JP7194306B1 - Alumina sintered body and electrostatic chuck - Google Patents
Alumina sintered body and electrostatic chuck Download PDFInfo
- Publication number
- JP7194306B1 JP7194306B1 JP2022119883A JP2022119883A JP7194306B1 JP 7194306 B1 JP7194306 B1 JP 7194306B1 JP 2022119883 A JP2022119883 A JP 2022119883A JP 2022119883 A JP2022119883 A JP 2022119883A JP 7194306 B1 JP7194306 B1 JP 7194306B1
- Authority
- JP
- Japan
- Prior art keywords
- mass
- sintered body
- less
- alumina sintered
- terms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 4
- 238000010304 firing Methods 0.000 claims description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims description 4
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- 230000003068 static effect Effects 0.000 abstract description 2
- 239000000919 ceramic Substances 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 23
- 239000002994 raw material Substances 0.000 description 18
- 239000010936 titanium Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68757—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3241—Chromium oxides, chromates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
【課題】大気雰囲気下で焼成可能で、生体及び環境負荷の高い元素を実質的に含まず、黒色又は濃灰色を呈し、かつ低抵抗なアルミナ焼結体及びそのアルミナ焼結体を用いた静電チャックを提供する。
【解決手段】Al2O3の含有率が85質量%以上であるアルミナ焼結体であって、FeをFe2O3換算で0.7質量%以上6.6質量%以下、TiをTiO2換算で1質量%以上5質量%以下、SiをSiO2換算で1質量%以上5質量%以下、YをY2O3換算で0.1質量%以上9質量%以下含有する。このアルミナ焼結体を静電チャックにおいて載置板1に使用する。
【選択図】図1
Kind Code: A1 An alumina sintered body that can be fired in an air atmosphere, does not substantially contain elements that have a high impact on the living body and the environment, exhibits a black or dark gray color, and has low resistance, and a static ceramic body that uses the alumina sintered body. Provide electric chuck.
An alumina sintered body having an Al 2 O 3 content of 85% by mass or more, wherein Fe is 0.7% by mass or more and 6.6% by mass or less in terms of Fe 2 O 3 and Ti is TiO 1 mass % or more and 5 mass % or less in terms of 2 , 1 mass % or more and 5 mass % or less of Si in terms of SiO 2 , and 0.1 mass % or more and 9 mass % or less of Y in terms of Y 2 O 3 . This alumina sintered body is used for the mounting plate 1 in the electrostatic chuck.
[Selection drawing] Fig. 1
Description
本発明は、アルミナ焼結体及びそのアルミナ焼結体を用いた静電チャックに関する。 The present invention relates to an alumina sintered body and an electrostatic chuck using the alumina sintered body.
例えば半導体製造装置において、回路形成を目的としてシリコンウェーハ上に露光・成膜し、シリコンウェーハをエッチングするためには、対象とするウェーハの平坦度を保ち、かつウェーハに温度分布がつかないように、ウェーハを保持する必要がある。このようなウェーハの保持手段としては機械方式、真空吸着方式、静電吸着方式が提案されている。これらの保持手段のうち、静電吸着方式は静電チャックによりウェーハを保持する方式であり、真空雰囲気下で使用することができるため多用されている。 For example, in semiconductor manufacturing equipment, in order to expose and form a film on a silicon wafer for the purpose of circuit formation, and to etch the silicon wafer, it is necessary to maintain the flatness of the target wafer and prevent the wafer from having a temperature distribution. , to hold the wafer. Mechanical methods, vacuum chucking methods, and electrostatic chucking methods have been proposed as such wafer holding means. Among these holding means, the electrostatic adsorption method is a method of holding a wafer with an electrostatic chuck, and is widely used because it can be used in a vacuum atmosphere.
静電チャックには吸着力としてクーロン力を利用する型(クーロン型)と、ジョンセン・ラーベック力を利用する型(ジョンセン・ラーベック型)とがある。後者のジョンセン・ラーベック力は誘電体とウェーハとの界面の小さなギャップに微小電流が流れ、帯電分極して誘起させることによって生じる力である。ジョンセン・ラーベック力を用いて静電チャックとして必要な吸着力を確保するためには、誘電体の体積固有抵抗率が109~1012Ω・cmの範囲内にあることが要件となる。また、静電チャック用の誘電体は光認識を可能とするため黒色又は濃灰色を呈している必要がある。 Electrostatic chucks include a type that uses Coulomb force as an attraction force (Coulomb type) and a type that uses Johnsen-Rahbek force (Johnsen-Rahbek type). The latter Johnsen-Rahbek force is a force generated when a minute electric current flows through a small gap at the interface between the dielectric and the wafer, causing electrification polarization. In order to use the Johnsen-Rahbek force to secure the chucking force required for an electrostatic chuck, it is necessary that the volume resistivity of the dielectric be within the range of 10 9 to 10 12 Ω·cm. Also, dielectrics for electrostatic chucks must be black or dark gray in order to allow optical recognition.
