JP7182040B2 - Vacuum Insulated Enclosures and Refrigerators - Google Patents

Vacuum Insulated Enclosures and Refrigerators Download PDF

Info

Publication number
JP7182040B2
JP7182040B2 JP2021133090A JP2021133090A JP7182040B2 JP 7182040 B2 JP7182040 B2 JP 7182040B2 JP 2021133090 A JP2021133090 A JP 2021133090A JP 2021133090 A JP2021133090 A JP 2021133090A JP 7182040 B2 JP7182040 B2 JP 7182040B2
Authority
JP
Japan
Prior art keywords
vacuum
core material
insulator
reinforcing member
vacuum insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021133090A
Other languages
Japanese (ja)
Other versions
JP2022008299A (en
Inventor
智章 北野
俊明 平野
秀司 河原崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017066970A external-priority patent/JP2018169097A/en
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2021133090A priority Critical patent/JP7182040B2/en
Publication of JP2022008299A publication Critical patent/JP2022008299A/en
Application granted granted Critical
Publication of JP7182040B2 publication Critical patent/JP7182040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

本発明は、冷蔵庫などに用いる真空断熱筐体に関するものである。 TECHNICAL FIELD The present invention relates to a vacuum insulation housing used for a refrigerator or the like.

近年、地球環境問題である温暖化の対策として省エネルギー化を推進する動きが活発化し、断熱技術の性能進化が期待されている。従来、この種の断熱技術は、図16と図17に示されているように、扉枠体30の内部の空間に設けられた真空断熱パネル34と、扉枠体30側面に接して設けられた補強部材35を有した構造とすることで断熱性能を向上させた技術が提案されている。なお、真空断熱パネル34とは、板形状の容器内を真空にすることで断熱性能を向上させた構造のことをいう(例えば、特許文献1参照)。 In recent years, the movement to promote energy saving as a countermeasure against global warming, which is a global environmental problem, has become active, and the performance evolution of heat insulation technology is expected. Conventionally, as shown in FIGS. 16 and 17, this type of heat insulation technology is based on a vacuum insulation panel 34 provided in the space inside the door frame 30 and a panel 34 provided in contact with the side of the door frame 30. A technique has been proposed in which a structure having a reinforcing member 35 is provided to improve the heat insulation performance. The vacuum heat insulation panel 34 refers to a structure in which heat insulation performance is improved by evacuating the inside of a plate-shaped container (see, for example, Patent Document 1).

特開2013-119966号公報JP 2013-119966 A

しかしながら、上記従来の構成では、扉枠体30は、内部の空間に真空断熱パネル34と扉枠体30の側面に接して設けられた補強部材35を有した構造であり、補強部材35の近傍の断熱性は、真空断熱パネル34と独立した構成にしているため、断熱性能の悪化と冷蔵庫内外温度差による扉枠体30にそりが発生するという課題があった。 However, in the above-described conventional structure, the door frame 30 has a structure in which the vacuum insulation panel 34 and the reinforcing member 35 provided in contact with the side surface of the door frame 30 are provided in the internal space. Since the heat insulating property is configured independently from the vacuum heat insulating panel 34, there is a problem that the heat insulating performance deteriorates and the door frame 30 warps due to the temperature difference between the inside and outside of the refrigerator.

本発明は、上記従来の課題を解決するもので、断熱性能と、扉内外温度差により生じるそり変形などの剛性の向上も両立できる真空断熱筐体(扉体)を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a vacuum heat-insulated housing (door body) that is capable of solving the above-mentioned conventional problems and that can achieve both heat insulation performance and rigidity such as warp deformation caused by the temperature difference between the inside and outside of the door. .

上記従来の課題を解決するために、本発明の真空断熱筐体は、外板と、内板と、前記外板および前記内板の間に配置された真空断熱体とを備え、前記真空断熱体は、内部に芯材と補強部材とを有し、前記芯材は連続気泡発泡ウレタンの発泡成形品であって、前記真空断熱体は、シール部材とベース部材とで内部が真空密閉された構造としたものである。 In order to solve the conventional problems described above, the vacuum insulation housing of the present invention includes an outer panel, an inner panel, and a vacuum insulator disposed between the outer panel and the inner panel, wherein the vacuum insulator is , the vacuum insulator has a core material and a reinforcing member inside, wherein the core material is an open-cell urethane foam molded product, and the vacuum insulator has a structure in which the inside is vacuum-sealed with a sealing member and a base member. It is what I did.

