JP7194306B1 - Alumina sintered body and electrostatic chuck - Google Patents

Alumina sintered body and electrostatic chuck Download PDF

Info

Publication number
JP7194306B1
JP7194306B1 JP2022119883A JP2022119883A JP7194306B1 JP 7194306 B1 JP7194306 B1 JP 7194306B1 JP 2022119883 A JP2022119883 A JP 2022119883A JP 2022119883 A JP2022119883 A JP 2022119883A JP 7194306 B1 JP7194306 B1 JP 7194306B1
Authority
JP
Japan
Prior art keywords
mass
sintered body
less
alumina sintered
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022119883A
Other languages
Japanese (ja)
Other versions
JP2024017328A (en
Inventor
希一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2022119883A priority Critical patent/JP7194306B1/en
Application granted granted Critical
Publication of JP7194306B1 publication Critical patent/JP7194306B1/en
Priority to TW112121965A priority patent/TWI852629B/en
Priority to KR1020230086351A priority patent/KR20240015570A/en
Publication of JP2024017328A publication Critical patent/JP2024017328A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Figure 0007194306000001

【課題】大気雰囲気下で焼成可能で、生体及び環境負荷の高い元素を実質的に含まず、黒色又は濃灰色を呈し、かつ低抵抗なアルミナ焼結体及びそのアルミナ焼結体を用いた静電チャックを提供する。
【解決手段】Alの含有率が85質量%以上であるアルミナ焼結体であって、FeをFe換算で0.7質量%以上6.6質量%以下、TiをTiO換算で1質量%以上5質量%以下、SiをSiO換算で1質量%以上5質量%以下、YをY換算で0.1質量%以上9質量%以下含有する。このアルミナ焼結体を静電チャックにおいて載置板1に使用する。
【選択図】図1

Figure 0007194306000001

Kind Code: A1 An alumina sintered body that can be fired in an air atmosphere, does not substantially contain elements that have a high impact on the living body and the environment, exhibits a black or dark gray color, and has low resistance, and a static ceramic body that uses the alumina sintered body. Provide electric chuck.
An alumina sintered body having an Al 2 O 3 content of 85% by mass or more, wherein Fe is 0.7% by mass or more and 6.6% by mass or less in terms of Fe 2 O 3 and Ti is TiO 1 mass % or more and 5 mass % or less in terms of 2 , 1 mass % or more and 5 mass % or less of Si in terms of SiO 2 , and 0.1 mass % or more and 9 mass % or less of Y in terms of Y 2 O 3 . This alumina sintered body is used for the mounting plate 1 in the electrostatic chuck.
[Selection drawing] Fig. 1

Description

本発明は、アルミナ焼結体及びそのアルミナ焼結体を用いた静電チャックに関する。 The present invention relates to an alumina sintered body and an electrostatic chuck using the alumina sintered body.

例えば半導体製造装置において、回路形成を目的としてシリコンウェーハ上に露光・成膜し、シリコンウェーハをエッチングするためには、対象とするウェーハの平坦度を保ち、かつウェーハに温度分布がつかないように、ウェーハを保持する必要がある。このようなウェーハの保持手段としては機械方式、真空吸着方式、静電吸着方式が提案されている。これらの保持手段のうち、静電吸着方式は静電チャックによりウェーハを保持する方式であり、真空雰囲気下で使用することができるため多用されている。 For example, in semiconductor manufacturing equipment, in order to expose and form a film on a silicon wafer for the purpose of circuit formation, and to etch the silicon wafer, it is necessary to maintain the flatness of the target wafer and prevent the wafer from having a temperature distribution. , to hold the wafer. Mechanical methods, vacuum chucking methods, and electrostatic chucking methods have been proposed as such wafer holding means. Among these holding means, the electrostatic adsorption method is a method of holding a wafer with an electrostatic chuck, and is widely used because it can be used in a vacuum atmosphere.

静電チャックには吸着力としてクーロン力を利用する型(クーロン型)と、ジョンセン・ラーベック力を利用する型(ジョンセン・ラーベック型)とがある。後者のジョンセン・ラーベック力は誘電体とウェーハとの界面の小さなギャップに微小電流が流れ、帯電分極して誘起させることによって生じる力である。ジョンセン・ラーベック力を用いて静電チャックとして必要な吸着力を確保するためには、誘電体の体積固有抵抗率が10~1012Ω・cmの範囲内にあることが要件となる。また、静電チャック用の誘電体は光認識を可能とするため黒色又は濃灰色を呈している必要がある。 Electrostatic chucks include a type that uses Coulomb force as an attraction force (Coulomb type) and a type that uses Johnsen-Rahbek force (Johnsen-Rahbek type). The latter Johnsen-Rahbek force is a force generated when a minute electric current flows through a small gap at the interface between the dielectric and the wafer, causing electrification polarization. In order to use the Johnsen-Rahbek force to secure the chucking force required for an electrostatic chuck, it is necessary that the volume resistivity of the dielectric be within the range of 10 9 to 10 12 Ω·cm. Also, dielectrics for electrostatic chucks must be black or dark gray in order to allow optical recognition.