このような特性を具備する誘電体として特許文献1には、チタニア0.8~3質量%、炭化ホウ素を0.2~1質量%含有させたアルミナ系誘電体及びその製造方法が開示されている。しかし、特許文献1の製造方法では焼成をホットプレスやHIP、ガス圧焼成等加圧条件にて行うこととなっており、また焼成雰囲気は還元雰囲気又は真空中となっているため高価な設備が必要となる。静電チャック用の誘電体は消耗品であり、ユーザーより低価格での交換用素材の提供を求められている。
As a dielectric having such characteristics,
一方、大気雰囲気焼成でのアルミナ焼結体の黒色化には、Cr、Mn、Co又はNiを添加する方法が主に用いられている。例えば特許文献2には、Cr2O3、Mn2O3、Fe2O3及びCoOから選ばれる3種又は4種を配合し、大気雰囲気中にて焼成する方法が開示されている。また、特許文献3には、Mn等を添加し大気雰囲気中にて焼成する方法が開示されている。しかし、Cr、Mn、Co、Niは高価であり、更には生体や環境に対し悪影響を与えることが知られている。
そこで近年はこれら元素を使用しない黒色化の方法が検討されており、例えば特許文献4や特許文献5には、アルミナにチタニア及び酸化鉄を配合し、大気雰囲気下にて焼成可能な黒色アルミナの製造方法が開示されている。しかし、これらの方法では体積固有抵抗率がジョンセン・ラーベック型静電チャック用の誘電体の要件である109~1012Ω・cmの範囲内にまでは低下しない。
On the other hand, a method of adding Cr, Mn, Co or Ni is mainly used for blackening the alumina sintered body in air atmosphere firing. For example,
Therefore, in recent years, blackening methods that do not use these elements have been studied. For example,
アルミナ焼結体の体積固有抵抗率を低下させるための製造方法はこれまでに多数提案されているが、そのほとんどは上記特許文献1のように不活性雰囲気又は還元雰囲気での焼成であり、特別な設備が必要となる。また大気雰囲気下での焼成例もいくつかは存在するが、上記特許文献2、3のようにCr、Mn、Co、Niといった生体及び環境負荷の高い元素を添加している。
Many production methods have been proposed so far for reducing the volume resistivity of alumina sintered bodies, but most of them are sintered in an inert atmosphere or a reducing atmosphere as in
以上に鑑み本発明が解決しようとする課題は、大気雰囲気下で焼成可能で、生体及び環境負荷の高い元素を実質的に含まず、黒色又は濃灰色を呈し、かつ低抵抗なアルミナ焼結体及びそのアルミナ焼結体を用いた静電チャックを提供することにある。 In view of the above, the problem to be solved by the present invention is an alumina sintered body that can be fired in an air atmosphere, does not substantially contain elements that have a high burden on the living body and the environment, exhibits a black or dark gray color, and has a low resistance. and to provide an electrostatic chuck using the alumina sintered body.
本発明者らが、アルミナ焼結体における上述の課題、すなわち(1)大気雰囲気下で焼成可能であること、(2)生体及び環境負荷の高い元素を実質的に含まないこと、(3)黒色又は濃灰色を呈すること、(4)低抵抗であること、という4つの課題を同時に解決するために試験及び研究を重ねた結果、Fe、Ti、Si及びYをそれぞれ酸化物換算で特定量ずつ含有させることが有効であるとの知見を得、本発明に想到するに至った。 The present inventors have found the above-mentioned problems in the alumina sintered body, namely (1) that it can be fired in an air atmosphere, (2) that it does not substantially contain elements that have a high biological and environmental load, and (3) As a result of repeated tests and research to simultaneously solve the four problems of exhibiting a black or dark gray color and (4) having a low resistance, specific amounts of Fe, Ti, Si and Y were obtained in terms of oxides. The inventors have found that it is effective to contain each of them separately, and have arrived at the present invention.
すなわち、本発明の一観点によれば次のアルミナ焼結体が提供される。
Al2O3の含有率が85質量%以上であるアルミナ焼結体であって、
FeをFe2O3換算で0.7質量%以上6.6質量%以下、TiをTiO2換算で1質量%以上5質量%以下、SiをSiO2換算で1質量%以上5質量%以下、YをY2O3換算で0.1質量%以上9質量%以下含有し、かつCr、Mn、Co及びNiのそれぞれの酸化物換算値が合計で0.1質量%以下である、アルミナ焼結体。
That is, according to one aspect of the present invention, the following alumina sintered body is provided.
