JP7184134B2 - 端末および方法 - Google Patents

端末および方法 Download PDF

Info

Publication number
JP7184134B2
JP7184134B2 JP2021148239A JP2021148239A JP7184134B2 JP 7184134 B2 JP7184134 B2 JP 7184134B2 JP 2021148239 A JP2021148239 A JP 2021148239A JP 2021148239 A JP2021148239 A JP 2021148239A JP 7184134 B2 JP7184134 B2 JP 7184134B2
Authority
JP
Japan
Prior art keywords
unit
grant
processing
information
path loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021148239A
Other languages
English (en)
Other versions
JP2022000966A5 (ja
JP2022000966A (ja
Inventor
貴大 矢崎
潤一 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2021148239A priority Critical patent/JP7184134B2/ja
Publication of JP2022000966A publication Critical patent/JP2022000966A/ja
Publication of JP2022000966A5 publication Critical patent/JP2022000966A5/ja
Application granted granted Critical
Publication of JP7184134B2 publication Critical patent/JP7184134B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、無線通信の制御方法に関する。
3GPPでは、高速データ通信を実現する移動通信システムとして、LTE及びLTE-Advanced以降の次世代の通信規格に関する検討が進められている。ここで、3GPPは、3rd Generation Partnership Projectの略である。また、LTEは、Long Term Evolutionの略である。また、LTE-AdvancedはLong Term Evolution Advancedの略である。その次世代の通信規格は例えば5G(5th Generation)に向けた通信規格である。
非特許文献1によると、5Gに向けた通信規格においては、LTEと比較して1000倍以上のシステム容量の大容量化、100倍程度のユーザ体感データ伝送速度及び1ms以下の低遅延化が求められる。また、非特許文献1によると、5Gに向けた通信規格においては、さらに、100倍以上の端末の同時接続、低コスト及び省電力化が求められる。これらの要求条件を満たすために、LTEにて使用されている周波数帯域幅よりもさらに帯域幅を広げることが検討されている。
ここで、LTEにおいて、移動局が基地局に情報を送信するとき、物理チャネルの一つとして、PUSCHが使用される。ここで、PUSCHはPhysical Uplink Shared Channelの略であり、物理上りリンク共有チャネルを意味する。
PUSCHの電力値は次に表す式1で制御される(非特許文献2参照)。
Figure 0007184134000001
式1における添え字のcは、サービングセルを表す。また、インデックスiはサブフレーム番号を表す。また、PPUSCH,c(i)は、PUSCHの送信電力値である。PCMAX,cは最大送信電力値である。また、MPUSCH,c(i)は、PUSCHのリソースブロック数である。また、PO_PUSCH,c(j)はセル固有のPUSCHの基本となる送信電力である。また、α(j)は伝播損失(パスロス)に乗算する補償係数である。また、PLはパスロスである。また、ΔTF,c(i)は変調方式等によるオフセット値である。また、f(i)は基地局から指示されたPUSCHに関するTPCコマンドの累積値である。ここで、TPCはTransmit Power Controlの略である。
移動局は自らの送信可能電力を、PHRを用いて基地局に報告している。ここで、PHRは、Power Headroom Reportの略である。
移動局が基地局に報告するPHRの値は、PUSCHとPUCCHを同時に送信しない場合は、次の式2により表される。ここで、PUCCHは、Physical Uplink Control Channelの略であり、物理上りリンク制御チャネルを意味する(非特許文献2参照)。
Figure 0007184134000002
ここで、PCMAX,c、MPUSCH,c(i)、POPUSCH,c(j)、α(j)、PLc、ΔTF,c(i)、f(i)は前述の通りである。
一方、基地局内において設定されたTPCコマンド、MCSは、上りリンクリソース割当てなどと共にDCIとして、PDCCHを用いて移動局へ通知される。ここで、MCSは、Modulation and Coding Schemeの略である。また、DCIはDownlink Control Informationの略である。また、PDCCHはPhysical Downlink Control Channelの略であり、物理下りリンク制御チャネルを意味する。
「ドコモ5Gホワイトペーパー 2020年以降の5G無線アクセスにおける要求条件と技術コンセプト」、株式会社NTTドコモ、2014年9月、[平成29年7月19日検索]、インターネット(https://www.nttdocomo.co.jp/binary/pdf/corporate/technology/whitepaper_5g/DOCOMO_5G_White_PaperJP_20141006.pdf) 3GPP TS 36.213 V13.4.0 (2016-12)、[平成29年7月19日検索]、インターネット(http://www.3gpp.org/ftp/Specs/2016-12/Rel-13/36_series/36213-d40.zip)
一般に、パスロスの値は、チャネル干渉や自由空間伝播損失等の周波数変化により、周波数により変化する。そのため、5Gにおいて想定されるように、周波数帯域幅がLTEの帯域幅と比較してより広くなる場合、定められた周波数帯域内であっても、実際に通信が行われる通信周波数によってパスロスの値に大きな差が生じる可能性が高くなる。
非特許文献2においては、移動局は、周波数帯域ごとに一つのパスロスからPHRを導出することが記述されている。しかしながら、ある周波数帯域内であっても、パスロスの値は実際に使用される通信周波数により異なる。そして、周波数帯域の幅が広くなると、実際に使用される通信周波数(以下、「実周波数」という。)のパスロスは、導出したパスロスから乖離する確率が増大する。
基地局はPHRによりTPCコマンドやMCS(Modulation and Coding Scheme)を決定する。そして、基地局は、TPCコマンドやMCSにより、移動局に電力制御や変調符号化制御を行わせる。そのため、基地局は、実周波数のパスロスから乖離した導出されたパスロスから導出した、実周波数であるべきPHRから乖離した導出されたPHRを受信すると、正しい電力制御や変調符号化制御を移動局に行わせることができない。すなわち、周波数帯域の帯域幅が広くなると、通信システムは、正しい電力制御や変調符号化制御を行うことができない確率が増大する。
本発明は、電力制御及び変調符号化制御をより適切に行い得る通信システム等の提供を目的とする。
本発明の通信システムは、第一通信機と第二通信機との間で行う無線による通信に割り当てられた周波数帯域を分割し、分割された周波数帯域である部分帯域を生成する分割部と、前記部分帯域の少なくとも一つについて、前記通信に係る伝播損失の導出を行うパスロス導出部と、前記伝播損失から制御情報の導出を行う制御情報導出部と、前記制御情報から、送信電力制御及び変調符号化制御のうちの少なくともいずれかを行う制御部と、を備える。
本発明の通信システム等は、電力制御及び変調符号化制御をより適切に行い得る。
本実施形態の通信システムの構成例を表す概念図である。 基地局の処理部の構成例を表す概念図である。 移動局の処理部の構成例を表す概念図である。 各部分帯域ごとに機能部の各々を分割した処理部の構成例を表す概念図である。 基地局及び移動局の処理部が行う処理例を表すシーケンスチャートである。 分割部が行う処理の処理フロー例を表す概念図である。 パスロス導出部が行う処理の処理フロー例を表す概念図である。 PHR導出部が行う処理の処理フロー例を表す概念図である。 ULグラント決定部が行う処理の処理フロー例を表す概念図である。 ULグラント更新部が行う処理の処理フロー例を表す概念図である。 TPCコマンド累積部が行う処理の処理フロー例を表す概念図である。 電力制御部が行う処理の処理フロー例を表す概念図である。 変調符号化制御部が行う処理の処理フロー例を表す概念図である。 各部分帯域ごとに異なる副ULグラントが設定及び更新されるULグラントの例を表すイメージ図である。 複数の部分帯域に対して共通の副ULグラントが設定されるULグラントの例を表すイメージ図である。 境界周波数を境に副ULグラントに割り当てられる情報が異なるULグラントの例を表すイメージ図である。 TPCコマンド用の部分帯域とMCS用部分帯域とが別々に設定されるULグラントの例を表すイメージ図である。 所定の副グラントのみを更新するULグラントの例を表すイメージ図である。 基地局による分割情報の導出とは独立して分割情報を導出し得る移動局の処理部の例を表す概念図である。 本実施形態の通信システムの最小限の構成を表す概念図である。
[構成と動作]
図1は、本実施形態の通信システムの例である通信システム100の構成を表す概念図である。
通信システム100は、基地局101と移動局201とを備える。
基地局101は、通信部106と処理部111と記録部116とを備える。
移動局201は、通信部206と処理部211と記録部216とを備える。
通信部106は、処理部111の指示に従い、処理部111から送られた情報を、移動局201に向けて、無線により送信する。通信部106は、また、移動局201から無線により送られた情報を受信し、受信した情報である受信情報を、処理部111に送る。当該受信情報には、後述の、分割された各周波数帯域(各部分帯域)についてのPHR(各PHR)が含まれる。
