref document number: 7195521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150