An alumina sintered body having an Al 2 O 3 content of 85% by mass or more,
0.7 mass % or more and 6.6 mass % or less of Fe in terms of Fe 2 O 3 , 1 mass % or more and 5 mass % or less of Ti in terms of TiO 2 , and 1 mass % or more and 5 mass % or less of Si in terms of SiO 2 , contains 0.1% by mass or more and 9% by mass or less of Y in terms of Y 2 O 3 , and the total amount of Cr, Mn, Co and Ni in terms of oxides is 0.1% by mass or less. Sintered body.
また、本発明の他の観点によれば、上記本発明のアルミナ焼結体を載置板に使用している静電チャックが提供される。 According to another aspect of the present invention, there is provided an electrostatic chuck using the alumina sintered body of the present invention as a mounting plate.
本発明によれば、大気雰囲気下で焼成可能で、生体及び環境負荷の高い元素を実質的に含まず、黒色又は濃灰色を呈し、かつ低抵抗なアルミナ焼結体及びそのアルミナ焼結体を用いた静電チャックを提供することができる。 According to the present invention, an alumina sintered body that can be fired in an air atmosphere, does not substantially contain elements that have a high biological and environmental load, exhibits a black or dark gray color, and has low resistance, and the alumina sintered body It is possible to provide the electrostatic chuck used.
本発明のアルミナ焼結体は、その主成分としてAl2O3を85質量%以上含有する。Al2O3の含有率が85質量%未満であると、硬度や強度が高く、容積安定性等にも優れているといった元来アルミナ焼結体が具備する優れた特性が損なわれる。特に硬度が低くなると、静電チャックに使用する際に要求されるプラズマ耐性が低下し、その結果、十分な耐用性が得られなくなる。Al2O3の含有率は90質量%以上であることが好ましい。 The alumina sintered body of the present invention contains 85% by mass or more of Al 2 O 3 as its main component. If the content of Al 2 O 3 is less than 85% by mass, the excellent properties originally possessed by the alumina sintered body, such as high hardness and strength, and excellent volumetric stability, are impaired. In particular, when the hardness is low, the plasma resistance required for use in electrostatic chucks is lowered, and as a result, sufficient durability cannot be obtained. The content of Al 2 O 3 is preferably 90% by mass or more.
本発明のアルミナ焼結体は主成分であるAl2O3に加えて、FeをFe2O3換算で0.7質量%以上6.6質量%以下、TiをTiO2換算で1質量%以上5質量%以下、SiをSiO2換算で1質量%以上5質量%以下、YをY2O3換算で0.1質量%以上9質量%以下含有する。 In addition to Al 2 O 3 as a main component, the alumina sintered body of the present invention contains 0.7% by mass or more and 6.6% by mass or less of Fe in terms of Fe 2 O 3 and 1% by mass of Ti in terms of TiO 2 5 mass % or less, 1 mass % or more and 5 mass % or less of Si in terms of SiO 2 , and 0.1 mass % or more and 9 mass % or less of Y in terms of Y 2 O 3 .
Feの含有率(Fe2O3換算値のことをいう。以下同じ。)が0.7質量%未満であると黒色又は濃灰色(以下、総称して「黒色系」という。)を呈さなくなる、すなわち黒色系化が不十分となり、併せて低抵抗化が不十分となる。一方、Feの含有率が6.6質量%を超えると、機械的特性、特に硬度が低下する。Feの含有率は1.9質量%以上3.3質量%以下であることが好ましい。
また、Tiの含有率(TiO2換算値のことをいう。以下同じ。)が1質量%未満であると黒色系化が不十分となると共に、低抵抗化が不十分となる。一方、Tiの含有率が5質量%を超えると、機械的特性、特に硬度が低下する。Tiの含有率は1.5質量%以上3質量%以下であることが好ましい。
詳細は後述するが、本発明のアルミナ焼結体においてFe及びTiの少なくとも一部はFe2TiO5となっており、このFe2TiO5が黒色系化に寄与していると考えられる。
If the Fe content (meaning the Fe 2 O 3 equivalent value; the same applies hereinafter) is less than 0.7% by mass, black or dark gray (hereinafter collectively referred to as “black”) does not appear. That is, blackening becomes insufficient, and resistance reduction becomes insufficient. On the other hand, if the Fe content exceeds 6.6% by mass, the mechanical properties, particularly hardness, are degraded. The Fe content is preferably 1.9% by mass or more and 3.3% by mass or less.