このような特性を具備する誘電体として特許文献1には、チタニア0.8~3質量%、炭化ホウ素を0.2~1質量%含有させたアルミナ系誘電体及びその製造方法が開示されている。しかし、特許文献1の製造方法では焼成をホットプレスやHIP、ガス圧焼成等加圧条件にて行うこととなっており、また焼成雰囲気は還元雰囲気又は真空中となっているため高価な設備が必要となる。静電チャック用の誘電体は消耗品であり、ユーザーより低価格での交換用素材の提供を求められている。 As a dielectric having such characteristics, Patent Document 1 discloses an alumina-based dielectric containing 0.8 to 3% by mass of titania and 0.2 to 1% by mass of boron carbide, and a method for producing the same. there is However, in the manufacturing method of Patent Document 1, firing is performed under pressurized conditions such as hot pressing, HIP, gas pressure firing, etc., and the firing atmosphere is a reducing atmosphere or in a vacuum, so expensive equipment is required. necessary. Dielectrics for electrostatic chucks are consumables, and users are demanding low-cost replacement materials.

一方、大気雰囲気焼成でのアルミナ焼結体の黒色化には、Cr、Mn、Co又はNiを添加する方法が主に用いられている。例えば特許文献2には、Cr、Mn、Fe及びCoOから選ばれる3種又は4種を配合し、大気雰囲気中にて焼成する方法が開示されている。また、特許文献3には、Mn等を添加し大気雰囲気中にて焼成する方法が開示されている。しかし、Cr、Mn、Co、Niは高価であり、更には生体や環境に対し悪影響を与えることが知られている。
そこで近年はこれら元素を使用しない黒色化の方法が検討されており、例えば特許文献4や特許文献5には、アルミナにチタニア及び酸化鉄を配合し、大気雰囲気下にて焼成可能な黒色アルミナの製造方法が開示されている。しかし、これらの方法では体積固有抵抗率がジョンセン・ラーベック型静電チャック用の誘電体の要件である10~1012Ω・cmの範囲内にまでは低下しない。
On the other hand, a method of adding Cr, Mn, Co or Ni is mainly used for blackening the alumina sintered body in air atmosphere firing. For example, Patent Literature 2 discloses a method of blending three or four selected from Cr 2 O 3 , Mn 2 O 3 , Fe 2 O 3 and CoO and firing in an air atmosphere. Further, Patent Document 3 discloses a method of adding Mn or the like and firing in an air atmosphere. However, Cr, Mn, Co, and Ni are known to be expensive and have adverse effects on living organisms and the environment.
Therefore, in recent years, blackening methods that do not use these elements have been studied. For example, Patent Documents 4 and 5 disclose black alumina that can be fired in an air atmosphere by blending alumina with titania and iron oxide. A method of manufacture is disclosed. However, these methods do not reduce the volume resistivity to within the range of 10 9 -10 12 Ω·cm, which is the dielectric requirement for Johnsen-Rahbek type electrostatic chucks.

アルミナ焼結体の体積固有抵抗率を低下させるための製造方法はこれまでに多数提案されているが、そのほとんどは上記特許文献1のように不活性雰囲気又は還元雰囲気での焼成であり、特別な設備が必要となる。また大気雰囲気下での焼成例もいくつかは存在するが、上記特許文献2、3のようにCr、Mn、Co、Niといった生体及び環境負荷の高い元素を添加している。 Many production methods have been proposed so far for reducing the volume resistivity of alumina sintered bodies, but most of them are sintered in an inert atmosphere or a reducing atmosphere as in Patent Document 1 above. equipment is required. Although there are some examples of sintering in an air atmosphere, elements such as Cr, Mn, Co, and Ni, which have a high impact on the living body and the environment, are added as in Patent Documents 2 and 3 above.

特許第6738505号公報Japanese Patent No. 6738505 特開平05―238810号公報JP-A-05-238810 特許第4248833号公報Japanese Patent No. 4248833 特開2020―180020号公報Japanese Patent Application Laid-Open No. 2020-180020 特許第4994092号公報Japanese Patent No. 4994092

以上に鑑み本発明が解決しようとする課題は、大気雰囲気下で焼成可能で、生体及び環境負荷の高い元素を実質的に含まず、黒色又は濃灰色を呈し、かつ低抵抗なアルミナ焼結体及びそのアルミナ焼結体を用いた静電チャックを提供することにある。 In view of the above, the problem to be solved by the present invention is an alumina sintered body that can be fired in an air atmosphere, does not substantially contain elements that have a high burden on the living body and the environment, exhibits a black or dark gray color, and has a low resistance. and to provide an electrostatic chuck using the alumina sintered body.