これによって、断熱性能を高めながら、芯材と補強部材とを内部に備えた真空断熱体により、真空断熱筐体(扉体)の内外面に温度差が生じても、真空断熱筐体(扉体)のそり変形を抑制することができる。 As a result, even if there is a temperature difference between the inner and outer surfaces of the vacuum insulated case (door), the vacuum insulated case (door) can be body) can be suppressed.

本発明の真空断熱筐体(扉体)は、断熱性能を高めながら、真空断熱筐体(扉体)の内外面に温度差が生じても、真空断熱筐体(扉体)のそり変形を抑制することができるので、簡単な構成で、そり変形を長期間保証し、断熱性能も高めた真空断熱筐体を提供することができる。 The vacuum insulation housing (door) of the present invention prevents warpage deformation of the vacuum insulation housing (door) even if there is a temperature difference between the inner and outer surfaces of the vacuum insulation housing (door) while improving the heat insulation performance. Since warp deformation can be suppressed, it is possible to provide a vacuum heat-insulating housing that guarantees warp deformation for a long period of time with a simple structure and that also has improved heat-insulating performance.

本発明の実施の形態1における真空断熱筐体を備えた冷蔵庫の斜視図1 is a perspective view of a refrigerator equipped with a vacuum insulation housing according to Embodiment 1 of the present invention; 本発明の実施の形態1における真空断熱筐体を備えた冷蔵室扉の斜視図FIG. 1 is a perspective view of a refrigerating compartment door provided with a vacuum insulation housing according to Embodiment 1 of the present invention. 本発明の実施の形態1における真空断熱筐体を備えた冷蔵室扉の断面図Sectional view of a refrigerating compartment door provided with a vacuum insulation housing according to Embodiment 1 of the present invention 本発明の実施の形態1における図3のA部拡大断面図Enlarged cross-sectional view of part A in FIG. 3 in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵室扉の部品展開図FIG. 1 is an exploded view of parts of a refrigerating compartment door according to Embodiment 1 of the present invention. 本発明の実施の形態1における図5のB部拡大断面図Enlarged cross-sectional view of portion B in FIG. 5 in Embodiment 1 of the present invention 本発明の実施の形態1における真空断熱体の断面図Cross-sectional view of the vacuum insulator in Embodiment 1 of the present invention 本発明の実施の形態1における図7のC部拡大断面図Enlarged cross-sectional view of part C in FIG. 7 in Embodiment 1 of the present invention 本発明の実施の形態1における真空断熱体の部品展開図1 is an exploded view of parts of a vacuum insulator according to Embodiment 1 of the present invention. 本発明の実施の形態1における図9のD部拡大断面図Enlarged cross-sectional view of part D in FIG. 9 in Embodiment 1 of the present invention 本発明の実施の形態1における真空断熱筐体の芯材と補強部材の斜視図FIG. 1 is a perspective view of a core material and a reinforcing member of a vacuum insulation housing according to Embodiment 1 of the present invention; 本発明の実施の形態2における真空断熱筐体の芯材と吸着部材の斜視図A perspective view of a core material and an adsorption member of a vacuum insulation housing according to Embodiment 2 of the present invention. 本発明の実施の形態2における真空断熱筐体の芯材に配置された吸着部材の環境温度と吸着速度の関係図FIG. 11 is a diagram showing the relationship between the environmental temperature and the adsorption speed of the adsorption member arranged on the core material of the vacuum insulation housing according to Embodiment 2 of the present invention. 本発明の実施の形態3における真空断熱筐体の芯材の発泡成形型図FIG. 10 is a diagram of a foaming mold for a core material of a vacuum insulation housing according to Embodiment 3 of the present invention. 本発明の実施の形態3における真空断熱筐体の芯材の発泡成形型分解図An exploded view of a foaming mold for a core material of a vacuum insulation housing according to Embodiment 3 of the present invention. 従来の真空断熱筐体の部品展開図Exploded view of conventional vacuum insulation housing 従来の真空断熱筐体の断面図Cross-sectional view of a conventional vacuum insulation housing