If the Ti content (meaning a TiO2 equivalent value; the same shall apply hereinafter) is less than 1% by mass, blackening will be insufficient and resistance will not be sufficiently lowered. On the other hand, if the Ti content exceeds 5% by mass, the mechanical properties, particularly hardness, are degraded. The Ti content is preferably 1.5% by mass or more and 3% by mass or less.
Although the details will be described later, in the alumina sintered body of the present invention, at least part of Fe and Ti is Fe 2 TiO 5 , and it is believed that this Fe 2 TiO 5 contributes to the blackening.
また、Siの含有率(SiO2換算値のことをいう。以下同じ。)が1質量%未満であると低抵抗化が不十分となる。一方、Siの含有率が5質量%を超えると、機械的特性、特に硬度が低下する。Siの含有率は1.2質量%以上3質量%以下であることが好ましい。
また、Yの含有率(Y2O3換算値のことをいう。以下同じ。)が0.1質量%未満であると低抵抗化が不十分となる。一方、Yの含有率が9質量%を超えると、黒色系化が不十分となると共に、機械的特性、特に硬度が低下する。Yの含有率は0.9質量%以上4.5質量%以下であることが好ましい。
If the Si content (meaning a SiO2 equivalent value; the same shall apply hereinafter) is less than 1% by mass, the reduction in resistance will be insufficient. On the other hand, if the Si content exceeds 5% by mass, the mechanical properties, particularly hardness, are degraded. The Si content is preferably 1.2% by mass or more and 3% by mass or less.
If the Y content (meaning Y 2 O 3 equivalent value; hereinafter the same) is less than 0.1% by mass, the reduction in resistance is insufficient. On the other hand, when the Y content exceeds 9% by mass, the blackening becomes insufficient and the mechanical properties, especially the hardness, deteriorate. The Y content is preferably 0.9% by mass or more and 4.5% by mass or less.
このようにFe、Ti、Si及びYをそれぞれ酸化物換算で特定量ずつ含有させることによって、初めて上述の4つの課題を同時に解決することができる。 By containing Fe, Ti, Si, and Y in specific amounts in terms of oxides, the four problems described above can be solved simultaneously for the first time.
本発明のアルミナ焼結体はZrを更に含有することができる。Zrを含有させることで、Ti及びYの含有率を低減しつつ上述の4つの課題を同時に解決することができる。具体的には、ZrをZrO2換算した値、TiをTiO2換算した値、及びYをY2O3換算した値の合計を7質量%以下とすることができる。これにより、焼成時にチタン酸アルミニウム等の副生物が過剰に生成されることを抑制でき、機械的特性を向上させることができる。また、上記合計を7質量%以下とすることで、相対的にAl2O3の含有率を増加させることができ、この点からも機械的特性を向上させることができる。 The alumina sintered body of the present invention can further contain Zr. By containing Zr, the above four problems can be solved at the same time while reducing the content of Ti and Y. Specifically, the sum of Zr converted to ZrO2 , Ti converted to TiO2 , and Y converted to Y2O3 can be 7 % by mass or less. As a result, excessive production of by-products such as aluminum titanate during firing can be suppressed, and mechanical properties can be improved. Also, by making the above total content 7% by mass or less, the content of Al 2 O 3 can be relatively increased, and from this point also, the mechanical properties can be improved.
本発明のアルミナ焼結体は、生体及び環境負荷の高い元素であるCr、Mn、Co及びNiを実質的に含まない。ここで、「実質的に含まない」とは、Cr、Mn、Co及びNiを黒色系化等のために積極的には使用しないということであり、これら元素の含有率が0であることまでをいうものではなく、不純物レベルでの含有は許容される。実際、アルミナ焼結体の製造に使用する原料中に不純物としてCr、Mn、Co又はNiが含まれていることがあり、その場合、アルミナ焼結体はこれら元素を不純物レベルで含有することになる。ここで、「不純物レベル」の目安としては、「Cr、Mn、Co及びNiのそれぞれの酸化物換算値が合計で0.1質量%以下」である。 The alumina sintered body of the present invention does not substantially contain Cr, Mn, Co, and Ni, which are elements that have a high impact on living bodies and the environment. Here, "substantially free" means that Cr, Mn, Co and Ni are not actively used for blackening, etc., and the content of these elements is 0. However, inclusion at the impurity level is allowed. In fact, the raw material used to produce the alumina sintered body may contain Cr, Mn, Co, or Ni as impurities, and in that case, the alumina sintered body will contain these elements at impurity levels. Become. Here, as a guideline for the "impurity level", "the total oxide conversion value of Cr, Mn, Co and Ni is 0.1% by mass or less".
