JP7184662B2 - glass member - Google Patents

glass member Download PDF

Info

Publication number
JP7184662B2
JP7184662B2 JP2019024506A JP2019024506A JP7184662B2 JP 7184662 B2 JP7184662 B2 JP 7184662B2 JP 2019024506 A JP2019024506 A JP 2019024506A JP 2019024506 A JP2019024506 A JP 2019024506A JP 7184662 B2 JP7184662 B2 JP 7184662B2
Authority
JP
Japan
Prior art keywords
glass
light
glass member
sio
inorganic phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019024506A
Other languages
Japanese (ja)
Other versions
JP2019151546A (en
Inventor
ラメッシュ ヴァレプ
優 横山
光広 藤田
昌子 植松
由希子 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to US16/290,634 priority Critical patent/US11072555B2/en
Priority to DE102019202785.7A priority patent/DE102019202785B4/en
Publication of JP2019151546A publication Critical patent/JP2019151546A/en
Application granted granted Critical
Publication of JP7184662B2 publication Critical patent/JP7184662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Filters (AREA)
  • Glass Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発光素子の発する光の波長を変換する波長変換部材用ガラス部材に関する。 TECHNICAL FIELD The present invention relates to a glass member for a wavelength conversion member that converts the wavelength of light emitted from light emitting elements such as light emitting diodes (LEDs) and laser diodes (LDs).

近年、LEDやLD等の半導体発光素子を光源として用いる照明装置の研究開発が盛んに行われており、省エネルギー発光装置としてその存在感が高まっている。このような省エネルギー発光装置は、例えば青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置され、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。 2. Description of the Related Art In recent years, research and development of lighting devices using semiconductor light emitting elements such as LEDs and LDs as light sources have been actively carried out, and their presence as energy-saving light emitting devices is increasing. In such an energy-saving light-emitting device, for example, a wavelength conversion member that absorbs part of the light from the LED and converts it into yellow light is arranged on an LED that emits blue light, and the blue light emitted from the LED and It emits white light that is combined with yellow light emitted from the wavelength conversion member.

波長変換部材としては、従来、樹脂マトリックス中に無機蛍光体を分散させたものが知られるが、該波長変換部材を用いた場合、LEDが発する熱や高エネルギーの短波長光により樹脂が劣化し、発光装置の輝度が低くなりやすいという問題がある。そこで、樹脂に代えてガラスマトリックス中に蛍光体を分散固定した完全無機固体からなる波長変換部材が提案されている。例えば、特許文献1には、経時的な発光強度の低下の少ない波長変換部材として、ガラスマトリックス中に無機蛍光体が分散してなり、該ガラスマトリックスがSiO2、B23、Al23、Li2O、Na2O、K2O、MgO、CaO、SrO、BaO、及びZnOを含有し、該無機蛍光体が、これらの酸化物を含む酸化物蛍光体、及び窒化物蛍光体などである波長変換部材が開示されている。特許文献2には、焼成時における無機蛍光体の特性劣化を低減し、かつ、機械的強度及び耐候性に優れた波長変換材料に用いられるガラスとして、SiO2、B23、Al23、Li2O、Na2O、K2O、MgO、CaO、SrO、及びZnOを含有し、かつ、軟化点が700℃未満であるガラスが開示されている。特許文献1及び2に記載の波長変換部材は、樹脂マトリックスを用いた波長変換部材と比べて、母材となるガラスマトリックスがLEDからの熱や照射光により劣化しにくく、変色や変形といった問題が生じにくい。 As a wavelength conversion member, there is conventionally known one in which an inorganic phosphor is dispersed in a resin matrix. However, when such a wavelength conversion member is used, the resin deteriorates due to the heat generated by the LED or high-energy short-wave light. , there is a problem that the luminance of the light-emitting device tends to be low. Therefore, instead of resin, a wavelength conversion member made of a completely inorganic solid, in which a phosphor is dispersed and fixed in a glass matrix, has been proposed. For example, in Patent Document 1, as a wavelength conversion member with little decrease in emission intensity over time, an inorganic phosphor is dispersed in a glass matrix, and the glass matrix is SiO 2 , B 2 O 3 , Al 2 O. 3 , Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, BaO, and ZnO, and the inorganic phosphor contains oxides of these oxide phosphors and nitride phosphors and the like are disclosed. Patent Document 2 describes SiO 2 , B 2 O 3 , and Al 2 O as glasses used for wavelength conversion materials that reduce deterioration of the characteristics of inorganic phosphors during firing and have excellent mechanical strength and weather resistance. 3 , Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and ZnO, and having a softening point of less than 700°C. In the wavelength conversion members described in Patent Documents 1 and 2, compared with wavelength conversion members using a resin matrix, the glass matrix as a base material is less likely to deteriorate due to heat and irradiation light from LEDs, and problems such as discoloration and deformation do not occur. unlikely to occur.