本発明者らが、アルミナ焼結体における上述の課題、すなわち(1)大気雰囲気下で焼成可能であること、(2)生体及び環境負荷の高い元素を実質的に含まないこと、(3)黒色又は濃灰色を呈すること、(4)低抵抗であること、という4つの課題を同時に解決するために試験及び研究を重ねた結果、Fe、Ti、Si及びYをそれぞれ酸化物換算で特定量ずつ含有させることが有効であるとの知見を得、本発明に想到するに至った。 The present inventors have found the above-mentioned problems in the alumina sintered body, namely (1) that it can be fired in an air atmosphere, (2) that it does not substantially contain elements that have a high biological and environmental load, and (3) As a result of repeated tests and research to simultaneously solve the four problems of exhibiting a black or dark gray color and (4) having a low resistance, specific amounts of Fe, Ti, Si and Y were obtained in terms of oxides. The inventors have found that it is effective to contain each of them separately, and have arrived at the present invention.

すなわち、本発明の一観点によれば次のアルミナ焼結体が提供される。
Alの含有率が85質量%以上であるアルミナ焼結体であって、
FeをFe換算で0.7質量%以上6.6質量%以下、TiをTiO換算で1質量%以上5質量%以下、SiをSiO換算で1質量%以上5質量%以下、YをY換算で0.1質量%以上9質量%以下含有し、かつCr、Mn、Co及びNiのそれぞれの酸化物換算値が合計で0.1質量%以下である、アルミナ焼結体。
That is, according to one aspect of the present invention, the following alumina sintered body is provided.
An alumina sintered body having an Al 2 O 3 content of 85% by mass or more,
0.7 mass % or more and 6.6 mass % or less of Fe in terms of Fe 2 O 3 , 1 mass % or more and 5 mass % or less of Ti in terms of TiO 2 , and 1 mass % or more and 5 mass % or less of Si in terms of SiO 2 , contains 0.1% by mass or more and 9% by mass or less of Y in terms of Y 2 O 3 , and the total amount of Cr, Mn, Co and Ni in terms of oxides is 0.1% by mass or less. Sintered body.

また、本発明の他の観点によれば、上記本発明のアルミナ焼結体を載置板に使用している静電チャックが提供される。 According to another aspect of the present invention, there is provided an electrostatic chuck using the alumina sintered body of the present invention as a mounting plate.

本発明によれば、大気雰囲気下で焼成可能で、生体及び環境負荷の高い元素を実質的に含まず、黒色又は濃灰色を呈し、かつ低抵抗なアルミナ焼結体及びそのアルミナ焼結体を用いた静電チャックを提供することができる。 According to the present invention, an alumina sintered body that can be fired in an air atmosphere, does not substantially contain elements that have a high biological and environmental load, exhibits a black or dark gray color, and has low resistance, and the alumina sintered body It is possible to provide the electrostatic chuck used.

本発明の一実施形態であるアルミナ焼結体を載置板に使用した静電チャックの構成例を示す模式図。1 is a schematic diagram showing a configuration example of an electrostatic chuck using an alumina sintered body as a mounting plate according to an embodiment of the present invention; FIG.

本発明のアルミナ焼結体は、その主成分としてAlを85質量%以上含有する。Alの含有率が85質量%未満であると、硬度や強度が高く、容積安定性等にも優れているといった元来アルミナ焼結体が具備する優れた特性が損なわれる。特に硬度が低くなると、静電チャックに使用する際に要求されるプラズマ耐性が低下し、その結果、十分な耐用性が得られなくなる。Alの含有率は90質量%以上であることが好ましい。 The alumina sintered body of the present invention contains 85% by mass or more of Al 2 O 3 as its main component. If the content of Al 2 O 3 is less than 85% by mass, the excellent properties originally possessed by the alumina sintered body, such as high hardness and strength, and excellent volumetric stability, are impaired. In particular, when the hardness is low, the plasma resistance required for use in electrostatic chucks is lowered, and as a result, sufficient durability cannot be obtained. The content of Al 2 O 3 is preferably 90% by mass or more.

本発明のアルミナ焼結体は主成分であるAlに加えて、FeをFe換算で0.7質量%以上6.6質量%以下、TiをTiO換算で1質量%以上5質量%以下、SiをSiO換算で1質量%以上5質量%以下、YをY換算で0.1質量%以上9質量%以下含有する。 In addition to Al 2 O 3 as a main component, the alumina sintered body of the present invention contains 0.7% by mass or more and 6.6% by mass or less of Fe in terms of Fe 2 O 3 and 1% by mass of Ti in terms of TiO 2 5 mass % or less, 1 mass % or more and 5 mass % or less of Si in terms of SiO 2 , and 0.1 mass % or more and 9 mass % or less of Y in terms of Y 2 O 3 .