第1の発明は、外板と、内板と、前記外板および前記内板の間に配置された真空断熱体とを備え、前記真空断熱体は、内部に芯材と補強部材とを有し、前記芯材は連続気泡発泡ウレタンの発泡成形品であって、前記真空断熱体は、シール部材とベース部材とで内部が真空密閉された構造としたことにより、断熱性能が高まるとともに、補強部材が真空密閉内に配置することで曲げ剛性が向上し、真空断熱筐体の内外面の環境温度の違いによる熱収縮で発生するそり変形を抑制することができる。 A first invention comprises an outer plate, an inner plate, and a vacuum insulator disposed between the outer plate and the inner plate, the vacuum insulator having a core material and a reinforcing member inside, The core material is a foam molded product of open-cell foamed urethane, and the vacuum insulator has a structure in which the inside is vacuum-sealed with a sealing member and a base member. By arranging it in a vacuum-sealed space, bending rigidity is improved, and warp deformation caused by heat shrinkage due to the difference in environmental temperature between the inner and outer surfaces of the vacuum insulation housing can be suppressed.

第2の発明は、第1の発明において、前記芯材と前記補強部材とが一体構成されたことにより、補強部材は、芯材の連続気泡ウレタンフォームとを一体で成形されることで曲げ剛性が向上するので、真空断熱筐体の内外面の環境温度の違いによる熱収縮で発生するそり変形をさらに抑制することができる。 According to a second invention, in the first invention, the core material and the reinforcing member are integrally formed, so that the reinforcing member is integrally molded with the open-cell urethane foam of the core material to provide bending rigidity. is improved, it is possible to further suppress warp deformation caused by thermal contraction due to the difference in environmental temperature between the inner and outer surfaces of the vacuum insulation housing.

第3の発明は、第1または第2の発明において、前記補強部材は、前記芯材よりも熱収縮による変化の少ない材料を用いたことにより、補強部材は、芯材の連続気泡ウレタンフォームよりも熱収縮による変化の少ない材料なので、真空断熱筐体の内外面の環境温度の違いによる熱収縮で発生するそり変形を確実に抑制することができる。 A third invention is based on the first or second invention, wherein the reinforcing member uses a material that undergoes less change due to heat shrinkage than the core material. Since the material is also less susceptible to heat shrinkage, it is possible to reliably suppress warp deformation caused by heat shrinkage due to the difference in environmental temperature between the inner and outer surfaces of the vacuum insulation housing.

第4の発明は、第1から第4のいずれかの発明において、前記ベース部材は、熱可塑性樹脂を異材質で積層して形成されたことにより、真空成形などで自由な形状に形成することができ、真空封止後の外部からの水や空気などのガスの浸入を防止でき真空度を保てるので、断熱性能も長期に保つことができる。 According to a fourth invention, in any one of the first to fourth inventions, the base member is formed by laminating thermoplastic resins of different materials, and is formed into a free shape by vacuum forming or the like. It is possible to prevent gas such as water and air from entering from the outside after vacuum sealing, and the degree of vacuum can be maintained, so that the heat insulating performance can be maintained for a long time.

第5の発明は、第1から第5のいずれかの発明において、前記シール部材は、アルミ箔の両面を樹脂フィルムでラミネートして積層されたことにより、真空封止後の外部からの水や空気などのガスの浸入を防止でき真空度を保てるので、断熱性能も長期に保つことができる。 According to a fifth aspect of the invention, in any one of the first to fifth aspects, the sealing member is laminated by laminating both sides of an aluminum foil with a resin film, so that water and water from the outside after vacuum sealing can be prevented. Since the infiltration of gas such as air can be prevented and the degree of vacuum can be maintained, the insulation performance can be maintained for a long period of time.

第6の発明は、第1から第6のいずれかの発明において、前記真空断熱体の内部に吸着部材を備えたことにより、真空封止後に内部からの発生や、或いは外部から浸入した水や空気などのガスを吸着し、真空度を悪化させないので、断熱性能も長期に保つことができる。 In a sixth invention, in any one of the first to sixth inventions, by providing an adsorption member inside the vacuum heat insulator, water generated from the inside after vacuum sealing, or water entering from the outside Since it absorbs gases such as air and does not deteriorate the degree of vacuum, it is possible to maintain heat insulation performance for a long period of time.