処理部111は、記録部116から読み込んだ周波数帯域を分割する。ここで、前記周波数帯域は、基地局101と移動局201との間で行われる通信に割り当てられた周波数帯域である。処理部111は、分割した周波数帯域(部分帯域)を表す情報である分割情報を、記録部116に記録させる。当該分割情報は、例えば、基地局101と移動局201との間の通信に用いられる周波数領域を分割して生成された各部分帯域についての最小周波数と最大周波数を表す情報である。
処理部111は、また、移動局201から受信したから各部分帯域についてのPHRからULグラントを導出する。ここで、PHRについては、背景技術の項で説明した通りである。また、ULはUp Linkの略である。当該ULグラントには、各部分帯域についてのULグラントである副ULグラントが含まれる。各副ULグラントには、その部分帯域についてのTPCコマンドである副TPCコマンドとその部分帯域についてのMCSである副MCSとが含まれる。ULグラント、TPCコマンド及びMCSは、非特許文献2に記述されている。
処理部111は、また、種々の送信情報を、通信部106に対し、通信部206に送付させる。当該送信情報には、前述の分割情報やULグラントが含まれる。
処理部111は、また、通信部106から送られた情報に対し、所定の処理を行う。当該処理には、前述のULグラントの導出が含まれる。
記録部116は、処理部111の指示により、指示された情報を記録する。記録部116は、また、処理部111の指示により、指示された情報を処理部111に送る。
移動局201の通信部206は、処理部211の指示に従い、処理部211から送られた情報を、移動局201に向けて、無線により送信する。通信部206は、また、通信部206から無線により送られた情報を受信し、受信した情報(受信情報)を、処理部211に送る。当該受信情報には、前述のULグラントが含まれる。
処理部211は、基地局101から送付された前述の分割情報を記録部216に記録させる。処理部211は、また、各部分帯域についての伝播損失であるパスロス(各パスロス)を導出する。パスロスの導出方法は、非特許文献2に記述されている。処理部211は、導出した各パスロスを、記録部216に記録させる。
処理部211は、また、各パスロスから、各部分帯域についてのPHR(各PHR)を導出する。処理部211は、導出した各PHRを、記録部216に記録させる。処理部211は、さらに、導出した各PHRを通信部206に、基地局101に向けて送信させる。
処理部211は、また、基地局101から送付されたULグラントに含まれる各TPCコマンドから、各部分帯域ごとのTPCコマンド累積値(各TPCコマンド累積値)を導出する。TPCコマンドは数値で与えられるものである。TPCコマンド及びTPCコマンド累積値について非特許文献2に記述されている。そして、処理部211は、各パスロスと各TPCコマンド累積値とから、通信部206が、各部分帯域の周波数を用いて送信する際の送信電力の制御(送信電力制御)を行う。当該送信電力制御の方法は、非特許文献2に記述されている。
処理部211は、また、基地局101から送付されたULグラントに含まれる各部分帯域ごとのMCSにより、通信部206が送信する際の、部分帯域ごとの変調符号化に関する制御(変調符号化制御)を行う。当該変調符号化制御の方法は、非特許文献2に記述されている。
処理部211は、種々の送付用情報を、通信部206に送信させる。当該送付用情報には、前述の各PHRが含まれる。
処理部211は、また、通信部206から送られた情報に対し、上記処理以外にも処理を行う場合がある。
記録部216は、処理部211の指示により、指示された情報を記録する。記録部216は、また、処理部211の指示により、指示された情報を処理部211に送る。
図2は、図1に表す基地局101の処理部111の例である処理部111aの構成を表す概念図である。
処理部111aは、分割部112とULグラント決定部113とを備える。
分割部112は、記録部116から読み込んだ上述の周波数帯域を分割し、複数の部分帯域を導出する。分割部112は、各部分帯域を表す情報である分割情報を、記録部116に記録させる。
ULグラント決定部113は、図1に表す移動局201から受信したPHRによりULグラントを導出する。当該ULグラントには、各部分帯域についてのTPCコマンドやMCSが含まれる。ULグラント決定部113は、導出したULグラントを記録部116に記録させる。ULグラント決定部113は、また、導出したULグラントを通信部106に、図1に表す移動局201に向けて送信させる。
図3は、図1に表す移動局201の処理部211の例である処理部211aの構成を表す概念図である。
処理部211aは、パスロス導出部221と、PHR導出部226と、ULグラント更新部231と、TPCコマンド累積部236と、電力制御部241と、変調符号化制御部246とを備える。
パスロス導出部221は、基地局101から送付された前述の分割情報を記録部216に記録させる。パスロス導出部221は、また、各部分帯域についてのパスロス(各パスロス)を導出する。当該各パスロスは、例えば、各部分帯域の中心周波数についてのパスロスである。パスロス導出部221は、導出した各パスロスを、記録部216に記録させる。
PHR導出部226は、記録部116から、前述の各パスロスを読み込む。そして、PHR導出部226は、前記各パスロスから、前述の各PHRを導出する。PHR導出部226は、導出した各PHRを、記録部216に記録させる。PHR導出部226は、さらに、通信部206に、導出した各PHRを基地局101に向けて送信させる。
TPCコマンド累積部236は、基地局101から送付されたULグラントに含まれる各TPCコマンドから、前述の各TPCコマンド累積値を導出する。そして、処理部211は、各パスロスと各TPCコマンド累積値とから、通信部206が、各部分帯域の周波数を用いて行う送信に係る送信電力制御を行う。当該送信電力制御の方法は、非特許文献2に記載されている。
処理部211は、また、基地局101から送付されたULグラントに含まれる各部分帯域のMCSにより、通信部206が送信する際の前記変調符号化制御を行う。前記変調符号化制御の方法は、非特許文献2に記載されている。
図3に表す処理部211aは、分割された部分帯域ごとに、機能部を分割して、処理を行っても構わない。ここで、機能部は、パスロス導出部221、PHR導出部226及びTPCコマンド累積部236をいうこととする。
図4は、各部分帯域ごとに機能部の各々を分割した処理部211aの例である処理部211bの構成を表す概念図である。
処理部211bは、管理部256と、パスロス導出部221bと、PHR導出部226bと、ULグラント更新部231と、TPCコマンド累積部236bと、電力制御部241と、変調符号化制御部246とを備える。
管理部256は、図1に表す基地局101から移動局201に送られた前記分割情報を通信部206から受けると、パスロス導出部221b、PHR導出部226b及びTPCコマンド累積部236bからなる機能部を生成する。図4には機能部が生成された後の処理部211bを表す。
パスロス導出部221bは、第1パスロス導出部2211乃至第Nパスロス導出部221Nの、N個のパスロス導出部を備える。第nパスロス導出部221n(nは1以上N以下の整数)は、n番目の部分帯域についてのパスロスを導出する部分である。
PHR導出部226bは、第1PHR導出部2261乃至第NPHR導出部226Nの、N個のパスロス導出部を備える。第nPHR導出部226n(nは1以上N以下の整数)は、n番目の部分帯域についてのPHRを導出する部分である。
TPCコマンド累積部236bは、第1TPCコマンド累積部2361乃至第NTPCコマンド累積部236Nの、N個のパスロス導出部を備える。第nTPCコマンド累積部236n(nは1以上N以下の整数)は、n番目の部分帯域についてのTPCコマンド累積値を導出する部分である。
管理部256は、通信部206から通信部206が実際に通信に用いる周波数を取得する。そして、管理部256は、取得した周波数が属する部分帯域を特定する。そして、管理部256は、特定した周波数に対応する、パスロス導出部221n、PHR導出部226n及びTPCコマンド累積部236nを選択する。管理部256は、選択したパスロス導出部221n、PHR導出部226n及びTPCコマンド累積部236nに、パスロス導出部221、PHR導出部226及びTPCコマンド累積部236のそれぞれが行う前述の処理を行わせる。
図4に表す、ULグラント更新部231、電力制御部241及び変調符号化制御部246の各々が行う処理の説明は、図3に表すULグラント更新部231、電力制御部241及び変調符号化制御部246の各々が行う処理の説明と同じである。ただし、図3を参照しての説明においてパスロス導出部221、PHR導出部226及びTPCコマンド累積部236の各々は、この順に、パスロス導出部221b、PHR導出部226b及びTPCコマンド累積部236bの各々に読み替える。
[処理フロー例]
図5は、図2に表す処理部111a及び図3に表す処理部211aが行う処理例を表すシーケンスチャートである。
まず、図1に表す基地局101の分割部112は、S901の処理として、前記分割情報の導出と移動局201への送付を行う。S901の処理の例は、図6を参照して後述する。
次に、移動局201のパスロス導出部221は、S902の処理として、分割部112から送付された分割情報が表す各部分帯域についてのパスロスの集合であるパスロス群を導出する。S902の処理の例は、図7を参照して後述する。
次に、移動局201のPHR導出部226は、S903の処理として、パスロス導出部221が導出したパスロス群から、各部分帯域についてのPHRの集合であるPHR群を導出し、基地局101へ送付する。S903の処理の例は、図8を参照して後述する。
次に、基地局101のULグラント決定部113は、S904の処理として、PHR導出部226から送付された前記PHR群からULグラントを導出し、移動局201に送付する。S904の処理の例は、図9を参照して後述する。
次に、ULグラント更新部231は、S905の処理として、ULグラント決定部113から送付されたULグラント更新情報により、図1に表す記録部216が保持する一つ前のULグラントの一部又は全部を更新する。S905の処理の例は、図10を参照して後述する。
次に、TPCコマンド累積部236は、S906の処理として、必要に応じて、TPCコマンド累積値の更新を行う。S906の処理の例は、図11を参照して後述する。
次に、電力制御部241は、S907の処理として、TPCコマンド累積値群により、図1に表す通信部206が行う送信に係る送信電力制御を行う。S907の処理の例は、図12を参照して後述する。
変調符号化制御部246は、また、S908の処理として、TPCコマンド累積値群により、図1に表す通信部206が行う送信に係る変調符号化制御を行う。S908の処理の例は、図13を参照して後述する。
