JPH03165833A - Novel suspending method and composite obtained thereby - Google Patents

Novel suspending method and composite obtained thereby

Info

Publication number
JPH03165833A
JPH03165833A JP2048064A JP4806490A JPH03165833A JP H03165833 A JPH03165833 A JP H03165833A JP 2048064 A JP2048064 A JP 2048064A JP 4806490 A JP4806490 A JP 4806490A JP H03165833 A JPH03165833 A JP H03165833A
Authority
JP
Japan
Prior art keywords
fat
soluble
water
milk
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2048064A
Other languages
Japanese (ja)
Inventor
Isamu Horikoshi
堀越 勇
Atsushi Watanabe
淳 渡辺
Shozo Muranishi
村西 昌三
Kunio Yamauchi
山内 邦男
Nagauemon Sugano
菅野 長右エ門
Takashi Honda
本田 昂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2048064A priority Critical patent/JPH03165833A/en
Publication of JPH03165833A publication Critical patent/JPH03165833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

PURPOSE:To prepare stable and fine water suspension of fat-soluble material by coating the fat-soluble material which insoluble or hardly soluble in water but soluble in an org. solvent by using fatty particle membrane in the milk of mammals and then suspending the particles in water. CONSTITUTION:A fat-soluble material which is insoluble or hardly soluble in water but soluble in an org. solvent is coated with fatty particle membrane in the milk of mammals and then suspended in water. Namely, the fat-soluble material and fatty particle membrane in the milk of mammals are emulsified by a physical method to prepare fine water suspension of fat-soluble material. More concretely, after bioactive peptide is dissolved or suspended in water, neutral fat and fatty particle membrane in the milk of mammal are added thereinto and emulsified by a physical method to prepare the water suspension of the bioactive peptide.

Description

【発明の詳細な説明】 童還三Jlシ■公夏一 本発明は、哺乳類乳汁中の脂肪球皮膜を用いた新規懸濁
化方法およびこの方法によって得られる物質を含む組或
物に関する。更に詳しくは本発明は、 ■ 水に難溶ないし不溶で有機溶媒に可溶な脂溶性物質
、並びに水及び有機溶媒のいずれにも溶け難いが、物質
の分配係数が水と比べて有機溶媒側に大きく傾いている
物質(以下、これらの両物質を「脂溶性物質等」と総称
する。〉、特に好ましくは、脂溶性薬物、並びにある種
のステロイドのように水及び有機溶媒のいずれにも溶け
難いが薬物の分配係数が水と比べて有機溶媒側に大きく
傾いている薬物(以下、これらの両薬物を「脂溶性薬物
等」と総称する。〉、の新規な懸濁化方法、および■ 
生理活性ペプチドの経口投与に適した新規製剤化方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel suspension method using fat globule membranes in mammalian milk and compositions containing the substances obtained by this method. More specifically, the present invention includes: (1) fat-soluble substances that are sparingly soluble or insoluble in water and soluble in organic solvents; (hereinafter, both of these substances are collectively referred to as "fat-soluble substances, etc."), particularly preferably fat-soluble drugs and certain steroids that are soluble in both water and organic solvents. A novel method for suspending drugs that are difficult to dissolve but whose partition coefficient is significantly tilted toward organic solvents compared to water (hereinafter, both drugs are collectively referred to as "lipid-soluble drugs, etc."), and ■
This invention relates to a novel formulation method suitable for oral administration of bioactive peptides.

の 術・発明が解決しようとする 題 4 以前から水に不溶ないし難溶の化合物を経口投与し、薬
効を再現性よく発現させることは、かなり難しいことは
経験的に知られていた。しかし最近になって、水に難溶
ないし不溶の脂溶性化b物等を経口投与する場合におけ
るの 消化管吸収、■ 血流ないしリンパ液を経由する
各臓器内へ分布、■ 臓器内での薬物の代謝、および■
 尿ないし胆汁中へのその化合物および代謝産物の排泄
などの研究が著しく進歩した。また、特定の臓器ないし
癌組織に薬物を集中的に分布させることを狙いとするド
ラッグ・デリバリー・システムの研究も非常に盛んにな
っている。
Problem 4 This technique/invention aims to solve Problem 4 It has long been known from experience that it is extremely difficult to orally administer compounds that are insoluble or sparingly soluble in water and to achieve reproducible medicinal efficacy. However, recently, when lipophilic substances that are sparingly soluble or insoluble in water are administered orally, absorption in the gastrointestinal tract, distribution to various organs via the bloodstream or lymph fluid, and drug distribution within organs have recently been investigated. metabolism, and ■
Significant progress has been made in the study of the excretion of its compounds and metabolites into urine and bile. Research on drug delivery systems that aim to distribute drugs intensively to specific organs or cancer tissues is also becoming very active.

一方、薬理学の進展にともない、薬効評価技術も著しく
進歩し、水に難溶性或いは不溶性の脂溶性化合物等であ
っても、極めて精度よく薬効を測定できるようになった
。しかし脂溶性薬理活性物質等を医薬品として開発する
場合、薬効を再現性よく発現させるために製剤化する必
要がある。水に不溶ないし難溶の化合物を経口投与し薬
効を再現性よく発現させることは、非常に難しいことは
5 以前から知られていた。そこで脂溶性薬物等を経口投与
した場合、なぜ再現性に乏しいかが活発な研究の対象に
なり、脂溶性薬物等の「消化管吸収」「臓器内分布」「
排泄」「代謝」などについて、水溶性化合物とは異なる
知見がいくつか明らかにされている。これらの研究を通
じ脂溶性薬物等の吸収、排泄、臓器内分布および代謝に
ついて明らかになった事柄は下記のように要約すること
ができる。
On the other hand, with the progress of pharmacology, the technology for evaluating drug efficacy has also significantly advanced, and it has become possible to measure the drug efficacy of even fat-soluble compounds that are sparingly soluble or insoluble in water with extremely high accuracy. However, when developing fat-soluble pharmacologically active substances as pharmaceuticals, it is necessary to formulate them in order to express their medicinal efficacy with good reproducibility. It has been known for a long time that it is extremely difficult to orally administer compounds that are insoluble or sparingly soluble in water to achieve reproducible drug efficacy. Therefore, the reason why reproducibility is poor when oral administration of fat-soluble drugs is the subject of active research.
Several findings regarding excretion, metabolism, etc. that differ from those for water-soluble compounds have been revealed. What has been revealed through these studies regarding the absorption, excretion, organ distribution, and metabolism of fat-soluble drugs can be summarized as follows.

■ 水に難溶ないし不溶の脂溶性薬物等が経口投与され
た場き、その消化管吸収速度は薬物粒子の表面積に比例
する。すなわち脂溶性薬物等の消化管吸収を支配する因
子の一つは、薬物粒子の表面積である。つまり同じ量の
脂溶性薬物等を与えた場合でも、表面積が大きいほど、
言い換えれば薬物粒子の直径が小さいほど吸収速度は大
きい。
■ When a lipophilic drug that is sparingly soluble or insoluble in water is orally administered, its gastrointestinal absorption rate is proportional to the surface area of the drug particles. That is, one of the factors governing the gastrointestinal absorption of fat-soluble drugs and the like is the surface area of drug particles. In other words, even when given the same amount of fat-soluble drugs, the larger the surface area, the more
In other words, the smaller the diameter of the drug particles, the faster the rate of absorption.

■ 脂溶性薬物等は、小腸粘膜から受動拡散によって吸
収される。脂溶性薬物等はどれほど水に難溶であっても
、一旦ごく微量の単分子が水に溶解して始めて体内に吸
収される。すなわち水溶性の薬物と比べ殆どの脂溶性薬
物等は、消化管から吸収6 されて体内に取り込まれる速度は遅いが、小腸粘膜から
薬物が吸収される過程は律速段階になっていない。脂溶
性薬物等がごく微量にしか水に溶解しないのに対し、小
腸粘膜の表面積は非常に大きいので受動゛拡散の過程は
律速段階にはならないからである。
■ Lipid-soluble drugs are absorbed through the small intestinal mucosa by passive diffusion. No matter how poorly soluble drugs and the like are in water, once a very small amount of a single molecule is dissolved in water, they are absorbed into the body. In other words, most fat-soluble drugs are absorbed from the gastrointestinal tract and taken into the body at a slower rate than water-soluble drugs, but the process by which drugs are absorbed from the small intestine mucosa is not a rate-limiting step. This is because while fat-soluble drugs and the like dissolve in water only in very small amounts, the surface area of the small intestinal mucosa is extremely large, so the process of passive diffusion is not the rate-limiting step.

■ 水に対する溶解度が非常に低い薬物であっても、薬
物粒子から単分子が水中へ放出される速度が早いほど、
消化管から速やかに吸収される。すなわち、脂溶性薬物
等の消化管吸収を支配するもう一つの因子は、水に対す
る薬物の溶解速度であって溶解度の大きさではない。
■ Even for drugs with very low solubility in water, the faster a single molecule is released from drug particles into water, the more
It is rapidly absorbed from the gastrointestinal tract. That is, another factor governing the gastrointestinal absorption of fat-soluble drugs and the like is the dissolution rate of the drug in water, not the degree of solubility.

■ 脂溶性薬物等が消化管から吸収される場合、体内に
とり込まれる経路は2つ存在する。一つは門脈から肝臓
を通って大循環に流入し、薬物が体内に分配された経路
である。別の経路としては腸のリンパ管内に吸収され、
胸管リンバから大動脈に注ぐ場合とがある。後者のルー
トから吸収される場合には、薬物は原型を保ったまま血
中に出現することが多い。一方、薬物が門脈から肝臓を
通7一 遇する吸収経路は、薬物分子が初回通過効果(firs
t  pass  effect)を受けて化学的に修
飾されることが多い。水に難溶ないし不溶の脂溶性薬物
等は、製剤化の方法いかんによっては経口投与しても殆
ど吸収されない場合からほぼ定量的に吸収される場合ま
で、吸収率と吸収速度が大きく変動する。従来、脂溶性
薬物等の吸収速度を高め、吸収率を向上させるために二
つの方向から検討が加えられてきた。
■ When fat-soluble drugs are absorbed from the gastrointestinal tract, there are two routes by which they are taken into the body. One route is from the portal vein, through the liver, and into the general circulation, through which drugs are distributed throughout the body. Another route is absorption into the lymphatic vessels of the intestines,
Sometimes it drains into the aorta from the thoracic duct limba. When absorbed through the latter route, the drug often appears in the blood in its original form. On the other hand, the absorption route in which drugs pass from the portal vein to the liver is due to the first-pass effect (first-pass effect).
t pass effect) and are often chemically modified. Lipid-soluble drugs that are sparingly or insoluble in water vary greatly in absorption rate and absorption rate, ranging from barely absorbed to almost quantitatively absorbed even after oral administration, depending on the formulation method. Conventionally, studies have been made from two directions in order to increase the absorption rate and improve the absorption rate of fat-soluble drugs and the like.

その一つは薬物を微粒子化する技術である。例えば、薬
物粒子の平均直径は、従来の研磨法では150−200
μmまでの粉砕が限度だったが、新しい機器および新し
い方法の導入によって現在では工業的に薬物粒子の平均
直径を2μmまで微粒子化することは容易である。また
、薬物を水に懸濁して製剤化する技術についても、直径
数μ楡の油滴を室温で安定な懸濁液として長期保存でき
る技術も開発されている。一方、脂溶性薬物等と界面活
性剤とを混合し、透明なミセル状として消化管からの吸
収を高める方法も実用化される8 ようになった。
One of these is the technology to make drugs into microparticles. For example, the average diameter of drug particles is 150-200
However, with the introduction of new equipment and new methods, it is now easy to industrially micronize drug particles to an average diameter of 2 μm. Furthermore, with regard to the technology for preparing drug formulations by suspending them in water, a technology has also been developed that allows oil droplets with a diameter of several micrometers to be stored as a stable suspension at room temperature for a long period of time. On the other hand, a method of mixing fat-soluble drugs and surfactants to form transparent micelles to increase absorption from the gastrointestinal tract has also come into practical use8.

今一つの方向は薬物ないし薬物を含む粒子、油滴などか
ら薬物分子が水に放出される速度を高める研究である。
Another direction is to increase the rate at which drug molecules are released into water from drugs or drug-containing particles, oil droplets, etc.

例えば、抗生物質、ノボビオシン〈商品名〉は結晶形の
違いにより溶解速度及び吸収率に大差を生ずることはよ
く知られている。また、水に対する脂溶性薬物等の分子
の溶解速度の研究から、薬物を結晶として投与するより
無定形粉末ないし固溶体などの形で投与したほうが溶解
速度が高まり、薬物の吸収速度と吸収量が上昇すること
もわかってきた。
For example, it is well known that the dissolution rate and absorption rate of the antibiotic Novobiocin (trade name) vary greatly depending on the crystal form. In addition, research on the dissolution rate of molecules such as fat-soluble drugs in water has shown that the dissolution rate is higher when the drug is administered in the form of an amorphous powder or solid solution than in the form of crystals, which increases the absorption rate and amount of the drug. I've come to understand that I can.

このように最近における製剤の技術的な進歩は目覚まし
いものがあるが、脂溶性薬物等の製剤化技術は、生体に
経口投与した際における吸収速度及び吸収量の面からみ
て、再現性および効率性のいずれの点においても充分と
は言えないのが現状である。
As described above, there have been remarkable technological advances in formulations in recent years, but the formulation technology for lipophilic drugs, etc. has not been very effective in terms of reproducibility and efficiency in terms of absorption rate and amount when administered orally to living organisms. The current situation is that it cannot be said to be sufficient in any of these respects.