一方、特許文献3には、基板上に形成された窒化ガリウム系化合物半導体からなる発光層を備えた青色発光が可能な発光素子と、該発光素子上に設けられたコーティング部と、該コーティング部を保護するモールド部材とを有する発光ダイオードが開示されている。特許文献3に記載の発光ダイオードでは、前記コーティング部材は前記発光素子からの青色光の少なくとも一部を吸収し波長変換して蛍光を発する黄色のフォトルミネッセンス蛍光体を含むとともに、前記モールド部材にはモールド部材を乳白色にする拡散材が含まれている。 On the other hand, in Patent Document 3, a light emitting element capable of emitting blue light having a light emitting layer made of a gallium nitride compound semiconductor formed on a substrate, a coating portion provided on the light emitting element, and the coating portion A light emitting diode is disclosed that has a molding member that protects the . In the light-emitting diode described in Patent Document 3, the coating member includes a yellow photoluminescence phosphor that absorbs at least part of blue light from the light-emitting element and converts its wavelength to emit fluorescence, and the mold member includes A diffusive material is included which renders the mold member opalescent.

特開2015-199640号公報JP 2015-199640 A 特開2016-13945号公報JP 2016-13945 A 特開2000-208815号公報Japanese Patent Application Laid-Open No. 2000-208815

最近、発光装置のハイパワー化に伴い、光源として用いるLEDやLDの高出力が求められている。しかしながら、光源の熱や、励起光が照射された蛍光体から発せられる熱により波長変換体の温度が上昇し、発光強度が経時的に低下したり、また、場合によっては、構成材料が劣化するなどの問題が生じている。
そこで、本発明は、波長変換部材用のガラス部材であって、LEDやLDの光を照射した場合に、発光強度の低下や、構成材料の劣化が抑制された耐久性の高いガラス部材を提供することを課題とする。
2. Description of the Related Art Recently, as the power of light emitting devices becomes higher, there is a demand for higher output power of LEDs and LDs used as light sources. However, the temperature of the wavelength converter rises due to the heat of the light source and the heat emitted from the phosphor irradiated with the excitation light, the emission intensity decreases over time, and in some cases, the constituent materials deteriorate. and other problems are occurring.
Therefore, the present invention provides a highly durable glass member for use as a wavelength conversion member, which suppresses a decrease in emission intensity and deterioration of constituent materials when irradiated with light from an LED or LD. The task is to

本発明のガラス部材は、ガラスマトリックス中に無機蛍光体が分散してなるガラス部材であって、前記ガラスマトリックスはSiO2-B23系ガラスからなり、前記SiO2-B23系ガラス全量中、SiO260~70wt%、B 2 3 を15~25wt%、Al23を4~10wt%及びMgO+ZnOを0.1~0.7wt%含有し、その他の金属酸化物である残部が10.5wt%以下であることを特徴とする。
前記無機蛍光体の含有量はガラス部材の全体積における10vol%以上40vol%以下であることが好ましい。
前記ガラス部材のガラス領域におけるクリストバライト化率は1%以下であることが好ましい。
The glass member of the present invention is a glass member in which an inorganic phosphor is dispersed in a glass matrix, the glass matrix is made of SiO 2 —B 2 O 3 based glass, and the SiO 2 —B 2 O 3 based glass. 60 to 70 wt% of SiO 2 , 15 to 25 wt% of B 2 O 3 , 4 to 10 wt% of Al 2 O 3 and 0.1 to 0.7 wt% of MgO + ZnO in the total amount of the glass, and other metal oxides is 10.5 wt % or less .
The content of the inorganic phosphor is preferably 10 vol % or more and 40 vol % or less in the total volume of the glass member.
The cristobalite ratio in the glass region of the glass member is preferably 1% or less.