Feの含有率(Fe換算値のことをいう。以下同じ。)が0.7質量%未満であると黒色又は濃灰色(以下、総称して「黒色系」という。)を呈さなくなる、すなわち黒色系化が不十分となり、併せて低抵抗化が不十分となる。一方、Feの含有率が6.6質量%を超えると、機械的特性、特に硬度が低下する。Feの含有率は1.9質量%以上3.3質量%以下であることが好ましい。
また、Tiの含有率(TiO換算値のことをいう。以下同じ。)が1質量%未満であると黒色系化が不十分となると共に、低抵抗化が不十分となる。一方、Tiの含有率が5質量%を超えると、機械的特性、特に硬度が低下する。Tiの含有率は1.5質量%以上3質量%以下であることが好ましい。
詳細は後述するが、本発明のアルミナ焼結体においてFe及びTiの少なくとも一部はFeTiOとなっており、このFeTiOが黒色系化に寄与していると考えられる。
If the Fe content (meaning the Fe 2 O 3 equivalent value; the same applies hereinafter) is less than 0.7% by mass, black or dark gray (hereinafter collectively referred to as “black”) does not appear. That is, blackening becomes insufficient, and resistance reduction becomes insufficient. On the other hand, if the Fe content exceeds 6.6% by mass, the mechanical properties, particularly hardness, are degraded. The Fe content is preferably 1.9% by mass or more and 3.3% by mass or less.
If the Ti content (meaning a TiO2 equivalent value; the same shall apply hereinafter) is less than 1% by mass, blackening will be insufficient and resistance will not be sufficiently lowered. On the other hand, if the Ti content exceeds 5% by mass, the mechanical properties, particularly hardness, are degraded. The Ti content is preferably 1.5% by mass or more and 3% by mass or less.
Although the details will be described later, in the alumina sintered body of the present invention, at least part of Fe and Ti is Fe 2 TiO 5 , and it is believed that this Fe 2 TiO 5 contributes to the blackening.

また、Siの含有率(SiO換算値のことをいう。以下同じ。)が1質量%未満であると低抵抗化が不十分となる。一方、Siの含有率が5質量%を超えると、機械的特性、特に硬度が低下する。Siの含有率は1.2質量%以上3質量%以下であることが好ましい。
また、Yの含有率(Y換算値のことをいう。以下同じ。)が0.1質量%未満であると低抵抗化が不十分となる。一方、Yの含有率が9質量%を超えると、黒色系化が不十分となると共に、機械的特性、特に硬度が低下する。Yの含有率は0.9質量%以上4.5質量%以下であることが好ましい。
If the Si content (meaning a SiO2 equivalent value; the same shall apply hereinafter) is less than 1% by mass, the reduction in resistance will be insufficient. On the other hand, if the Si content exceeds 5% by mass, the mechanical properties, particularly hardness, are degraded. The Si content is preferably 1.2% by mass or more and 3% by mass or less.
If the Y content (meaning Y 2 O 3 equivalent value; hereinafter the same) is less than 0.1% by mass, the reduction in resistance is insufficient. On the other hand, when the Y content exceeds 9% by mass, the blackening becomes insufficient and the mechanical properties, especially the hardness, deteriorate. The Y content is preferably 0.9% by mass or more and 4.5% by mass or less.

このようにFe、Ti、Si及びYをそれぞれ酸化物換算で特定量ずつ含有させることによって、初めて上述の4つの課題を同時に解決することができる。 By containing Fe, Ti, Si, and Y in specific amounts in terms of oxides, the four problems described above can be solved simultaneously for the first time.

本発明のアルミナ焼結体はZrを更に含有することができる。Zrを含有させることで、Ti及びYの含有率を低減しつつ上述の4つの課題を同時に解決することができる。具体的には、ZrをZrO換算した値、TiをTiO換算した値、及びYをY換算した値の合計を7質量%以下とすることができる。これにより、焼成時にチタン酸アルミニウム等の副生物が過剰に生成されることを抑制でき、機械的特性を向上させることができる。また、上記合計を7質量%以下とすることで、相対的にAlの含有率を増加させることができ、この点からも機械的特性を向上させることができる。 The alumina sintered body of the present invention can further contain Zr. By containing Zr, the above four problems can be solved at the same time while reducing the content of Ti and Y. Specifically, the sum of Zr converted to ZrO2 , Ti converted to TiO2 , and Y converted to Y2O3 can be 7 % by mass or less. As a result, excessive production of by-products such as aluminum titanate during firing can be suppressed, and mechanical properties can be improved. Also, by making the above total content 7% by mass or less, the content of Al 2 O 3 can be relatively increased, and from this point also, the mechanical properties can be improved.

本発明のアルミナ焼結体は、生体及び環境負荷の高い元素であるCr、Mn、Co及びNiを実質的に含まない。ここで、「実質的に含まない」とは、Cr、Mn、Co及びNiを黒色系化等のために積極的には使用しないということであり、これら元素の含有率が0であることまでをいうものではなく、不純物レベルでの含有は許容される。実際、アルミナ焼結体の製造に使用する原料中に不純物としてCr、Mn、Co又はNiが含まれていることがあり、その場合、アルミナ焼結体はこれら元素を不純物レベルで含有することになる。ここで、「不純物レベル」の目安としては、「Cr、Mn、Co及びNiのそれぞれの酸化物換算値が合計で0.1質量%以下」である。 The alumina sintered body of the present invention does not substantially contain Cr, Mn, Co, and Ni, which are elements that have a high impact on living bodies and the environment. Here, "substantially free" means that Cr, Mn, Co and Ni are not actively used for blackening, etc., and the content of these elements is 0. However, inclusion at the impurity level is allowed. In fact, the raw material used to produce the alumina sintered body may contain Cr, Mn, Co, or Ni as impurities, and in that case, the alumina sintered body will contain these elements at impurity levels. Become. Here, as a guideline for the "impurity level", "the total oxide conversion value of Cr, Mn, Co and Ni is 0.1% by mass or less".