また生理活性ペブチドにあっては、従来からその投与経
路は経口以外、具体的には注射に限定されていた。これ
は、生理活性ペプチドの場合、9 般的には高分子量のものが多く、この高分子量のものを
経口投与したとしても高い割合で腸管から吸収されるこ
とは常識的には考えられないためである。更に経口投与
された生理活性ペプチドは、消化管内に分泌される蛋白
分解酵素によって容易に加水分解されるので、吸収部位
に到達する頃には加水分解されかなり減少しているとい
う問題点も有している。このために生理活性ペプチドは
注射剤として投与されるのであるが、異種動物の生理活
性ペプチドを注射剤として投与すると異種蛋白の非自己
抗原に対応した抗体が産生され、抗原抗体反応によるシ
ョックの懸念があるという問題点もある。このため経口
投与に適した生理活性ペプチドの製剤化方法が数多く試
みられてきた。
Furthermore, conventionally, the administration route for bioactive peptides has been limited to injections other than oral administration. This is because bioactive peptides generally have a high molecular weight, and common sense would not suggest that even if such high molecular weight peptides were orally administered, they would be absorbed at a high rate from the intestinal tract. It is. Furthermore, orally administered bioactive peptides are easily hydrolyzed by proteolytic enzymes secreted into the gastrointestinal tract, so there is the problem that by the time they reach the absorption site, they have been hydrolyzed and reduced considerably. ing. For this reason, bioactive peptides are administered as injections, but when bioactive peptides from foreign animals are administered as injections, antibodies corresponding to the non-self antigens of the foreign protein are produced, leading to concerns about shock due to antigen-antibody reactions. There is also the problem that there is. For this reason, many attempts have been made to formulate physiologically active peptides suitable for oral administration.

この試みは次の3つに分類することができる。一つの流
れは生理活性ペプチドと同時に蛋白分解酵素の阻害剤を
与え、消化管内における生理活性ペプチドの加水分解を
できるだけ防ぎつつ腸管がら吸収させようとするもので
ある。今一つは生理活性ペプチドの腸管吸収を促進する
作用を示す化な10 物を同時に与えて、体内への吸収率を増大させようとす
るものである。さらに第3の方向としては、界面活性剤
と同時に与えて腸粘膜細胞に一時的な障害を与え、生理
活性ペプチドの細胞膜透過を昂進させようとする試みで
ある。またこれらの方法を組合せた方法も試みられてい
る。
These attempts can be classified into the following three categories. One approach is to provide a proteolytic enzyme inhibitor at the same time as the bioactive peptide to prevent hydrolysis of the bioactive peptide in the gastrointestinal tract as much as possible, while allowing the bioactive peptide to be absorbed through the intestinal tract. Another approach is to increase the rate of absorption into the body by simultaneously giving 10 chemicals that promote the intestinal absorption of physiologically active peptides. A third approach is to try to increase the permeation of bioactive peptides through cell membranes by temporarily damaging intestinal mucosal cells by administering surfactants simultaneously. Additionally, methods that combine these methods have also been attempted.

しかしながらこれらの試みには、共通して次のような欠
点があった。
However, these attempts had the following drawbacks in common.

■ 生理作用を完全に保持したままで吸収される生理活
性ペプチドの量が極めて僅かであること。
■ The amount of bioactive peptide that is absorbed while retaining its physiological effects is extremely small.

■ 吸収に再現性がないことが多いこと。■ Absorption is often not reproducible.

■ 個体間で生理活性ペプチドの腸管吸収の差が大きく
、同じ量を与えてもある個体では、ほとんど吸収されな
いが、別の個体では過量に吸収される昏睡が起こるほど
吸収にバラッキが認められること。
■ There is a large difference in the intestinal absorption of bioactive peptides among individuals, and even if the same amount is given to some individuals, it will be barely absorbed, while in other individuals, the absorption will be so variable that it will absorb an excessive amount and cause coma. .

本発明者等は長年にわたり噛乳動物の乳汁中に存在する
脂肪球の研究を続けてきた。その結果、脂肪球から脂肪
を除去した脂肪球皮膜部分が、水に難溶ないし不溶の脂
溶性薬物等および生理活性ペプチドを製剤化するための
素材として好適であることを見出し、本発明を完成する
に至った。
The present inventors have continued research on fat globules present in the milk of chewing mammals for many years. As a result, it was discovered that the fat globule membrane, obtained by removing fat from fat globules, is suitable as a material for formulating fat-soluble drugs and physiologically active peptides that are poorly soluble or insoluble in water, and the present invention was completed. I ended up doing it.

を ゛ るための 本発明は: 1.9濁化剤として哺乳類乳汁中の脂肪球皮膜を用いる
ことを特徴とする新規懸濁化方法、2. 水に難溶ない
し不溶で有機溶媒に可溶な脂溶性物質の微細な水懸濁液
を調製ずるため、脂溶性物質を哺乳類乳汁中の脂肪球皮
膜によって被覆することを特徴とする脂溶性物質の新規
懸濁化方法、 3. 水及び有機溶媒のいずれにも難溶であるが、両溶
媒間の分配係数が有機溶媒に傾いている物質の微細な水
懸濁液を調製するため、この物質を哺乳類乳汁中の脂肪
球皮膜によって被覆することを特徴とずる水及び有機溶
媒のいずれにも難溶であるが、両溶媒間の分配係数が有
機溶媒に傾いている物質の新規懸濁化方法、 4. 水に難溶ないし不溶で有機溶媒に可溶な脂溶性物
質を微細な水懸濁液とするため、哺乳類乳汁中の脂肪球
皮膜と脂溶性物質とを、水中において物理的な手段によ
り乳化することを特徴とする脂溶性物質の新規懸濁化方
法、 5. 水及び有機溶媒のいずれにも難溶であるが両溶媒
間の分配係数が有機溶媒に傾いているOI質を微細な水
懸濁液とするため、呻乳類乳汁中の脂肪球皮膜と上記物
質とを、水中において物理的な手段により乳化すること
を特徴とする水及び有機溶媒のいずれにも難溶であるが
、両溶媒間の分配係数が有機溶媒に傾いている物質の新
規懸濁化方法、 6. 生理活性ペプチドの微細な水懸濁液を調製するた
め、生理活性ペプチドを哺乳類乳汁中の脂肪球皮膜を用
い乳化することを特徴とする生理活性ペプチドの新規懸
濁化方法、 7. 生理活性ペプチドを水に溶解あるいは懸濁した後
、中性脂肪と哺乳類乳汁中の脂肪球皮膜を添加し、物理
的な手段により乳化することを特徴とする新規懸濁化方
法、 8, 生理活性ペプチドを水に溶解あるいは懸濁13 した後、中性脂肪と哺乳類乳汁中の脂肪球皮膜および蛋
白分解酵素阻害剤を添加し、物理的な手段により乳化す
ることを特徴とする新規懸濁化方法、9. 請求項1な
いし8のいずれかに記載の方法において、明乳類乳汁中
の脂肪球皮膜が精製された牛乳脂肪球皮膜であることを
特徴とする新規懸濁化方法、 10.請求項1ないし9において、哺乳類乳汁中の脂肪
球皮膜に代えて、牛乳脂肪球皮膜を含む乳製品を用いる
ことを特徴とする新規懸濁化方法、11.牛乳脂肪球皮
膜を含む乳製品がバターミルクまたはクリームである請
求項10記載の新規懸濁化方法、 12.請求項エないし11のいずれがに記載の方法で調
製した懸濁化組成物をそのまま、或いは増量剤を加え噴
霧乾燥するかまたは凍結乾燥して粉末化することを特徴
とする経口投与に適した新規製剤の製法、 13.請求項1ないし12のいずれがの記載の方法によ
って調製された組或物、に関する。
The present invention provides: 1.9 A novel suspension method characterized by using a fat globule membrane in mammalian milk as a clouding agent; 2. A fat-soluble substance characterized by coating a fat-soluble substance with a fat globule membrane in mammalian milk in order to prepare a fine aqueous suspension of a fat-soluble substance that is poorly soluble or insoluble in water and soluble in an organic solvent. A new suspension method for 3. In order to prepare a fine aqueous suspension of a substance that is sparingly soluble in both water and organic solvents, but whose partition coefficient leans toward the organic solvent, this substance was added to the fat globule coating in mammalian milk. 4. A novel method for suspending a substance that is sparingly soluble in both water and organic solvents, but whose partition coefficient between the two solvents leans toward the organic solvent; 4. In order to make a fine aqueous suspension of a fat-soluble substance that is poorly soluble or insoluble in water and soluble in organic solvents, the fat globule membrane in mammalian milk and the fat-soluble substance are emulsified in water by physical means. 5. A novel method for suspending fat-soluble substances, characterized by: In order to make a fine aqueous suspension of OI, which is sparingly soluble in both water and organic solvents, but whose partition coefficient leans toward organic solvents, the fat globule coat in the milk of mammals and the above-mentioned A novel suspension of a substance that is sparingly soluble in both water and an organic solvent, but whose partition coefficient between the two solvents leans toward the organic solvent, characterized by emulsifying the substance in water by physical means. method, 6. 7. A novel method for suspending bioactive peptides, which comprises emulsifying bioactive peptides using fat globule membranes in mammalian milk in order to prepare a fine aqueous suspension of bioactive peptides; A novel suspension method characterized by dissolving or suspending a bioactive peptide in water, adding neutral fat and fat globule membranes in mammalian milk, and emulsifying by physical means; 8. Bioactivity A novel suspension method characterized by dissolving or suspending a peptide in water, adding neutral fat, a fat globule membrane in mammalian milk, and a protease inhibitor, and emulsifying by physical means. ,9. 10. A novel suspension method according to any one of claims 1 to 8, characterized in that the fat globule membrane in clear milk is a purified milk fat globule membrane. 11. A novel suspension method according to claims 1 to 9, characterized in that a dairy product containing a milk fat globule coating is used in place of the fat globule coating in mammalian milk. 11. The novel suspension method according to claim 10, wherein the dairy product containing milk fat globule membranes is buttermilk or cream. A suspension composition suitable for oral administration, characterized in that the suspension composition prepared by the method according to any one of claims d to 11 is made into a powder as it is, or by adding a filler and spray-drying it or freeze-drying it to powder. Manufacturing method of new formulation, 13. The present invention relates to a composition prepared by the method according to any one of claims 1 to 12.

14 本発明において用いる噛乳動物の乳汁中の脂肪球皮膜と
して好適なのは、その原料の入手の容易性からして牛乳
脂肪球皮膜である。以下本発明において用いる噛乳動物
の乳汁中の脂肪球皮膜の性質、製法等について述べる。
14 Milk fat globule coating is suitable as the fat globule coating in the milk of chewing mammals used in the present invention, in view of the ease of obtaining the raw material. The properties, manufacturing method, etc. of the fat globule membrane in the milk of a chewing mammal used in the present invention will be described below.

噛乳動物の乳汁が非常に優れた栄養食品であることはよ
く知られている。乳汁中には動物種によって異なるが、
2−18%にも及ぶ脂肪が含まれ、幼獣のエネルギー源
となっている。しかも乳汁中には水と決して混じること
がない脂肪が、直径0.1−17μmの脂肪球の形で浮
遊し安定な懸濁液を作っているのである。脂肪球の大き
さによって分類すると、直径1μ論以下の脂肪球が総数
の80%以上占めるが、乳汁中の全脂肪の中に占めるそ
の脂肪含量は数%に過ぎない。また直径6μ輸以上の脂
肪球も小数であるため、全脂肪中に占める割合は約2−
3%にすぎない。脂肪球中の脂肪の大部分は直径が2−
6μ餉(平均3.4μ一の脂肪球に存在し、この分布範
囲に含まれる脂肪球の脂肪は、乳汁中の全脂肪の94%
を占めている.したがって代表的な乳汁である牛乳の脂
肪球は極めて大きな表面積を持ち、その脂肪1g当たり
の表面積は2−にも達する。この様に膨大な面積を持っ
た脂肪球が安定な懸濁液の形態を保持できる理由は、疎
水性が高い脂質と外界の水との仕切りをしている界面層
、すなわち脂肪球皮膜(milk  fatglobu
le  membrane:MFGM)が存在するから
である。脂肪球からMFGMを分離する方法としては、
乳汁を遠心分離して得られるクリームを水で数回洗浄し
てから、チャーニングと呼ばれる工程で脂肪球を物理的
に破壊する方法が一般的である。
It is well known that the milk of chewing mammals is an excellent nutritional food. Although milk differs depending on the animal species,
It contains 2-18% fat and serves as an energy source for young animals. Furthermore, fat, which never mixes with water, floats in milk in the form of fat globules with a diameter of 0.1-17 μm, creating a stable suspension. When classified according to the size of fat globules, fat globules with a diameter of 1 μm or less account for more than 80% of the total number, but their fat content accounts for only a few percent of the total fat in milk. Also, since there are only a small number of fat globules with a diameter of 6 μm or more, their proportion in total fat is about 2-2 μm.
Only 3%. Most of the fat in fat globules has a diameter of 2-
6μ (on average, 3.4μ) is present in fat globules, and the fat in fat globules within this distribution range accounts for 94% of the total fat in milk.
occupies . Therefore, the fat globules of milk, which is a typical milk, have an extremely large surface area, and the surface area per gram of fat reaches as much as 2. The reason why fat globules with such a huge area are able to maintain a stable suspension form is due to the interfacial layer that partitions the highly hydrophobic lipids from the water in the outside world, that is, the fat globule membrane (milk). fatglobu
This is because MFGM) exists. As a method to separate MFGM from fat globules,
A common method is to wash the cream obtained by centrifuging milk several times with water, and then physically destroy the fat globules in a process called churning.

この方法の原理は、クリームを冷却して脂肪球の核を構
成する高融点中性脂肪を硬化させて脆くシ、この脆くな
った脂肪球を激しく振盪して破壊する。
The principle of this method is that the cream is cooled to harden the high-melting point neutral fat that constitutes the core of the fat globules, making them brittle, and the brittle fat globules are broken by vigorous shaking.