本発明のアルミナ焼結体は、アルミナ原料、酸化鉄原料、酸化チタン原料、シリカ原料及びイットリア原料、また必要に応じてジルコニア原料を、本発明で規定する各元素の酸化物換算の含有率となるように配合した配合物を混合、成形後、大気雰囲気下で焼成することにより得ることができる。焼成温度は1300℃以上1500℃以下とすることができる。具体的には、本発明のアルミナ焼結体は相対密度95%以上となるまで焼成させることにより得られる。なお、上述のFe2TiO5は、大気雰囲気下での焼成過程で生成する。
また、ジルコニア原料を使用する場合、一般的なジルコニア原料にはY2O3等の安定化成分が含まれるが、本発明のアルミナ焼結体において各元素の酸化物換算の含有率にはY2O3等の安定化成分の含有率も合算される。
The alumina sintered body of the present invention contains an alumina raw material, an iron oxide raw material, a titanium oxide raw material, a silica raw material, a yttria raw material, and, if necessary, a zirconia raw material. It can be obtained by mixing and molding the compound blended so as to obtain the composition, and then firing it in an air atmosphere. The firing temperature can be 1300° C. or higher and 1500° C. or lower. Specifically, the alumina sintered body of the present invention is obtained by firing until the relative density reaches 95% or more. Note that the Fe 2 TiO 5 described above is produced during the firing process in an air atmosphere.
Further, when a zirconia raw material is used, a general zirconia raw material contains a stabilizing component such as Y 2 O 3 . The content of stabilizing components such as 2 O 3 is also summed.
図1に、本発明の一実施形態であるアルミナ焼結体を載置板に使用した静電チャックの構成例を模式的に示している。同図に示す静電チャックはジョンセン・ラーベック型の静電チャックであり、ウェーハ等の試料を載置する載置板1と、この載置板と一体化される基板2と、これら載置板1と基板2との間に設けられた内部電極3と、この内部電極3に給電するために基板2を貫通するように設けられた給電部4とを備え、載置板1に本発明の一実施形態であるアルミナ焼結体を使用している。
FIG. 1 schematically shows a configuration example of an electrostatic chuck using an alumina sintered body as a mounting plate, which is one embodiment of the present invention. The electrostatic chuck shown in the figure is a Johnsen-Rahbek type electrostatic chuck, and includes a mounting
このように、本発明のアルミナ焼結体をジョンセン・ラーベック型の静電チャックの載置板として使用する場合、その体積固有抵抗率は上述の通り109~1012Ω・cmの範囲内にあることが要件となる。したがって本発明のアルミナ焼結体をジョンセン・ラーベック型の静電チャックの載置板として使用する場合、上記配合物の配合割合等を調整することで、体積固有抵抗率が上記範囲内になるようにする。なお、ジョンセン・ラーベック型の静電チャックの載置板として使用する場合の体積固有抵抗率は、1×1011Ω・cm超1×1012Ω・cm以下の範囲内であることが好ましく、5×109Ω・cm超1×1011Ω・cm以下の範囲内であることがより好ましい。
一方、本発明のアルミナ焼結体は、ジョンセン・ラーベック型の静電チャックの載置板以外の用途、例えば半導体製造装置において静電気を除去するための部材として使用することもできる。このような用途においても低抵抗化が必要であり、具体的には体積固有抵抗率が1012Ω・cm以下であることが好ましい。なお、体積固有抵抗率の下限値については特に限定されないが、本発明のアルミナ焼結体においてはAl2O3の含有率が85質量%以上であり、また、低抵抗化に寄与するFe、Ti、Si及びYの含有率の上限値も規定されていることから、体積固有抵抗率の下限値は自ずと決まる。具体的には、106Ω・cm程度が下限値となる。
As described above, when the alumina sintered body of the present invention is used as a mounting plate for a Johnsen-Rahbek type electrostatic chuck, the specific volume resistivity is within the range of 10 9 to 10 12 Ω·cm as described above. There is a requirement. Therefore, when the alumina sintered body of the present invention is used as a mounting plate of a Johnsen-Rahbek type electrostatic chuck, the specific volume resistivity can be adjusted within the above range by adjusting the mixing ratio of the above ingredients. to When used as a mounting plate for a Johnsen-Rahbek type electrostatic chuck, the specific volume resistivity is preferably in the range of more than 1×10 11 Ω·cm and 1×10 12 Ω·cm or less. More preferably, it is in the range of more than 5×10 9 Ω·cm and 1×10 11 Ω·cm or less.