本発明のアルミナ焼結体は、アルミナ原料、酸化鉄原料、酸化チタン原料、シリカ原料及びイットリア原料、また必要に応じてジルコニア原料を、本発明で規定する各元素の酸化物換算の含有率となるように配合した配合物を混合、成形後、大気雰囲気下で焼成することにより得ることができる。焼成温度は1300℃以上1500℃以下とすることができる。具体的には、本発明のアルミナ焼結体は相対密度95%以上となるまで焼成させることにより得られる。なお、上述のFeTiOは、大気雰囲気下での焼成過程で生成する。
また、ジルコニア原料を使用する場合、一般的なジルコニア原料にはY等の安定化成分が含まれるが、本発明のアルミナ焼結体において各元素の酸化物換算の含有率にはY等の安定化成分の含有率も合算される。
The alumina sintered body of the present invention contains an alumina raw material, an iron oxide raw material, a titanium oxide raw material, a silica raw material, a yttria raw material, and, if necessary, a zirconia raw material. It can be obtained by mixing and molding the compound blended so as to obtain the composition, and then firing it in an air atmosphere. The firing temperature can be 1300° C. or higher and 1500° C. or lower. Specifically, the alumina sintered body of the present invention is obtained by firing until the relative density reaches 95% or more. Note that the Fe 2 TiO 5 described above is produced during the firing process in an air atmosphere.
Further, when a zirconia raw material is used, a general zirconia raw material contains a stabilizing component such as Y 2 O 3 . The content of stabilizing components such as 2 O 3 is also summed.

図1に、本発明の一実施形態であるアルミナ焼結体を載置板に使用した静電チャックの構成例を模式的に示している。同図に示す静電チャックはジョンセン・ラーベック型の静電チャックであり、ウェーハ等の試料を載置する載置板1と、この載置板と一体化される基板2と、これら載置板1と基板2との間に設けられた内部電極3と、この内部電極3に給電するために基板2を貫通するように設けられた給電部4とを備え、載置板1に本発明の一実施形態であるアルミナ焼結体を使用している。 FIG. 1 schematically shows a configuration example of an electrostatic chuck using an alumina sintered body as a mounting plate, which is one embodiment of the present invention. The electrostatic chuck shown in the figure is a Johnsen-Rahbek type electrostatic chuck, and includes a mounting plate 1 for mounting a sample such as a wafer, a substrate 2 integrated with this mounting plate, and these mounting plates. 1 and a substrate 2, and a power supply portion 4 provided so as to penetrate the substrate 2 to supply power to the internal electrode 3. An alumina sintered body, which is one embodiment, is used.

このように、本発明のアルミナ焼結体をジョンセン・ラーベック型の静電チャックの載置板として使用する場合、その体積固有抵抗率は上述の通り10~1012Ω・cmの範囲内にあることが要件となる。したがって本発明のアルミナ焼結体をジョンセン・ラーベック型の静電チャックの載置板として使用する場合、上記配合物の配合割合等を調整することで、体積固有抵抗率が上記範囲内になるようにする。なお、ジョンセン・ラーベック型の静電チャックの載置板として使用する場合の体積固有抵抗率は、1×1011Ω・cm超1×1012Ω・cm以下の範囲内であることが好ましく、5×10Ω・cm超1×1011Ω・cm以下の範囲内であることがより好ましい。
一方、本発明のアルミナ焼結体は、ジョンセン・ラーベック型の静電チャックの載置板以外の用途、例えば半導体製造装置において静電気を除去するための部材として使用することもできる。このような用途においても低抵抗化が必要であり、具体的には体積固有抵抗率が1012Ω・cm以下であることが好ましい。なお、体積固有抵抗率の下限値については特に限定されないが、本発明のアルミナ焼結体においてはAlの含有率が85質量%以上であり、また、低抵抗化に寄与するFe、Ti、Si及びYの含有率の上限値も規定されていることから、体積固有抵抗率の下限値は自ずと決まる。具体的には、10Ω・cm程度が下限値となる。
As described above, when the alumina sintered body of the present invention is used as a mounting plate for a Johnsen-Rahbek type electrostatic chuck, the specific volume resistivity is within the range of 10 9 to 10 12 Ω·cm as described above. There is a requirement. Therefore, when the alumina sintered body of the present invention is used as a mounting plate of a Johnsen-Rahbek type electrostatic chuck, the specific volume resistivity can be adjusted within the above range by adjusting the mixing ratio of the above ingredients. to When used as a mounting plate for a Johnsen-Rahbek type electrostatic chuck, the specific volume resistivity is preferably in the range of more than 1×10 11 Ω·cm and 1×10 12 Ω·cm or less. More preferably, it is in the range of more than 5×10 9 Ω·cm and 1×10 11 Ω·cm or less.
On the other hand, the alumina sintered body of the present invention can also be used for applications other than the mounting plate of the Johnsen-Rahbek type electrostatic chuck, for example, as a member for removing static electricity in a semiconductor manufacturing apparatus. Also in such applications, it is necessary to reduce the resistance, and specifically, it is preferable that the specific volume resistivity is 10 12 Ω·cm or less. The lower limit of the specific volume resistivity is not particularly limited, but in the alumina sintered body of the present invention, the content of Al 2 O 3 is 85% by mass or more, and Fe, which contributes to lower resistance, Since the upper limits of the contents of Ti, Si and Y are also specified, the lower limit of the specific volume resistivity is naturally determined. Specifically, the lower limit is about 10 6 Ω·cm.

アルミナ原料、酸化鉄原料、酸化チタン原料、シリカ原料、イットリア原料、ジルコニア原料及びその他原料を表1に示す各例の酸化物換算値の含有率となるように配合して配合物を得、各例の配合物をそれぞれ混合、成形、焼成して、各例のアルミナ焼結体を得た。得られたアルミナ焼結体について、FeTiOの有無、体積固有抵抗率、色調判定、ビッカース硬度の評価を行った。ここで、上記の「その他原料」とはCr、Mn、Co及びNiのうち少なくとも1種を含む原料であり、実施例11にのみ使用した。また、焼成は大気雰囲気下で1350~1450℃の温度範囲にて行った。 An alumina raw material, an iron oxide raw material, a titanium oxide raw material, a silica raw material, a yttria raw material, a zirconia raw material and other raw materials were blended so as to have the oxide conversion value content of each example shown in Table 1 to obtain a blend. The compound of each example was mixed, molded and fired to obtain an alumina sintered body of each example. The presence or absence of Fe 2 TiO 5 , specific volume resistivity, color tone determination, and Vickers hardness were evaluated for the obtained alumina sintered body. Here, the above-mentioned "other raw materials" are raw materials containing at least one of Cr, Mn, Co and Ni, and were used only in Example 11. Further, the firing was performed in the temperature range of 1350 to 1450° C. in an air atmosphere.

各評価項目の評価方法は以下の通りである。
FeTiOの有無はCu-Kα線による粉末X線回折によりFeTiOのピークを確認することで評価した。
体積固有抵抗率は三端子法で測定した(印加電圧1000V、室温)。評価は、体積固有抵抗率が5×10Ω・cm超1×1011Ω・cm以下を◎(優)、1×1011Ω・cm超1×1012Ω・cm以下を○(良)、1×1012Ω・cm超を×(不良)とした。
色調判定は目視にて行った。
ビッカース硬度は、JIS Z2244に基づき測定した(加圧力1kgf)。評価は、ビッカース硬度(HV)が1350以上を○(良)、1350未満を×(不良)とした。
The evaluation method for each evaluation item is as follows.
The presence or absence of Fe 2 TiO 5 was evaluated by confirming the peak of Fe 2 TiO 5 by powder X-ray diffraction using Cu—Kα rays.
The specific volume resistivity was measured by the three-probe method (applied voltage 1000 V, room temperature). The evaluation is as follows: ⊚ (excellent) when the specific volume resistivity is over 5× 10 9 Ω·cm and 1× 10 11 Ω·cm or less; ), and exceeding 1×10 12 Ω·cm was defined as × (defective).
The color tone was determined visually.
Vickers hardness was measured based on JIS Z2244 (applied pressure 1 kgf). Vickers hardness (HV) of 1350 or more was evaluated as ◯ (good), and less than 1350 as x (bad).

Figure 0007194306000002
Figure 0007194306000002

表1中、実施例1~12はいずれも本発明の範囲内にあるアルミナ焼結体であり、良好な評価結果が得られた。なかでも本発明の好ましい範囲内にある実施例9~11では、特に良好な評価結果が得られた。なお、表1の評価には表れていないが、実施例1~12のうち、Alの含有率が90質量%以上である実施例1、3、9~11は、他の実施例に比べてビッカース硬度が高い傾向にあった。 In Table 1, Examples 1 to 12 are all alumina sintered bodies within the scope of the present invention, and good evaluation results were obtained. Particularly good evaluation results were obtained in Examples 9 to 11, which are within the preferred range of the present invention. Although not shown in the evaluation in Table 1, among Examples 1 to 12, Examples 1, 3, and 9 to 11 in which the content of Al 2 O 3 is 90% by mass or more are other examples. Vickers hardness tended to be higher than that of

比較例1はFeを含有しない例であり、FeTiOが生成されず色調が白色のままであると共に、低抵抗化が不十分であった。一方、比較例2はFeの含有率が本発明の上限値を上回る例であり、十分な硬度が得られなかった。 Comparative Example 1 is an example containing no Fe, and Fe 2 TiO 5 was not generated, the color tone remained white, and the resistance was insufficiently lowered. On the other hand, Comparative Example 2 is an example in which the Fe content exceeds the upper limit of the present invention, and sufficient hardness was not obtained.

比較例3はTiを含有しない例であり、FeTiOが生成されず色調が白色のままであると共に、低抵抗化が不十分であった。一方、比較例4はTiの含有率が本発明の上限値を上回る例であり、十分な硬度が得られなかった。 Comparative Example 3 is an example containing no Ti, and Fe 2 TiO 5 was not generated, the color tone remained white, and the resistance was insufficiently lowered. On the other hand, Comparative Example 4 is an example in which the Ti content exceeds the upper limit of the present invention, and sufficient hardness was not obtained.

比較例5はSiを含有しない例であり、低抵抗化が不十分であった。一方、比較例6はSiの含有率が本発明の上限値を上回る例であり、十分な硬度が得られなかった。 Comparative Example 5 is an example containing no Si, and the reduction in resistance was insufficient. On the other hand, Comparative Example 6 is an example in which the Si content exceeds the upper limit of the present invention, and sufficient hardness was not obtained.

比較例7はYを含有しない例であり、低抵抗化が不十分であった。一方、比較例8はYの含有率が本発明の上限値を上回る例であり、黒色系化が不十分であると共に、十分な硬度が得られなかった。 Comparative Example 7 is an example in which Y is not contained, and the reduction in resistance was insufficient. On the other hand, Comparative Example 8 is an example in which the Y content exceeds the upper limit of the present invention, and blackening was insufficient and sufficient hardness was not obtained.

1 載置板
2 基板
3 内部電極
4 給電部
REFERENCE SIGNS LIST 1 mounting plate 2 substrate 3 internal electrode 4 feeding part

Claims (5)

Alの含有率が85質量%以上であるアルミナ焼結体であって、
FeをFe換算で0.7質量%以上6.6質量%以下、TiをTiO換算で1質量%以上5質量%以下、SiをSiO換算で1質量%以上5質量%以下、YをY換算で0.1質量%以上9質量%以下含有し、かつCr、Mn、Co及びNiのそれぞれの酸化物換算値が合計で0.1質量%以下である、アルミナ焼結体。
An alumina sintered body having an Al 2 O 3 content of 85% by mass or more,
0.7 mass % or more and 6.6 mass % or less of Fe in terms of Fe 2 O 3 , 1 mass % or more and 5 mass % or less of Ti in terms of TiO 2 , and 1 mass % or more and 5 mass % or less of Si in terms of SiO 2 , contains 0.1% by mass or more and 9% by mass or less of Y in terms of Y 2 O 3 , and the total amount of Cr, Mn, Co and Ni in terms of oxides is 0.1% by mass or less. Sintered body.
前記Fe及び前記Tiの少なくとも一部がFeTiOとなっている、請求項1に記載のアルミナ焼結体。 The alumina sintered body according to claim 1 , wherein at least part of said Fe and said Ti is Fe2TiO5 . Zrを更に含有し、ZrをZrO換算した値、TiをTiO換算した値、及びYをY換算した値の合計が7質量%以下である、請求項1に記載のアルミナ焼結体。 The alumina firing according to claim 1 , further containing Zr, wherein the sum of Zr converted to ZrO2 , Ti converted to TiO2 , and Y converted to Y2O3 is 7% by mass or less. body. 体積固有抵抗率が1012Ω・cm以下である、請求項1に記載のアルミナ焼結体。 2. The alumina sintered body according to claim 1, having a specific volume resistivity of 10< 12 > [Omega].cm or less. 請求項1からのいずれか一項に記載のアルミナ焼結体を載置板に使用している、静電チャック。 An electrostatic chuck using the alumina sintered body according to any one of claims 1 to 4 as a mounting plate.
JP2022119883A 2022-07-27 2022-07-27 Alumina sintered body and electrostatic chuck Active JP7194306B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022119883A JP7194306B1 (en) 2022-07-27 2022-07-27 Alumina sintered body and electrostatic chuck
TW112121965A TWI852629B (en) 2022-07-27 2023-06-13 Alumina sintered body and electrostatic chuck
KR1020230086351A KR20240015570A (en) 2022-07-27 2023-07-04 Alumina sintered body and electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022119883A JP7194306B1 (en) 2022-07-27 2022-07-27 Alumina sintered body and electrostatic chuck

Publications (2)

Publication Number Publication Date
JP7194306B1 true JP7194306B1 (en) 2022-12-21
JP2024017328A JP2024017328A (en) 2024-02-08

Family

ID=84534691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022119883A Active JP7194306B1 (en) 2022-07-27 2022-07-27 Alumina sintered body and electrostatic chuck

Country Status (2)

Country Link
JP (1) JP7194306B1 (en)
KR (1) KR20240015570A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099413A (en) 2002-09-12 2004-04-02 Sodick Co Ltd Ceramic and method of manufacturing the same
JP2008024583A (en) 2006-06-23 2008-02-07 Nippon Soken Inc Alumina composite sintered body, evaluation method thereof and spark plug
JP2008260645A (en) 2007-04-10 2008-10-30 Nitsukatoo:Kk Black alumina sintered compact and method of manufacturing the same
JP2014220408A (en) 2013-05-09 2014-11-20 新光電気工業株式会社 Electrostatic chuck and semiconductor manufacturing apparatus
JP2015104746A (en) 2013-11-29 2015-06-08 日立金属株式会社 Solder joint material and solder joint material manufacturing method
JP6738505B1 (en) 2020-05-28 2020-08-12 黒崎播磨株式会社 Dielectric for electrostatic chuck
JP2020180020A (en) 2019-04-25 2020-11-05 京セラ株式会社 Black ceramics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176966A (en) * 1984-02-20 1985-09-11 日本特殊陶業株式会社 Colored alumina ceramic composition
JPS6442359A (en) * 1987-08-11 1989-02-14 Narumi China Corp Black alumina ceramic composition
JP2772174B2 (en) 1991-09-06 1998-07-02 茨城日本電気株式会社 Magnetic head fixing mechanism for magnetic disk drive
JPH05194024A (en) * 1992-01-22 1993-08-03 Sumitomo Cement Co Ltd Alumina-based multiple sintered compact
JPH05238810A (en) * 1992-02-27 1993-09-17 Onoda Cement Co Ltd Black alumina sintered compact
JP3051603B2 (en) * 1993-06-30 2000-06-12 京セラ株式会社 Titanium compound sintered body
JP3287149B2 (en) * 1994-02-14 2002-05-27 松下電器産業株式会社 Alumina ceramics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099413A (en) 2002-09-12 2004-04-02 Sodick Co Ltd Ceramic and method of manufacturing the same
JP2008024583A (en) 2006-06-23 2008-02-07 Nippon Soken Inc Alumina composite sintered body, evaluation method thereof and spark plug
JP2008260645A (en) 2007-04-10 2008-10-30 Nitsukatoo:Kk Black alumina sintered compact and method of manufacturing the same
JP2014220408A (en) 2013-05-09 2014-11-20 新光電気工業株式会社 Electrostatic chuck and semiconductor manufacturing apparatus
JP2015104746A (en) 2013-11-29 2015-06-08 日立金属株式会社 Solder joint material and solder joint material manufacturing method
JP2020180020A (en) 2019-04-25 2020-11-05 京セラ株式会社 Black ceramics
JP6738505B1 (en) 2020-05-28 2020-08-12 黒崎播磨株式会社 Dielectric for electrostatic chuck

Also Published As

Publication number Publication date
TW202408968A (en) 2024-03-01
KR20240015570A (en) 2024-02-05
JP2024017328A (en) 2024-02-08

Similar Documents

Publication Publication Date Title
US5998320A (en) Aluminum nitride sintered body, metal including member, electrostatic chuck, method of producing aluminum nitride sintered body, and method of producing metal including member
CN1301517C (en) Dielectric ceramic, method for making the same, and monolithic ceramic capacitor
JP5203313B2 (en) Aluminum oxide sintered body and method for producing the same
JP5761691B2 (en) COMPOSITE CERAMIC, CONSTITUENT MEMBER FOR SEMICONDUCTOR MANUFACTURING APPARATUS AND METHOD FOR PRODUCING THEM
CN1238533A (en) Dielectric ceramic composition and laminated ceramic capacitor
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
US20080186647A1 (en) Electrostatic chuck and method of manufacturing the same
JP5084155B2 (en) Alumina sintered body and method for manufacturing the same, electrostatic chuck using the alumina sintered body, and method for manufacturing the same
JP7194306B1 (en) Alumina sintered body and electrostatic chuck
KR20020031314A (en) A material of low volume resistivity, an aluminum nitride sintered body and a member used for the production of semiconductors
TWI753835B (en) Dielectrics for electrostatic chucks
US6607836B2 (en) Material of low volume resistivity, an aluminum nitride sintered body and a member used for the production of semiconductors
CN113597665A (en) High density corrosion resistant layer arrangement for electrostatic chuck
EP2189431A2 (en) Aluminum nitride sintered product, method for producing the same and electrostatic chuck including the same
TWI852629B (en) Alumina sintered body and electrostatic chuck
JP5188898B2 (en) Ceramic sprayed coating and corrosion resistant member using the same
JP2008266069A (en) Conductive alumina sintered compact
JP4429742B2 (en) Sintered body and manufacturing method thereof
JP4939379B2 (en) Aluminum nitride sintered body for electrostatic chuck
JP6489467B2 (en) Components of composite oxide ceramics and semiconductor manufacturing equipment
JP4364593B2 (en) Alumina ceramic plate and manufacturing method thereof
JP4641758B2 (en) Aluminum nitride sintered body and electrostatic chuck using the same
JP4708153B2 (en) Conductive alumina sintered body
JP2023150882A (en) Electrostatic chuck dielectric layer and electrostatic chuck including the same
JPH0442860A (en) Black aluminum nitride sintered product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220727

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221209

R150 Certificate of patent or registration of utility model

Ref document number: 7194306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150