本発明のガラス部材は、出射光強度が高く、耐久性が高いので、波長変換部材に好適に用いられる。 INDUSTRIAL APPLICABILITY The glass member of the present invention has high emitted light intensity and high durability, and is therefore suitably used as a wavelength conversion member.

以下、本発明のガラス部材について、詳細に説明する。
本発明のガラス部材は、ガラスマトリックス中に無機蛍光体が分散してなる。前記ガラスマトリックスはSiO2-B23系ガラスで形成され、該SiO2-B23系ガラスはSiO2を主成分とし、Al23を4~10wt%、MgO+ZnOを0.1~0.7wt%含有する。ただし、SiO2-B23系ガラス全量、すなわち、SiO2、B23、Al23、MgO、ZnO及び残部の合計量を100wt%とする。
すなわち、上記ガラス部材は、少なくともSiO2、B23、Al23、ZnO及び/もしくはMgOを含む。
Hereinafter, the glass member of the present invention will be described in detail.
The glass member of the present invention has an inorganic phosphor dispersed in a glass matrix. The glass matrix is formed of SiO 2 -B 2 O 3 system glass, and the SiO 2 -B 2 O 3 system glass is mainly composed of SiO 2 , 4 to 10 wt % of Al 2 O 3 and 0.1 of MgO+ZnO. Contains ~0.7 wt%. However, the total amount of SiO 2 --B 2 O 3 -based glass, that is, the total amount of SiO 2 , B 2 O 3 , Al 2 O 3 , MgO, ZnO and the remainder is 100 wt %.
That is, the glass member contains at least SiO2 , B2O3 , Al2O3 , ZnO and/or MgO .

上記SiO2-B23系ガラスの主成分であるSiO2は、ガラスネットワークを形成する成分である。SiO2の含有量は、SiO2-B23系ガラス全量中、具体的には60~70wt%であり、より好ましくは62~65wt%である。SiO2の含有量が過少であると、ガラス部の結晶化が進行しやすく、結晶化が進行するにつれて、ガラス部材中での光散乱が増加する。すなわち、ガラス部材内を伝播する光の光路長が長くなり、光損失が大きくなるために出射光強度が低下しやすくなる。一方、SiO2の含有量が過大であると、ガラスの溶融性が悪くなり、ガラス部材を作製するためにより高い温度でガラスを溶融させなければならず、高温熱処理による無機蛍光体の劣化のため、波長変換効率が低下しやすくなる。 SiO 2 , which is the main component of the SiO 2 —B 2 O 3 -based glass, is a component that forms a glass network. The content of SiO 2 is specifically 60-70 wt %, more preferably 62-65 wt %, of the total amount of SiO 2 —B 2 O 3 -based glass. If the content of SiO 2 is too small, the crystallization of the glass portion tends to proceed, and as the crystallization progresses, light scattering in the glass member increases. That is, the optical path length of the light propagating through the glass member becomes longer and the light loss becomes larger, so that the emitted light intensity tends to decrease. On the other hand, if the SiO 2 content is too high, the meltability of the glass deteriorates, and the glass must be melted at a higher temperature in order to produce the glass member. , the wavelength conversion efficiency tends to decrease.

23はガラスの溶融温度を低下させて溶融性を著しく改善する成分である。B23の含有量は、SiO2-B23系ガラス全量中、15~25wt%であることが好ましい。B23の含有量が15wt%未満であると、ガラスの溶融性を向上させる効果が十分でなく、ガラス部材を作製するのに高温で溶融させなければならず、高温熱処理による無機蛍光体の劣化のため、波長変換効率が低下しやすくなる。一方、B23の含有量が25wt%を超えると、ガラス部材のガラス部分における耐水性などが低下し、ガラス部材としての耐久性が低下することがある。 B 2 O 3 is a component that lowers the melting temperature of the glass to remarkably improve the meltability. The content of B 2 O 3 is preferably 15 to 25 wt % in the total amount of SiO 2 —B 2 O 3 based glass. If the content of B 2 O 3 is less than 15 wt %, the effect of improving the meltability of the glass is not sufficient, and the glass member must be melted at a high temperature to produce the inorganic phosphor by high-temperature heat treatment. , the wavelength conversion efficiency tends to decrease. On the other hand, if the content of B 2 O 3 exceeds 25 wt %, the water resistance of the glass portion of the glass member may deteriorate, and the durability of the glass member may deteriorate.