On the other hand, the alumina sintered body of the present invention can also be used for applications other than the mounting plate of the Johnsen-Rahbek type electrostatic chuck, for example, as a member for removing static electricity in a semiconductor manufacturing apparatus. Also in such applications, it is necessary to reduce the resistance, and specifically, it is preferable that the specific volume resistivity is 10 12 Ω·cm or less. The lower limit of the specific volume resistivity is not particularly limited, but in the alumina sintered body of the present invention, the content of Al 2 O 3 is 85% by mass or more, and Fe, which contributes to lower resistance, Since the upper limits of the contents of Ti, Si and Y are also specified, the lower limit of the specific volume resistivity is naturally determined. Specifically, the lower limit is about 10 6 Ω·cm.
アルミナ原料、酸化鉄原料、酸化チタン原料、シリカ原料、イットリア原料、ジルコニア原料及びその他原料を表1に示す各例の酸化物換算値の含有率となるように配合して配合物を得、各例の配合物をそれぞれ混合、成形、焼成して、各例のアルミナ焼結体を得た。得られたアルミナ焼結体について、Fe2TiO5の有無、体積固有抵抗率、色調判定、ビッカース硬度の評価を行った。ここで、上記の「その他原料」とはCr、Mn、Co及びNiのうち少なくとも1種を含む原料であり、実施例11にのみ使用した。また、焼成は大気雰囲気下で1350~1450℃の温度範囲にて行った。 An alumina raw material, an iron oxide raw material, a titanium oxide raw material, a silica raw material, a yttria raw material, a zirconia raw material and other raw materials were blended so as to have the oxide conversion value content of each example shown in Table 1 to obtain a blend. The compound of each example was mixed, molded and fired to obtain an alumina sintered body of each example. The presence or absence of Fe 2 TiO 5 , specific volume resistivity, color tone determination, and Vickers hardness were evaluated for the obtained alumina sintered body. Here, the above-mentioned "other raw materials" are raw materials containing at least one of Cr, Mn, Co and Ni, and were used only in Example 11. Further, the firing was performed in the temperature range of 1350 to 1450° C. in an air atmosphere.
各評価項目の評価方法は以下の通りである。
Fe2TiO5の有無はCu-Kα線による粉末X線回折によりFe2TiO5のピークを確認することで評価した。
体積固有抵抗率は三端子法で測定した(印加電圧1000V、室温)。評価は、体積固有抵抗率が5×109Ω・cm超1×1011Ω・cm以下を◎(優)、1×1011Ω・cm超1×1012Ω・cm以下を○(良)、1×1012Ω・cm超を×(不良)とした。
色調判定は目視にて行った。
ビッカース硬度は、JIS Z2244に基づき測定した(加圧力1kgf)。評価は、ビッカース硬度(HV)が1350以上を○(良)、1350未満を×(不良)とした。
The evaluation method for each evaluation item is as follows.
The presence or absence of Fe 2 TiO 5 was evaluated by confirming the peak of Fe 2 TiO 5 by powder X-ray diffraction using Cu—Kα rays.
The specific volume resistivity was measured by the three-probe method (applied voltage 1000 V, room temperature). The evaluation is as follows: ⊚ (excellent) when the specific volume resistivity is over 5× 10 9 Ω·cm and 1× 10 11 Ω·cm or less; ), and exceeding 1×10 12 Ω·cm was defined as × (defective).
The color tone was determined visually.
Vickers hardness was measured based on JIS Z2244 (applied
表1中、実施例1~12はいずれも本発明の範囲内にあるアルミナ焼結体であり、良好な評価結果が得られた。なかでも本発明の好ましい範囲内にある実施例9~11では、特に良好な評価結果が得られた。なお、表1の評価には表れていないが、実施例1~12のうち、Al2O3の含有率が90質量%以上である実施例1、3、9~11は、他の実施例に比べてビッカース硬度が高い傾向にあった。 In Table 1, Examples 1 to 12 are all alumina sintered bodies within the scope of the present invention, and good evaluation results were obtained. Particularly good evaluation results were obtained in Examples 9 to 11, which are within the preferred range of the present invention. Although not shown in the evaluation in Table 1, among Examples 1 to 12, Examples 1, 3, and 9 to 11 in which the content of Al 2 O 3 is 90% by mass or more are other examples. Vickers hardness tended to be higher than that of
比較例1はFeを含有しない例であり、Fe2TiO5が生成されず色調が白色のままであると共に、低抵抗化が不十分であった。一方、比較例2はFeの含有率が本発明の上限値を上回る例であり、十分な硬度が得られなかった。 Comparative Example 1 is an example containing no Fe, and Fe 2 TiO 5 was not generated, the color tone remained white, and the resistance was insufficiently lowered. On the other hand, Comparative Example 2 is an example in which the Fe content exceeds the upper limit of the present invention, and sufficient hardness was not obtained.