この処理法によって破壊された脂肪球から流出した脂肪
は、相互に融合して大きな塊になって水層の上に分離し
、水層中にはMFGMが分散して残留する。従ってこの
ようにして分離した水層(バターミルク〉を適当な手段
によって乾燥すると、MFGMは白色の粉末状で得られ
る。こうして得られるMFGMは主として脂質と蛋白質
で楕戒される構造リボ蛋白質で、それが生体内で合成さ
れる過程からみて乳wAIiIII胞由来であろうと考
えられている。つまり乳腺細胞内で合成された乳脂肪は
、細胞から分泌される過程で乳腺細胞膜によって被覆さ
れ、乳汁中に分泌されるからである。
The fat flowing out from the fat globules destroyed by this treatment method fuses with each other to form a large mass and separates onto the water layer, where MFGM remains dispersed. Therefore, when the aqueous layer (buttermilk) separated in this way is dried by an appropriate means, MFGM is obtained in the form of a white powder.The MFGM thus obtained is mainly a structural riboprotein composed of lipids and proteins. Judging from the process by which it is synthesized in vivo, it is thought that it originates from milk wAIiIII follicles.In other words, milk fat synthesized within mammary gland cells is covered by the mammary cell membrane during the process of secretion from the cells, and is contained in milk. This is because it is secreted.

MFGMの収量は牛乳からの分離法によっても異なるが
、乳脂肪1fIから0.5−1.2である。このMFG
Mは90%以上が蛋白質と脂質とで占められていて、約
55%が脂質画分として、残りの45%が蛋白質画分と
して回収される。
The yield of MFGM varies depending on the separation method from milk, but is 0.5-1.2 from milk fat 1fI. This MFG
More than 90% of M is composed of proteins and lipids, and approximately 55% is recovered as a lipid fraction and the remaining 45% as a protein fraction.

MFGMが他の生体膜と異なる点は、脂質画分中に高融
点中性脂肪(bigh melting  tri g
lyce 一ride:HMTG)と呼ばれる中性脂肪
を多量に含んでいることである。この高融点中性脂肪の
役割は明確ではないが、蛋白質とリン脂質とから楕戒さ
れるMFGM膜内側の乳脂肪と接する部分に存在するこ
とからみて、脂肪球内部の疎水的環境の保持と脂肪球の
強度を増大させる点で重要な役割を果たしていると考え
られている。従って通常の生17 体膜は二重膜構造をとるが、内部に極めて疎水性の中性
脂肪を被覆する役割を持つMFGM膜は一重構造をとる
ことが特徴である。
MFGM differs from other biological membranes in that it contains high melting triglycerides in the lipid fraction.
It contains a large amount of neutral fat called lyce-ride (HMTG). The role of this high melting point neutral fat is not clear, but considering that it is present in the part of the MFGM membrane that is in contact with milk fat inside the MFGM membrane, which is protected from proteins and phospholipids, it is believed that it plays a role in maintaining the hydrophobic environment inside fat globules. It is thought to play an important role in increasing the strength of fat globules. Therefore, normal human body membranes have a double membrane structure, but the MFGM membrane, which has the role of covering the extremely hydrophobic neutral fat inside, is characterized by a single layer structure.

このMFGMを走査型電子顕微鏡で観察すると、二次元
的に広がった膜様構造を認めるだけで、リポソームの電
子顕微鏡像のように球状ないし半球状の構造は認められ
ない。
When this MFGM is observed with a scanning electron microscope, only a two-dimensionally spread membrane-like structure is observed, and no spherical or hemispherical structure is observed as seen in the electron microscope image of liposomes.

A.本発明において水に難溶ないし不溶の脂溶性薬物の
懸濁化はMFGM被覆微小球体を再構戒することにより
行なわれる。
A. In the present invention, a lipophilic drug that is sparingly soluble or insoluble in water is suspended by reconstitution of MFGM-coated microspheres.

水に難溶ないし不溶の脂溶性薬物をMFGMによって被
覆するためには、原則として薬物は水と混じり合わない
油状でなければならない。したがって室温で油状の薬物
はそのままMFGMによって被覆できる。固体の場合に
は、通常、蛋白変性を起こさせない適当な溶媒、例えば
植物油、具体的には例えばオリーブ油、に溶かす必要が
ある。しかし、固体であっても粉末の場合は、そのよう
な溶媒を用いることなく、そのままMFGMとよく混合
して水中に懸濁させることが可能である。本18 願明細書においては、液状の薬物ないしは薬物溶液を油
状物と呼ぶことにする。MFGMを使って油状物もしく
は粉末が水中に懸濁した乳濁液の調製は、例えばMFG
Mを中性の緩衝液に分散し、油状物を加え物理的な手段
、例えば種々のタイプのホモジナイザー或いは超音波よ
り乳化することにより行なわれる。このような操作によ
ってMFGM微小球体が再構成される。この再構成のた
めには、例えばホモジナイザーを用いた場合、ホモジナ
イザーの速度、時間、温度、MFGM濃度、被覆する油
状物の濃度、pHなどが主要な変動要因であり、適宜選
択することができる。例えばMFGM濃度、すなわち薬
剤に対するMFGMの添加量は1重量%以上であればよ
く、MFGMの添加量を増大させれば、MFGM小球体
の懸濁液の乳化活性、乳化安定性、泡安定性を上昇させ
ることができる。しかし、実用上の見地からは、MFG
Mの添加量は2〜8重量%が好ましい。一般的な調製条
件は次の通りである。
In order to coat a lipophilic drug that is sparingly soluble or insoluble in water with MFGM, the drug must, in principle, be in the form of an oil that is immiscible with water. Therefore, drugs that are oily at room temperature can be directly coated with MFGM. In the case of a solid, it is usually necessary to dissolve it in a suitable solvent that does not cause protein denaturation, such as vegetable oil, specifically olive oil, for example. However, even if it is solid, if it is a powder, it can be mixed well with MFGM and suspended in water without using such a solvent. In this specification, a liquid drug or drug solution will be referred to as an oil. Preparation of emulsions of oils or powders in water using MFGM can be done using, for example, MFG.
This is carried out by dispersing M in a neutral buffer solution, adding an oil and emulsifying it by physical means, such as various types of homogenizers or ultrasound. MFGM microspheres are reconstituted by such operations. For this reconstitution, for example, when a homogenizer is used, the speed of the homogenizer, time, temperature, MFGM concentration, coating oil concentration, pH, etc. are major variables, and can be selected as appropriate. For example, the MFGM concentration, that is, the amount of MFGM added to the drug, should be 1% by weight or more, and increasing the amount of MFGM added will improve the emulsifying activity, emulsifying stability, and foam stability of the suspension of MFGM spherules. can be raised. However, from a practical standpoint, MFG
The amount of M added is preferably 2 to 8% by weight. General preparation conditions are as follows.

(一般的な調製条件) 270+ngのM F G Mを10+nMのリン酸ナ
1〜リウノ、緩衝液(pr{7.0)に分散させiog
0nとする。
(General preparation conditions) Disperse 270+ng of MFGM in 10+nM sodium phosphate buffer (pr{7.0) and add iog
Set to 0n.

方、薬剤を含む2.5gの油状物をパイレックス試験管
(2.5717cm)に採取し、これに」二記の緩衝溶
液を7.5+nN(M F G Mを約200+H含有
)加えて、45゜Cで5分間加温する。油状物1gに対
ずるMFCMの含有量は80Bである。次いで加温しな
がら、ポリトロンホモジナイザー(ST20シャフト使
用)を用いて、最高スピード(マーク11)て1分間撹
拌して乳濁液を得る。特に油状eA1gに対するMFG
Mの含有量が8Q+nyの場合に、乳化安定性が1の非
常に安定性の優れた乳濁液が得られる。
On the other hand, 2.5 g of oil containing the drug was collected in a Pyrex test tube (2.5717 cm), and 7.5+nN (containing about 200+H of M F G M ) of the buffer solution described in "2" was added thereto. Warm at °C for 5 minutes. The content of MFCM per 1 g of oil is 80B. Then, while heating, the mixture was stirred for 1 minute using a Polytron homogenizer (using an ST20 shaft) at maximum speed (mark 11) to obtain an emulsion. Especially MFG for oily eA1g
When the content of M is 8Q+ny, a highly stable emulsion with an emulsion stability of 1 is obtained.

このようにして得られる乳濁液は所望により粉末化する
ことができる。例えば粉末化の条件は以下の通りである
The emulsion thus obtained can be powdered if desired. For example, the conditions for powdering are as follows.

■ 溶媒(中性脂肪):室温で固体ないし半固体の物性
を持つ中性脂肪を脂溶性薬物を溶解する溶媒として選択
する。
■ Solvent (neutral fat): Neutral fat, which has solid or semi-solid physical properties at room temperature, is selected as the solvent for dissolving the fat-soluble drug.

■ 増量剤:乳蛋白、乳糖など。■ Bulking agents: milk protein, lactose, etc.

薬物を封入したMFGM微小球体を上記の増量剤と混き
し、噴霧乾燥するか凍結乾燥すれば、M F G M微
小球体を含む安定な粉末を得ることができる。
The drug-loaded MFGM microspheres can be mixed with the bulking agents described above and spray-dried or freeze-dried to obtain a stable powder containing the MFGM microspheres.

B.本発明の生理活性ペプチドの製剤化方法において、
生理活性ペプチドとしては、例えばインスリン、オキシ
トシン、バソプレシン、下垂体性々腺刺激ホルモン(H
MG).胎盤性々腺刺激ホルモン(HCG)、成長ホル
モン、コルチコトロピン、カルシトニン、性腺刺激ホル
モン放出ホルモン、甲状腺刺激ホルモン放出ホルモン、
インターフェロンーα、インターフェロン−β、エリス
ロボエチン、コロニー刺激因子(GM−CSF)、同G
CSF、同M−CSF、上皮生長因子(E G F )
、神経細胞成長因子(NGF)、ソマトメジン、バトロ
キソビン、プロウロキナーゼ、組織プラスミノーンアク
チベーター、スタフィロキナーゼ、スーパーオキサイド
ディスl\ターゼ、成長ホルモン放出因子、ソマトスタ
チ〉′、心房ナトリウム利尿ベプタイド、プロテインC
、プロテインS、肺サー21 ファクタント、リボコルチン、インターロイキンl、イ
ンターロイキン2、インターロイキン3、腫瘍壊死因子
(T N F )、ラクトフェリン、トランスフェリン
、免疫グロブリン等である。
B. In the method for formulating a physiologically active peptide of the present invention,
Examples of physiologically active peptides include insulin, oxytocin, vasopressin, pituitary gonadal stimulating hormone (H
MG). Placental gonadotropin (HCG), growth hormone, corticotropin, calcitonin, gonadotropin-releasing hormone, thyroid-stimulating hormone-releasing hormone,
Interferon-α, interferon-β, erythroboetin, colony stimulating factor (GM-CSF), GM-CSF
CSF, M-CSF, epidermal growth factor (EGF)
, nerve cell growth factor (NGF), somatomedin, batroxobin, prourokinase, tissue plasminone activator, staphylokinase, superoxide disl\tase, growth hormone releasing factor, somatostati〉', atrial natriuretic peptide, protein C
, protein S, lung surfactant, ribocortin, interleukin 1, interleukin 2, interleukin 3, tumor necrosis factor (T NF ), lactoferrin, transferrin, immunoglobulin, and the like.

製剤化は、上記した生理活性ペプチドを水に溶解あるい
は懸濁した後、中性脂肪と噛乳動物の乳汁中の脂肪球被
膜(MFGM)を添加し、物理的な手段により乳化せし
めることにより行なわれる。
Formulation is carried out by dissolving or suspending the above-mentioned physiologically active peptide in water, adding neutral fat and fat globule membrane (MFGM) in the milk of chewing mammals, and emulsifying it by physical means. It will be done.

この際蛋白分解酵素阻害剤を同時に加えると有利である
。使用する蛋白分解酵素阻害剤に特に制限はないが、具
体的には例えばトラピビール、ペプスクチン、ロイペプ
チン等である。なお、生理活性ベブチドを溶解あるいは
分散する水に代えて中性の緩衝液を用いることもできる
。中性の緩衝液の例としては、1〕H7のリン酸緩衝液
あるいはトリス・塩酸緩衝液が挙げられる。本発明の生
理活性ペプチドの懸濁化に用いられ,る中性脂肪として
は、例えば常温で液状若しくは半固体状のものがら任意
に選択することができる。具体的には、例えば、人工的
な中性脂肪であるオクチルデジルト22 リグリセライド、ヤシ油等の植物油、バターオイル、不
飽和脂肪酸を含む動植物油等が挙げられる。
At this time, it is advantageous to add a protease inhibitor at the same time. There are no particular limitations on the protease inhibitors used, but specific examples include Trapivir, Pepscutin, and Leupeptin. Note that a neutral buffer solution can be used instead of water for dissolving or dispersing the physiologically active bebutide. Examples of neutral buffers include 1]H7 phosphate buffer or Tris/HCl buffer. The neutral fat used for suspending the physiologically active peptide of the present invention can be arbitrarily selected from, for example, those that are liquid or semi-solid at room temperature. Specifically, examples thereof include octyldesilt 22 liglyceride, which is an artificial neutral fat, vegetable oils such as coconut oil, butter oil, and animal and vegetable oils containing unsaturated fatty acids.

なお、生理活性ペプチドとしてインスリンを用いる場合
、その溶解性が優れている点からヤシ油は好適な中性脂
肪の例である。
Note that when insulin is used as the physiologically active peptide, coconut oil is a suitable example of a neutral fat because of its excellent solubility.

本発明において用いる物理的な乳化手段としては、種々
のホモジナイザーの利用あるいは超音波で処理すること
により行なわれる。噛乳動物の乳汁中の脂肪球皮膜(M
FGM)、具体的には、例えば牛乳脂肪球皮膜の添加量
は、使用する中性脂肪に対し2〜10%(w/w)の範
囲が好ましい。
The physical emulsification means used in the present invention may be carried out by using various homogenizers or by ultrasonic treatment. Fat globule membrane in the milk of chewing mammals (M
FGM), specifically, for example, the amount of milk fat globule membrane added is preferably in the range of 2 to 10% (w/w) based on the neutral fat used.

このような方法によって得られる乳濁液は、所望により
粉末化することができる。粉末化は乳濁液に適当な増量
剤、例えば乳糖、乳清蛋白、カゼイン、微結晶セルロー
スなどを加え凍結乾燥または噴霧乾燥することにより行
なわれる。このようにして得られた粉末はそれ自体化学
的に安定であり、適宜錠剤、顆粒剤等に製剤化すること
ができる。
The emulsion obtained by such a method can be powdered if desired. Powderization is carried out by adding a suitable filler such as lactose, whey protein, casein, microcrystalline cellulose, etc. to the emulsion and freeze-drying or spray-drying. The powder thus obtained is itself chemically stable and can be formulated into tablets, granules, etc. as appropriate.

本発明で用いるMFGMの特徴は人工的な界面活性剤と
比較して、中性脂肪をより効率的に乳化することおよび
安定性が極めて高いという点にある。つまり人工的な界
面活性剤は溶血性を有する一種の細胞毒であり、大量に
摂取すると消化管粘膜の剥離・脱落から激しい下痢を起
こすこともまれではない。これに対しM F G Mは
細胞膜由来の表面を持っており、人工的な界面活性剤の
ように細胞膜とは無祥であり、極めて安定性が高いとい
う特徴を有している。なお本発明においてMFGHに代
えてMFGMを含む乳製品、例えばバターミルクまたは
クリーム等を使用することもできる。
The characteristics of MFGM used in the present invention are that it emulsifies neutral fats more efficiently and has extremely high stability compared to artificial surfactants. In other words, artificial surfactants are a type of cytotoxin with hemolytic properties, and when ingested in large quantities, it is not uncommon to cause severe diarrhea due to detachment and sloughing of the gastrointestinal mucosa. On the other hand, MFGM has a surface derived from cell membranes, is free from cell membranes like artificial surfactants, and is characterized by extremely high stability. In the present invention, dairy products containing MFGM, such as buttermilk or cream, can be used instead of MFGH.

以下実施例、実験例を挙げて本発明を更に具体的に説明
するが、本発明はこれらに限定されるものではない。
The present invention will be explained in more detail below with reference to Examples and Experimental Examples, but the present invention is not limited thereto.

(実施例1)可溶化能の測定 MFGM(中外製薬(株〉の生研機構プロジェクトより
供与されたものを用いた。〉、HCO60(日光ケミカ
ルズ社製)及びBL9(日光ケミカルズ社製〉をそれぞ
れ100μg/mlの濃度で懸濁あるいは溶解した懸濁
液あるいは水溶液にビタミンAを25.50,100μ
lF/+a1の濃度となるように加え、超音波細胞破砕
器(大岳製剤所社製)によって、30Wで5分間超音波
処理した。各液の640nmにおける光透過率を測定し
たところ、第1図に示すような結果を得た。
(Example 1) Measurement of solubilization ability MFGM (provided by the Seiken Organization project of Chugai Pharmaceutical Co., Ltd.) was used, HCO60 (manufactured by Nikko Chemicals Co., Ltd.) and BL9 (manufactured by Nikko Chemicals Co., Ltd.) were each used at 100 μg. Add 25.50,100μ of vitamin A to a suspension or aqueous solution at a concentration of /ml.
The cells were added to a concentration of 1F/+a1 and subjected to ultrasonication at 30W for 5 minutes using an ultrasonic cell disrupter (manufactured by Otake Pharmaceutical Co., Ltd.). When the light transmittance of each liquid was measured at 640 nm, the results shown in FIG. 1 were obtained.

この図からわかるように、いずれの可溶化剤を用いたと
きも、ビタミンAの濃度を増すにつれて透過率の低下、
すなわち濁度の増大が認められたが、HCO60を用い
た場合は濁度の増大度が低いのに対し、BL9及びMF
GMを用いた場合には緩衝液のみの場合とほぼ同様の挙
動を示した。
As can be seen from this figure, when using any solubilizer, as the concentration of vitamin A increases, the transmittance decreases.
That is, an increase in turbidity was observed, but when HCO60 was used, the increase in turbidity was low, whereas with BL9 and MF
When GM was used, the behavior was almost the same as when using only the buffer solution.

したがって、MFGMは可溶化能をほとんど持たないこ
とが明らかとなった。なお、油層としてトリオレインを
用いた。
Therefore, it was revealed that MFGM has almost no solubilizing ability. Note that triolein was used as the oil layer.

(実施例2)乳化能の測定 4l直Δ跣4: ビタミンAを12B含むが油脂1gと、MFGMを8 
0 mg/ ml2含有するリン酸ナトリウム緩衝液1
99とを合わせて40−45℃で5分間加温し、次にポ
リトロンホモジナイザーを用いて最高速で1分間撹拌し
て乳濁液を得た。(ここで得られた25 のは油脂を5重量%含有する乳濁液である。)上記MF
GMの代りに、レシチン(シグマ(S igma)社製
〉、シヨ糖脂肪酸エステルS−1170(三菱化成食品
社製〉、シヨ糖脂肪酸エステルP1670(三菱化成食
品社製〉、T ween 8 0 (日光ケミカルズ社
製)及びHCO60(日光ケミカルズ社製〉の各界面活
性剤をそれぞれ80IIlg/一含有するリン酸ナトリ
ウム緩衝液19gとビタミンA12+ngを含む油脂1
gとを混合して、上記と同様にしてそれぞれの界面活性
剤を含有する乳濁液を調製した。
(Example 2) Measurement of emulsifying ability 4l Straight ∆ 4: Contains 12B of vitamin A, 1g of fat and oil, and 8% of MFGM
Sodium phosphate buffer containing 0 mg/ml2
99 and heated at 40-45° C. for 5 minutes, and then stirred for 1 minute at maximum speed using a Polytron homogenizer to obtain an emulsion. (The 25 obtained here is an emulsion containing 5% by weight of oil and fat.) The above MF
Instead of GM, lecithin (manufactured by Sigma), sucrose fatty acid ester S-1170 (manufactured by Mitsubishi Kasei Foods Co., Ltd.), sucrose fatty acid ester P1670 (manufactured by Mitsubishi Kasei Foods Co., Ltd.), Tween 80 (Nikko) Chemicals Co., Ltd.) and HCO60 (Nikko Chemicals Co., Ltd.) surfactants (manufactured by Nikko Chemicals Co., Ltd.) each containing 19 g of a sodium phosphate buffer solution containing 80 IIlg/1, and 1 fat and oil containing 12+ng of vitamin A.
An emulsion containing each surfactant was prepared in the same manner as above.

上で調製した各乳濁液をそれぞれ試験管に入れ垂直に立
てて室温で放置し、経時的にクリーム層長及び乳濁液の
全層長を測定し、これらの測定値から(クリーム層長/
懸濁液全層長)を求めて乳化安定性の指標とした。結果
を第2図に示す。なお、油脂としてトリオレインを使用
した。
Put each emulsion prepared above into a test tube, stand it vertically, and leave it at room temperature. Measure the cream layer length and the total layer length of the emulsion over time. From these measurements, (cream layer length /
The total layer length of the suspension was determined and used as an index of emulsion stability. The results are shown in Figure 2. Note that triolein was used as the oil.

第2図からわかるように、M F G Mのエマルジョ
26 ンスタビリティー値は、レシチン及びTween80に
比べて低く、HCO60とほぼ同程度の値であり、この
ことはMFGMの乳化安定性が良好であることを示して
いる。
As can be seen from Figure 2, the emulsion stability value of MFGM is lower than that of lecithin and Tween 80, and is approximately the same as that of HCO60, which indicates that MFGM has good emulsion stability. It shows that there is.

上で調製17た各乳濁液をそれぞれ試験管に入れ垂直に
立てた。室温において経時的に試験管底より0.2mI
ずつ各乳濁液を採取し、これらを0.1zのドデシル硫
酸ナトリウム水溶液3.81I+Nと混ぜ、6401l
llにおける透過率を種の条件の下で測定した。これら
の結果を第3図〜第6図に示す。
Each of the emulsions prepared above was placed in a test tube and stood vertically. 0.2 mI from the bottom of the test tube over time at room temperature
Collect each emulsion and mix them with 0.1z sodium dodecyl sulfate aqueous solution 3.81I+N, and add 6401l
The transmittance in ll was measured under seed conditions. These results are shown in FIGS. 3 to 6.

第3図は乳濁液における各界面活性剤の効果を示したも
のである。これによると、MFGMのエマルジョンアク
ティビティーは、緩衝液のみレシチンに比べて低い値を
示し、30時間後まで、Tween80及びHCO60
とほぼ同じ値を示した。
FIG. 3 shows the effect of each surfactant in the emulsion. According to this, the emulsion activity of MFGM was lower than that of buffer-only lecithin, and up to 30 hours later, Tween80 and HCO60
showed almost the same value.

特に、10時間後までの値が低く、MFGMが乳濁液と
しての状態を良好に保持していることが明らかである。
In particular, the values up to 10 hours later are low, and it is clear that MFGM maintains its emulsion state well.

第4図はエマルジョンアクテイビテイーに及ぼすM F
 G M添加量の影響について示したものである。これ
によると、通常使用する含有量である8 0wn)7M
 F GM /g油脂に比べて、低い場1(40m g
 M F G M / g油脂〉ではエマルジョンアク
テイビティーの急速な上昇が認められたが、逆に高い場
合(1 60+nyMFGM/y油脂)では30分後に
おいても値の上昇は少ない。このことから、MFGHの
添加量が多い程、乳化状態の保持が良好になると考えら
れる。
Figure 4 shows the effect of M F on emulsion activity.
This figure shows the influence of the amount of GM added. According to this, the normally used content is 80wn)7M
F GM /g
A rapid increase in emulsion activity was observed in the case of MFGM/g fat/oil, but on the other hand, in the case of high emulsion activity (160+nyMFGM/y fat), the value did not increase much even after 30 minutes. From this, it is considered that the greater the amount of MFGH added, the better the emulsified state is maintained.

第5図は、界面活性剤のうち安全性が高いシヨ糖脂肪酸
エステルとMFGMとについてエマルジョンアクティビ
テイーに及ぼす効果の比較結果を示したものである。こ
れによると、MFGMは、P−1670(パルミチン酸
残基が結きしたH L B 一16のシヨ糖脂肪酸エス
テル)に比べてエマルジョンアクティビテイーの上昇が
見られたが、81.170(ステアリン酸残基が結合し
たHLB=11のシヨ糖脂肪酸エステル〉とほぼ同じ値
を示した。
FIG. 5 shows the results of a comparison of the effects on emulsion activity of sucrose fatty acid ester, which is a highly safe surfactant, and MFGM. According to this, MFGM showed an increase in emulsion activity compared to P-1670 (a sucrose fatty acid ester of H L B-16 bound to palmitic acid residues), but 81.170 (a stearic acid residue). It showed almost the same value as the sucrose fatty acid ester with HLB=11 in which the residues were bonded.

なお、上記第3図〜第5図に関する実験においては、油
脂としてトリオレインを用いた。
In addition, in the experiments related to FIGS. 3 to 5 above, triolein was used as the fat or oil.

第6図は、油脂としてトリオレイン以外のものを用いた
場合のエマルジョンアクティビティーに及ぼす効果につ
いて示したちのてある。トリオレイン以外の油脂として
、オレイン酸、モノオレイン及びバターオイルを用いた
。その結果、モノオレインがエマルジョンアクティビテ
ィーの上昇が最も低く、オレイン酸が最も上昇した。バ
ターオイルとトリオレインはその中間でほぼ同じ値を示
した。
FIG. 6 shows the effect on emulsion activity when oils other than triolein are used. Oleic acid, monoolein, and butter oil were used as fats and oils other than triolein. As a result, monoolein had the lowest increase in emulsion activity, and oleic acid had the highest increase. Butter oil and triolein showed almost the same values in between.

次に、本願発明方法により調整した薬物含有のMFGM
微小球体を動物に投与した際の薬物吸収状況を従来の方
法で調製した製剤と比較した試験例を示す。
Next, drug-containing MFGM prepared by the method of the present invention
A test example is shown in which the drug absorption status when microspheres are administered to animals is compared with a preparation prepared by a conventional method.

(実施例3)  DDTのリンパ管吸収に及ぼすMFG
Mの影響 試験薬物として、経口投与における薬物吸収を検討する
際、脂溶性薬物のモデル化合物として使われるDDTを
用いた。
(Example 3) Effect of MFG on lymphatic absorption of DDT
DDT, which is used as a model compound for fat-soluble drugs when examining drug absorption during oral administration, was used as the drug for testing the effects of M.

まず、ウィスタ一系の雄性ラットを一夜絶食さ29 せ、手術して十二指腸並びに胸管リンパにカニューレを
挿入する。次にDDTのオリーブ油溶液を用いて上記一
般的な調製条件に従って調製したMFGM含有微小球体
乳濁液及びMFGMを含有しない単なるDDTのオリー
ブ油溶液をそれぞれカニューレを通してラットの十二指
腸内に投与した。DDTの投与量はいずれの場合も10
my/kgであった。
First, male rats of the Wista strain are fasted overnight, and cannulae are inserted into the duodenum and lymph thoracic duct by surgery. Next, an MFGM-containing microsphere emulsion prepared using an olive oil solution of DDT according to the general preparation conditions described above and a simple olive oil solution of DDT without MFGM were each administered into the duodenum of the rat through a cannula. The dose of DDT was in each case 10
my/kg.

DDTの投与後、胸管リンバから流出するリンパ液を集
めてDDTを分析した。結果を第1表に示す。
After administration of DDT, lymph fluid flowing out from the thoracic duct limbus was collected and analyzed for DDT. The results are shown in Table 1.

吸収率(z) ラ トの **P<0.01 15.31 +7.79 6 0 6 41.16 +14.7** 4 0 4 この表から明らかなように、DDTをオリーブ油に溶か
してラットの十二指腸に投与した場合に30 は、12時間内に吸収されるDDTの総量は15.31
gに過ぎないが、DDTのオリーブ溶液をMFGMによ
って微小球体化して同様に投与すると、吸収量は41.
16gに上昇し、M F G Mの吸収促進効果が明確
に裏付けられている。
Absorption rate (z) Rat**P<0.01 15.31 +7.79 6 0 6 41.16 +14.7** 4 0 4 As is clear from this table, DDT was dissolved in olive oil and used in rats. 30, the total amount of DDT absorbed within 12 hours is 15.31
However, if an olive solution of DDT is made into microspheres by MFGM and administered in the same manner, the absorbed amount is 41.g.
16 g, clearly supporting the absorption promoting effect of M F GM.

(実施例4) ビタミンAのリンパ管吸収に及ぼすMF
GMの影響 体重約400gのウィスター系雄性ラットを一昼夜絶食
させた。絶食させたラットをベントバルビタール腹腔内
投与にて麻酔させた後、ラット腹部を切開し胃幽門部と
十二指腸の間及び回盲部にシリコンカニューレを挿入し
た。上部カニューレより、(実施例2〉で調製した各乳
濁液からなる薬液(5−)を小腸(−二指腸、空腸、回
腸)ループ内に注入し、カニューレを鉗子で閉じた。
(Example 4) Effect of MF on lymphatic absorption of vitamin A
Effects of GM Male Wistar rats weighing approximately 400 g were fasted overnight. After a fasted rat was anesthetized with intraperitoneal administration of bentobarbital, the rat's abdomen was incised and a silicone cannula was inserted between the gastric pylorus and duodenum and into the ileocecal region. A drug solution (5-) consisting of each emulsion prepared in Example 2 was injected into the small intestine (-duodenum, jejunum, ileum) loop through the upper cannula, and the cannula was closed with forceps.

経時的に股間動脈及び胸管リンパより血液及びリンパ液
を採取し、両液中のビタミンA濃度を測定した。また、
胆管にカニューレを施し、胆汁を体外に排泄させた(b
ile  fistula)ラットについても同様のこ
とを行い、このような処理を施さない(intact)
ラットと比較した。
Blood and lymph fluid were collected over time from the groin artery and thoracic duct lymph, and the vitamin A concentration in both fluids was measured. Also,
The bile duct was cannulated and bile was excreted from the body (b
Do the same thing for rats (fistula) and leave them without such treatment (intact).
compared with rats.

なお、ビタミンAの投与量は15IIlg/ラットであ
った。ビタミンA濃度の定量は、各サンプルをシクロヘ
キサンで抽出後、励起波長340nm、測定波長480
nmでの蛍光測定により行った。
The dose of vitamin A was 15IIg/rat. Quantification of vitamin A concentration was performed using an excitation wavelength of 340 nm and a measurement wavelength of 480 nm after extracting each sample with cyclohexane.
This was done by fluorescence measurement at nm.

結果を第7図〜第9図に示す。ビタミンAは小腸から吸
収された後キロミクロンを形成し、その大部分が血液系
ではなく、リンパ系へ移行することが知られている。本
試験においても、血液中には殆ど検出されなかったため
、リンパ液中の濃度で効果を判定した。
The results are shown in FIGS. 7 to 9. It is known that vitamin A forms chylomicrons after being absorbed from the small intestine, and most of them are transferred to the lymphatic system rather than the blood system. In this study as well, the effect was determined based on the concentration in the lymph fluid, as it was hardly detected in the blood.

第7図は、油脂としてゴマ油を用いて調製した乳濁液を
bile  fistulaラットの小腸ループに投与
したときの結果を示す。これによると、MFGMを用い
た場合と合成界面活性剤であるTween80及びHC
O60を用いた場合とで、いずれの時間においても大き
な濃度差はない。投与後2.5〜3.5時間後にリンパ
中の濃度は最高値になったが、MFGMを用いた場合に
値が最も高いことがわかる。
FIG. 7 shows the results when an emulsion prepared using sesame oil as the fat was administered to the small intestinal loop of bile fistula rats. According to this, the case using MFGM and the synthetic surfactants Tween 80 and HC
There is no large concentration difference at any time between the case of using O60 and the case of using O60. The concentration in the lymph reached its highest value 2.5 to 3.5 hours after administration, and it can be seen that the value was highest when MFGM was used.

第8図は、第7図における場合と同様の条件で、乳濁液
をintactラットの小腸ループに投与したときの結
果を示す。これによると、MFGM及びTween80
ともにピーク値は2〜3倍に上昇し、リンパ中への移行
量が増大したことがわかる。
FIG. 8 shows the results when the emulsion was administered into the small intestinal loop of intact rats under the same conditions as in FIG. According to this, MFGM and Tween80
It can be seen that the peak values in both cases increased 2 to 3 times, indicating that the amount transferred into the lymph increased.

一方、油脂含有量を5%から25%に増加させた場合、
リンパ中のビタミンA濃度は極めて低くなっていること
から、乳濁液中の油脂含有割合がビタミンAの吸収に大
きく影響することが明らかとなった。
On the other hand, when increasing the oil content from 5% to 25%,
Since the concentration of vitamin A in lymph is extremely low, it has become clear that the fat content in the emulsion greatly influences the absorption of vitamin A.

第9図は、乳濁液中の油脂の種類によるビタミンAのリ
ンパ中濃度を示す。なお、この場合に限り、ビタミンA
の投与量は2.5B/ラットで行った。
FIG. 9 shows the concentration of vitamin A in lymph depending on the type of oil in the emulsion. In addition, only in this case, vitamin A
The dosage was 2.5B/rat.

油脂含有量5zの乳濁液を用いた。第9図によると、バ
ターオイルを用いた場合がビタミンAのリンパ中濃度が
最も高く、オレイン酸を用いた場合が最も低かった。こ
のことから、ビタミン人の吸収については、天然の乳汁
中脂肪球の状態に極めて近いバターオイルの乳濁液が有
用であることが明らかとなった。
An emulsion with an oil content of 5z was used. According to FIG. 9, the concentration of vitamin A in lymph was highest when butter oil was used, and lowest when oleic acid was used. From this, it has become clear that a butter oil emulsion that closely resembles the state of natural fat globules in milk is useful for the absorption of vitamins.

33 以上、DDT及びビタミンAのリンパ管吸収に及ぼすM
FGMの影響について述べたが、他の脂溶性薬物につい
てもMFGMの吸収促進作用が認められた。
33 As mentioned above, the effect of M on lymphatic absorption of DDT and vitamin A
Although the effects of FGM have been described, the absorption promoting effect of MFGM was also observed for other fat-soluble drugs.

例えば、ビタミンEのように室温で油状の化合物につい
ても、MFGMによって微小球体化した際には顕著な消
化管吸収促進効果が認められた。
For example, when a compound such as vitamin E, which is oily at room temperature, is turned into microspheres by MFGM, a remarkable effect of promoting absorption in the gastrointestinal tract was observed.

すなわち、ビタミンEの綿実油溶液とその溶液をMFG
Mによって微小球体化したものをそれぞれラットに経口
投与したところ、前者に比べ後者の吸収量は2.6倍に
達した。同一の条件下でMFGM微小球体化した際にお
ける脂溶性薬物の吸収促進作用は、ビタミンD、ビタミ
ンI(などの脂溶性ビタミン及びユビキノンなどのイソ
プレン化合物にも認められた。また、各種の脂溶性薬物
、例えば、プロブコール、アバン、イソフラボン、プロ
スタグランジン類などの薬物についても同様の現象が認
められた。
That is, a cottonseed oil solution of vitamin E and the solution were mixed with MFG.
When the microspheres formed by M were orally administered to rats, the absorption amount of the latter was 2.6 times that of the former. The absorption promoting effect of fat-soluble drugs when MFGM was formed into microspheres under the same conditions was also observed in fat-soluble vitamins such as vitamin D and vitamin I, and isoprene compounds such as ubiquinone. A similar phenomenon was observed for drugs such as probucol, avan, isoflavones, and prostaglandins.

更に、水及び有機溶媒のいずれにも溶けにくいが、「有
機溶媒(例えば、オクタノール):水」の間34 の分配係数が大きく有機溶媒(オクタノール〉側に傾い
ている薬物も、MFGMによって微小球体化して投与す
ると顕著な吸収促進が認められた。このような薬物の例
としてハイドロコーチゾンを用いた場合の試験例を以下
に示す。
Furthermore, drugs that are difficult to dissolve in both water and organic solvents, but whose partition coefficient between organic solvent (e.g., octanol) and water is large and tilt toward the organic solvent (octanol) can also be formed into microspheres by MFGM. A remarkable promotion of absorption was observed when the drug was administered as a compound.An example of a test using hydrocortisone as an example of such a drug is shown below.

(実施例5) ハイドロコーチゾンの体内吸収に及ぼす
MFGMの影響 体重約300yのウィスタ一系雄性ラットを一夜絶食さ
せた後、右総頚動脈部位の皮膚を切開してこの動脈にカ
ニューレを挿入した。一方、トリチウム(3H)ラベル
・ハイドロコーチゾンの綿実油溶液をMFGMで微小球
体化した乳濁液(前記の一般的調製条件により調製〉を
経口投与した。
(Example 5) Effect of MFGM on the absorption of hydrocortisone in the body After fasting male Wista rats weighing approximately 300 y overnight, the skin at the right common carotid artery site was incised and a cannula was inserted into this artery. On the other hand, an emulsion (prepared according to the general preparation conditions described above) in which a cottonseed oil solution of tritium (3H)-labeled hydrocortisone was turned into microspheres using MFGM was orally administered.

対照としては界面活性剤T…een80で透明にミセル
化したハイドロコーチゾンを用いた。ハイドロコーチゾ
ンの投与量は1.5B/k!?であった。投与した後に
定期的に採血した。糞及び尿を集め、投与してから49
時間後に屠殺して、消化管、その内容物、各臓器に分け
てハイドロコーチゾンの放射能を測定し、ハイドロコー
チゾン含有量を求めた。
As a control, hydrocortisone made into transparent micelles with the surfactant T...een80 was used. The dosage of hydrocortisone is 1.5B/k! ? Met. Blood was collected periodically after administration. After collecting feces and urine and administering
After a period of time, the animals were sacrificed, and the radioactivity of hydrocortisone was measured in the digestive tract, its contents, and each organ to determine the hydrocortisone content.

(なお、脂溶性薬物等をTu+een80によって処理
すると、一見透明な溶液状になって脂溶性薬物等が溶解
したと銘覚する。しかしこの様な場きでも脂溶性薬物等
は分子の状態で溶解しているのではなく、大部分は微細
なミセルとして存在しているが、直径が光の波長以下で
あるために光が透過するからである。この様な脂溶性薬
物等を透明にミセル化した状態で投与すると、薬物の吸
収速度と吸収量が大きく上昇することが知られている。
(Note that when fat-soluble drugs, etc. are treated with Tu+een80, they appear to be in the form of a transparent solution and the fat-soluble drugs, etc. are dissolved. However, even in such cases, fat-soluble drugs, etc. are dissolved in the molecular state. Most of the micelles exist as fine micelles, but their diameter is less than the wavelength of light, allowing light to pass through them. It is known that the absorption rate and amount of the drug are greatly increased when administered in a state where the drug is absorbed.

その原因としては次の2点が関与していると考えられて
いる。
It is thought that the following two points are responsible for this.

■ ミセル直径が光の波長より小さいので、薬物粒子の
表面積が飛躍的に増大ずる。
■ Since the micelle diameter is smaller than the wavelength of light, the surface area of drug particles increases dramatically.

■ ミセル化の際使用する界面活性剤が一時的に小腸粘
膜を障害するため、腸管粘膜の透過性障壁が失われ、吸
収が増大ずる。
■ The surfactant used during micelle formation temporarily damages the small intestinal mucosa, causing the intestinal mucosal permeability barrier to be lost and absorption to increase.

従って、本試験はハイドロコーチゾンに対し最高の吸収
速度を示す試験条住を対照として、MFGMの吸収促進
効果を比較したことになる。)試験結果を第10図及び
第2表に示す。
Therefore, in this study, the absorption promoting effect of MFGM was compared using the test condition showing the highest absorption rate for hydrocortisone as a control. ) The test results are shown in Figure 10 and Table 2.

第10図は、トリチリムハイドロコーチゾン投与後のこ
の薬物の血中濃度を示したものである。
FIG. 10 shows the blood concentration of tritylim hydrocortisone after administration of this drug.

Tu+een80によって可溶化したさいには、投与後
5分て最高血中濃度に到達し、そのさいの最高血中濃度
も、MFGM微小球体として投与した場Jの2倍弱であ
る。MFGM微小球体として投与すると、最高血中濃度
に到達するには60分かかり、,しかもピークの高さも
低い。しかしAUGの比較では両群は、ほとんど同じか
、MFGM群のほうがやや大きい傾向がある。従ってハ
イドロコーチゾンをMFGM微小球体として投与した場
合には、現行の経口投与用製剤の中で最高の血中濃度と
AUGを示すとされるTIlleen80の可溶化ミセ
ルと同等のAUGを示すことになる。
When solubilized with Tu+een80, the maximum blood concentration is reached 5 minutes after administration, and the maximum blood concentration at that time is also slightly less than twice that of J when administered as MFGM microspheres. When administered as MFGM microspheres, it takes 60 minutes to reach maximum blood concentration, and the peak height is low. However, when comparing the AUG, the two groups tend to be almost the same, or the MFGM group tends to be slightly larger. Therefore, when hydrocortisone is administered as MFGM microspheres, it exhibits an AUG equivalent to that of TIlleen 80 solubilized micelles, which are said to exhibit the highest blood concentration and AUG among the current oral preparations.

第2表は、ハイドロコーチゾンの体内残留に及ぼすM 
F G Mの影響を示したものである。これによると、
MFGM微小球体の形で投与した場合には、Tu+ee
n80ミセルとは違った経路で薬物が吸収されることが
示唆されている。
Table 2 shows the effect of M on the persistence of hydrocortisone in the body.
This shows the influence of FGM. according to this,
When administered in the form of MFGM microspheres, Tu+ee
It has been suggested that drugs are absorbed through a different route than in n80 micelles.

37 2 ハイドロコー ゾンの に ぼ 9.6±0.2 35.3±13,5 11.6(8.5,14.8) 39.0(32.3,45.6) 胃 小腸 大腸 盲腸 胃内容物 小腸内容物 0.23±0,25 0,75±0.47 0.06±0.04 9.25+3.07 0.52±0.58 3.27+:1.37 0.15(0.21,0.08) 3.98(5.54,2.41) 0.38(0.72 0.03) 18.96(17.70,20.21)0.34(0.
60,0.07) 12.71(16.68,8.54) すなわちラットに経口投与して24時間後のハイドロコ
ーチゾンの収支を見ると、総投与量から排泄量と消化管
内残留物を差し引いた体内残留量は、38 Tween80群で12.41gだが、M F G M
群では53.122、すなわち4.3倍も体内に分布し
ている。この様に体内分布に大差が生ずる原因としては
薬物吸収経路の変化が推定される。すなわち、Twee
n80ミセルを投与した場合には、腸管粘膜から吸収さ
れたハイドロコーチゾンは門脈から肝臓を経由して大循
環に流入するが、MFGM微小球体で投与した場合には
、腸管粘膜に付着した微小球体の内容物は、リンパ管に
取り込まれ胸部リンパ管から静脈に注ぐと考えられるか
らである。
37 2 Hydrocozone nipple 9.6±0.2 35.3±13.5 11.6 (8.5, 14.8) 39.0 (32.3, 45.6) Stomach, small intestine, large intestine, cecum Stomach contents Small intestine contents 0.23±0.25 0.75±0.47 0.06±0.04 9.25+3.07 0.52±0.58 3.27+:1.37 0.15( 0.21, 0.08) 3.98 (5.54, 2.41) 0.38 (0.72 0.03) 18.96 (17.70, 20.21) 0.34 (0.
60, 0.07) 12.71 (16.68, 8.54) In other words, when looking at the balance of hydrocortisone 24 hours after oral administration to rats, the excretion amount and gastrointestinal residue are subtracted from the total dose. The residual amount in the body was 12.41 g in the 38 Tween 80 group, but M F G M
In the group, 53.122, or 4.3 times more, are distributed in the body. Changes in drug absorption routes are presumed to be the cause of such large differences in biodistribution. That is, Twee
When n80 micelles are administered, hydrocortisone absorbed from the intestinal mucosa flows into the general circulation via the portal vein and the liver, but when administered as MFGM microspheres, the hydrocortisone is absorbed from the intestinal mucosa and enters the general circulation. This is because the contents of the chest are thought to be taken up by the lymphatic vessels and poured into the veins via the thoracic lymphatic vessels.

すなわちMFGMはハイドロコーチゾンのように水にも
有機溶媒にも溶けにくいが、水と比べ有機溶媒への分配
係数が大きい薬物を製剤化するさいにも次のような大き
な利点を有する。
That is, MFGM is difficult to dissolve in water or organic solvents like hydrocortisone, but it has the following great advantages when formulating drugs that have a larger partition coefficient to organic solvents than water.

■ 吸収速度および吸収率が非常に高い界面活性剤によ
る可溶化ミセルと同等の吸収率を示す。
■ Absorption rate and absorption rate are equivalent to those of surfactant-based solubilized micelles, which have extremely high absorption rates.

■ 界面活性剤のように腸管粘膜の障害作用はない。■ Unlike surfactants, it does not cause damage to the intestinal mucosa.

■ 吸収経路が変化するために薬物の体内滞留時間が著
しく延長する。すなわち持続性の効力を示すようになる
■ The residence time of the drug in the body is significantly extended due to changes in the absorption route. In other words, it shows the effectiveness of sustainability.

(実施例6) 80myのMFGMを含むpH7.0の10mMリン酸
緩衝液3.5m(lに、油脂としてヤシ油3I01を加
え、さらにヒト・インスリン溶液(40U/II11)
を6mN加えて45゜Cで5分間加温した。次にポリト
ロン型ホモジナイザーで1分間撹拌してヤシ油を完全に
乳化させた。この乳濁液は1ml当たりインスリンを1
9.20含んでいる。この製剤はそのまま経口投与する
こともできるが、保存性を持たせるため、乳糖’y.5
g、乳清蛋白1.2gを加えて凍結乾燥して粉末化した
。この粉末のインスリン含量は20U/gであった。
(Example 6) Coconut oil 3I01 was added as fat to 3.5 ml (l) of 10 mM phosphate buffer with pH 7.0 containing 80 my of MFGM, and human insulin solution (40 U/II11) was added.
6 mN of was added and heated at 45°C for 5 minutes. Next, the mixture was stirred for 1 minute using a Polytron homogenizer to completely emulsify the coconut oil. This emulsion contains 1 insulin per ml.
Contains 9.20. This preparation can be orally administered as is, but in order to maintain its preservability, lactose 'y. 5
g, and 1.2 g of whey protein were added and freeze-dried to powder. The insulin content of this powder was 20 U/g.

(実施例7〉 7週令、体重250FIの雄性ドンリュー系ラットにス
トレプトゾトシンのIOIIIMクエン酸溶液(1)H
4.O>を60mg/kgになるように尾静脈から注入
し、インスリン依存性糖尿病モデルを作成した。
(Example 7) Streptozotocin in IOIIIM citric acid solution (1) H
4. An insulin-dependent diabetes model was created by injecting O> from the tail vein at 60 mg/kg.

ラットはストレブトゾトシン靜注1週間後に12時間絶
食し、ランダムにMFGM/インスリン群、インスリン
群、生理食塩水投与群の3群に分け、実験に用いた。ま
ずラットをネンブタール麻酔下に開腹し、十二指腸にカ
テーテルを挿入した後、カテーテルを通して1101の
インスリン(40U)ないし生理食塩水を腸管内に注入
した。注入1,2,3そして4時間後に尾静脈から採血
し、血糖および血清インスリン(immunoreac
tive  insulin;IRT)を測定した。ま
ず血糖については第11図に示すよういずれの群でも投
与前値は2 8 0 my/dl前後であったが、イン
スリン注入群の血糖は対照群と比べ、1〜2時間値が低
下傾向にあるが有意差は認められなかった。一方、MF
GM/インスリン群の血糖値は、注入2時間後まで急速
に下降し、2〜3時間値は対照群と比べ有意な低下が認
められた。なお、第11図の各々の点は9ないし10頭
の糖尿病ラットにおける血糖値を平均値+あるいは一標
準誤差によって示した。また、ラジオイムノアッセイ法
(D inabbott  Laboratories
)で測定した対照群の血中IRIは、いずれの時点にお
いても検出限界以下であった。一方、MFGM41 /インスリン群の血中IRIは、注入前は検出できなか
ったが、注入l時間後に130μU/II11まで上昇
し、2時間以降は次第に減少した。この群の血中IRI
をインスリン群と比較すると、1〜2時間値が危険率P
 <’0.01,3時間値が危険率P<0.05で有意
に高<、AUGの比較でも100倍以上の差が認められ
た。なお、第12図の各々の点は9ないし10頭の糖尿
病ラットにおける血中インスリンの平均値を+あるいは
一標準誤差で示した。対照群の血中インスリンは、いず
れの時点においても検出限界以下なので、図では省略し
てある。注入1時間後におけるMFGM/インスリン群
のインスリン吸収率は、血液量を体重の1/13と置け
ば、約5%であり、さらに吸収されたインスリンのうち
で1/3が肝臓で捕捉されることを考慮にいれると、約
8%が腸管から吸収されたと考えられる結果である。従
来の投与法によるインスリンの腸管吸収率は、最も良い
場合でも高々1%で、通常は0.1π以下がほとんどで
ある。従って経口投与したMFGM/インスリン群の腸
管吸42 収率は、従来の方法と比べ50〜100倍効率が良いこ
とになる。
Rats were fasted for 12 hours after being injected with strebtozotocin for 1 week, and then randomly divided into three groups: MFGM/insulin group, insulin group, and saline administration group, and used in the experiment. First, rats were subjected to laparotomy under Nembutal anesthesia, a catheter was inserted into the duodenum, and 1101 insulin (40 U) or physiological saline was injected into the intestinal tract through the catheter. Blood was collected from the tail vein 1, 2, 3, and 4 hours after injection, and blood glucose and serum insulin (immunoreac
tive insulin (IRT) was measured. First, regarding blood sugar, as shown in Figure 11, the pre-administration value was around 280 my/dl in all groups, but the blood sugar value in the insulin injection group tended to decrease for 1 to 2 hours compared to the control group. However, no significant difference was observed. On the other hand, MF
The blood glucose level in the GM/insulin group rapidly decreased until 2 hours after injection, and the 2-3 hour value was significantly lower than that in the control group. In addition, each point in FIG. 11 represents the blood glucose level of 9 to 10 diabetic rats using the average value + or one standard error. In addition, radioimmunoassay method (Dinabbot Laboratories
) Blood IRI in the control group was below the detection limit at all time points. On the other hand, blood IRI in the MFGM41/insulin group was undetectable before injection, but rose to 130 μU/II11 1 hour after injection, and gradually decreased after 2 hours. Blood IRI in this group
When compared with the insulin group, the 1-2 hour value has a higher risk rate P
<'0.01, the 3-hour value was significantly high with a risk rate P<0.05<, and a difference of more than 100 times was observed in the AUG comparison. In addition, each point in FIG. 12 represents the average value of blood insulin in 9 to 10 diabetic rats with + or one standard error. Blood insulin in the control group is below the detection limit at all time points, so it is omitted from the figure. The insulin absorption rate in the MFGM/insulin group one hour after injection is approximately 5%, assuming that the blood volume is 1/13 of the body weight, and 1/3 of the absorbed insulin is captured in the liver. Taking this into consideration, the result suggests that approximately 8% of the amount was absorbed from the intestinal tract. The intestinal absorption rate of insulin by conventional administration methods is at most 1% in the best case, and is usually less than 0.1π in most cases. Therefore, the intestinal absorption rate of the orally administered MFGM/insulin group is 50 to 100 times more efficient than the conventional method.

(実施例8〉 体重300fIの雄性スプラーグ・ドーレイ系ラットに
実施例7と同様な方法でストレプトゾトシンを50II
lg/kg静注して糖尿病を発症させた。ストレプトゾ
トシン注射1週間後に、ラットをランダムに3群に分け
、一つを対照群、残りの二つをインスリン群およびイン
スリン/MFGM群とした。
(Example 8) Male Sprague-Dawley rats weighing 300fI were given 50II of streptozotocin in the same manner as in Example 7.
1g/kg was administered intravenously to induce diabetes. One week after streptozotocin injection, the rats were randomly divided into three groups, one as a control group and the other two as an insulin group and an insulin/MFGM group.

ラッI〜を一夜絶食させた後、対照群(n=6)には生
理食塩水、他の群(それぞれn−6)には実施例1で調
製したMFGM/インスリン粉末を水に懸濁しインスリ
ンとして40Uを経口投与し、第3の群(n=6)には
40Uのインスリンを経口投与した。投与液量は、ラッ
トの体重100gあたり1−である。ラットはボールマ
ン・ケージに収容して一定時間ごとに尾静脈から採血し
、血糖ならびに血清インスリン(I R I )を測定
した。
After fasting rats I~ overnight, the control group (n=6) was given physiological saline, and the other groups (n-6 each) were given insulin by suspending the MFGM/insulin powder prepared in Example 1 in water. The third group (n=6) received 40 U of insulin orally. The amount of solution administered was 1-1 per 100 g of rat body weight. Rats were housed in Bollman cages, and blood was collected from the tail vein at regular intervals to measure blood sugar and serum insulin (I R I ).

表3から明らかなように高い濃度のインスリンが血中に
検出され、血糖が降下したのはMFGM/インスリン群
のみである。同じ量のインスリン溶液を投与しただけの
インスリン群は、血中から殆どインスリンが検出されず
、血糖の有意な降下も認められなかった。従って、イン
スリンを牛乳脂肪球皮膜ならびに油脂を用いて乳化し、
さらにこの乳化液を牛乳成分を加えて粉末化しても、腸
管から多量に吸収されることは明白である。
As is clear from Table 3, high concentrations of insulin were detected in the blood, and blood sugar levels decreased only in the MFGM/insulin group. In the insulin group to which only the same amount of insulin solution was administered, almost no insulin was detected in the blood, and no significant drop in blood sugar was observed. Therefore, insulin is emulsified using milk fat globule membranes and fats and oils,
Furthermore, even if this emulsion is powdered by adding milk components, it is clear that a large amount is absorbed from the intestinal tract.

(実施例9) 健常な体重約200gのウイスタ一系雄性ラット24頭
を一夜絶食させた後、ランダムに3群に分け、第1群を
対照群(n=8)、第2群をインスリン対照群(n=8
)、第3群をインスリン脂肪乳化液群(n=8>とした
。インスリン脂肪乳化液は、ヒト・インスリン溶液(4
 0 U /ml) 1 0−に新鮮な牛乳から分離し
たクリーム10mlを加え、完全に混合して調製した。
(Example 9) Twenty-four healthy Wista male rats weighing approximately 200 g were fasted overnight and then randomly divided into three groups, the first group being a control group (n=8) and the second group being an insulin control group. group (n=8
), the third group was the insulin fat emulsion group (n=8>).The insulin fat emulsion was the human insulin solution (4
0 U/ml) 10- was prepared by adding 10 ml of cream separated from fresh milk and mixing thoroughly.

第1群のラットには生理食塩水、第2群にはインスリン
溶液、第3群にはインスリン脂肪乳化液を経口投与した
。投与液量は20U/k,である。ラットは拘束ゲージ
に収容し、投与直前、投与30分後、60分後、120
分後、180分後に尾静脈から採血して、血糖および血
清インスリンを測定した。結果は表4に示すように、イ
ンスリンをクリームに混合して投与した場合に限って、
多量のインスリンが血中に出現し、それにともなった血
糖が下降した。
The first group of rats was orally administered with physiological saline, the second group with insulin solution, and the third group with insulin fat emulsion. The amount of liquid administered was 20 U/k. The rats were housed in a restraint cage and were exposed to 120 minutes immediately before administration, 30 minutes after administration, and 60 minutes after administration.
After 180 minutes, blood was collected from the tail vein and blood glucose and serum insulin were measured. The results are shown in Table 4, only when insulin was mixed with cream and administered.
Large amounts of insulin appeared in the blood, resulting in a drop in blood sugar.

く実施例10) 遺伝子工学で製造したヒト成長ホルモンをウイスター系
雄性ラットに経口投与して実験を行った。
Example 10) An experiment was conducted by orally administering human growth hormone produced by genetic engineering to male Wistar rats.

体重約200グラl\のウイスタ一系雄性ラットの尾静
脈にエーテル麻酢下でカニュレーションを施し、ボール
マン・ケージに拘束した。ヒト成長ホルモン110gを
14+nNのpl+ospl+ate l+uffer
  saline(P B S .+)H 7.4>に
溶解し、240+ngのMFGMを加えて40℃に加温
した。この液にあらかじめ40℃に加温・溶解したヤシ
油6]n1を添加して、ポリトロン・ホモジナイザーを
用い最高速度で1分間ホモジナイズし、成長ホルモンの
乳濁液(50μ2/+off)を作成した。対照として
はPBSおよびPBSの成長ホルモン溶液(50Jig
/m/)を用いた。ラットは1群あたり6頭とした。対
照群にはPBS,成長ボルモン対照群には成長ホルモン
のPBS溶液、成長ホルモン乳濁液群には乳濁液をそれ
ぞれ2+nN/ratの割きで経口投与し、血液0 .
 3 +n 1を尾静脈から経時的に採血し、血中のヒ
ト成長ポルモン・レベルを2抗体法のラジオイムノアッ
セイによって定量した。
The tail vein of a Wista strain male rat weighing approximately 200 grams was cannulated under ethereal vinegar and restrained in a Bollman cage. 110g of human growth hormone 14+nN pl+ospl+ate l+uffer
saline (PBS.+)H 7.4>, 240+ng of MFGM was added, and the mixture was heated to 40°C. Coconut oil 6]n1, previously heated and dissolved at 40°C, was added to this solution, and homogenized for 1 minute at maximum speed using a Polytron homogenizer to prepare a growth hormone emulsion (50μ2/+off). As a control, PBS and a growth hormone solution in PBS (50 Jig
/m/) was used. There were 6 rats per group. PBS was orally administered to the control group, a PBS solution of growth hormone to the growth hormone emulsion group, and an emulsion to the growth hormone emulsion group at a rate of 2+nN/rat.
Blood was collected over time from the tail vein of 3 + n 1, and the human growth polmon level in the blood was quantified by radioimmunoassay using a two-antibody method.

表5 ヒト成長ホルモン乳濁液投与ラットの血中成乳濁
液として投与した場合には、ヒト成長ホルモンは30分
後から高い濃度で血中に出現し、投与2時間後で最高値
を示した。一方、対照群の血中からはヒト成長ホルモン
は検出されなかった。またPBSに溶解して経口的に与
えた場きには、90分後から僅かに血中に出現するが、
乳濁液と比べると腸からの吸収率は1/100以下と推
定される。従って、乳濁液として投与した場合の優位は
明らかである。
Table 5 Human Growth Hormone Emulsion Administered in the Blood of Rats When administered as a mature emulsion, human growth hormone appears in the blood at a high concentration from 30 minutes after administration, reaching the highest level 2 hours after administration. Ta. On the other hand, human growth hormone was not detected in the blood of the control group. Also, when dissolved in PBS and given orally, a small amount appears in the blood after 90 minutes, but
The absorption rate from the intestines is estimated to be less than 1/100 compared to emulsion. Therefore, the advantage of administration as an emulsion is clear.

(実施例11〉 体重約200グラムのウイスター系雄性ラットの十二指
腸と尾静脈にエーテル麻酔下でカニュレーションを施し
、ボールマン・ケージに拘束した。
(Example 11) The duodenum and tail vein of a male Wistar rat weighing approximately 200 grams were cannulated under ether anesthesia, and the rat was restrained in a Bollman cage.

一方、ウナギ・カルシトニン1IIIfIを71I11
のp l+ o s pbate  I+uffer 
 saline(pH7.4)に溶解し、120mgの
MFGMを加えて40℃に加温した。この液にあらかじ
め40℃に加温・溶解したバターオイル3mlを添加し
て、2分間の超音波処理を施し、カルシトニン乳濁液(
 1. O O Jig/ m#)を作成した。
On the other hand, eel calcitonin 1IIIfI is 71I11
p l+ o s pbate I+uffer
It was dissolved in saline (pH 7.4), 120 mg of MFGM was added, and the mixture was heated to 40°C. To this liquid, 3 ml of butter oil previously heated and dissolved at 40°C was added and subjected to ultrasonication for 2 minutes to form a calcitonin emulsion (
1. O O Jig/m#) was created.

このカルジトニン乳濁液0.5『olをカニューレを通
して十二指腸内に注入し、尾静脈から経時的に0.3f
olを採血し、血中のウナギ・カルシトニン・レベルを
2抗体法のラジオイムノアッセイによって定量した。対
照群にはPBS(−)、カルシトニン対照群にはカルジ
トニンのpl+ospl+ate l1urfersa
line溶液(100μg /’ 1nl− )をそれ
ぞれ0.5+nNづつ注入し、乳濁液投与群と同一のス
ケジュールで採血した。なおカルシトニンを投与する3
0分前に塩化力ルジウムを生理食塩水に溶解し、6 0
 +ngl kyを腹腔内に投与し、内因性力ルジトニ
ン分泌を刺激した。−群は6頭のラッ1・から成り立っ
ている。
0.5 ol of this calcitonin emulsion was injected into the duodenum through a cannula, and 0.3 ml was injected into the duodenum from the tail vein over time.
Blood was collected from each animal, and the level of eel calcitonin in the blood was determined by radioimmunoassay using a two-antibody method. PBS(-) for the control group, calcitonin pl+ospl+ate l1urfersa for the calcitonin control group
A line solution (100 μg/'1 nl-) was injected at 0.5+nN each, and blood was collected on the same schedule as the emulsion administration group. In addition, administering calcitonin 3
Dissolve rudium chloride in physiological saline 60 minutes before
+ngl ky was administered intraperitoneally to stimulate endogenous turzitonin secretion. -The group consists of 6 rats.

50 表6 カルシトニン乳濁液投与ラットの血中カノレ表から明ら
かなようにカルシトニン乳濁液投与ラ・ソトの血中カル
シトニン濃度は、二つの対照群と比べて圧倒的に高く、
乳濁液中のカルシトニンが腸管から相当量吸収されてい
ることは確実である。
50 Table 6 Blood Calcitonin concentration of rats administered with calcitonin emulsion As is clear from the blood calcitonin concentration of rats administered with calcitonin emulsion, the blood calcitonin concentration in La Soto administered with calcitonin emulsion was overwhelmingly higher than that of the two control groups.
It is certain that a considerable amount of calcitonin in the emulsion is absorbed from the intestinal tract.

(実施例12) エーテル麻酔下、体重約200グラムのウイスタ一系雄
性ラットの門脈にカニュレーションを施し、ボールマン
・ケージに拘束・固定した。牛乳から分離したラクトフ
エリンo.tgを14−のp I+ o s p l+
 a t e1+uffer  saline(pH7
.4>に溶解し、240mgのMFGMを加えて40℃
に加温した。この液にあ51 らかしめ40℃に加温・溶解したバターオイル6+n1
を添加して、2分間の超音波処理を施し、ラクトフェリ
ン乳濁液(5 mg/ me)を作成した。また、対照
としてラクトフェリンの1+l+osl+bate  
buffersaline溶液(5+^#/mN)を調
製した。このラクトフェリン溶液ないし乳濁液をガスト
リック・チューブを通してラット胃内に2『orlづつ
注入し、門脈から経時的に0.3mlを採血し、血中の
ウシ・ラクトフェリン・レベルを2抗体法のラジオイム
ノアッセイによって定量した。一群は6頭のラットから
成り立っている。
(Example 12) Under ether anesthesia, the portal vein of a male Wista strain rat weighing approximately 200 grams was cannulated, and the rat was restrained and fixed in a Bollman cage. Lactoferrin o isolated from milk. tg to 14- p I+ o s p l+
a t e1 + buffer saline (pH 7
.. 4>, add 240 mg of MFGM and heat at 40°C.
It was heated to Add to this liquid 51 Butter oil heated and dissolved at 40℃ 6 + n1
was added and subjected to 2 minutes of ultrasonication to create a lactoferrin emulsion (5 mg/me). In addition, as a control, 1+l+osl+bate of lactoferrin
A buffersaline solution (5+^#/mN) was prepared. This lactoferrin solution or emulsion was injected into the stomach of a rat in two doses through a gastric tube, and 0.3 ml of blood was collected over time from the portal vein, and the bovine lactoferrin level in the blood was measured using the two-antibody method. Quantified by radioimmunoassay. A group consists of 6 rats.

リン乳濁液群 *p<o.oot 表7から明らかなようにラクトフェリンをリン酸tSm
液中に溶解して投与した場合には、ラクトフェリンはほ
とんど血中に出現しないが、ラクトフェリン乳濁液を経
口投与したさいには高いレベルで血中に出現することが
明らかになった。すなわち、分子量8万7千のウシ・ラ
クトフェリンは牛乳脂肪球と一緒に乳濁液として経口投
与すると、明らかに消化管から体内に吸収される。
Phosphorus emulsion group *p<o. oot As is clear from Table 7, lactoferrin is phosphorylated tSm
It has been revealed that when lactoferrin is administered dissolved in a liquid, almost no lactoferrin appears in the blood, but when a lactoferrin emulsion is orally administered, it appears in the blood at a high level. That is, when bovine lactoferrin, which has a molecular weight of 87,000, is orally administered as an emulsion together with milk fat globules, it is clearly absorbed into the body from the gastrointestinal tract.

(実施例13) ロタウイルス(N C D V株、血清6型)に対し(
1 :31250)Q中和抗体価を持つウシ免疫グロブ
リン8gを400−のpbospbate  buff
er  saline(P B S ,pH7.4)に
溶かし、40℃に加温しつつ乳脂肪16gと牛乳脂肪球
皮膜800Bを加え、ポリトロン・ホモジナイザーで2
分間ホモジナイズした。この乳濁液200mlを健康な
成人男子ボランティア−4名に内服させ、内服直前、内
服30分後、1.2および3時間後に5−づつ採血し血
清を得た。1週間後に、再び同一のボランティアー4名
は、各人とも前回と同一の免疫グロブリン21?を20
0mlのpl+ospbate  buffer  s
aline(pH7.4)に溶かして内服し、前回と同
一のスケジュールにしたがって採血し、血清を分離した
。これらの分離した血清中に含まれるロタウイルスに対
する中和抗体は、NCDV株を用いてplaque  
reduction法によって測定し、血清中の抗ロタ
ウイルス中和抗体価は希釈倍率であらわした。
(Example 13) Against rotavirus (NCD V strain, serotype 6) (
1:31250) 8 g of bovine immunoglobulin with a Q-neutralizing antibody titer was added to a 400-pbospbate buff.
er saline (P B S , pH 7.4), heated to 40°C, added 16 g of milk fat and 800B of milk fat globule membrane, and homogenized with a Polytron homogenizer for 2 hours.
Homogenized for minutes. 200 ml of this emulsion was administered orally to 4 healthy adult male volunteers, and 5 blood samples were collected immediately before administration, 30 minutes after administration, 1.2 hours, and 3 hours after administration to obtain serum. One week later, the same four volunteers were given the same immunoglobulin 21? 20
0ml of pl+ospbate buffers
It was dissolved in aline (pH 7.4) and administered orally, blood was collected according to the same schedule as before, and serum was separated. Neutralizing antibodies against rotavirus contained in these separated sera were purified using the NCDV strain.
It was measured by the reduction method, and the anti-rotavirus neutralizing antibody titer in the serum was expressed as a dilution ratio.

54 表8 血清中の中和抗体価 55 表8から明らかなように血中の中和抗体価は、脂肪乳剤
として免疫グロブリンを内服したほうがPBS溶液とし
て内服した場合と比べ高度に有意に上昇した。従って、
脂肪乳剤として内服するとかなりの量の免疫グロブリン
が腸管から吸収されることは明らかである。
54 Table 8 Neutralizing antibody titer in serum 55 As is clear from Table 8, the neutralizing antibody titer in blood was highly significantly increased when immunoglobulin was taken internally as a fat emulsion compared to when it was taken internally as a PBS solution. . Therefore,
It is clear that a significant amount of immunoglobulin is absorbed from the intestinal tract when taken internally as a fat emulsion.

免肚α然最 以上説明したように、MFGMを用いる本発明の方法及
びこの方法により得られた薬剤組成物によれば、脂溶性
薬物および生理活性ペプチド等を経口投与した場合の吸
収速度及び吸収量が、従来の製剤化技術による場合に比
べて、著しく改善される。また、MFGMが食品由来の
界面活性剤であることから安全性の点においても優れて
いる。
As explained above, according to the method of the present invention using MFGM and the pharmaceutical composition obtained by this method, the absorption rate and absorption when lipophilic drugs, bioactive peptides, etc. are orally administered can be improved. The amount is significantly improved compared to conventional formulation techniques. Furthermore, since MFGM is a food-derived surfactant, it is also excellent in terms of safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で使用するMFGMの可溶化能を示すグ
ラフ、第2図乃至第6図は本発明で使用するMFGMの
種々の条件下における乳化能を示すグラフ、第7図乃至
第9図はビタミンAのリンパ管吸収に及ぼすMFGMの
影響を示すグラフ、第10図はMFGMを用いたハイド
ロコーチゾン乳濁液の経口投与後におけるハイドロコー
チゾンの血中濃度を示すグラフ、第11図は糖尿病ラッ
トの十二指腸内にインスリンを投与した後のラットにお
ける血糖値の経時的変化を示すグラフ、第12図は糖尿
病ラットの十二指腸内にインスリンを投与した後のラッ
トにおける血中インスリンの経時的変化を示すグラフで
ある。
FIG. 1 is a graph showing the solubilizing ability of MFGM used in the present invention, FIGS. 2 to 6 are graphs showing the emulsifying ability of MFGM used in the present invention under various conditions, and FIGS. 7 to 9 The figure is a graph showing the influence of MFGM on the lymphatic absorption of vitamin A, Figure 10 is a graph showing the blood concentration of hydrocortisone after oral administration of a hydrocortisone emulsion using MFGM, and Figure 11 is a graph showing diabetes. Graph showing changes over time in blood sugar levels in rats after administering insulin into the duodenum of rats. Figure 12 shows changes over time in blood insulin in rats after administering insulin into the duodenum of diabetic rats. It is a graph.

Claims (1)

【特許請求の範囲】 1、懸濁化剤として哺乳類乳汁中の脂肪球皮膜を用いる
ことを特徴とする新規懸濁化方法。 2、水に難溶ないし不溶で有機溶媒に可溶な脂溶性物質
の微細な水懸濁液を調製するため、脂溶性物質を哺乳類
乳汁中の脂肪球皮膜によって被覆することを特徴とする
脂溶性物質の新規懸濁化方法。 3、水及び有機溶媒のいずれにも難溶であるが、両溶媒
間の分配係数が有機溶媒に傾いている物質の微細な水懸
濁液を調製するため、この物質を哺乳類乳汁中の脂肪球
皮膜によって被覆することを特徴とする水及び有機溶媒
のいずれにも難溶であるが、両溶媒間の分配係数が有機
溶媒に傾いている物質の新規懸濁化方法。 4、水に難溶ないし不溶で有機溶媒に可溶な脂溶性物質
を微細な水懸濁液とするため、哺乳類乳汁中の脂肪球皮
膜と脂溶性物質とを、水中において物理的な手段により
乳化することを特徴とする脂溶性物質の新規懸濁化方法
。 5、水及び有機溶媒のいずれにも難溶であるが両溶媒間
の分配係数が有機溶媒に傾いている物質を微細な水懸濁
液とするため、哺乳類乳汁中の脂肪球皮膜と上記物質と
を、水中において物理的な手段により乳化することを特
徴とする水及び有機溶媒のいずれにも難溶であるが、両
溶媒間の分配係数が有機溶媒に傾いている物質の新規懸
濁化方法。 6、生理活性ペプチドの微細な水懸濁液を調製するため
、生理活性ペプチドを哺乳類乳汁中の脂肪球皮膜を用い
乳化することを特徴とする生理活性ペプチドの新規懸濁
化方法。 7、生理活性ペプチドを水に溶解あるいは懸濁した後、
中性脂肪と哺乳類乳汁中の脂肪球皮膜を添加し、物理的
な手段により乳化することを特徴とする新規懸濁化方法
。 8、生理活性ペプチドを水に溶解あるいは懸濁した後、
中性脂肪と哺乳類乳汁中の脂肪球皮膜および蛋白分解酵
素阻害剤を添加し、物理的な手段により乳化することを
特徴とする新規懸濁化方法。 9、請求項1ないし8のいずれかに記載の方法において
、哺乳類乳汁中の脂肪球皮膜が精製された牛乳脂肪球皮
膜であることを特徴とする新規懸濁化方法。 10、請求項1ないし9において、哺乳類乳汁中の脂肪
球皮膜に代えて、牛乳脂肪球皮膜を含む乳製品を用いる
ことを特徴とする新規懸濁化方法。 11、牛乳脂肪球皮膜を含む乳製品がバターミルクまた
はクリームである請求項10記載の新規懸濁化方法。 12、請求項1ないし11のいずれかに記載の方法で調
製した懸濁化組成物をそのまま、或いは増量剤を加え噴
霧乾燥するかまたは凍結乾燥して粉末化することを特徴
とする経口投与に適した新規製剤の製法。 13、請求項1ないし12のいずれかに記載の方法によ
って調製された組成物。
[Claims] 1. A novel suspension method characterized by using a fat globule membrane in mammalian milk as a suspending agent. 2. In order to prepare a fine aqueous suspension of a fat-soluble substance that is poorly soluble or insoluble in water and soluble in an organic solvent, a fat-soluble substance is coated with a fat globule film in mammalian milk. A new method for suspending soluble substances. 3. In order to prepare a fine aqueous suspension of a substance that is sparingly soluble in both water and organic solvents, but whose partition coefficient leans toward organic solvents, this substance is added to the fat in mammalian milk. A novel method for suspending a substance that is sparingly soluble in both water and an organic solvent, but whose distribution coefficient between the two solvents is tilted towards the organic solvent, characterized by coating the substance with a spherical film. 4. In order to make a fine water suspension of a fat-soluble substance that is poorly soluble or insoluble in water and soluble in an organic solvent, the fat globule membrane and the fat-soluble substance in mammalian milk are separated in water by physical means. A novel suspension method for fat-soluble substances characterized by emulsification. 5. In order to make a fine aqueous suspension of substances that are sparingly soluble in both water and organic solvents, but whose partition coefficients tend toward organic solvents, we prepared the above substances with the fat globule coat in mammalian milk. A novel suspension of a substance that is sparingly soluble in both water and an organic solvent, but whose partition coefficient between the two solvents leans towards the organic solvent, characterized by emulsifying the substance in water by physical means. Method. 6. A novel method for suspending bioactive peptides, which comprises emulsifying bioactive peptides using fat globule membranes in mammalian milk in order to prepare a fine aqueous suspension of bioactive peptides. 7. After dissolving or suspending the bioactive peptide in water,
A novel suspension method characterized by adding neutral fat and fat globule membranes in mammalian milk and emulsifying the mixture by physical means. 8. After dissolving or suspending the bioactive peptide in water,
A novel suspension method characterized by adding neutral fat, a fat globule membrane in mammalian milk, and a protease inhibitor, and emulsifying the mixture by physical means. 9. A novel suspension method according to any one of claims 1 to 8, characterized in that the fat globule membrane in mammalian milk is a purified milk fat globule membrane. 10. A novel suspension method according to claims 1 to 9, characterized in that a dairy product containing a milk fat globule coating is used in place of the fat globule coating in mammalian milk. 11. The novel suspension method according to claim 10, wherein the dairy product containing milk fat globule membranes is buttermilk or cream. 12. For oral administration, the suspension composition prepared by the method according to any one of claims 1 to 11 is used as it is, or is powdered by spray drying or freeze drying with the addition of a filler. Method of manufacturing suitable new formulations. 13. A composition prepared by the method according to any one of claims 1 to 12.
JP2048064A 1989-02-28 1990-02-28 Novel suspending method and composite obtained thereby Pending JPH03165833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2048064A JPH03165833A (en) 1989-02-28 1990-02-28 Novel suspending method and composite obtained thereby

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1-47591 1989-02-28
JP4759189 1989-02-28
JP1-224842 1989-08-31
JP2048064A JPH03165833A (en) 1989-02-28 1990-02-28 Novel suspending method and composite obtained thereby

Publications (1)

Publication Number Publication Date
JPH03165833A true JPH03165833A (en) 1991-07-17

Family

ID=26387766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048064A Pending JPH03165833A (en) 1989-02-28 1990-02-28 Novel suspending method and composite obtained thereby

Country Status (1)

Country Link
JP (1) JPH03165833A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298246A (en) * 1991-01-09 1994-03-29 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Stable pharmaceutical composition and method for its production
JP2006241167A (en) * 2001-02-11 2006-09-14 Aquanova German Solubilisate Technologies (Agt) Gmbh Method for producing active ingredient concentrate and active ingredient concentrate
JP2006523629A (en) * 2003-04-16 2006-10-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Nasal pharmaceutical preparation and method of use thereof
JPWO2007123200A1 (en) * 2006-04-21 2009-09-03 明治製菓株式会社 Composition containing peptide as active ingredient
US8129364B2 (en) 2003-04-16 2012-03-06 Dey Pharma, L.P. Formulations and methods for treating rhinosinusitis
US9808471B2 (en) 2003-04-16 2017-11-07 Mylan Specialty Lp Nasal pharmaceutical formulations and methods of using the same
JP2019219317A (en) * 2018-06-21 2019-12-26 国立研究開発法人産業技術総合研究所 Method for measuring concentration of vitamin

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298246A (en) * 1991-01-09 1994-03-29 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Stable pharmaceutical composition and method for its production
JP2006241167A (en) * 2001-02-11 2006-09-14 Aquanova German Solubilisate Technologies (Agt) Gmbh Method for producing active ingredient concentrate and active ingredient concentrate
US8663695B2 (en) 2003-04-16 2014-03-04 Mylan Specialty L.P. Formulations and methods for treating rhinosinusitis
JP2006523629A (en) * 2003-04-16 2006-10-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Nasal pharmaceutical preparation and method of use thereof
US7972627B2 (en) 2003-04-16 2011-07-05 Merck Patent Gmbh Beclomethasone dipropionate monohydrate nasal pharmaceutical formulations and methods of using the same
US8129364B2 (en) 2003-04-16 2012-03-06 Dey Pharma, L.P. Formulations and methods for treating rhinosinusitis
US8158154B2 (en) 2003-04-16 2012-04-17 Dey Pharma, L.P. Nasal pharmaceutical formulations and methods of using the same
US8309061B2 (en) 2003-04-16 2012-11-13 Dey Pharma, L.P. Formulations and methods for treating rhinosinusitis
US9808471B2 (en) 2003-04-16 2017-11-07 Mylan Specialty Lp Nasal pharmaceutical formulations and methods of using the same
US9180126B2 (en) 2003-04-16 2015-11-10 Mylan Specialty L.P. Formulations and methods for treating rhinosinusitis
JPWO2007123200A1 (en) * 2006-04-21 2009-09-03 明治製菓株式会社 Composition containing peptide as active ingredient
JP5645360B2 (en) * 2006-04-21 2014-12-24 株式会社明治 Composition containing dipeptide as active ingredient
JP2013091668A (en) * 2006-04-21 2013-05-16 Meiji Co Ltd Composition including dipeptide as active ingredient
US8343531B2 (en) 2006-04-21 2013-01-01 Meiji Co., Ltd. Composition containing peptide as active ingredient
JP2019219317A (en) * 2018-06-21 2019-12-26 国立研究開発法人産業技術総合研究所 Method for measuring concentration of vitamin

Similar Documents

Publication Publication Date Title
US5298246A (en) Stable pharmaceutical composition and method for its production
US4963526A (en) Oral insulin and a method of making the same
US4849405A (en) Oral insulin and a method of making the same
US6951655B2 (en) Pro-micelle pharmaceutical compositions
JP3583435B2 (en) Sustained-release aqueous emulsion
US6599527B1 (en) Preparation of pharmaceutical compositions
KR900001074B1 (en) Process for the preparation of pharmaceutical compositions
KR890001882B1 (en) Steroidal liposomes
Tice et al. Parenteral drug delivery: injectables
US10213490B2 (en) Compositions for providing agents that degrade in water
JP4755742B2 (en) Use of nano-dispersions in pharmaceutical final formulations
WO1999044594A1 (en) Fat emulsions for inhalational administration
JP5225663B2 (en) Methods and formulations for promoting absorption and reducing absorption variability of orally administered drugs, vitamins and nutrients
HU211633A9 (en) Pharmaceutical formulations
WO1998037869A1 (en) Fat emulsion for oral administration
EP0179904A1 (en) Oral insulin and a method of making the same
US20040147578A1 (en) Use of lipoaminoacids as absorption promoters in a pharmaceutical composition
DE69426570T2 (en) MICELLOUS FINE-PARTIAL PHARMACEUTICAL COMPOSITIONS
JPH03165833A (en) Novel suspending method and composite obtained thereby
EP0385445A2 (en) Method of forming a suspension and composition formed by said method
AU764413B2 (en) A pharmaceutical composition comprising cyclosporin in a lipid carrier
US6770292B2 (en) Pharmaceutical compositions for oral administration
WO1991007973A1 (en) Fat emulsion
JP3058926B2 (en) Ubidecarenone-containing composition and method for preparing the same
KR100524700B1 (en) Pharmaceutical compositions for Hyperlipidemia treatment using of Self Emulsifying drug delivery system