Al23はクリストバライト化を抑制させ、耐久性や機械的強度も向上させる成分である。Al23の含有量は、SiO2-B23系ガラス全量中、4~10wt%であり、好ましくは7~9wt%である。Al23の含有量が4wt%未満であると、ガラスのクリストバライト化抑制効果が十分に得られないため、ガラス部材中のガラス領域がクリストバライト化しやすく、ガラス部材中での光散乱が増加する傾向にある。すなわち、クリストバライト化の進行により、多くの結晶核が成長して結晶粒の集合体となるため、光路長が長くなり、光損失が大きくなるために出射光強度が低下しやすくなる。一方、Al23の含有量が10wt%を超えると、ガラス部材のガラス部分における耐水性などが低下し、ガラス部材としての耐久性が低下する傾向がある。 Al 2 O 3 is a component that suppresses cristobalite formation and improves durability and mechanical strength. The content of Al 2 O 3 is 4-10 wt %, preferably 7-9 wt %, in the total amount of the SiO 2 --B 2 O 3 -based glass. If the content of Al 2 O 3 is less than 4 wt %, the effect of suppressing the formation of cristobalite in the glass cannot be sufficiently obtained, so that the glass region in the glass member tends to become cristobalite, and the light scattering in the glass member increases. There is a tendency. That is, as the formation of cristobalite progresses, many crystal nuclei grow to form aggregates of crystal grains, which increases the optical path length and increases the light loss, which tends to reduce the intensity of emitted light. On the other hand, if the content of Al 2 O 3 exceeds 10 wt %, the water resistance of the glass portion of the glass member tends to decrease, and the durability of the glass member tends to decrease.

MgO+ZnOは、ガラスの溶融温度を低下させて溶融性を改善する成分であり、軟化点を低下させる成分でもある。SiO2-B23系ガラス全量中、MgO及びZnOの含有量は、合計して0.1~0.7wt%であり、好ましくは0.4~0.6wt%である。MgO及びZnOの合計含有量が0.1wt%未満であると、ガラスの溶融性を向上させる効果が十分でなく、ガラス部材を作製するのに高温でガラスを溶融させなければならず、高温熱処理による無機蛍光体の劣化のため、波長変換効率が低下しやすくなる。一方、MgO及びZnOの合計含有量が0.7wt%を超えると、ガラス部分における耐水性などが低下し、ガラス部材としての耐久性が低下する傾向がある。 MgO+ZnO is a component that lowers the melting temperature of the glass to improve the meltability, and is also a component that lowers the softening point. The total content of MgO and ZnO is 0.1 to 0.7 wt%, preferably 0.4 to 0.6 wt%, in the total amount of SiO 2 -B 2 O 3 based glass. If the total content of MgO and ZnO is less than 0.1 wt%, the effect of improving the meltability of the glass is not sufficient, and the glass must be melted at a high temperature to produce a glass member, requiring high-temperature heat treatment. The wavelength conversion efficiency tends to decrease due to the deterioration of the inorganic phosphor due to this. On the other hand, when the total content of MgO and ZnO exceeds 0.7 wt %, the water resistance of the glass portion tends to deteriorate, and the durability of the glass member tends to deteriorate.