比較例3はTiを含有しない例であり、Fe2TiO5が生成されず色調が白色のままであると共に、低抵抗化が不十分であった。一方、比較例4はTiの含有率が本発明の上限値を上回る例であり、十分な硬度が得られなかった。 Comparative Example 3 is an example containing no Ti, and Fe 2 TiO 5 was not generated, the color tone remained white, and the resistance was insufficiently lowered. On the other hand, Comparative Example 4 is an example in which the Ti content exceeds the upper limit of the present invention, and sufficient hardness was not obtained.
比較例5はSiを含有しない例であり、低抵抗化が不十分であった。一方、比較例6はSiの含有率が本発明の上限値を上回る例であり、十分な硬度が得られなかった。 Comparative Example 5 is an example containing no Si, and the reduction in resistance was insufficient. On the other hand, Comparative Example 6 is an example in which the Si content exceeds the upper limit of the present invention, and sufficient hardness was not obtained.
比較例7はYを含有しない例であり、低抵抗化が不十分であった。一方、比較例8はYの含有率が本発明の上限値を上回る例であり、黒色系化が不十分であると共に、十分な硬度が得られなかった。 Comparative Example 7 is an example in which Y is not contained, and the reduction in resistance was insufficient. On the other hand, Comparative Example 8 is an example in which the Y content exceeds the upper limit of the present invention, and blackening was insufficient and sufficient hardness was not obtained.
1 載置板
2 基板
3 内部電極
4 給電部
REFERENCE SIGNS
Claims (5)
FeをFe2O3換算で0.7質量%以上6.6質量%以下、TiをTiO2換算で1質量%以上5質量%以下、SiをSiO2換算で1質量%以上5質量%以下、YをY2O3換算で0.1質量%以上9質量%以下含有し、かつCr、Mn、Co及びNiのそれぞれの酸化物換算値が合計で0.1質量%以下である、アルミナ焼結体。 An alumina sintered body having an Al 2 O 3 content of 85% by mass or more,
0.7 mass % or more and 6.6 mass % or less of Fe in terms of Fe 2 O 3 , 1 mass % or more and 5 mass % or less of Ti in terms of TiO 2 , and 1 mass % or more and 5 mass % or less of Si in terms of SiO 2 , contains 0.1% by mass or more and 9% by mass or less of Y in terms of Y 2 O 3 , and the total amount of Cr, Mn, Co and Ni in terms of oxides is 0.1% by mass or less. Sintered body.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022119883A JP7194306B1 (en) | 2022-07-27 | 2022-07-27 | Alumina sintered body and electrostatic chuck |
TW112121965A TWI852629B (en) | 2022-07-27 | 2023-06-13 | Alumina sintered body and electrostatic chuck |
KR1020230086351A KR20240015570A (en) | 2022-07-27 | 2023-07-04 | Alumina sintered body and electrostatic chuck |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022119883A JP7194306B1 (en) | 2022-07-27 | 2022-07-27 | Alumina sintered body and electrostatic chuck |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7194306B1 true JP7194306B1 (en) | 2022-12-21 |
JP2024017328A JP2024017328A (en) | 2024-02-08 |
Family
ID=84534691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022119883A Active JP7194306B1 (en) | 2022-07-27 | 2022-07-27 | Alumina sintered body and electrostatic chuck |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7194306B1 (en) |
KR (1) | KR20240015570A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004099413A (en) | 2002-09-12 | 2004-04-02 | Sodick Co Ltd | Ceramic and method of manufacturing the same |
JP2008024583A (en) | 2006-06-23 | 2008-02-07 | Nippon Soken Inc | Alumina composite sintered body, evaluation method thereof and spark plug |
JP2008260645A (en) | 2007-04-10 | 2008-10-30 | Nitsukatoo:Kk | Black alumina sintered compact and method of manufacturing the same |
JP2014220408A (en) | 2013-05-09 | 2014-11-20 | 新光電気工業株式会社 | Electrostatic chuck and semiconductor manufacturing apparatus |
JP2015104746A (en) | 2013-11-29 | 2015-06-08 | 日立金属株式会社 | Solder joint material and solder joint material manufacturing method |
JP6738505B1 (en) | 2020-05-28 | 2020-08-12 | 黒崎播磨株式会社 | Dielectric for electrostatic chuck |
JP2020180020A (en) | 2019-04-25 | 2020-11-05 | 京セラ株式会社 | Black ceramics |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60176966A (en) * | 1984-02-20 | 1985-09-11 | 日本特殊陶業株式会社 | Colored alumina ceramic composition |
JPS6442359A (en) * | 1987-08-11 | 1989-02-14 | Narumi China Corp | Black alumina ceramic composition |
JP2772174B2 (en) | 1991-09-06 | 1998-07-02 | 茨城日本電気株式会社 | Magnetic head fixing mechanism for magnetic disk drive |
JPH05194024A (en) * | 1992-01-22 | 1993-08-03 | Sumitomo Cement Co Ltd | Alumina-based multiple sintered compact |