図6は、図2に表す分割部112が行う、図5に表すS901の処理の処理フロー例を表す概念図である。
分割部112は、例えば、外部からの開始情報の入力により、図6に表す処理を開始する。
そして、分割部112は、S101の処理として、記録部116から、図1に表す基地局101が移動局201との間で行う通信に割り当てられた周波数帯域を読み込む。ここで、記録部116は、当該周波数帯域を予め保持しているものとする。
次に、分割部112は、S102の処理として、前記周波数帯域を分割する数である整数kに1を代入する。
そして、分割部112は、S103の処理として、前記周波数帯域をk個に分割する。ただし、整数kが1の場合は、前記周波数帯域をそのまま部分帯域とする。分割部112は、整数kが2以上の場合(S105の処理を経てからS103の処理を行う場合)は、例えば、分割後の各部分帯域の帯域幅が略等しくなるようにする。
次に、分割部112は、S104の処理として、各部分帯域の帯域幅の最大値が閾値Th1より大きいかについての判定を行う。ここで、閾値Th1は、S104の処理のために予め定められた帯域幅についての閾値である。閾値Th1は、例えば記録部116が予め保持している。
分割部112は、S104の処理による判定結果がyesの場合はS105の処理を行う。
一方、分割部112は、S104の処理による判定結果がnoの場合はS106の処理を行う。
分割部112は、S105の処理を行う場合は、同処理として、整数kの値を一つ増やす。そして、分割部112は、S103の処理を再度行う。
分割部112は、S106の処理を行う場合は、同処理として、記録部116に対し、前述の分割情報の記録を指示する。ここで、当該分割情報は、例えば、各部分帯域についての最小周波数と最大周波数を表す情報である。
そして、分割部112は、S107の処理として、図1に表す通信部106に、前記分割情報を移動局201に向けて無線により送信させる。
そして、分割部112は、図6に表す処理を終了する。
図7は、図1に表す移動局201の図3に表すパスロス導出部221が行う、図5に表すS902の処理の処理フロー例を表す概念図である。
パスロス導出部221は、例えば、外部からの開始情報の入力により図7に表す処理を開始する。
そして、パスロス導出部221は、S301の処理として、図1に表す基地局101から、通信部206を介して、前述の分割情報の送付を受けたかについての判定を行う。
パスロス導出部221は、S301の処理による判定結果がyesの場合は、S302の処理を行う。
一方、パスロス導出部221は、S301の処理による判定結果がnoの場合は、S301の処理を再度行う。
パスロス導出部221は、S302の処理を行う場合は、同処理として、図1に表す記録部216に、前記分割情報の記録を指示する。
そして、パスロス導出部221は、S303の処理として、整数nに1を代入する。ここで、整数nは部分帯域に付与された番号である。
次に、パスロス導出部221は、S304の処理として、n番目の部分帯域についてのパスロスを導出する。ここで、パスロスの導出方法は、非特許文献2に記述されている。
そして、パスロス導出部221は、S305の処理として、記録部216に、S304の処理により導出したパスロスと整数nとを組み合わせた情報を記録させる。
次に、パスロス導出部221は、S306の処理として、整数nが整数Nであるかについての判定を行う。ここで、整数Nは、前記分割情報が表す部分帯域の数(分割数)である。
パスロス導出部221は、S306の処理による判定結果がnoの場合は、S307の処理を行う。
一方、パスロス導出部221は、S306の処理による判定結果がyesの場合は、S308の処理を行う。
パスロス導出部221は、S307の処理を行う場合は、同処理として、整数nを一つ増やす。そして、パスロス導出部221は、S304の処理を再度行う。
パスロス導出部221は、S308の処理を行う場合は、同処理として、図7に表す処理を終了するかについての判定を行う。パスロス導出部221は、同判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。
パスロス導出部221は、S308の処理による判定結果がyesの場合は、図7に表す処理を終了する。
一方、パスロス導出部221は、S308の処理による判定結果がnoの場合は、S301の処理を再度行う。
図8は、図1に表す移動局201の図3に表すPHR導出部226が行う、図5に表すS903の処理の処理フロー例を表す概念図である。
PHR導出部226は、例えば、外部からの開始情報の入力により図8に表す処理を開始する。
そして、PHR導出部226は、S401の処理として、新たなパスロス群がパスロス導出部221により図1に表す記録部216に記録されたかについての判定を行う。ここで、PHR導出部226は、図8に表す処理の開始以降、新たなパスロス群がパスロス導出部221により図1に表す記録部216に記録されたかについて監視していることを前提としている。
PHR導出部226は、S401の処理による判定結果がyesの場合は、S402の処理を行う。
一方、PHR導出部226は、S401の処理による判定結果がnoの場合は、S401の処理を再度行う。
PHR導出部226は、S402の処理を行う場合は、同処理として、TPCコマンド累積値群が、記録部216に記録されているかについての判定を行う。ここで、TPCコマンド累積値群は、前述の分割情報が表す部分帯域の各々についてのTPCコマンド累積値の集合である。TPCコマンド累積値群は、図11を参照して後述するS506の処理により設定又は更新される。
PHR導出部226は、S402の処理による判定結果がyesの場合は、S403の処理を行う。
一方、PHR導出部226は、S402の処理による判定結果がnoの場合は、S402の処理を再度行う。
PHR導出部226は、S403の処理を行う場合は、同処理として、整数nに1を代入する。整数nは前述のように前記分割情報が表す部分帯域の番号を表す数である。
そして、PHR導出部226は、S404の処理として、前記パスロス群に含まれる、n番目の部分帯域についてのパスロスを記録部216から読み込む。また、PHR導出部226は、同処理として、前記TPCコマンド累積値群に含まれる、n番目の部分帯域についてのTPCコマンド累積値とを、記録部216から読み込む。
そして、PHR導出部226は、S405の処理として、S404の処理により読み込んだn番目の部分帯域についてのパスロスとTPCコマンド累積値とからPHRを導出する。PHRの導出に用いる式は、先行技術の項で説明した式1及び式2である。
次に、PHR導出部226は、S406の処理として、S405の処理により導出したn番目の部分帯域のPHRと整数nとの組合せを表す情報の記録を、記録部216に指示する。
そして、PHR導出部226は、S407の処理として、整数nが整数Nであるかについての判定を行う。ここで、整数Nは、前述のように、前記分割情報が表す部分帯域の数(分割数)である。
PHR導出部226は、S407の処理による判定結果がnoの場合は、S408の処理を行う。
一方、PHR導出部226は、S407の処理による判定結果がyesの場合は、S409の処理を行う。
PHR導出部226は、S408の処理を行う場合は、同処理として、整数nの値を一つ増やす。そして、PHR導出部226は、S404の処理を再度行う。
PHR導出部226は、S409の処理を行う場合は、同処理として、図1に表す通信部206に、前記分割情報が表す各部分帯域についてのPHRの集合であるPHR群を、基地局101に送付させる。
そして、PHR導出部226は、S410の処理として、図8に表す処理を終了するかについての判定を行う。PHR導出部226は、当該判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。
PHR導出部226は、S410の処理による判定結果がyesの場合は、図8に表す処理を終了する。
一方、PHR導出部226は、S410の処理による判定結果がnoの場合は、S401の処理を再度行う。
図9は、図1に表す基地局101の図2に表すULグラント決定部113が行う、図5に表すS904の処理の処理フロー例を表す概念図である。
ULグラント決定部113は、まず、例えば、外部からの開始情報の入力により、図9に表す処理を開始する。
次に、ULグラント決定部113は、図1に表す通信部106を経由して、移動局201からPHR群の送付を受けたかについての判定を行う。
ULグラント決定部113は、S201の処理による判定結果がyesの場合は、S202の処理を行う。
一方、ULグラント決定部113は、S201の処理による判定結果がnoの場合は、S201の処理を再度行う。
ULグラント決定部113は、S202の処理を行う場合は、同処理として、S201の処理により送付を受けたことを判定したPHR群と前記PHR群を送付した移動局のIDとの組合せを、図1に表す記録部116に記録させる。
次に、ULグラント決定部113は、S203の処理として、S202の処理により記録したPHR群により、ULグラント更新情報を導出する。ここで、ULグラント更新情報は、図1に表す移動局201が保持しているULグラントを、移動局201に更新させる情報である。ただし、移動局201がULグラントを保持していない段階においては、ULグラント更新情報は、ULグラントそのものである。
ULグラント更新情報には、例えば、各部分帯域に対応する副ULグラントの移動局201による更新の可否を表す情報が含まれる。その場合において、当該更新の可否を表す情報は、例えば、当該可否を表すビットの有無により表される。その場合において、ビットがあることが更新を行うことを表しても良い。あるいは、ビットがあることが更新を行わないことを表しても良い。
ULグラント更新情報には、さらに、所定の部分帯域の副ULグラントを更新する場合において、その時点における副ULグラントを置き換えるべき新たな副ULグラントを表す情報が含まれる。
ULグラント更新情報においては、部分帯域ごとに、副ULグラントに含まれる副TPCコマンドと副MCSとのそれぞれについて、移動局201による更新の可否を表す情報が含まれても構わない。そして、副TPCコマンドと副MCSとで、移動局201が更新すべき部分帯域が異なっていても構わない。上記については、図17を参照して後述する。
部分帯域ごとに、副TPCコマンドと副MCSとのそれぞれについて、移動局201による更新の可否を表す情報が含まれている場合には、ULグラント更新情報は、更新すべき副TPCコマンドや副MCSについての情報を含む。
ULグラント更新情報は、移動局201に、移動局201が保持している、部分帯域のULグラントをすべて更新させる内容であっても構わない。
次に、ULグラント決定部113は、S204の処理として、S203の処理により導出したULグラント更新情報を、図1に表す記録部116に記録させる。
そして、ULグラント決定部113は、S205の処理として、S204の処理により記録させたULグラント更新情報を、図1に表す通信部106に、移動局201に向けて送信させる。
次に、ULグラント決定部113は、S206の処理として、図9に表す処理を終了するかについての判定を行う。ULグラント決定部113は、当該判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。
ULグラント決定部113は、S206の処理による判定結果がyesの場合は、図9に表す処理を終了する。
一方、ULグラント決定部113は、S206の処理による判定結果がnoの場合は、S201の処理を再度行う。
図10は、図1に表す移動局201の図3に表すULグラント更新部231が行う、図5に表すS905の処理の処理フロー例を表す概念図である。
ULグラント更新部231は、まず、例えば、外部からの開始情報の入力により、図10に表す処理を開始する。
次に、ULグラント更新部231は、S501の処理として、図1に表す通信部206を介して、基地局101から、新たなULグラント更新情報を受けたかについての判定を行う。
ULグラント更新部231は、S501の処理による判定結果がyesの場合は、S502の処理を行う。
一方、ULグラント更新部231は、S501の処理による判定結果がnoの場合は、S501の処理を再度行う。
ULグラント更新部231は、S502の処理を行う場合は、同処理として、整数nに1を代入する。ここで、整数nは、各部分帯域に付与された番号である。
そして、ULグラント更新部231は、S503の処理として、S501の処理により、受けたことを判定したULグラント更新情報において、n番目の部分帯域のTPCコマンドを更新すべきとされているかについての判定を行う。
ULグラント更新部231は、S503の処理による判定結果がyesの場合は、S504の処理を行う。
一方、ULグラント更新部231は、S503の処理による判定結果がnoの場合は、S505の処理を行う。
ULグラント更新部231は、S504の処理を行う場合は、同処理として、図1に表す記録部216が保持するn番目の部分帯域のTPCコマンドを更新する。ULグラント更新部231は、当該更新を、前記ULグラント更新情報によりn番目のTPCコマンドを置き換えるべきとされている情報により行う。そして、ULグラント更新部231は、S505の処理を行う。
ULグラント更新部231は、S505の処理を行う場合は、同処理として、S501の処理により、送付を受けたことを判定したULグラント更新情報において、n番目の部分帯域のMCSを更新すべきとされているかについての判定を行う。
ULグラント更新部231は、S505の処理による判定結果がyesの場合は、S506の処理を行う。
一方、ULグラント更新部231は、S505の処理による判定結果がno場合は、S507の処理を行う。
ULグラント更新部231は、S506の処理を行う場合は、同処理として、図1に表す記録部216が保持するn番目の部分帯域のMCSを更新する。ULグラント更新部231は、当該更新を、前記ULグラント更新情報によりn番目のMCSを置き換えるべきとされている情報により行う。そして、ULグラント更新部231は、S507の処理を行う。
ULグラント更新部231は、S507の処理を行う場合は、同処理として、整数nの値が整数Nであるかについての判定を行う。ここで、整数Nは、前述のように、前記分割情報が表す部分帯域の数(分割数)である。
ULグラント更新部231は、S507の処理による判定結果がyesの場合は、S509の処理を行う。
一方、ULグラント更新部231は、S507の処理による判定結果がnoの場合は、S508の処理を行う。
ULグラント更新部231は、S508の処理を行う場合は、同処理として、整数nの値を一つ増やす。
そして、ULグラント更新部231は、S503の処理を再度行う。
ULグラント更新部231は、S509の処理を行う場合は、図10に表す処理を終了するかについての判定を行う。ULグラント更新部231は、当該判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。
ULグラント更新部231は、S509の処理による判定結果がyesの場合は、図10に表す処理を終了する。
一方、ULグラント更新部231は、S509の処理による判定結果がnoの場合は、S501の処理を再度行う。
図11は、図1に表す移動局201の図3に表すTPCコマンド累積部236が行う、図5に表すS906の処理の処理フロー例を表す概念図である。
TPCコマンド累積部236は、まず、例えば、外部からの開始情報の入力により、図11に表す処理を開始する。
次に、TPCコマンド累積部236は、S501の処理として、図1に表す記録部216が保持するULグラントについての更新(図5に表すS905の処理)があったかについての判定を行う。ここで、TPCコマンド累積部236は、図11に表す処理の開始意向、ULグラントについての更新(図5に表すS905の処理)があったかについて監視しているものとする。
TPCコマンド累積部236は、S501の処理による判定結果がyesの場合は、S503の処理を行う。
一方、TPCコマンド累積部236は、S501の処理による判定結果がnoの場合は、S501の処理を再度行う。
TPCコマンド累積部236は、S502の処理を行う場合は、同処理として、整数nに1を代入する。ここで、整数nは部分帯域に付与された番号である。
そして、TPCコマンド累積部236は、S503の処理として、n番目の部分帯域のTPCコマンドは変更(更新)されたかについての判定を行う。
TPCコマンド累積部236は、S503の処理による判定結果がyesの場合は、S504の処理を行う。
一方、TPCコマンド累積部236は、S503の処理による判定結果がnoの場合は、S507の処理を行う。
TPCコマンド累積部236は、S504の処理を行う場合は、同処理として、図1に表す記録部216から、n番目の部分帯域の更新後のTPCコマンドを読み込む。
そして、TPCコマンド累積部236は、S505の処理として記録部216が保持するn番目の部分帯域にTPCコマンドの累積値を更新する。TPCコマンド累積部236は、当該更新を、新たなTPCコマンドをその時点で記録部216が保持しているTPCコマンドの累積値に加算して求めた新しいTPCコマンドの累積値により置き換えることにより行う。
次に、TPCコマンド累積部236は、S506の処理として、整数nの値が整数Nであるかについての判定を行う。ここで、整数Nは、前記分割情報が表す部分帯域の数(分割数)である。
TPCコマンド累積部236は、S506の処理による判定結果がyesの場合は、S508の処理を行う。
一方、TPCコマンド累積部236は、S506の処理による判定結果がnoの場合は、S507の処理を行う。
TPCコマンド累積部236は、S507の処理を行う場合は、同処理として、整数nの値を一つ増やす。そして、TPCコマンド累積部236は、S503の処理を再度行う。
TPCコマンド累積部236は、S508の処理を行う場合は、同処理として、図11に表す処理を終了するかについての判定を行う。TPCコマンド累積部236は、当該判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。
TPCコマンド累積部236は、S508の処理による判定結果がyesの場合は、図11に表す処理を終了する。
一方、TPCコマンド累積部236は、S508の処理による判定結果がnoの場合は、S501の処理を再度行う。
図12は、図1に表す移動局201の図3に表す電力制御部241が行う、図5に表すS907の処理の処理フロー例を表す概念図である。
電力制御部241は、例えば、外部からの開始情報の入力により、図12に表す処理を開始する。
次に、電力制御部241は、S601の処理として、その時点で図1に表す通信部206が基地局101との通信に用いている通信の周波数が属する部分帯域を特定する。ここで、電力制御部241は、図12の処理の開始以降、通信部206が基地局101との通信に用いる通信の周波数を監視しているものとする。
そして、電力制御部241は、S602の処理として、S601の処理により特定した部分帯域についてのTPCコマンド累積値を図1に表す記録部216から読み込む。当該TPCコマンド累積値は、典型的には、図11に表す処理により更新された最新のものである。
そして、電力制御部241は、S603の処理として、S601の処理により特定した部分帯域について導出したパスロスを読み込む。当該パスロスは、図7に表すS305の処理により記録部216に記録されたものである。
そして、電力制御部241は、S604の処理により、S602の処理により読み込んだTPCコマンド累積値とS603の処理により読み込んだパスロスとにより、図1に表す通信部206に対し送信電力の設定を行わせる。TPCコマンド累積値とパスロスとにより送信電力を制御する方法は、非特許文献2に記述されている。
そして、電力制御部241は、S605の処理として、時間T1が経過したかについての判定を行う。ここで、時間T1は一連のS601乃至S604の処理を行う間隔を表す時間であり、予め設定され、例えば、記録部216に保持されている。
電力制御部241は、S605による判定結果がyesの場合は、S606の処理を行う。
一方、電力制御部241は、S605による判定結果がnoの場合は、S605の処理を再度行う。
電力制御部241は、S606の処理を行う場合は、同処理として、図12に表す処理を終了するかについての判定を行う。電力制御部241は、当該判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。
電力制御部241は、S606の処理による判定結果がyesの場合は、図12に表す処理を終了する。
一方、電力制御部241は、S606の処理による判定結果がnoの場合は、S601の処理を再度行う。
図13は、図1に表す移動局201の図3に表す変調符号化制御部246が行う、図5に表すS907の処理の処理フロー例を表す概念図である。
変調符号化制御部246は、例えば、外部からの開始情報の入力により、図13に表す処理を開始する。
次に、変調符号化制御部246は、S701の処理として、その時点で図1に表す通信部206が基地局101との通信に用いている通信の周波数が属する部分帯域を特定する。ここで、変調符号化制御部246は、図13の処理の開始以降、通信部206が基地局101との通信に用いている通信の周波数を監視しているものとする。
そして、変調符号化制御部246は、S702の処理として、S701の処理により特定した部分帯域についてのMCSを図1に表す記録部216から読み込む。当該MCSは、典型的には、図10に表す処理により更新された最新のものである。
そして、変調符号化制御部246は、S703の処理として、S702の処理により読み込んだMCSにより、図1に表す通信部206に対し変調符号化設定を行わせる。MCSにより変調符号化設定を行う方法は、非特許文献2に記述されている。
そして、変調符号化制御部246は、S704の処理として、時間T2が経過したかについての判定を行う。ここで、時間T1は一連のS701乃至S703の処理を行う間隔を表す時間であり、予め設定され、例えば、記録部216に保持されている。
変調符号化制御部246は、S704による判定結果がyesの場合は、S705の処理を行う。
一方、変調符号化制御部246は、S704による判定結果がnoの場合は、S704の処理を再度行う。
変調符号化制御部246は、S705の処理を行う場合は、同処理として、図13に表す処理を終了するかについての判定を行う。変調符号化制御部246は、当該判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。
変調符号化制御部246は、S705の処理による判定結果がyesの場合は、図13に表す処理を終了する。
一方、変調符号化制御部246は、S705の処理による判定結果がnoの場合は、S701の処理を再度行う。
[ULグラント設定例]
次に、図1に表す移動局201の図3に表すULグラント更新部231により更新されたULグラントの例について説明する。
図14は、各部分帯域ごとに異なる副ULグラントが設定及び更新されるULグラントの例であるULグラント301aを表すイメージ図である。
周波数帯域391は、4つの部分帯域#1乃至#4に分割されている。
ULグラント301aは、副ULグラント301aa乃至301adを備える。
副ULグラント301aa乃至301adの各々は、部分帯域#1乃至#4の各々に対応している。そして、副ULグラント301aa乃至301adの各々は、ULグラント更新部231により独立に設定及び更新される。
副ULグラント301aa乃至301adの各々を独立に設定及び更新するために、図2に表すULグラント決定部113は、前述のULグラント更新情報において、ULグラント301a乃至301dの各々を更新する旨を定める。また、ULグラント決定部113は、前記ULグラント更新情報に、更新後のULグラント301a乃至301dの各々を含ませる。
ULグラント301aは、各部分帯域について副ULグラントを自由に設定及び更新され得る。
図14は、周波数帯域391が4つの部分帯域#1乃至#4に分割された例であるが、周波数帯域の分割数は任意である。
図15は、複数の部分帯域に対して共通の副ULグラントが設定されるULグラントの例であるULグラント301bを表すイメージ図である。
周波数帯域391は、4つの部分帯域#1乃至#4に分割されている。
ULグラント301bは、副ULグラント301ba乃至301bdを備える。
副ULグラント301ba乃至301bdの各々は、部分帯域#1乃至#4の各々に対応している。そして、副ULグラント301bbには他の副ULグラントに設定及び更新される内容とは独立した情報が設定及び更新される。一方、副ULグラント301ba、301bc及び301bdには、副ULグラント301bbとは独立した、副ULグラント301ba、301bc及び301bdで共通の情報が、設定及び更新される。
ULグラント301bを設定及び更新するためには、図2に表すULグラント決定部113は、前述のULグラント更新情報において、副ULグラント301ba乃至301bdの各々を更新する旨を定める。また、ULグラント決定部113は、前記ULグラント更新情報に、副ULグラント301bbを設定及び更新する内容を表す情報と、副ULグラント301ba、301bc及び301bdを設定及び更新する共通の情報とを含ませる。
ULグラント301bにおいては、副ULグラント301bbと副ULグラント301ba、301bc及び301bdとのそれぞれの内容を任意に設定することが可能である。
図15は、周波数帯域が4つの部分帯域#1乃至#4に分割された例であるが、周波数帯域の分割数は任意である。
また、副ULグラントの内容を共通にする部分帯域の数及び位置は任意である。
図16は、境界周波数を境に副ULグラントに割り当てられる情報が異なるULグラントの例であるULグラント301cを表すイメージ図である。
周波数帯域391は、4つの部分帯域#1乃至#4に分割されている。
ULグラント301cにおいては、共通周波数以下の部分帯域の副ULグラントである、副ULグラント301ca及び301cbには第一の共通内容が割り当てられる。ULグラント301cにおいては、共通周波数越える部分帯域の副ULグラントである、副ULグラント301cc及び301cdには第二の共通内容が割り当てられる。
ULグラント301cを設定及び更新するためには、ULグラント決定部113は、前述のULグラント更新情報において、副ULグラント301ca乃至301cdの各々を更新する旨を定める。また、ULグラント決定部113は、前記ULグラント更新情報に、境界周波数以下の部分帯域の副ULグラントを設定及び更新する内容を表す第一の情報と、境界周波数越える部分帯域の副ULグラントを設定及び更新する内容を表す第二の情報と、を含ませる。
ULグラント301bにおいては、境界周波数以下の部分帯域の副ULグラントの内容と境界周波数越える部分帯域の副ULグラントの内容とを、それぞれ、任意に設定することが可能である。
図16は、周波数帯域が4つの部分帯域#1乃至#4に分割された例であるが、周波数帯域の分割数は任意である。
また、境界周波数を越える部分帯域の数は任意である。境界周波数以下の部分帯域の数は、分割数から境界周波数越える部分帯域の数を減じた数である。
図17はTPCコマンド用の部分帯域とMCS用部分帯域とが別々に設定されたULグラントの例であるULグラント301dを表すイメージ図である。
周波数帯域は、TPCコマンド用部分帯域#T1乃至#T4に分割されている。
周波数帯域は、また、MCS用部分帯域#M1乃至#T6に分割されている。
ULグラント301dは、TPCコマンド306とMCS311とを備える。
TPCコマンド306は、副TPCコマンド306a乃至306dを備える。副TPCコマンド306a乃至306dの各々は、TPCコマンド用部分帯域#T1乃至#T4の各々に対応している。
MCS311は、副MCS311a乃至311fを備える。副MCS311a乃至311fの各々は、MCS用部分帯域#M1乃至#M6の各々に対応している。
ULグラント301dの設定及び更新を行うためには、図2に表す分割部112は、TPCコマンド用部分帯域#T1乃至#T4の設定と、MCS用部分帯域#M1乃至#T6の設定とを行う。
そして、図3に表すパスロス導出部221は、TPCコマンド用部分帯域及びMCS用部分帯域ごとのパスロスを導出する。
また、図3に表すPHR導出部226は、TPCコマンド用部分帯域及びMCS用部分帯域ごとのPHRを導出する。
そして、図2に表すULグラント決定部113は、ULグラント更新情報に、TPCコマンド用部分帯域ごとの副TPCコマンド及びMCS用部分帯域ごとの副MCSを更新する旨の情報を含める。さらに、ULグラント決定部113は、ULグラント更新情報に、更新後のTPCコマンド用部分帯域ごとの副TPCコマンド及びMCS用部分帯域ごとの副MCSを含める。
ULグラント301dは、副TPCコマンドと副MCSとのそれぞれを、異なった帯域幅の部分帯域について設定することを可能にする。
なお、ULグラント301dは、周波数帯域391を4つのTPCコマンド用部分帯域及び6つのMCS用部分帯域に分割した例である。周波数帯域391をTPCコマンド用部分帯域に分割する分割数及び周波数帯域391をMCS用部分帯域に分割する分割数の各々は任意である。
図18は、所定の副ULグラントのみを更新するULグラントの例であるULグラント301eを表すイメージ図である。
周波数帯域391は、4つの部分帯域#1乃至#4に分割されている。
ULグラント301eにおいては、副ULグラント301ea、301ec及び301edについては、予め所定の内容が設定されている。そして、副ULグラント301ea、301ec及び301edの内容は、ULグラント決定部113が生成するULグラント更新情報により更新されない。
一方、副ULグラント301ebの内容は、ULグラント更新情報により更新される。
ULグラント301eを更新するためには、図2に表すULグラント決定部113は、前述のULグラント更新情報において、副ULグラント301ebのみを更新する旨を定める。副ULグラント301ebのみを更新する旨を表す情報は、例えば、部分帯域#2のみに更新を許可することを表すビットを設置することにより表される。副ULグラント301ebのみを更新する旨を表す情報は、あるいは、例えば、部分帯域#2のみに更新を禁止することを表すビットを設置しないことにより表される。
ULグラント決定部113は、さらに、前記ULグラント更新情報に、副ULグラント301ebを更新する内容を表す情報を含ませる。
ULグラント301eにおいては、更新が必要な部分帯域の副ULグラントのみを更新することを可能にする。
なお、図18は、周波数帯域が4つの部分帯域#1乃至#4に分割された例であるが、周波数帯域の分割数は任意である。
また、更新を行わない部分帯域の位置及び数は任意である。
また、更新を行う複数の部分帯域を更新する情報を共通にしても構わない。
以上の説明においては、前記分割情報は、図1に表す基地局101が設定し、移動局201に送付する例を説明した。しかしながら、移動局201が、基地局101による前記分割情報の導出とは独立して、前記分割情報を導出しても構わない。
図19は、基地局101による前記分割情報の導出とは独立して前記分割情報を導出し得る図1に表す移動局201の処理部211の例である処理部211cの構成を表す概念図である。
処理部211cは、図3に表す処理部211aが備える各構成に加えて、第二分割部251を備える。
第二分割部251は、記録部216から読み込んだ周波数帯域を分割し、複数の部分帯域を導出する。 記録部216は、前記周波数帯域及び図2に表す分割部112が行う周波数分割のルールを予め保持している。そして、第二分割部251は、当該ルールに従い、周波数分割を行う。従い、第二分割部251が導出する部分帯域は、分割部112が導出する部分帯域と同じになる。
分割部112は、各部分帯域を表す情報である分割情報を、記録部116に記録させる。
処理部211cを備える図1に表す移動局201へは、基地局101からの前記分割情報の送付は行われなくても構わない。
そして、処理部211cの各構成は、必要に応じて、第二分割部251が記録部216に記録させた前記分割情報により、各動作を行う。
処理部211cの各構成についての説明は、上記を除いて、前述の図3に表す処理部211aの各構成の説明である。ただし、上記説明と前述の図3に表す処理部211aの各構成の説明とが矛盾する場合は、上記説明を優先する。
処理部211cは、図1に表す基地局101から移動局201への分割情報の送付の省略を可能にする。
[効果]
実際に通信に用いられている周波数におけるパスロス(実パスロス)の、導出したパスロス(導出パスロス)からのずれは周波数帯域の帯域幅が大きいほど大きくなる。ULグラントを実パスロスからずれた導出パスロスから導出されたULグラントにより送信用電力及び変調符号化の制御を行った場合は、それらの制御の精度は低くなる。
本実施形態の通信システムは、基地局と移動局との間の無線通信に用いられる周波数帯域を分割する。そして、分割した周波数帯域である部分帯域の各々について導出したパスロスから導出したULグラントにより送信用電力及び変調符号化の制御を行う。
各部分帯域は、前記周波数帯域より小さいので、実パスロスと導出パスロスとの差が小さい。このことは、前記通信システムが、導出パスロスにより導出したULグラントによる前記制御の精度を向上させ得ることを意味する。
すなわち、前記通信システムは、電力制御及び変調符号化制御をより適切に行い得る。
図20は、本実施形態の通信システムの最小限の構成である通信システム100xの構成を表す概念図である。
通信システム100xは、分割部112xと、パスロス導出部221xと、制御情報導出部113xと、制御部241xと、を備える。
分割部112xは、第一通信機と第二通信機との間で行う無線による通信に割り当てられた周波数帯域を分割し、分割された周波数帯域である部分帯域を生成する。
パスロス導出部221xは、前記部分帯域の少なくとも一つについて、前記通信に係る伝播損失の導出を行う。
制御情報導出部113xは、前記伝播損失から制御情報の導出を行う。
制御部241xは、前記制御情報から、送信電力制御及び変調符号化制御のうちの少なくともいずれかを行う。
実際に通信に用いられている周波数における伝播損失(実パスロス)の導出した伝播損失(導出パスロス)からのずれは周波数帯域の帯域幅が大きいほど大きくなる。実パスロスからずれた導出パスロスから導出された制御情報により送信用電力及び変調符号化の制御を行った場合は、それらの制御の精度は低くなる。
通信システム100xは、前記第一通信機と前記第二通信機との間の無線通信に用いられる周波数帯域を分割する。そして、分割した周波数帯域である前記部分帯域の各々について導出した前記伝播損失から導出した前記制御情報により送信用電力や変調符号化の制御を行う。
各部分帯域は、前記周波数帯域より小さいので、実パスロスと導出パスロスとの差が小さい。このことは、導出パスロスにより導出した制御情報による前記制御の精度を向上させ得ることを意味する。
すなわち、通信システム100xは、電力制御及び変調符号化制御をより適切に行い得る。
そのため、通信システム100xは、前記構成により、[発明の効果]の項に記載した効果を奏する。
以上、本発明の各実施形態を説明したが、本発明は、前記した実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で更なる変形、置換、調整を加えることができる。例えば、各図面に示した要素の構成は、本発明の理解を助けるための一例であり、これらの図面に示した構成に限定されるものではない。
また、前記の実施形態の一部又は全部は、以下の付記のようにも記述され得るが、以下には限られない。
(付記A1)
第一通信機と第二通信機との間で行う無線による通信に割り当てられた周波数帯域を分割し、分割された周波数帯域である部分帯域を生成する分割部と、
前記部分帯域の少なくとも一つについて、前記通信に係る伝播損失の導出を行うパスロス導出部と、
前記伝播損失から制御情報の導出を行う制御情報導出部と、
前記制御情報から、送信電力制御及び変調符号化制御のうちの少なくともいずれかを行う制御部と、
を備える、
通信システム。
(付記A1.1)
前記伝播損失が、Third Generation Partnership Project Technical Specification 36.213に記載されたパスロスである、付記A1に記載された通信システム。
(付記A2)
前記第一通信機が基地局であり、前記第二通信機が移動局である、付記A1又は付記A1.1に記載された通信システム。
(付記A3)
前記パスロス導出部が、前記部分帯域の各々についての伝播損失の導出を行う、付記A1乃至付記A2のうちのいずれか一に記載された通信システム。
(付記A4)
前記分割部を前記第一通信機が備える、付記A1乃至付記A3のうちのいずれか一に記載された通信システム。
(付記A5)
前記パスロス導出部を前記第二通信機が備える、付記A4に記載された通信システム。
(付記A6)
前記制御情報導出部を前記第一通信機が備える、付記A5に記載された通信システム。
(付記A7)
前記第二通信機が前記伝播損失から導出された情報である導出情報を、前記第一通信機に送付し、前記制御情報導出部が、前記導出情報により、前記制御情報の導出を行う、付記A6に記載された通信システム。
(付記A8)
前記導出情報が、Third Generation Partnership Project Technical Specification 36.213に記載されたPower Headroomである、付記A7に記載された通信システム。
(付記A9)
前記制御情報が、Third Generation Partnership Project Technical Specification 36.213に記載されたUp Linkグラントに含まれる、付記A1乃至付記A8のうちのいずれか一に記載された通信システム。
(付記A10)
前記制御情報が、Third Generation Partnership Project Technical Specification 36.213に記載されたTransmit Power Controlコマンドの累積値を含む、付記A9に記載された通信システム。
(付記A11)
前記制御情報が、Third Generation Partnership Project Technical Specification 36.213に記載されたModulation and Coding Schemeを含む、付記A9又は付記A10に記載された通信システム。
(付記A12)
前記制御情報が、前記第二通信機が行う送信についてのものである、付記A1乃至付記A11のうちのいずれか一に記載された通信システム。
(付記A13)
前記制御情報を、前記第二通信機が保持する、付記A12に記載された通信システム。
(付記A14)
前記制御部を、付記A12又は付記A13に記載された前記第二通信機が備える、通信システム。
(付記A15)
前記第一通信機が送付する更新情報により前記第二通信機が、前記第二通信機が保持する前記制御情報の更新を行う、付記A1乃至付記A14のうちのいずれか一に記載された通信システム。
(付記A16)
前記更新情報が、前記制御情報の前記部分帯域の各々に係る部分を、各々独立に設定又は更新させる内容を含む、付記A15に記載された通信システム。
(付記A17)
前記更新情報が、前記制御情報の前記部分帯域の各々に係る部分のうちの複数の部分を、共通の情報に設定又は更新させる内容を含む、付記A15に記載された通信システム。
(付記A18)
前記更新情報が、前記制御情報の前記部分帯域の各々に係る部分のうちの一部のみを、設定又は更新させる内容を含む、付記A15又は付記A17に記載された通信システム。
(付記A19)
前記更新情報が、前記制御情報に含まれるThird Generation Partnership Project Technical Specification 36.213に記載されたTransmit Power Controlコマンドと、前記制御情報に含まれるModulation and Coding Schemeとを、設定又は更新させる内容を含む、付記A15乃至付記A18のうちのいずれか一に記載された通信システム。
(付記A20)
前記更新情報が、前記制御情報に含まれるThird Generation Partnership Project Technical Specification 36.213に記載されたTransmit Power Controlコマンドと、前記制御情報に含まれるModulation and Coding Schemeとを、各々独立に、設定又は更新させる内容を含む、付記A15乃至付記A19のうちのいずれか一に記載された通信システム。
(付記A21)
Transmit Power Controlコマンドについての前記部分帯域からなる第一部分帯域群と、Modulation and Coding Schemeについての前記部分帯域からなる代に部分帯域群とが異なる、付記A15乃至付記A20のうちのいずれか一に記載された通信システム。
(付記A22)
前記第二通信機は前記部分帯域を生成する第二分割部を備える、付記A1乃至付記A21のうちのいずれか一に記載された通信システム。
(付記B1)
第一通信機と第二通信機との間で行う無線による通信に割り当てられた周波数帯域を分割し、分割された周波数帯域である部分帯域を生成し、
前記部分帯域の少なくとも一つについて、前記通信に係る伝播損失の導出を行い、
前記伝播損失から制御情報の導出を行い、
前記制御情報から、送信電力制御及び変調符号化制御のうちの少なくともいずれかを行う、
通信制御方法。
100、100x 通信システム
101 基地局
106、206 通信部
111、111a、211、211a、211b、211c 処理部
112、112x 分割部
113 ULグラント決定部
113x 制御情報導出部
116、216 記録部
201 移動局
221 パスロス導出部
2211 第1パスロス導出部
221N 第Nパスロス導出部
221x パスロス導出部
226 PHR導出部
2261 第1PHR導出部
226N 第NPHR導出部
231 ULグラント更新部
236 TPCコマンド累積部
2361 第1TPCコマンド累積部
236N 第NTPCコマンド累積部
241 電力制御部
241x 制御部
246 変調符号化制御部
251 第二分割部
301a、301b、301c、301d、301e ULグラント
301aa、301ab、301ac、301ad、301ba、301bb、301bc、301bd、301ca、301cb、301cc、301cd、301ea、301eb、301ec、301ed 副ULグラント
306 TPCコマンド
306a、306b、306c、306d 副TPCコマンド
311 MCS
311a、311b、311c、311d、311e、311f 副MCS
391 周波数帯域
#1、#2、#3、#4 部分帯域
#T1、#T2、#T3、#T4 TPCコマンド用部分帯域
#M1、#M2、#M3、#M4、#M5、#M6 MCS用部分帯域

Claims (4)

  1. 無線通信のための周波数帯域の一部であるアクティブな部分帯域について、パスロスの算出を行う算出手段と、
    複数のTPC(Transmit Power Control)コマンド値を受信する受信手段と、
    前記TPCコマンド値の和と前記パスロスを用いて送信電力制御を行う制御手段と、
    を備える端末。
  2. 前記算出手段は、下りの前記無線通信に係る前記部分帯域について、前記算出を行う、
    請求項1に記載の端末。
  3. 無線通信のための周波数帯域の一部であるアクティブな部分帯域について、パスロスの算出を行い、
    複数のTPCコマンド値を受信し、
    前記TPCコマンド値の和と前記パスロスを用いて送信電力制御を行う、
    端末の方法。
  4. 下りの前記無線通信に係る前記部分帯域について、前記算出を行う、
    請求項3に記載の端末の方法。
JP2021148239A 2017-08-23 2021-09-13 端末および方法 Active JP7184134B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021148239A JP7184134B2 (ja) 2017-08-23 2021-09-13 端末および方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017160255A JP6946856B2 (ja) 2017-08-23 2017-08-23 通信システム
JP2021148239A JP7184134B2 (ja) 2017-08-23 2021-09-13 端末および方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017160255A Division JP6946856B2 (ja) 2017-08-23 2017-08-23 通信システム

Publications (3)

Publication Number Publication Date
JP2022000966A JP2022000966A (ja) 2022-01-04
JP2022000966A5 JP2022000966A5 (ja) 2022-07-26
JP7184134B2 true JP7184134B2 (ja) 2022-12-06

Family

ID=65434443

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017160255A Active JP6946856B2 (ja) 2017-08-23 2017-08-23 通信システム
JP2021148239A Active JP7184134B2 (ja) 2017-08-23 2021-09-13 端末および方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017160255A Active JP6946856B2 (ja) 2017-08-23 2017-08-23 通信システム

Country Status (2)

Country Link
US (1) US20190069249A1 (ja)
JP (2) JP6946856B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509592A (ja) 2008-01-07 2011-03-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 電力が制限された端末でのアップリンク電力制御
JP2012517747A (ja) 2009-02-09 2012-08-02 インターデイジタル パテント ホールディングス インコーポレイテッド 複数キャリアを使用する無線送受信機ユニットのアップリンク電力制御のための装置および方法
US20130230003A1 (en) 2003-02-18 2013-09-05 Qualcomm Incorporated Peak-to-average power ratio management for multi-carrier modulation in wireless communication systems

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20055437A0 (fi) * 2005-05-06 2005-08-16 Nokia Corp Radioresurssien jakaminen tietoliikennejärjestelmässä
US8098644B2 (en) * 2006-01-18 2012-01-17 Motorola Mobility, Inc. Method and apparatus for uplink resource allocation in a frequency division multiple access communication system
JP5106796B2 (ja) * 2006-06-19 2012-12-26 株式会社エヌ・ティ・ティ・ドコモ 基地局、送信方法
JP4893618B2 (ja) * 2007-12-27 2012-03-07 富士通東芝モバイルコミュニケーションズ株式会社 移動無線端末装置および移動通信システム
WO2010005238A2 (ko) * 2008-07-08 2010-01-14 엘지전자주식회사 무선통신 시스템에서 상향링크 전송 전력 제어 방법 및 단말
WO2010068160A1 (en) * 2008-12-08 2010-06-17 Telefonaktiebolaget L M Ericsson (Publ) Adaptive power control in tdd mode
JP5151969B2 (ja) * 2008-12-25 2013-02-27 富士通モバイルコミュニケーションズ株式会社 無線通信装置
US8582518B2 (en) * 2010-11-09 2013-11-12 Telefonaktiebolaget L M Ericsson (Publ) Power control for ACK/NACK formats with carrier aggregation
US9949263B2 (en) * 2015-02-25 2018-04-17 Qualcomm Incorporated Frequency resource allocation for a narrow-band cellular internet of things system
US10470140B2 (en) * 2017-05-04 2019-11-05 Qualcomm Incorporated Power headroom report for uplink split bearer communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230003A1 (en) 2003-02-18 2013-09-05 Qualcomm Incorporated Peak-to-average power ratio management for multi-carrier modulation in wireless communication systems
JP2011509592A (ja) 2008-01-07 2011-03-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 電力が制限された端末でのアップリンク電力制御
JP2012517747A (ja) 2009-02-09 2012-08-02 インターデイジタル パテント ホールディングス インコーポレイテッド 複数キャリアを使用する無線送受信機ユニットのアップリンク電力制御のための装置および方法

Also Published As

Publication number Publication date
JP2019041174A (ja) 2019-03-14
JP2022000966A (ja) 2022-01-04
US20190069249A1 (en) 2019-02-28
JP6946856B2 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
US10285137B2 (en) Wireless communication base station device, wireless communication method and integrated circuit for controlling transmission power of sounding reference signal (SRS)
KR102352689B1 (ko) 전력 제어 방법, 단말 기기 및 네트워크 기기
US10595279B2 (en) Power control method and device
US9402262B2 (en) Wireless resource allocation of device-to-device communication
JP5962670B2 (ja) 無線通信装置及び無線通信方法、並びに無線通信システム
CN109088663B (zh) 一种用于功率调整的ue、基站中的方法和装置
CN108632968B (zh) 用于上行功率控制的方法和装置
US20160219534A1 (en) Method and System for Configuring a Sounding Reference Signal Power Control Parameter in a Time-Division Duplexing System
JP7391941B2 (ja) 電力制御方法および装置、目標受信電力を求めるための方法および装置
US8965436B2 (en) Method for controlling uplink transmit power in mobile communication system
CN105934893A (zh) 一种传输信号的方法和设备
KR20120053636A (ko) 분산 안테나를 사용하는 이동 통신 시스템에서 상향 링크 전력 제어 방법 및 장치
KR20150034784A (ko) 무선 통신 방법, 무선 통신 시스템, 무선 기지국 및 무선 단말기
JP6479437B2 (ja) Ueの送信電力を決定するデバイス及び方法
EP2870712B1 (en) Method and access point for assigning sounding resources
WO2015041319A1 (ja) 通信システム、移動局装置及び通信方法
EP3691343B1 (en) Method and device for transmitting uplink channel
WO2019049332A1 (ja) ユーザ装置、及び送信電力制御方法
US20200022176A1 (en) User terminal and radio communication method
JP7184134B2 (ja) 端末および方法
US10862604B2 (en) Interference control method and device in wireless communication system
CN116235566A (zh) 一种上行功率控制方法及设备
JP5504083B2 (ja) 無線基地局及び通信制御方法
WO2019087369A1 (ja) ユーザ装置、及び送信電力制御方法
KR20160037760A (ko) 무선 자원 할당과 사용을 관리하는 방법 및 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R151 Written notification of patent or utility model registration

Ref document number: 7184134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151