上記無機蛍光体は、一般的な無機蛍光体、例えば、ガーネット系化合物(YAG:Ceなど)、窒化物(CaAlSiN3など)、酸窒化物(αサイアロン(SiAlON)、βサイアロンなど)等の蛍光体である。
ところで、これらの無機蛍光体は、ガラスよりも屈折率が高い。例えば、波長変換用ガラス部材において、屈折率の高い無機蛍光体と、屈折率の小さいガラスとを組み合わせて用いると、無機蛍光体とガラスマトリックスの界面で励起光が散乱される。両者の屈折率の差が大きいと、無機蛍光体に対する励起光の照射効率が高くなり、波長変換効率が向上する。ただし、両者の屈折率の差が大きすぎると、励起光の散乱が過剰となり、散乱損失となって、かえって波長変換効率が低下する。
The inorganic phosphor is a general inorganic phosphor such as a garnet compound (YAG:Ce, etc.), a nitride (CaAlSiN3 , etc.), an oxynitride (α-sialon (SiAlON), β-sialon, etc.). is the body.
By the way, these inorganic phosphors have a higher refractive index than glass. For example, in a wavelength conversion glass member, if an inorganic phosphor with a high refractive index and glass with a low refractive index are used in combination, excitation light is scattered at the interface between the inorganic phosphor and the glass matrix. When the difference between the refractive indices of the two is large, the irradiation efficiency of the excitation light to the inorganic phosphor is increased, and the wavelength conversion efficiency is improved. However, if the difference between the refractive indices of the two is too large, the excitation light will be scattered excessively, resulting in scattering loss and rather reducing the wavelength conversion efficiency.

上記ガラス部材中、無機蛍光体の含有量はガラス部材の全体積における10vol%以上40vol%以下が好ましく、14vol%以上26vol%以下がより好ましい。無機蛍光体の含有量が10vol%以上40vol%以下であるとき、ガラス部材を透過する光の波長光量が増加し、無機蛍光体による散乱や反射光量が少ないため発光強度が増加する。無機蛍光体の含有量が10vol%未満であると、所望の発光強度を得られにくいことがある。一方、無機蛍光体の含有量が40vol%を超えると、ガラスマトリックス中に分散しにくくなったり、また、気孔率が大きくなるために、励起光が効率良く無機蛍光体に照射されにくくなる。また、ガラス部材の機械的強度が低下する傾向にある。 The content of the inorganic phosphor in the glass member is preferably 10 vol % or more and 40 vol % or less, more preferably 14 vol % or more and 26 vol % or less, in the total volume of the glass member. When the content of the inorganic phosphor is 10 vol % or more and 40 vol % or less, the amount of wavelength light transmitted through the glass member increases, and the amount of light scattered and reflected by the inorganic phosphor increases, resulting in an increase in emission intensity. If the content of the inorganic phosphor is less than 10 vol %, it may be difficult to obtain the desired emission intensity. On the other hand, if the content of the inorganic phosphor exceeds 40 vol %, it becomes difficult to disperse in the glass matrix and the porosity increases, so that the excitation light is difficult to efficiently irradiate the inorganic phosphor. Also, the mechanical strength of the glass member tends to decrease.

上記ガラス部材は、ガラスマトリックス中に上記無機蛍光体を分散してなる。前記ガラスの高温熱処理前における形状は、粉末状の無機蛍光体と均一に混合し、高温熱処理するという観点から、粉末状であることが好ましい。ガラスが粉末状である場合、レーザー回折法による、最大粒子径(Dmax)は150μm以下、平均粒子径(D50)は0.1μm以上であることが好ましい。最大粒子径(Dmax)が150μmを超えると、得られる波長変換部材において、励起光が散乱しにくくなり発光効率が低下する傾向にある。一方、平均粒子径(D50)が0.1μm未満であると、ガラス部材において、励起光が過剰に散乱して発光効率が低下しやすくなる。最大粒子径(Dmax)は30μm以下、平均粒子径(D50)は0.5μm以上10μm以下であることがさらに好ましい。また、前記ガラスの軟化点は好ましくは400~850℃、より好ましくは500~810℃である。軟化点が400℃未満であると、ガラス部材の機械的強度及び耐久性が低下する傾向がある。一方、軟化点が850℃を超えると、波長変換材料の熱処理温度が高くなるため、熱処理時に無機蛍光体が劣化しやすくなる。 The glass member is formed by dispersing the inorganic phosphor in a glass matrix. The shape of the glass before the high-temperature heat treatment is preferably powdery from the viewpoint of uniform mixing with the powdery inorganic phosphor and high-temperature heat treatment. When the glass is in the form of powder, it preferably has a maximum particle size (Dmax) of 150 µm or less and an average particle size (D50) of 0.1 µm or more as determined by a laser diffraction method. If the maximum particle diameter (Dmax) exceeds 150 µm, the resulting wavelength conversion member will tend to scatter excitation light less easily, resulting in lower luminous efficiency. On the other hand, when the average particle diameter (D50) is less than 0.1 μm, the excitation light is excessively scattered in the glass member, and the luminous efficiency tends to decrease. More preferably, the maximum particle size (Dmax) is 30 µm or less, and the average particle size (D50) is 0.5 µm or more and 10 µm or less. Also, the softening point of the glass is preferably 400 to 850°C, more preferably 500 to 810°C. If the softening point is lower than 400°C, the mechanical strength and durability of the glass member tend to decrease. On the other hand, when the softening point exceeds 850° C., the heat treatment temperature of the wavelength conversion material becomes high, so that the inorganic phosphor tends to deteriorate during the heat treatment.

本発明のSiO2-B23系ガラスは、本発明の効果を損なわない範囲内で、前記したSiO2、B23、Al23、MgO及びZnO以外に、その他の金属又は金属酸化物が少量含まれていてもよい。例えば、Li2O、Na2O、及びK2O等の成分を含有してもよい。これらの成分はガラスの融点を低下させて溶融性を改善する成分であるが、ガラスの軟化点を低下させるため、耐久性を維持するために、その含有量は、SiO2-B23系ガラス全量中、合計で0.01~5wt%程度とする。 The SiO 2 —B 2 O 3 -based glass of the present invention contains other metals or Small amounts of metal oxides may also be included. For example, components such as Li2O , Na2O , and K2O may be included. These components are components that lower the melting point of the glass and improve the meltability . The total amount is about 0.01 to 5 wt% in the total amount of the system glass.

上記ガラス部材のガラス相におけるクリストバライト化率は1%以下であることが好ましい。クリストバライト化率が1%以下であれば、ガラス部材中での光散乱が増加しにくいため、光損失が増加せず、出射光強度、すなわち発光効率の向上に繋がる。このようなガラス相の含有量は、ガラス部材中、60~80wt%であることが好ましい。
また、上記ガラス部材の開気孔率は、0.1%以下であることが好ましい。
The cristobalite ratio in the glass phase of the glass member is preferably 1% or less. If the cristobalite conversion rate is 1% or less, light scattering in the glass member is less likely to increase, so light loss does not increase, leading to an improvement in emitted light intensity, that is, luminous efficiency. The content of such a glass phase is preferably 60-80 wt % in the glass member.
Further, the open porosity of the glass member is preferably 0.1% or less.

本発明のガラス部材は、ガラス及び無機蛍光体の混合物からなる成形体を焼成することにより製造する。焼成温度は、通常、ガラスの軟化点±150℃以内の範囲である。焼成温度が低すぎると、ガラスが流動せず、緻密な焼結体が得られにくい。一方、焼成温度が高すぎると、無機蛍光体がガラス中で反応して発光強度が低下したり、無機蛍光体に含まれる成分がガラス中に拡散してガラスが着色し、発光強度が低下することがある。さらに形状の変形や、組成の偏析等が起こりうる。 The glass member of the present invention is produced by firing a molded body made of a mixture of glass and inorganic phosphor. The firing temperature is usually within ±150° C. of the softening point of the glass. If the firing temperature is too low, the glass will not flow, making it difficult to obtain a dense sintered body. On the other hand, if the firing temperature is too high, the inorganic phosphor reacts in the glass to reduce the emission intensity, or the components contained in the inorganic phosphor diffuse into the glass, coloring the glass and reducing the emission intensity. Sometimes. Further, deformation of shape, segregation of composition, etc. may occur.

焼成は大気雰囲気下で行う。これにより、ガラス部材中に残存する気泡の量を少なくすることができる。その結果、ガラス部材内の散乱因子を少なくでき、発光効率を向上させることができる。 Firing is performed in an air atmosphere. As a result, the amount of air bubbles remaining in the glass member can be reduced. As a result, the scattering factor in the glass member can be reduced, and the luminous efficiency can be improved.

本発明のガラス部材は、例えば、白色LED等の一般照明や、プロジェクタ光源、自動車のヘッドランプ光源等の波長変換部材に好適に用いられる。また、その形状も特に制限されず、例えば、板状、柱状、半球状、半球ドーム状等、それ自身が特定の形状を有する部材として用いてもよいし、ガラス基板やセラミック基板等の基材表面に焼結体を被膜状に形成させて用いてもよい。 The glass member of the present invention is suitably used for general illumination such as white LEDs, projector light sources, and wavelength conversion members such as automobile headlamp light sources. Also, the shape is not particularly limited, and for example, it may be used as a member having a specific shape such as plate-like, columnar, hemispherical, hemispherical dome-like, or a substrate such as a glass substrate or a ceramic substrate. A sintered body may be formed on the surface in the form of a film before use.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は、下記実施例により制限されるものではない。 EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to the following examples.

[実施例1~14]及び[比較例1~4]
表1に示すガラス粉末及び無機蛍光体粉末と、バインダーとを混合後、成形して、□20mm、厚み0.25mmの成形体を作製した。次に、大気中において、それぞれ800℃で30分間加熱することにより溶融し、無機蛍光体が分散したガラス部材を得た。得られたガラス部材の発光効率を測定した。本試験に係るガラス部材を□1mmの試料に加工後、青色LED素子(発光領域:□1mm、発光波長:460nm)上にシリコーン樹脂で固定した。
積分球内で、蛍光体に青色光を入射し、分光器で蛍光スペクトルを測定した。得られた蛍光スペクトルから、吸収エネルギーと蛍光エネルギーを求め、その割合を発光効率とした。
次に、ガラス部材を温度85℃、湿度85%の条件下で1000時間放置した後、上記と同様に発光効率を測定して、発光効率の低下が2%以下である場合は耐久性が良好(○)、発光効率の低下が2%を超える場合は耐久性が不良(×)とした。
クリストバライト化率は粉末X線回折法で行うθ-2θ法にて測定を行い、22°付近で現れるピークの面積(結晶成分のピーク面積+非晶成分のハローパターン面積)に対する結晶成分のピーク面積の比から算出した。クリストバライト化率が1%以内である場合は良好(〇)、1%を超える場合は不良(×)とした。
結果を表1に表す。
[Examples 1 to 14] and [Comparative Examples 1 to 4]
After mixing the glass powder and the inorganic phosphor powder shown in Table 1 with a binder, the mixture was molded to prepare a compact having a square of 20 mm and a thickness of 0.25 mm. Next, the glass members were melted by heating at 800° C. for 30 minutes in the atmosphere to obtain glass members in which the inorganic phosphor was dispersed. Luminous efficiency of the obtained glass member was measured. After processing the glass member according to this test into a sample of □ 1 mm, it was fixed on a blue LED element (light emitting region: □ 1 mm, emission wavelength: 460 nm) with silicone resin.
Blue light was incident on the phosphor inside the integrating sphere, and the fluorescence spectrum was measured with a spectrometer. From the obtained fluorescence spectrum, absorption energy and fluorescence energy were obtained, and the ratio thereof was defined as luminous efficiency.
Next, after leaving the glass member under conditions of a temperature of 85° C. and a humidity of 85% for 1000 hours, the luminous efficiency is measured in the same manner as described above. If the decrease in luminous efficiency is 2% or less, the durability is good. (O), and when the decrease in luminous efficiency exceeded 2%, the durability was evaluated as poor (X).
The cristobalite conversion rate is measured by the θ-2θ method performed by the powder X-ray diffraction method, and the peak area of the crystalline component with respect to the area of the peak appearing around 22° (the peak area of the crystalline component + the halo pattern area of the amorphous component) calculated from the ratio of When the cristobalite conversion rate was within 1%, it was evaluated as good (◯), and when it exceeded 1%, it was evaluated as poor (x).
The results are presented in Table 1.

Figure 0007184662000001
Al23の量が少ない比較例1では、クリストバライト化率が1%を超えていた。これは、ガラス内部でクリストバライト化が進行したことによるためと考えられる。
比較例3は発光効率91%で出射光強度が低下した。
一方、Al23の量が多い比較例2、及びMgO+ZnOの量が多い比較例4では、耐久性の低下が示唆された。
Figure 0007184662000001
In Comparative Example 1 in which the amount of Al 2 O 3 was small, the cristobalite conversion rate exceeded 1%. This is considered to be due to progress of cristobalite formation inside the glass.
In Comparative Example 3, the emission efficiency was 91%, and the emitted light intensity was lowered.
On the other hand, Comparative Example 2 with a large amount of Al 2 O 3 and Comparative Example 4 with a large amount of MgO+ZnO suggested a decrease in durability.

Claims (3)

ガラスマトリックス中に無機蛍光体が分散してなるガラス部材であって、
前記ガラスマトリックスはSiO2-B23系ガラスからなり、
前記SiO2-B23系ガラス全量中、SiO260~70wt%、B 2 3 を15~25wt%、Al23を4~10wt%及びMgO+ZnOを0.1~0.7wt%含有し、その他の金属酸化物である残部が10.5wt%以下であることを特徴とするガラス部材。
A glass member in which an inorganic phosphor is dispersed in a glass matrix,
The glass matrix is made of SiO 2 —B 2 O 3 based glass,
60 to 70 wt % of SiO 2 , 15 to 25 wt % of B 2 O 3 , 4 to 10 wt % of Al 2 O 3 and 0.1 to 0.7 wt % of MgO+ZnO in the total amount of the SiO 2 —B 2 O 3 system glass. % and the balance of other metal oxides is 10.5 wt % or less .
前記無機蛍光体の含有量が10vol%以上40vol%以下であることを特徴とする請求項1に記載のガラス部材。 2. The glass member according to claim 1, wherein the content of said inorganic phosphor is 10 vol % or more and 40 vol % or less. 前記ガラス部材中のガラス領域におけるクリストバライト化率が1%以下であることを特徴とする請求項1又は2に記載のガラス部材。 3. The glass member according to claim 1, wherein the cristobalite ratio in the glass region of the glass member is 1% or less.
JP2019024506A 2018-03-02 2019-02-14 glass member Active JP7184662B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/290,634 US11072555B2 (en) 2018-03-02 2019-03-01 Glass member
DE102019202785.7A DE102019202785B4 (en) 2018-03-02 2019-03-01 Glass element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018037782 2018-03-02
JP2018037782 2018-03-02

Publications (2)

Publication Number Publication Date
JP2019151546A JP2019151546A (en) 2019-09-12
JP7184662B2 true JP7184662B2 (en) 2022-12-06

Family

ID=67948159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019024506A Active JP7184662B2 (en) 2018-03-02 2019-02-14 glass member

Country Status (1)

Country Link
JP (1) JP7184662B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541335A (en) 2005-07-29 2008-11-20 松下電器産業株式会社 Fluorescent lamp, backlight unit
JP2011518752A (en) 2008-04-29 2011-06-30 ショット アクチエンゲゼルシャフト Conversion materials for white or colored light sources, particularly including semiconductor light sources, methods of manufacturing the same, and light sources including said conversion materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6880528B2 (en) * 2016-06-27 2021-06-02 日本電気硝子株式会社 Wavelength conversion member and light emitting device using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541335A (en) 2005-07-29 2008-11-20 松下電器産業株式会社 Fluorescent lamp, backlight unit
JP2011518752A (en) 2008-04-29 2011-06-30 ショット アクチエンゲゼルシャフト Conversion materials for white or colored light sources, particularly including semiconductor light sources, methods of manufacturing the same, and light sources including said conversion materials

Also Published As

Publication number Publication date
JP2019151546A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP7022398B2 (en) Wavelength conversion member and light emitting device using it
KR102422069B1 (en) Wavelength conversion member and light emitting device using same
JP6425001B2 (en) Wavelength conversion material, wavelength conversion member and light emitting device
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
TW201808844A (en) Wavelength conversion member
JP7184662B2 (en) glass member
WO2019065011A1 (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP7023745B2 (en) Wavelength conversion member
US11072555B2 (en) Glass member
JP7205808B2 (en) WAVELENGTH CONVERSION MEMBER AND LIGHT-EMITTING DEVICE USING THE SAME
JP7382013B2 (en) Wavelength conversion member and light emitting device using the same
JP6861952B2 (en) Wavelength conversion member and light emitting device using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221124

R150 Certificate of patent or registration of utility model

Ref document number: 7184662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350