JPH05238810A (en) * | 1992-02-27 | 1993-09-17 | Onoda Cement Co Ltd | Black alumina sintered compact |
JP3051603B2 (en) * | 1993-06-30 | 2000-06-12 | 京セラ株式会社 | Titanium compound sintered body |
JP3287149B2 (en) * | 1994-02-14 | 2002-05-27 | 松下電器産業株式会社 | Alumina ceramics |
-
2022
- 2022-07-27 JP JP2022119883A patent/JP7194306B1/en active Active
-
2023
- 2023-07-04 KR KR1020230086351A patent/KR20240015570A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004099413A (en) | 2002-09-12 | 2004-04-02 | Sodick Co Ltd | Ceramic and method of manufacturing the same |
JP2008024583A (en) | 2006-06-23 | 2008-02-07 | Nippon Soken Inc | Alumina composite sintered body, evaluation method thereof and spark plug |
JP2008260645A (en) | 2007-04-10 | 2008-10-30 | Nitsukatoo:Kk | Black alumina sintered compact and method of manufacturing the same |
JP2014220408A (en) | 2013-05-09 | 2014-11-20 | 新光電気工業株式会社 | Electrostatic chuck and semiconductor manufacturing apparatus |
JP2015104746A (en) | 2013-11-29 | 2015-06-08 | 日立金属株式会社 | Solder joint material and solder joint material manufacturing method |
JP2020180020A (en) | 2019-04-25 | 2020-11-05 | 京セラ株式会社 | Black ceramics |
JP6738505B1 (en) | 2020-05-28 | 2020-08-12 | 黒崎播磨株式会社 | Dielectric for electrostatic chuck |
Also Published As
Publication number | Publication date |
---|---|
TW202408968A (en) | 2024-03-01 |
KR20240015570A (en) | 2024-02-05 |
JP2024017328A (en) | 2024-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5998320A (en) | Aluminum nitride sintered body, metal including member, electrostatic chuck, method of producing aluminum nitride sintered body, and method of producing metal including member | |
CN1301517C (en) | Dielectric ceramic, method for making the same, and monolithic ceramic capacitor | |
JP5203313B2 (en) | Aluminum oxide sintered body and method for producing the same | |
JP5761691B2 (en) | COMPOSITE CERAMIC, CONSTITUENT MEMBER FOR SEMICONDUCTOR MANUFACTURING APPARATUS AND METHOD FOR PRODUCING THEM | |
CN1238533A (en) | Dielectric ceramic composition and laminated ceramic capacitor | |
JP6636307B2 (en) | Alumina sintered body with excellent high temperature properties and corrosion resistance | |
US20080186647A1 (en) | Electrostatic chuck and method of manufacturing the same | |
JP5084155B2 (en) | Alumina sintered body and method for manufacturing the same, electrostatic chuck using the alumina sintered body, and method for manufacturing the same | |
JP7194306B1 (en) | Alumina sintered body and electrostatic chuck | |
KR20020031314A (en) | A material of low volume resistivity, an aluminum nitride sintered body and a member used for the production of semiconductors | |
TWI753835B (en) | Dielectrics for electrostatic chucks | |
US6607836B2 (en) | Material of low volume resistivity, an aluminum nitride sintered body and a member used for the production of semiconductors | |
CN113597665A (en) | High density corrosion resistant layer arrangement for electrostatic chuck | |
EP2189431A2 (en) | Aluminum nitride sintered product, method for producing the same and electrostatic chuck including the same | |
TWI852629B (en) | Alumina sintered body and electrostatic chuck | |
JP5188898B2 (en) | Ceramic sprayed coating and corrosion resistant member using the same | |
JP2008266069A (en) | Conductive alumina sintered compact | |
JP4429742B2 (en) | Sintered body and manufacturing method thereof | |
JP4939379B2 (en) | Aluminum nitride sintered body for electrostatic chuck | |
JP6489467B2 (en) | Components of composite oxide ceramics and semiconductor manufacturing equipment | |
JP4364593B2 (en) | Alumina ceramic plate and manufacturing method thereof | |
JP4641758B2 (en) | Aluminum nitride sintered body and electrostatic chuck using the same | |
JP4708153B2 (en) | Conductive alumina sintered body | |
JP2023150882A (en) | Electrostatic chuck dielectric layer and electrostatic chuck including the same | |
JPH0442860A (en) | Black aluminum nitride sintered product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220727 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7194306 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |