JP7192575B2 - 溝加工装置 - Google Patents

溝加工装置 Download PDF

Info

Publication number
JP7192575B2
JP7192575B2 JP2019037389A JP2019037389A JP7192575B2 JP 7192575 B2 JP7192575 B2 JP 7192575B2 JP 2019037389 A JP2019037389 A JP 2019037389A JP 2019037389 A JP2019037389 A JP 2019037389A JP 7192575 B2 JP7192575 B2 JP 7192575B2
Authority
JP
Japan
Prior art keywords
laser irradiation
path
downward
conveying
grooving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019037389A
Other languages
English (en)
Other versions
JP2020138226A (ja
Inventor
秀行 濱村
剛 浜谷
弘二 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019037389A priority Critical patent/JP7192575B2/ja
Publication of JP2020138226A publication Critical patent/JP2020138226A/ja
Application granted granted Critical
Publication of JP7192575B2 publication Critical patent/JP7192575B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、方向性電磁鋼板にレーザビームを照射して溝を形成する溝加工装置に関する。
方向性電磁鋼板は、比較的小さな磁化力において磁化する際のエネルギー損失(鉄損)が低いため、巻トランス等の鉄芯材料に用いられている。このような方向性電磁鋼板においては、鉄損を更に低減することが求められている。
巻トランスに用いられる方向性電磁鋼板の鉄損を更に低減する方策として、搬送方向に搬送される方向性電磁鋼板にレーザビームを照射して、板幅方向に延在する溝を搬送方向に所定間隔で形成する方法が行われる。溝は、レーザ照射装置のレーザ発振器から出射されたレーザビームを、集光レンズで鋼板上に集光することで形成される。
レーザビームを照射して溝を形成する際に、方向性電磁鋼板から金属蒸気や溶融物、溶融再凝固物(以下、溶融物等と呼ぶ)が発生する。そして、溶融物等がレーザ照射装置に付着するとレーザ照射装置の機能が損なわれるため、下記の特許文献1、2に記載のようにアシストガスを噴射して溶融物等を吹き飛ばし、又は溶融物等の移動、付着を防止するエアーカーテンを形成している。
特開2002-292484号公報 特開2003-129135号公報
ところで、方向性電磁鋼板の板幅が大きい場合には、搬送方向に複数のレーザ照射装置を配置し、板幅方向に延在する溝を分けて形成する。しかし、かかる場合には、搬送方向上流側のレーザ照射装置で溝を形成する際に発生した溶融物等が、搬送方向下流側のレーザ照射装置に付着する恐れがある。このため、搬送方向下流側のレーザ照射装置の機能が損なわれ、下流側のレーザ照射装置による溝加工に不良が発生する恐れがある。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、複数のレーザ照射装置で方向性電磁鋼板に微細な溝加工を安定して行うことが可能な溝加工装置を提供することにある。
上記課題を解決するために、本発明のある観点によれば、方向性電磁鋼板を搬送方向に搬送する複数の搬送ローラと、前記方向性電磁鋼板の板幅方向において分けて設けられると共に、前記搬送方向において異なる位置に設けられ、前記方向性電磁鋼板にレーザビームを照射して前記板幅方向に延在する溝を前記搬送方向に所定間隔で形成する複数のレーザ照射部と、前記方向性電磁鋼板に向けて気体を噴射して、対応する前記レーザ照射部が前記溝を形成する際に発生する発生物を吹き飛ばす複数の気体噴射部と、を備える溝加工装置であって、前記複数の搬送ローラは、前記方向性電磁鋼板を鉛直方向に曲げながら搬送するように前記鉛直方向において異なる位置に設けられ、2つの搬送ローラの間の搬送路を一つのパスとした場合に複数のパスを形成し、前記複数のレーザ照射部は、前記複数のパスの各々に最大一つ設けられていることを特徴とする、溝加工装置が提供される。
また、上記の溝加工装置において、前記複数のパスは、前記鉛直方向の下向きの搬送路である下向きパスと、前記下向きパスに続く水平方向の搬送路である水平パスと、前記水平パスに続く前記鉛直方向の上向きの搬送路である上向きパスとからなる略U字状のU字搬送路を構成し、前記複数のレーザ照射部は、前記下向きパス、前記水平パス、及び前記上向きパスにおいて、前記U字搬送路の外方に位置し、かつ、前記下向きパス、前記水平パス、及び前記上向きパスの各々に最大一つ設けられていることとしても良い。
また、上記の溝加工装置において、前記複数のレーザ照射部は、前記下向きパスに設けられた第1レーザ照射部と、前記上向きパスに設けられた第2レーザ照射部とであることとしても良い。
また、上記の溝加工装置において、前記複数の搬送ローラは、前記U字搬送路を複数形成し、前記複数のレーザ照射部は、前記複数のU字搬送路の各々に最大一つ設けられていることとしても良い。
また、上記の溝加工装置において、前記複数のパスは、前記鉛直方向の下向きの搬送路である下向きパスと、前記下向きパスに続く鉛直方向の上向きの搬送路である上向きパスとからなる略U字状のU字搬送路を構成することとしても良い。
また、上記の溝加工装置において、前記複数のレーザ照射部は、前記下向きパスに設けられた第1レーザ照射部と、前記上向きパスに設けられた第2レーザ照射部とであることとしても良い。
また、上記の溝加工装置において、前記複数の搬送ローラは、前記U字搬送路を複数形成し、前記複数のレーザ照射部は、前記複数のU字搬送路の各々に最大一つ設けられていることとしても良い。
また、上記の溝加工装置において、前記複数のレーザ照射部は、各U字搬送路の前記下向きパスに設けられていることとしても良い。
また、上記の溝加工装置において、前記複数の気体噴射部は、前記第1レーザ照射部の上方に設けられ、前記第1レーザ照射部が前記溝を形成する際に発生する発生物を前記鉛直方向の下向きに吹き飛ばす第1気体噴射部と、前記第2レーザ照射部の上方に設けられ、前記第2レーザ照射部が前記溝を形成する際に発生する発生物を前記鉛直方向の下向きに吹き飛ばす第2気体噴射部とであることとしても良い。
また、上記の溝加工装置において、前記複数のレーザ照射部のうちの少なくとも1つは、前記方向性電磁鋼板が前記搬送ローラに巻き付けられた部分に、前記レーザビームを照射する位置に設けられていることとしても良い。
以上説明したように本発明によれば、複数のレーザ照射装置で方向性電磁鋼板に微細な溝加工を安定して行うことが可能となる。
本実施形態に係る方向性電磁鋼板の製造工程を示すフローチャートである。 比較例に係る方向性電磁鋼板の溝加工装置900の構成例を示す模式図である。 比較例に係る方向性電磁鋼板の溝加工装置900の構成例を示す模式図である。 レーザ照射装置100の構成例を説明するための模式図である。 第1の実施形態に係る溝加工装置1の構成例を示す模式図である。 搬送ローラ170A~170D間の三つのパスの区切りを説明するための模式図である。 第1の実施形態に係る溝加工装置1の構成の変形例を示す模式図である。 第1の実施形態に係る溝加工装置1の構成の変形例を示す模式図である。 第1の実施形態に係る溝加工装置1の構成の変形例を示す模式図である。 第2の実施形態に係る溝加工装置1の構成例を示す模式図である。 第2の実施形態に係る溝加工装置1の構成の変形例を示す模式図である。 第2の実施形態に係る溝加工装置1の構成の変形例を示す模式図である。 本実施形態と比較例における測定結果の一例を示す図である。 その他の実施形態に係る溝加工装置1の構成例を示す模式図である。 その他の実施形態に係る溝加工装置1の構成例を示す模式図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<方向性電磁鋼板の概要>
方向性電磁鋼板は、鋼板の結晶粒の磁化容易軸(立方晶(100)<001>)が製造工程における圧延方向に略揃っている電磁鋼板である。方向性電磁鋼板は、圧延方向に磁化が向いた磁区を、磁壁を挟んで複数配列した構造を有する。このような方向性電磁鋼板は圧延方向に磁化しやすいため、比較的小さい一定の磁化力において鉄損が低い。このため、方向性電磁鋼板は、トランスの鉄芯材料として適している。
方向性電磁鋼板は、鋼板本体(地鉄)と、鋼板本体の表面に形成されたグラス皮膜と、グラス皮膜上に形成された絶縁被膜とを有する。
鋼板本体は、Siを含有する鉄合金で構成されている。鋼板本体の組成は、一例として、Si;2.5質量%以上4.0質量%以下、C;0.02質量%以上0.10質量%以下、Mn;0.05質量%以上0.20質量%以下、酸可溶性Al;0.020質量%以上0.040質量%以下、N;0.002質量%以上0.012質量%以下、S;0.001質量%以上0.010質量%以下、P;0.01質量%以上0.04質量%以下、残部がFe及び不可避不純物である。
グラス皮膜は、例えば、フォルステライト(Mg2SiO4)、スピネル(MgAl2O4)及びコージライト(Mg2Al4Si5O16)、といった複合酸化物によって構成されている。
絶縁皮膜は、例えば、コロイド状シリカとリン酸塩(リン酸マグネシウム、リン酸アルミニウムなど)を主体とするコーティング液やアルミナゾルとホウ酸を混合したコーティング液によって構成されている。
本実施形態に係る方向性電磁鋼板は巻トランスに用いられ、鉄損を更に低減させるために、方向性電磁鋼板の製造時の搬送方向(圧延方向)と交差する方向に延在する溝が、鋼板本体(地鉄)の表面に搬送方向に所定の溝間隔で形成されている。詳細は後述するが、溝は、レーザ加工装置によって地鉄の表面にレーザビームを照射することで形成される。
<方向性電磁鋼板の製造方法>
図1を参照しながら、本実施形態に係る方向性電磁鋼板の製造方法について説明する。図1は、本実施形態に係る方向性電磁鋼板の製造工程の一例を示すフローチャートである。方向性電磁鋼板の製造工程は、図1に示すように、鋳造工程S2と、熱間圧延工程S4と、焼鈍工程S6と、冷間圧延工程S8と、脱炭焼鈍工程S10と、焼鈍分離剤塗布工程S12と、最終仕上げ焼鈍工程S14と、絶縁皮膜形成工程S16と、レーザ照射工程S18と、絶縁皮膜形成工程S20と、を含む。
鋳造工程S2では、上述した組成に調整された溶鋼を連続鋳造機に供給して、鋳塊を連続的に形成する。熱間圧延工程S4では、鋳塊を所定温度(例えば1150~1400℃)に加熱して熱間圧延を行う。これにより、所定厚さ(例えば1.8~3.5mm)の熱間圧延材が形成される。
焼鈍工程S6では、熱間圧延材に対して、例えば、加熱温度750~1200℃、加熱時間30秒~10分の条件で熱処理を行う。冷間圧延工程S8では、熱間圧延材の表面を酸洗した後に、冷間圧延を行う。これにより、所定厚さ(例えば、0.15~0.35mm)の冷間圧延材が形成される。
脱炭焼鈍工程S10では、冷間圧延材に対して、例えば、加熱温度700~900℃、加熱時間1~3分の条件で熱処理を行い、鋼板本体を形成する。鋼板本体の表面には、シリカ(SiO2)を主体とする酸化物層が形成される。焼鈍分離剤塗布工程S12では、鋼板本体の酸化物層の上に、マグネシア(MgO)を主体とする焼鈍分離剤を塗布する。
最終仕上げ焼鈍工程S14では、焼鈍分離剤が塗布された鋼板本体をコイル状に巻き取った状態で、バッチ式炉内に挿入して熱処理を行う。熱処理条件は、例えば、加熱温度1100~1300℃、加熱時間20~24時間である。最終仕上げ焼鈍工程S14により、酸化物層と焼鈍分離剤が反応し、鋼板本体の表面にフォルステライト(Mg2SiO4)からなるグラス皮膜が形成される。この際、鋼板本体の搬送方向(圧延方向)と磁化容易磁区とが一致した、いわゆるゴス粒が優先的に結晶成長する。この結果、仕上げ焼鈍の後に結晶方位性(結晶配向性)が高い方向性電磁鋼板が得られることとなる。
絶縁皮膜形成工程S16では、コイル状に巻き取られた鋼板本体を巻き解して板状に伸ばして搬送する。そして、鋼板本体の両面に形成されたグラス皮膜の上に絶縁剤を塗布、焼付けを行い、絶縁皮膜を形成する。絶縁被膜が形成された鋼板本体は、コイル状に巻き取られる。
レーザ照射工程S18では、コイル状に巻き取られた鋼板本体を巻き解して板状に伸ばして搬送する。そして、レーザ照射装置によって、鋼板本体の片面に向けてレーザビームを集光・照射し、電磁鋼板の略幅方向に走査する。これにより、鋼板本体の表面に、圧延方向にほぼ直交する溝が、圧延方向において所定間隔で形成される。なお、レーザ照射装置の詳細については、後述する。
絶縁皮膜形成工程S20では、溝が形成された鋼板本体に対して、絶縁皮膜形成工程S16と同様に絶縁被膜を形成する。上記の一連の工程により、搬送方向と交差する方向に延在する溝が、鋼板本体(地鉄)の表面に搬送方向に所定の溝間隔で形成された方向性電磁鋼板が製造される。
なお、上記では、レーザ照射工程S18が絶縁皮膜形成工程S16の後に行われることとしたが、これに限定されず、レーザ照射工程S18が絶縁皮膜形成工程S16よりも前に行われてもよい。例えば、冷間圧延工程S8の後、脱炭焼鈍工程S10の後、或いは最終仕上げ焼鈍工程S14の後に、レーザ照射工程S18が行われても良い。かかる場合には、レーザ照射工程S18の後に絶縁皮膜形成工程S16が行われるので、2度目の絶縁皮膜形成工程S20が不要となり、製造工程を短縮できる。
<比較例に係る溝加工装置の構成例>
以下では、本実施形態に係るレーザ照射装置を含む方向性電磁鋼板の溝加工装置の構成例を説明する前に、比較例に係る溝加工装置の構成例について、図2~図4を参照しながら説明する。
図2及び図3は、比較例に係る方向性電磁鋼板の溝加工装置900の構成例を示す模式図である。比較例に係る溝加工装置900は、搬送方向(圧延方向)に一定速度で搬送される方向性電磁鋼板(以下、鋼板Sと呼ぶ)の表面にレーザビームを照射して溝Dを形成する。溝加工装置900は、レーザ照射装置100A、100Bと、複数の搬送ローラ170と、気体噴射部の一例であるアシストガス噴射部180A、180Bと、エアーカーテン形成部190A、190Bと、を有する。なお、図2では、説明の便宜上、搬送ローラ170、アシストガス噴射部180A、180B、及びエアーカーテン形成部190A、190Bが省略されている。
レーザ照射装置100A、100Bは、ファイバコアにレーザ媒質としてYb(イッテルビウム)がドープされたファイバレーザを用いて、搬送方向に一定速度で搬送される鋼板Sの表面に溝Dを形成する。2つのレーザ照射装置100A、100Bの構成は同様であるので、以下においては、レーザ照射装置100A、100Bを総称して、単にレーザ照射装置100と呼ぶ場合がある。なお、レーザ照射装置100A、100Bは、ファイバレーザに限定されるものではなく、例えばCOレーザ、YAGレーザ、半導体レーザなど、レーザ加工に一般に用いられるものであれば良い。
ところで、鋼板Sの板幅が大きい場合には、一つのレーザ照射装置で鋼板Sの溝Dを全て形成することが困難であるため、比較例のように鋼板Sの板幅方向において複数のレーザ照射装置を分けて設けている。比較例の場合には、レーザ照射装置100Aが幅方向における一端側の溝Dを形成し、レーザ照射装置100Bが幅方向における他端側の溝Dを形成する。
そして、複数のレーザ照射装置が溝Dを形成する場合には、レイアウト上の観点等から複数のレーザ照射装置を幅方向に一列に配置できないため、複数のレーザ照射装置を搬送方向において異なる位置に設けている。比較例の場合には、レーザ照射装置100Aが搬送方向上流側に位置し、レーザ照射装置100Bが搬送方向下流側に位置する。
図4は、レーザ照射装置100の構成例を説明するための模式図である。図4では、説明の便宜上、一つのレーザ照射装置100のみが示されている。図4に示すように、レーザ照射装置100は、光学部材として、例えばレーザヘッド110と、駆動ミラー112と、集光レンズ114と、保護ガラス116と、を有する。
レーザヘッド110は、レーザ発振器から出射されファイバ等で伝送されたレーザビームLBを出射する。レーザヘッド110は、例えばコリメータレンズを有し、レーザビームLBを平行光として出射する。
駆動ミラー112は、揺動可能なミラー(例えば、ガルバノミラー)であり、レーザヘッド110から出射されたレーザビームLBを偏光させて、鋼板S上を板幅方向(搬送方向と交差する方向)に向かって走査する。なお、レーザビームを走査する走査機構としては、図4に示すミラーに限らず、例えば回転可能な多面体のポリゴンミラーであっても良い。
集光レンズ114は、駆動ミラー112で走査されてレーザビームLBを、鋼板S上の板幅方向における所定位置に集光するためのレンズである。上述したレーザヘッド110、駆動ミラー112、及び集光レンズ114は、レーザ照射装置100の筺体内に位置している。
保護ガラス116は、例えば板ガラスであり、筺体102においてレーザビームLBが通過する開口部に設けられている。保護ガラス116は、筺体102内に異物(例えば、後述する溶融物等の除去物)が入り込むことを防止する。
搬送ローラ170は、搬送方向に複数設けられており、鋼板Sを搬送方向に一定速度で搬送する機能を有する。また、搬送ローラ170は、搬送中の鋼板Sを支持する機能も有する。比較例における搬送ローラ170は、図3に示すように鋼板Sを平板状に真っ直ぐに搬送している。
アシストガス噴射部180A、180B(総称して、単にアシストガス噴射部180と呼ぶ)は、ガス(気体)を鋼板Sへ向けて噴射するノズルを有する。アシストガス噴射部180は、鋼板S(具体的には、レーザビームLBが照射される部分)へ向けてガスを吹き付けることで、溝D形成の際に鋼板Sから発生する除去物(発生物に該当)を吹き飛ばす機能を有する。アシストガス噴射部180は、搬送方向においてレーザ照射装置100の上流側に設けられ、例えば金属蒸気や溶融物(スパッター)等を含む除去物を搬送方向下流側に吹き飛ばす。これにより、除去物が光学部品や照射装置、鋼板Sに付着することを抑制できる。なお、図2や図3では、溶融物Cが黒丸(●)で示されている。
エアーカーテン形成部190A、190B(総称して、単にエアーカーテン形成部190と呼ぶ)は、レーザ照射装置100の筺体102において保護ガラス116の周囲に設けられている。エアーカーテン形成部190は、保護ガラス116の鋼板Sに対向する対向面に沿ってエアーを噴射するノズルを有する。エアーカーテン形成部190は、エアーを噴射することで、溶融物等の除去物がレーザ照射装置100(具体的には、保護ガラス116)に向かうことを規制している。
<レーザ照射装置を搬送方向に複数設けた場合の除去物の悪影響について>
比較例においては、上述したように搬送方向上流側にレーザ照射装置100Aが、搬送方向下流側にレーザ照射装置100Bが、それぞれ設けられている。このように搬送方向にレーザ照射装置を複数設けた場合には、搬送方向上流側のレーザ照射装置100Aが溝Dを形成する際に発生した除去物が、搬送方向下流側に移動してレーザ照射装置100Bに付着する恐れがある。
また、近年使用されている高出力のファイバレーザで鋼板S上に小径の集光を行う場合には、発生した除去物の移動速度が速くなることが分かっている。このため、エアーカーテン形成部190が空気を噴射してエアーカーテンを形成しても、除去物がエアーカーテンを通過してレーザ照射装置100Bに付着しやすくなる。
そして、除去物が特にレーザ照射装置100Bの光学部材(レーザヘッド110、駆動ミラー112、集光レンズ114、保護ガラス116)に付着する場合には、レーザ照射装置100Bの機能が損なわれ、レーザ照射装置100Bによる鋼板Sの溝加工に不良が発生する恐れがある。この結果、複数のレーザ照射装置による鋼板Sへの溝加工を安定的に行うことが困難となる。
一例として、保護ガラス116に除去物が付着した場合の悪影響について、具体的に説明する。保護ガラス116は、溶融物等の除去物が付着すると膨張してしまい、保護ガラス116の厚みが変動してしまう。そして、保護ガラス116の厚みが変動すると、保護ガラス116を通過するレーザビームの鋼板S上の集光位置も変化してしまう。これにより、フォーカスずれが発生してしまい、またレーザパワーロスが発生し、その結果パワー密度の劣化が生じて、微細な溝加工を安定して行うことが困難となる。例えば、溝深さが浅い場合には、鉄損改善効果が低下する。表面に突起が発生した場合には、巻きトランスにおいて絶縁破壊等の重大なトラブルを誘発する恐れがある。
そこで、上述した問題を解決すべく、本実施形態に係る鋼板Sの溝加工装置においては、詳細は後述するが、鋼板Sを搬送する搬送路とレーザ照射装置の配置位置とを工夫している。これにより、搬送方向上流側のレーザ照射装置の溝形成の際に発生した除去物が下流側のレーザ照射装置に付着することを防止している。
<第1の実施形態に係る溝加工装置の構成例>
図5を参照しながら、第1の実施形態に係る溝加工装置1の構成例について説明する。図5は、第1の実施形態に係る溝加工装置1の構成例を示す模式図である。
第1の実施形態では、図5に示すように、鋼板Sの搬送経路が略U字状になるように、4つの搬送ローラ170A~170Dが鉛直方向(図5に示す上下方向)において異なる位置に配置されている。具体的には、搬送方向において搬送ローラ170A、170Dの間に位置する搬送ローラ170B、170Cが、上下方向において搬送ローラ170A、170Dよりも下方に位置している。
かかる場合には、鋼板Sは、搬送ローラ170A、170Bの間で鉛直方向の下向きに搬送され、搬送ローラ170B、170Cの間で水平方向に搬送され、搬送ローラ170C、170Dの間で鉛直方向の上向きに搬送される。すなわち、4つの搬送ローラ170A~170Dは、鋼板Sを鉛直方向に略U字状に曲げながら搬送する。
ところで、本明細書においては、鋼板Sの搬送経路において鋼板Sを曲げて搬送する搬送ローラ間を、一つのパスと定義するものとする。具体的には、図6に示すように、鋼板Sの搬送経路において搬送ローラ170A、170Bの間の下向きのパスを縦パスPa1と定義し、搬送ローラ170B、170Cの間の水平方向のパスを横パスPa2と定義し、搬送ローラ170C、170Dの間の上向きのパスを縦パスPa3と定義する。このように、第1の実施形態では、4つの搬送ローラ170A~170Dによって複数のパスが形成されている。
図6は、搬送ローラ170A~170D間の三つのパスPa1~Pa3の区切りを説明するための模式図である。パスPa1は、鋼板Sの搬送経路において図6に示す点A1と点A2の間の経路であり、パスPa2は、点A2と点A3の間の経路であり、パスPa3は、点A3と点A4の経路である。ここで、点A1は、鋼板Sの搬送ローラ170Aに巻き付けられた巻き付け部分のうちの鉛直真上の部分に対応した点であり、点A2は、搬送ローラ170Bへの巻き付け部分のうちの鉛直真下の部分に対応した点であり、点A3は、搬送ローラ170Cへの巻き付け部分のうちの鉛直真下の部分に対応した点であり、点A4は、搬送ローラ170Dへの巻き付け部分のうちの鉛直真上の部分に対応した点である。また、点A1~A4は、それぞれ当該点よりも下流側のパスに含まれるものとする。具体的には、点A1はパスPa1に含まれ、点A2はパスPa2に含まれ、点A3はパスPa3に含まれる。
また、第1の実施形態の溝加工装置1は、比較例と同様に二つのレーザ照射装置100A、100Bを有する。なお、二つのレーザ照射装置100A、100Bの構成は、図4に示す構成と同様であるので、詳細な説明は省略する。
そして、第1の実施形態では、三つのパスPa1~Pa3の各パスにおいて、最大一つのレーザ照射装置を配置させている。すなわち、2つのレーザ照射装置100A、100Bが、異なるパスが位置することになる。一例として、図5に示すように、レーザ照射装置100Aが縦パスPa1上に、レーザ照射装置100Bが縦パスPa3上に配置され、横パスPa2上にレーザ照射装置が存在しない。また、レーザ照射装置100A、100Bの一方は、鋼板Sの幅方向の一端側に位置し、他方は、幅方向の他端側に位置する(図2参照)。これにより、2つのレーザ照射装置100A、100Bが、幅方向に沿った溝Dを分割して形成する。
また、2つのレーザ照射装置100A、100Bは、図5に示すように、縦パスPa1、縦パスPa3において、略U字状の搬送経路の外方に位置している。これにより、レーザ照射装置100A、100Bに配置スペースの自由度が高まる。
第1の実施形態でも、鋼板Sから発生する溶融物等の除去物を吹き飛ばすアシストガス噴射部180A、180Bが設けられている。具体的には、図5に示すように、アシストガス噴射部180Aは、レーザ照射装置100Aと同様に縦パスPa1上で、かつレーザ照射装置100Aの上方に位置する。そして、アシストガス噴射部180Aは、斜め下に向かってガスを噴射して、下方向(搬送方向下流側)に除去物(図5に示す溶融物C)を吹き飛ばす。吹き飛ばされた除去物は、例えば搬送ローラ170B、170Cよりも下方に位置する集塵機等の回収部(不図示)において回収される。
同様に、アシストガス噴射部180Bは、レーザ照射装置100Bと同様に縦パスPa3上で、かつレーザ照射装置100Bの上方に位置する。そして、アシストガス噴射部180Bは、斜め下に向かってガスを噴射して、鉛直方向の下向き(搬送方向上流側)に除去物(図5に示す溶融物C)を吹き飛ばす。これにより、除去物が上述した回収部において回収されやすくなる。
上記では、アシストガス噴射部180A、180Bは、斜め下にガスを噴射することとしたが、除去物を上下方向の下向きに効果的に吹き飛ばす観点からすると、アシストガス噴射部180A(180B)のガスの噴射方向と鋼板Sの成す角度βは、45度以下が望ましい。図5では、成す角度βは、30度である。ただし、下向きに除去物を吹き飛ばすことができれば、角度βは、90度未満で45度より大きくても良い。
また、第1の実施形態でも、レーザ照射装置100A、100Bに、それぞれエアーカーテン形成部190A、190Bが設けられている。そして、エアーカーテン形成部190A、190Bは、レーザ照射装置100A、100Bの保護ガラス116の鋼板Sに対向する対向面に沿ってエアーを噴射する。
上述した第1の実施形態の構成によれば、搬送方向上流側のレーザ照射装置100Aと下流側のレーザ照射装置100Bとが異なるパス上に設けられており、レーザ照射装置100Aによる溝形成の際に発生する除去物が、アシストガス噴射部180Aによって鉛直方向の下向きに吹き飛ばされる。また、除去物は、自重により下向きに落下しやすくなる。
このため、除去物が鋼板Sに付着することを抑制でき、また除去物が縦パスPa3のレーザ照射装置100Bまで移動し難くなる。これにより、搬送方向下流側に位置するレーザ照射装置100Bに除去物が付着することを防止できるので、レーザ照射装置100Bの機能が損なわれることを防止できる。この結果、鋼板Sへの溝加工を安定的に行うことが可能となる。
なお、鋼板振動を抑制し、安定した溝加工形成する目的で、レーザビームの鋼板照射位置に、鋼板を挟んで反対側にサポートロールを配置してもよい。
(第1の実施形態の変形例)
次に、図7~図9を参照しながら、第1の実施形態に係る溝加工装置1の構成の変形例について説明する。図7~図9は、第1の実施形態に係る溝加工装置1の構成の変形例を示す模式図である。
図5では、縦パスPa1、横パスPa2、縦パスPa3のうち、縦パスPa1上にレーザ照射装置100Aが設けられ、縦パスPa3上にレーザ照射装置100Bが設けられていることとしたが、これに限定されない。
例えば、図7(a)に示すように、レーザ照射装置100Aが縦パスPa1上に設けられ、レーザ照射装置100Bが横パスPa2上に設けられていても良い。又は、図7(b)に示すように、レーザ照射装置100Aが横パスPa2上に設けられ、レーザ照射装置100Bが縦パスPa3上に設けられていても良い。かかる場合にも、二つのレーザ照射装置100A、100Bがそれぞれ異なるパスに設けられているので、上流側のレーザ照射装置100Aによる溝形成の際に発生する除去物が、下流側のレーザ照射装置100Bに付着することを防止できる。
また、図7(c)に示すように、縦パスPa1、横パスPa2、縦パスPa3のそれぞれに、レーザ照射装置100A(100B、100C)が一つずつ設けられても良い。かかる場合にも、三つのレーザ照射装置100A~100Cがそれぞれ異なるパスに設けられているので、上流側のレーザ照射装置による溝形成の際に発生する除去物が、下流側のレーザ照射装置に付着することを防止できる。また、レーザ照射装置を三つ設けた場合には、例えば、レーザ照射装置100Aは幅方向において一端側に位置し、レーザ照射装置100Bは幅方向において中央側に位置し、レーザ照射装置100Cは幅方向において他端側に位置する。これにより、三つのレーザ照射装置100A~100Cは、溝Dを三分割して形成できる。
なお、図7(a)~図7(c)において、横パスPa2上に設けられたアシストガス噴射部180A(180B)は、搬送方向下流側に向けて除去物を吹き飛ばすように、ガスを噴射する。ただし、これに限定されず、横パスPa2上に設けられたアシストガス噴射部180A(180B)は、搬送方向上流側に向けて除去物を吹き飛ばすように、ガスを噴射しても良い。
また、図8(a)~図8(c)に示すように、二つのレーザ照射装置100A、100Bのうちの少なくとも一つが、鋼板Sの裏面が搬送ローラの巻き付けられた部分の反対側の部分に、レーザビームを照射する位置に設けられても良い。かかる場合には、搬送ローラによって鋼板Sの姿勢が安定した部分にレーザビームを照射するので、溝の加工を高精度に行い易くなる。
具体的には、図8(a)では、レーザ照射装置100Aが、裏面が搬送ローラ170Bに巻き付けられた部分にレーザビームを照射するように斜めに配置され、レーザ照射装置100Bが、裏面が搬送ローラ170Cに巻き付けられた部分にレーザビームを照射するように斜めに配置されている。なお、上述したパスの定義によれば、図8(a)のレーザ照射装置100Aは縦パスPa1上に位置し、レーザ照射装置100Bは縦パスPa3上に位置することになる。図8(b)では、レーザ照射装置100Aが、裏面が搬送ローラ170Bに巻き付けられた部分にレーザビームを照射するように斜めに配置され、図8(c)では、レーザ照射装置100Bが、裏面が搬送ローラ170Cに巻き付けられた部分にレーザビームを照射するように斜めに配置されている。
図8(a)~図8(c)では、レーザ照射装置100A、100Bが、搬送ローラ170B、170Cの斜め下に配置されているが、これに限定されない。例えば、レーザ照射装置100Aが、搬送ローラ170Bの真横に配置され、鋼板Sの搬送ローラ170Bへの巻き付け部分に水平にレーザを照射しても良い。
そして、図8(a)~図8(c)に示す変形例の構成の場合にも、二つのレーザ照射装置100A、100Bがそれぞれ異なるパスに設けられているので、上流側のレーザ照射装置100Aによる溝形成の際に発生する除去物が、下流側のレーザ照射装置100Bに付着することを防止できる。
図5では、搬送経路に、一組の縦パスPa1、横パスPa2、縦パスPa3(パス群とも呼ぶ)が形成され、三つのパスにおいて二つのレーザ照射装置100A、100Bを設けることとしたが、これに限定されない。例えば、図9に示すように、二組のパス群、すなわち第1パス群G1(縦パスPa1、横パスPa2、縦パスPa3を含むU字状の搬送路)と第2パス群G2(縦パスPa5、横パスPa6、縦パスPa7を含むU字状の搬送路)を形成し、各パス群に一つのレーザ照射装置を設けても良い。
図9では、レーザ照射装置100Aが第1パス群G1の下向きパスである縦パスPa1上に設けられ、レーザ照射装置100Bが第2パス群G2の下向きパスである縦パスPa5上に設けられている。図9に示す変形例の構成でも、二つのレーザ照射装置100A、100Bがそれぞれ異なるパス群に設けられているので、上流側のレーザ照射装置100Aによる溝形成の際に発生する除去物が、下流側のレーザ照射装置100Bに付着することをより有効に防止できる。
なお、レーザ照射装置100A、100Bの位置は、図9に示す位置に限定されず、例えば、レーザ照射装置100Aが横パスPa2又は縦パスPa3上に設けられても良い。また、図8で説明したように、レーザ照射装置100A、100Bを、各パス群において斜めに配置しても良い。また、パス群が三つ以上であっても良い。
<第2の実施形態に係る溝加工装置の構成例>
図10を参照しながら、第2の実施形態に係る溝加工装置1の構成例について説明する。図10は、第2の実施形態に係る溝加工装置1の構成例を示す模式図である。
上述した第1の実施形態では、搬送方向において搬送ローラ170A、170Dの間に位置する二つの搬送ローラ170B、170Cを下方に位置させて、略U字状の搬送経路を形成していた(図5参照)。これに対して、第2の実施形態では、図10に示すように、搬送方向において搬送ローラ170A、170Cの間に位置する一つの搬送ローラ170Bを下方に位置させて、略U字状の搬送経路を形成している。このため、第2の実施形態では、三つの搬送ローラ170A~170Cによって、縦パスPa1、Pa3が形成されている。なお、縦パスPa1は、図10に示す点A1と点A2の間の経路であり、縦パスPa3は、点A2と点A3の間の経路である。また、点A1は縦パスPa1に含まれ、点A2は縦パスPa3に含まれる。
そして、第2の実施形態では、2つの縦パスPa1、Pa3に、それぞれ一つのレーザ照射装置を設けている。具体的には、レーザ照射装置100Aが下向きパスである縦パスPa1上に、レーザ照射装置100Bが上向きパスである縦パスPa3上に配置されている。また、レーザ照射装置100A、100Bの一方は、鋼板Sの幅方向の一端側に位置し、他方は、幅方向の他端側に位置する(図2参照)。
図10では、レーザ照射装置100Bが水平方向にレーザを照射する位置に設けられているが、これに限定されない。例えば、レーザ照射装置100Bは、搬送ローラ170Bの鉛直真下に設けられ、鉛直上方の鋼板S(具体的には、点A2に対応する部分)にレーザを照射することとしても良い。前述したように点A2はパスPa2に含まれるので、搬送ローラ170Bの鉛直真下に設けられたレーザ照射装置100Bは、縦Pa3上に設けられていることになる。
さらに、アシストガス噴射部180Aは、レーザ照射装置100Aの上方に設けられ、斜め下に向かってガスを噴射して、上下方向の下向き(搬送方向下流側)に除去物を吹き飛ばす。同様に、アシストガス噴射部180Bは、レーザ照射装置100Bの上方に設けられ、斜め下に向かってガスを噴射して、下向き(搬送方向上流側)に除去物を吹き飛ばす。吹き飛ばされた除去物は、例えば搬送ローラ170B、170Cよりも下方に位置する回収部(不図示)において回収される。
なお、第2の実施形態において、レーザ照射装置100Aが第1レーザ照射部に該当し、レーザ照射装置100Bが第2レーザ照射部に該当し、アシストガス噴射部180Aが第1気体噴射部に該当し、アシストガス噴射部180Bが第2気体噴射部に該当する。
上述した第2の実施形態の構成によれば、搬送方向上流側のレーザ照射装置100Aと下流側のレーザ照射装置100Bとが異なるパス上に設けられており、レーザ照射装置100Aによる溝形成の際に発生する除去物が、アシストガス噴射部180Aによって下方向に吹き飛ばされる。このため、第1の実施形態と同様に、搬送方向下流側に位置するレーザ照射装置100Bに除去物が付着することを防止できるので、レーザ照射装置100Bの機能が損なわれることを防止できる。
(第2の実施形態の変形例)
上述した図10では、搬送経路に、一組の縦パスPa1、縦パスPa3(パス群とも呼ぶ)が形成され、各パスに一つのレーザ照射装置100A(100B)を設けることとしたが、これに限定されない。例えば、図11に示すように、二組のパス群、すなわち第1パス群G1(縦パスPa1、縦パスPa3)と第2パス群G2(縦パスPa5、縦パスPa7)を形成し、各パス群に一つのレーザ照射装置を設けても良い。
図11は、第2の実施形態に係る溝加工装置1の構成の変形例を示す模式図である。図11では、レーザ照射装置100Aが第1パス群G1の縦パスPa1上に設けられ、レーザ照射装置100Bが第2パス群G2の縦パスPa5上に設けられている。図11に示す変形例の構成でも、二つのレーザ照射装置100A、100Bがそれぞれ異なるパス群に設けられているので、上流側のレーザ照射装置100Aによる溝形成の際に発生する除去物が、下流側のレーザ照射装置100Bに付着することをより有効に防止できる。
また、変形例では、第1パス群と第2パス群の間に、図11に示すように仕切り板195が設けられている。仕切り板195は、第1パス群で発生した除去物が、第2パス群に向かうことを規制するための部材である。これにより、レーザ照射装置100Aによる溝形成の際に発生する除去物が、下流側のレーザ照射装置100Bに付着することを更に有効に防止できる。
なお、図11において、レーザ照射装置100Aは、縦パスPa1の代わりに縦パスPa3に設けられても良く、レーザ照射装置100Bは、縦パスPa5の代わりに縦パスPa7に設けられても良い。また、レーザ照射装置100Aとレーザ照射装置100Bのうちの少なくとも一つは、鋼板Sが搬送ローラに巻き付けられた部分にレーザビームを照射するように配置されても良い。
図12は、第2の実施形態に係る溝加工装置1の構成の変形例を示す模式図である。
図12において、レーザ照射装置100Aは、鋼板Sが搬送ローラ170Bに巻き付けられた部分にレーザビームを照射するように配置され、レーザ照射装置100Bは、鋼板Sが搬送ローラ170Fに巻き付けられた部分にレーザビームを照射するように配置されている。かかる構成の場合には、搬送ローラによって鋼板Sの姿勢が安定した部分にレーザビームを照射するので、溝の加工を高精度に行い易くなる。
<本実施形態に係る溝加工装置の有効性>
上述した本実施形態に係る溝加工装置1の有効性について、図3の比較例と対比しながら説明する。
図13は、本実施形態と比較例における測定結果の一例を示す図である。図13では、図5に示す本実施形態に係る溝加工装置で溝を形成した場合の鉄損改善率と、図3に示す比較例に係る溝加工装置で溝を形成した場合の鉄損改善率とが示されている。
ここで、測定条件は以下の通りである。まず、レーザ照射装置100のレーザ照射条件として、レーザビーム強度Pが1000W、集光ビーム径dが50μm、ビーム走査速度Vcが25m/s、溝間隔が5mm、集光レンズの焦点距離が150mmである。また、アシストガス噴射部の噴射角度β(図5参照)は30度であり、アシストガス噴射部は、200L/分で空気を噴射している。エアーカーテン形成部は、100L/分の空気を噴射している。
図13を見ると分かるように、比較例の場合には、時間が経過するに従い鉄損の改善率が低下している。具体的には、測定開始直後の鉄損改善率は約13.5%であるが、約25分程度低下すると鉄損改善率が低下し始め、約180分経過すると約2.5%まで低下する。これに対して、本実施形態の場合には、時間が経過しても鉄損の改善率が一定であり、低下しない。具体的には、測定開始から約180分経過するまで、鉄損改善率が約13.5%で安定している。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
なお、上記では、図5に示すように複数の搬送ローラで略U字状の搬送路を形成した場合について説明したが、これに限定されない。例えば、図14に示すように複数の搬送ローラでL字状の搬送路を形成しても良い。
図14は、その他の実施形態に係る溝加工装置1の構成例を示す模式図である。図14では、4つの搬送ローラ170A~170Dによって、縦パスPa1、横パスPa2、縦パスPa3、横パスPa4から成る階段状の搬送路(L字状の搬送路を組み合わせた搬送路)が形成されている。そして、図14では、レーザ照射装置100Aが階段状の搬送路の縦パスPa1上に設けられ、レーザ照射装置100Bが縦パスPa3上に設けられている。なお、図14において横パスPa2上にレーザ照射装置を設けない理由は、仮にレーザ照射装置を横パスPa2上に設けると、搬送方向下流側に吹き飛ばされる除去物が搬送ローラ170Cで巻き込まれる恐れがあるからである。
そして、図14に示す階段状(L字状)の搬送路を形成した場合でも、搬送路の各々のパスにレーザ照射装置を最大一つ設けることによって、搬送方向上流側のレーザ照射装置の溝形成の際に発生した除去物が下流側のレーザ照射装置に付着することを防止できる。
また、搬送路の構成は、上述した例に限定されず、例えば、図15(a)に示すように図14に示す構成に図5に示す構成を組み合わせたものや、図15(b)に示すように図14に示す構成に図10に示す構成を組み合わせたものであっても良い。図15は、その他の実施形態に係る溝加工装置1の構成例を示す模式図である。
図15(a)では、パスPa1、Pa3、Pa4、Pa5のそれぞれに、レーザ照射装置100を一つずつ設けているが、これに限定されず、パスPa1、Pa3、Pa4、Pa5のうちの少なくとも2つのパスにレーザ照射装置100を一つずつ設けても良い。同様に、図15(b)では、パスPa1、Pa3、Pa4のそれぞれに、レーザ照射装置100を一つずつ設けているが、これに限定されず、パスPa1、Pa3、Pa4のうちの少なくとも2つのパスにレーザ照射装置100を一つずつ設けても良い。これにより、搬送路の多様な形態であっても、搬送方向上流側のレーザ照射装置の溝形成の際に発生した除去物が下流側のレーザ照射装置に付着することを防止できる。
1 溝加工装置
100 レーザ照射装置
116 保護ガラス
170 搬送ローラ
180 アシストガス噴射部
190 エアーカーテン形成部
195 仕切り板
D 溝
Pa1、Pa2、Pa3、Pa4、Pa5、Pa6、Pa7 パス

Claims (10)

  1. 方向性電磁鋼板を搬送方向に搬送する複数の搬送ローラと、
    前記方向性電磁鋼板の板幅方向において分けて設けられると共に、前記搬送方向において異なる位置に設けられ、前記方向性電磁鋼板にレーザビームを照射して前記板幅方向に延在する溝を前記搬送方向に所定間隔で形成する複数のレーザ照射部と、
    前記方向性電磁鋼板に向けて気体を噴射して、対応する前記レーザ照射部が前記溝を形成する際に発生する発生物を吹き飛ばす複数の気体噴射部と、
    を備える溝加工装置であって、
    前記複数の搬送ローラは、前記方向性電磁鋼板を鉛直方向に曲げながら搬送するように前記鉛直方向において異なる位置に設けられ、2つの搬送ローラの間の搬送路を一つのパスとした場合に複数のパスを形成し、
    前記複数のレーザ照射部は、前記複数のパスの各々に最大一つ設けられていることを特徴とする、溝加工装置。
  2. 請求項1に記載の溝加工装置において、
    前記複数のパスは、前記鉛直方向の下向きの搬送路である下向きパスと、前記下向きパスに続く水平方向の搬送路である水平パスと、前記水平パスに続く前記鉛直方向の上向きの搬送路である上向きパスとからなる略U字状のU字搬送路を構成し、
    前記複数のレーザ照射部は、
    前記下向きパス、前記水平パス、及び前記上向きパスにおいて、前記U字搬送路の外方に位置し、かつ、
    前記下向きパス、前記水平パス、及び前記上向きパスの各々に最大一つ設けられていることを特徴とする、溝加工装置。
  3. 請求項2に記載の溝加工装置において、
    前記複数のレーザ照射部は、前記下向きパスに設けられた第1レーザ照射部と、前記上向きパスに設けられた第2レーザ照射部とであることを特徴とする、溝加工装置。
  4. 請求項2に記載の溝加工装置において、
    前記複数の搬送ローラは、前記U字搬送路を複数形成し、
    前記複数のレーザ照射部は、前記複数のU字搬送路の各々に最大一つ設けられていることを特徴とする、溝加工装置。
  5. 請求項1に記載の溝加工装置において、
    前記複数のパスは、前記鉛直方向の下向きの搬送路である下向きパスと、前記下向きパスに続く鉛直方向の上向きの搬送路である上向きパスとからなる略U字状のU字搬送路を構成することを特徴とする、溝加工装置。
  6. 請求項5に記載の溝加工装置において、
    前記複数のレーザ照射部は、前記下向きパスに設けられた第1レーザ照射部と、前記上向きパスに設けられた第2レーザ照射部とであることを特徴とする、溝加工装置。
  7. 請求項5に記載の溝加工装置において、
    前記複数の搬送ローラは、前記U字搬送路を複数形成し、
    前記複数のレーザ照射部は、前記複数のU字搬送路の各々に最大一つ設けられていることを特徴とする、溝加工装置。
  8. 請求項4又は7に記載の溝加工装置において、
    前記複数のレーザ照射部は、各U字搬送路の前記下向きパスに設けられていることを特徴とする、溝加工装置。
  9. 請求項3又は6に記載の溝加工装置において、
    前記複数の気体噴射部は、
    前記第1レーザ照射部の上方に設けられ、前記第1レーザ照射部が前記溝を形成する際に発生する発生物を前記鉛直方向の下向きに吹き飛ばす第1気体噴射部と、
    前記第2レーザ照射部の上方に設けられ、前記第2レーザ照射部が前記溝を形成する際に発生する発生物を前記鉛直方向の下向きに吹き飛ばす第2気体噴射部とであることを特徴とする、溝加工装置。
  10. 請求項1~9のいずれか1項に記載の溝加工装置において、
    前記複数のレーザ照射部のうちの少なくとも1つは、前記方向性電磁鋼板が前記搬送ローラに巻き付けられた部分に、前記レーザビームを照射する位置に設けられていることを特徴とする、溝加工装置。
JP2019037389A 2019-03-01 2019-03-01 溝加工装置 Active JP7192575B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019037389A JP7192575B2 (ja) 2019-03-01 2019-03-01 溝加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019037389A JP7192575B2 (ja) 2019-03-01 2019-03-01 溝加工装置

Publications (2)

Publication Number Publication Date
JP2020138226A JP2020138226A (ja) 2020-09-03
JP7192575B2 true JP7192575B2 (ja) 2022-12-20

Family

ID=72264245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037389A Active JP7192575B2 (ja) 2019-03-01 2019-03-01 溝加工装置

Country Status (1)

Country Link
JP (1) JP7192575B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292484A (ja) 2001-03-30 2002-10-08 Nippon Steel Corp レーザによる溝加工装置
JP2003129135A (ja) 2001-10-22 2003-05-08 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
WO2016171130A1 (ja) 2015-04-20 2016-10-27 新日鐵住金株式会社 方向性電磁鋼板
US20190054570A1 (en) 2016-01-22 2019-02-21 Posco Method for refining magnetic domains of grain-oriented electrical steel plates, and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292484A (ja) 2001-03-30 2002-10-08 Nippon Steel Corp レーザによる溝加工装置
JP2003129135A (ja) 2001-10-22 2003-05-08 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
WO2016171130A1 (ja) 2015-04-20 2016-10-27 新日鐵住金株式会社 方向性電磁鋼板
US20190054570A1 (en) 2016-01-22 2019-02-21 Posco Method for refining magnetic domains of grain-oriented electrical steel plates, and apparatus therefor

Also Published As

Publication number Publication date
JP2020138226A (ja) 2020-09-03

Similar Documents

Publication Publication Date Title
US8657968B2 (en) Grain-oriented electrical steel sheet and method of manufacturing the same
US11377706B2 (en) Device to improve iron loss properties of grain-oriented electrical steel sheet
RU2509163C1 (ru) Текстурованный лист электротехнической стали и способ его получения
JP5935880B2 (ja) 方向性電磁鋼板及びその製造方法
JP4782248B1 (ja) 方向性電磁鋼板及びその製造方法
JP5696380B2 (ja) 方向性電磁鋼板の鉄損改善装置および鉄損改善方法
US9607744B2 (en) Laser processing apparatus and laser irradiation method
JP6638599B2 (ja) 巻鉄芯、及び巻鉄芯の製造方法
RU2749826C1 (ru) Лист электротехнической анизотропной стали
KR101382645B1 (ko) 방향성 전기강판 및 그 제조방법
JP7192575B2 (ja) 溝加工装置
CN106471141B (zh) 激光加工装置
JP5434644B2 (ja) 方向性電磁鋼板の製造方法
JP3174451B2 (ja) 低鉄損方向性けい素鋼板の製造方法およびプラズマ発生装置
KR20100058929A (ko) 전기강판의 자구미세화방법 및 자구미세화 처리된 전기강판
JP2019135323A (ja) 方向性電磁鋼板、巻鉄芯、方向性電磁鋼板の製造方法、及び、巻鉄芯の製造方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R151 Written notification of patent or utility model registration

Ref document number: 7192575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151