第7の発明は、第1から第7のいずれかに記載の真空断熱筐体を備えた冷蔵庫であり、断熱性能と外観変形を抑制した信頼性の高い冷蔵庫を提供することができる。 A seventh aspect of the invention is a refrigerator comprising the vacuum insulation housing according to any one of the first to seventh aspects, and can provide a highly reliable refrigerator that suppresses heat insulation performance and appearance deformation.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、全ての図面において、同一又は相当部分には同一符合を付し、重複する説明は省略する場合がある。また、全ての図面おいて、本発明を説明するための構成要素を抜粋して図示しており、その他の構成要素については図示を省略する場合がある。さらに、以下の実施の形態によって本発明が限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in all the drawings, the same reference numerals are given to the same or corresponding parts, and redundant description may be omitted. Further, in all the drawings, constituent elements for explaining the present invention are extracted and illustrated, and illustration of other constituent elements may be omitted. Furthermore, the present invention is not limited by the following embodiments.

(実施の形態1)
図1は本発明の実施の形態1における真空断熱筐体を備えた冷蔵庫の斜視図、図2は本発明の実施の形態1における真空断熱筐体を備えた冷蔵室扉の斜視図、図3は本発明の実施の形態1における真空断熱筐体を備えた冷蔵室扉の断面図、図4は図3のA部拡大断面図、図5は本発明の実施の形態1における冷蔵室扉の部品展開図、図6は図5のB部拡大断面図、図7は本発明の実施の形態1における真空断熱体の断面図、図8は図7のC部拡大断面図、図9は本発明の実施の形態1における真空断熱筐体の部品展開図、図10は図9のD部拡大断面図、図11は本発明の実施の形態1における真空断熱筐体の芯材と補強部材の斜視図である。
(Embodiment 1)
1 is a perspective view of a refrigerator equipped with a vacuum insulation housing according to Embodiment 1 of the present invention, FIG. 2 is a perspective view of a refrigerator compartment door equipped with a vacuum insulation housing according to Embodiment 1 of the present invention, and FIG. is a cross-sectional view of a refrigerating compartment door provided with a vacuum insulation casing according to Embodiment 1 of the present invention, FIG. 4 is an enlarged cross-sectional view of part A in FIG. 3, and FIG. 6 is an enlarged cross-sectional view of the B portion of FIG. 5, FIG. 7 is a cross-sectional view of the vacuum insulator according to Embodiment 1 of the present invention, FIG. 8 is an enlarged cross-sectional view of the C portion of FIG. 7, and FIG. 10 is an enlarged cross-sectional view of the portion D in FIG. 9, and FIG. 11 is a diagram of the core material and reinforcing member of the vacuum insulation housing according to Embodiment 1 of the present invention. It is a perspective view.

図1において、冷蔵庫1は、外観を形成する冷蔵庫本体2と、冷蔵室扉3と、製氷室扉4と、野菜室扉5と、冷凍室扉6から配置した構成としている。図2において冷蔵室扉3は、外板3aと、内板3cを配置した構成としている。 In FIG. 1, a refrigerator 1 is composed of a refrigerator body 2 forming an appearance, a refrigerator compartment door 3, an ice making compartment door 4, a vegetable compartment door 5, and a freezer compartment door 6. As shown in FIG. In FIG. 2, the refrigerating compartment door 3 is constructed by arranging an outer plate 3a and an inner plate 3c.

次に、冷蔵室扉3の構成について説明する。図3から図5において、冷蔵室扉3は、外板3aと、内板3cと、外板3aと内板3cの内部に配置された真空断熱体3bとを備えている。そして、冷蔵室扉3の周縁には、冷蔵庫1の庫内と庫外とをシールするガスケット3dを備えている。 Next, the configuration of the refrigerator compartment door 3 will be described. 3 to 5, the refrigerator compartment door 3 includes an outer plate 3a, an inner plate 3c, and a vacuum insulator 3b arranged inside the outer plate 3a and the inner plate 3c. A gasket 3d for sealing the inside and outside of the refrigerator 1 is provided on the periphery of the refrigerator compartment door 3. - 特許庁

また、図6に示すように、冷蔵室扉3の内板3cは、内板庫内部15と、冷蔵室扉3の側部を構成する内板外周部14とをインジェクション成形で一体に構成されている。 In addition, as shown in FIG. 6, the inner plate 3c of the refrigerating chamber door 3 is integrally formed by injection molding an inner plate chamber interior 15 and an inner plate outer peripheral portion 14 forming the side portion of the refrigerating chamber door 3. ing.

内板3cは、冷蔵室内側となる庫内部の肉厚T1より冷蔵室外側となる外周部の肉厚T2を大きくした偏肉構成としている。具体的には、ガスケット3dのアンカー部12を固定するための凹部13を境に、内板3cの庫内側の内板庫内部15の肉厚T1より冷蔵室外側となる内板外周部14の肉厚T2を大きくしている。 The inner plate 3c has an uneven thickness structure in which the thickness T2 of the outer peripheral portion outside the refrigerating chamber is larger than the thickness T1 inside the refrigerator inside the refrigerating chamber. Specifically, with respect to the recess 13 for fixing the anchor portion 12 of the gasket 3d, the inner plate outer peripheral portion 14 outside the refrigerating compartment is thicker than the thickness T1 of the inner plate cabinet interior 15 inside the refrigerator compartment of the inner plate 3c. The thickness T2 is increased.

図7、8に示すように、真空断熱筐体である冷蔵室扉3の真空断熱体3bは、内部に芯材3bcと補強部材3bcaとを備え、シール部材3baとベース部材3bdとで内部を真空密閉した構造としている。 As shown in FIGS. 7 and 8, the vacuum heat insulator 3b of the refrigerating compartment door 3, which is a vacuum heat insulating case, has a core material 3bc and a reinforcing member 3bca inside, and the inside is defined by a sealing member 3ba and a base member 3bd. It has a vacuum-sealed structure.

そして、芯材3bcと補強部材3bcaとは一体に構成されている。具体的には、真空断熱体3b内に配置されている補強部材3bcaは、芯材3bcである連続気泡ウレタンを発泡金型内で発泡成形する時に予め発泡金型内に補強部材3bcaをセットし、連続気泡ウレタンと一体で構成されたものである。 The core member 3bc and the reinforcing member 3bca are integrally formed. Specifically, the reinforcing member 3bca arranged in the vacuum insulator 3b is set in the foaming mold in advance when the open-cell urethane, which is the core material 3bc, is foam-molded in the foaming mold. , and an open-cell urethane.

図9から図11に示すように、真空断熱体3bの芯材3bcは、一体発泡成形された補強部材3bcaと、吸着部材3bbを配置し、芯材3bcの一部分に吸着部材凹部3bcbと、補強部材位置きめピン跡を設けた構成としている。具体的には、補強部材3bcaは、芯材3bcの長手方向に、内板3c側である庫内側の左右に一対で配置されている。そして、補強部材3bcaは、芯材3bcの庫内側の平面部から凸部10に沿った曲面状に形成されている。また、補強部材3bcaの短手方向の端部には、フランジ部11を折り曲げて形成されていて、フランジ部11が芯材3bcの内部に食い込むように延出して配置されている。 As shown in FIGS. 9 to 11, the core material 3bc of the vacuum insulator 3b includes a reinforcing member 3bca integrally foam-molded and an adsorption member 3bb. It has a configuration in which a trace of a member positioning pin is provided. Specifically, the reinforcing members 3bca are arranged in pairs on the left and right sides of the inner side of the chamber, which is the inner plate 3c side, in the longitudinal direction of the core member 3bc. Further, the reinforcing member 3bca is formed in a curved surface along the convex portion 10 from the plane portion of the core material 3bc inside the chamber. A flange portion 11 is formed by bending a flange portion 11 at the end portion of the reinforcing member 3bca in the short direction, and the flange portion 11 is arranged to extend so as to bite into the inside of the core member 3bc.

また、真空断熱体3b内の芯材3bcには、吸着部材3bbを収納するための吸着部材凹部3bcbが複数箇所、外板3a側に形成されている。吸着部材凹部3bcbは吸着部材3bbを真空断熱体3bの真空封止組立作業時に位置決め、数量管理するために設けられている。 Further, in the core material 3bc in the vacuum insulator 3b, a plurality of suction member concave portions 3bcb for accommodating the suction members 3bb are formed on the outer plate 3a side. The adsorption member concave portion 3bcb is provided for positioning and quantity control of the adsorption member 3bb during vacuum sealing assembly work of the vacuum insulator 3b.

また、芯材3bcの発泡成形時に、補強部材3bcaをウレタン発泡金型にセットする時の位置決めを分かり易くするために、補強部材位置決めピン跡3bccを有している。 Moreover, in order to facilitate the positioning of the reinforcing member 3bca in the urethane foam mold during the foam molding of the core material 3bc, the reinforcing member positioning pin marks 3bcc are provided.

また、補強部材3bcaは、芯材3bcよりも熱収縮による変化の少ない材料、例えば金属性の板金などを用いている。 The reinforcing member 3bca is made of a material that undergoes less change due to heat shrinkage than the core material 3bc, such as a metallic sheet metal.

また、ベース部材3bdは、熱可塑性樹脂を異材質で積層して形成されている。 The base member 3bd is formed by laminating different materials of thermoplastic resin.

また、シール部材3baは、アルミ箔の両面を樹脂フィルムでラミネートして積層されて形成されている。 The seal member 3ba is formed by laminating aluminum foil on both sides with resin films.

以上のように構成された真空断熱筐体について、以下その動作、作用を説明する。 The operation and effects of the vacuum heat insulating housing constructed as described above will be described below.

まず、冷蔵室扉3の「そり現象」について説明する。冷蔵室扉3の断熱構造とガスケット3dにより、冷蔵庫本体2の冷蔵室内側と外側の熱は遮断され、冷凍システムの温度制御により冷蔵室内の温度は所定温度に冷却される。 First, the "warping phenomenon" of the refrigerator compartment door 3 will be described. The insulation structure of the refrigerator compartment door 3 and the gasket 3d insulate heat from the inside and outside of the refrigerator compartment of the refrigerator body 2, and the temperature inside the refrigerator compartment is cooled to a predetermined temperature by the temperature control of the refrigeration system.

ここで、「そり現象」を簡単に説明するために、特に夏場の気温が高い時に、冷蔵室外側環境の外気温度30~40℃により熱膨張し、冷蔵室内側の室温は、約0~10℃の範囲で温度制御され熱収縮が生じることで、冷蔵室扉3は庫外側が膨らむように「そり」が発生する力が働く。 Here, in order to simply explain the "warp phenomenon", especially when the temperature is high in the summer, thermal expansion occurs due to the outside air temperature of 30 to 40°C outside the refrigerator compartment, and the room temperature inside the refrigerator compartment is about 0 to 10°C. When the temperature is controlled within the range of °C and heat shrinkage occurs, the refrigerating compartment door 3 exerts a force that causes "warping" so that the outside of the compartment swells.

しかしながら、本実施の形態では、内板3cは、冷蔵室内側となる庫内部の肉厚T1より冷蔵室外側となる外周部の肉厚T2を大きくした偏肉構成としている。具体的には、ガスケット3dのアンカー部12を固定するための凹部13を境に、内板3cの庫内側の内板庫内部15の肉厚T1より冷蔵室外側となる内板外周部14の肉厚T2を大きくしているので、内板3cの庫内側の熱収縮も少なくでき、冷蔵室内外に生じた熱収縮を緩和することができるので、冷蔵室扉3全体のそり発生を防止できる。 However, in the present embodiment, the inner plate 3c has an uneven thickness structure in which the thickness T2 of the outer peripheral portion on the outside of the refrigerator compartment is larger than the thickness T1 on the inside of the refrigerator compartment. Specifically, with respect to the recess 13 for fixing the anchor portion 12 of the gasket 3d, the inner plate outer peripheral portion 14 outside the refrigerating compartment is thicker than the thickness T1 of the inner plate cabinet interior 15 inside the refrigerator compartment of the inner plate 3c. Since the wall thickness T2 is increased, the thermal contraction of the inside of the inner plate 3c can be reduced, and the thermal contraction occurring inside and outside the refrigerating chamber can be alleviated, so that the entire refrigerating chamber door 3 can be prevented from being warped. .

また、本実施の形態では、真空断熱筐体である冷蔵室扉3の真空断熱体3bは、内部に芯材3bcと補強部材3bcaとを備え、シール部材3baとベース部材3bdとで内部を真空密閉した構造としているので、真空断熱体3bの曲げ剛性が向上し、更に内部が真空封止され、剛性が増すことで、冷蔵庫内外の温度差で生じる熱収縮を低減することができ、冷蔵室扉3全体のそり発生を抑制することができる。 Further, in the present embodiment, the vacuum insulator 3b of the refrigerating compartment door 3, which is a vacuum insulated casing, includes a core material 3bc and a reinforcing member 3bca inside, and the inside is evacuated by a sealing member 3ba and a base member 3bd. Since the structure is closed, the bending rigidity of the vacuum insulator 3b is improved, and the interior is vacuum-sealed to increase the rigidity. The occurrence of warpage of the entire door 3 can be suppressed.

また、芯材3bcを形成する際、連続気泡ウレタン発泡と同時に補強部材3bcaは一体成形されるので、芯材3bcと補強部材3bcaとは一体に構成され、さらに真空断熱体3bの曲げ剛性が向上し、冷蔵室扉3全体のそり発生を抑制することができる。 Further, when the core material 3bc is formed, the reinforcing member 3bca is integrally molded at the same time as the open-cell urethane foam is formed, so that the core material 3bc and the reinforcing member 3bca are integrally formed, and the bending rigidity of the vacuum insulator 3b is further improved. Thus, the entire refrigerating compartment door 3 can be prevented from being warped.

また、補強部材3bcaは、芯材3bcよりも熱収縮による変化の少ない材料、例えば金属性の板金などを用いているので、より確実に真空断熱体3bの曲げ剛性が向上し、冷蔵室扉3全体のそり発生を抑制することができる。 In addition, since the reinforcing member 3bca is made of a material that undergoes less heat shrinkage than the core material 3bc, such as a metallic sheet metal, the bending rigidity of the vacuum insulator 3b is more reliably improved, and the refrigerating compartment door 3 Overall warping can be suppressed.

また、真空断熱体3bを構成するベース部材3bdは、熱可塑性樹脂を異材質で積層して形成され、水や空気などのガスバリア性を有するので、真空成形などで自由な形状に形成することができるとともに、真空封止後の外部からの水や空気などのガスの浸入を防止でき真空度を保てるので、断熱性能も長期に保つことができる。 Further, the base member 3bd constituting the vacuum insulator 3b is formed by laminating thermoplastic resins of different materials and has gas barrier properties against water, air, etc., so that it can be formed into a free shape by vacuum forming or the like. In addition, gas such as water and air can be prevented from entering from the outside after vacuum sealing, and the degree of vacuum can be maintained, so that heat insulating performance can be maintained for a long period of time.

また、真空断熱体3bを構成するシール部材3baは、極薄アルミ箔の両面を樹脂フィルムでラミネートして積層され、水や空気などのガスバリア性を有するので、真空封止後の外部からの水や空気などのガスの浸入を防止でき真空度を保てるので、断熱性能も長期に保つことができる。 In addition, since the sealing member 3ba constituting the vacuum insulator 3b is laminated by laminating both sides of an ultra-thin aluminum foil with a resin film, it has a gas barrier property against water, air, etc. Since it is possible to prevent the intrusion of gas such as , air, etc. and maintain the degree of vacuum, the heat insulation performance can be maintained for a long time.

また、真空断熱体3b内に収納されている吸着部材3bbは、真空断熱筐体の内部に発生する水や空気など、或いは外部から侵入する水や空気などを吸着することにより、真空封止後に内部からの発生や、或いは外部から浸入した水や空気などのガスを吸着し、真空度を悪化させないので、断熱性能も長期に保つことができる。 Further, the adsorption member 3bb housed in the vacuum insulator 3b adsorbs water, air, etc., generated inside the vacuum insulation housing, or water, air, etc., entering from the outside, so that after vacuum sealing, It absorbs gases such as water and air that are generated from the inside or that enter from the outside and does not deteriorate the degree of vacuum, so the heat insulating performance can be maintained for a long time.

また、真空断熱体3b内に備えた芯材3bcの吸着部材凹部3bcbは、真空断熱体3bの真空封止組立作業時に位置決め、数量管理するために設けられている。 Further, the adsorption member concave portion 3bcb of the core material 3bc provided in the vacuum insulator 3b is provided for positioning and quantity control during the vacuum sealing assembly work of the vacuum insulator 3b.

補強部材位置決めピン跡3bccは、芯材3bcの発泡成形時に、補強部材3bcaをウレタン発泡金型にセットする時の位置決めを容易にするためのものである。 The reinforcing member positioning pin marks 3bcc are for facilitating positioning when setting the reinforcing member 3bca in a urethane foaming mold during foam molding of the core material 3bc.

真空断熱体3b内に備えた芯材3bcの吸着部材凹部3bcb、および、補強部材3bcaをウレタン発泡金型にセットする時の位置決めを容易にするための補強部材位置決めピン跡3bccは、何れも組立時の作業効率と欠品のない物作りを確実に行うことができる。 The adsorption member concave portion 3bcb of the core material 3bc provided in the vacuum insulator 3b and the reinforcing member positioning pin mark 3bcc for facilitating positioning when setting the reinforcing member 3bca in the urethane foam mold are both assembled. It is possible to ensure timely work efficiency and manufacturing without shortages.

また、吸着部材3bbは、真空断熱体3bの内部に発生する水や空気など、或いは外部から侵入する水や空気などを吸着することするので、真空断熱体3bの真空度を長期に保つことで断熱性能も長期に保つことができる。 In addition, since the adsorption member 3bb adsorbs water or air generated inside the vacuum insulator 3b or water or air entering from the outside, the degree of vacuum of the vacuum insulator 3b can be maintained for a long period of time. Insulation performance can be maintained for a long period of time.

なお。本実施の形態では、冷蔵室扉3を用いて説明したが、これに限定されるものではなく、製氷室扉4、野菜室扉5、冷凍室扉6等にも適用することができる。 note that. In this embodiment, the refrigerating compartment door 3 is used for explanation, but the present invention is not limited to this, and can also be applied to the ice making compartment door 4, the vegetable compartment door 5, the freezer compartment door 6, and the like.

(実施の形態2)
図12は、本発明の実施の形態2における真空断熱筐体の真空断熱体を構成する芯材と吸着部材の斜視図、図13は、本発明の実施の形態2における真空断熱筐体の真空断熱体内に配置された吸着部材の環境温度と吸着速度の関係を示すグラフである。なお、実施の形態1と同一構成部分は同一符号を付して詳細な説明は省略する。
(Embodiment 2)
FIG. 12 is a perspective view of a core material and an adsorption member that constitute the vacuum insulator of the vacuum insulation housing according to Embodiment 2 of the present invention, and FIG. It is a graph which shows the relationship between the environmental temperature of the adsorption|suction member arrange|positioned in the heat insulator, and adsorption speed. The same reference numerals are assigned to the same components as in the first embodiment, and detailed description thereof will be omitted.

図12において、真空断熱体3b内の外板3a側(高温側)には吸着部材3bbが配置されている。具体的には、真空断熱体3b内の芯材3bcの外板3a側(高温側)に複数箇所、吸着部材3bbを収納するための吸着部材凹部3bcbが設けられている。吸着部材凹部3bcbは吸着部材3bbを真空断熱体3bの真空封止組立作業時に位置決め、数量管理するために設けられたものである。 In FIG. 12, an adsorption member 3bb is arranged on the outer plate 3a side (high temperature side) inside the vacuum insulator 3b. Specifically, adsorption member concave portions 3bcb for accommodating the adsorption members 3bb are provided at a plurality of locations on the outer plate 3a side (high temperature side) of the core material 3bc in the vacuum insulator 3b. The suction member concave portion 3bcb is provided for positioning and quantity control of the suction member 3bb during vacuum sealing assembly work of the vacuum insulator 3b.

また、芯材3bcは、多孔性構造体である連続気泡ウレタンフォームで形成され、芯材3bcを形成する際、連続気泡ウレタン発泡と同時に吸着部材3bbを収納するための吸着部材凹部3bcbが成形される。 The core material 3bc is made of open-cell urethane foam, which is a porous structure. When the core material 3bc is formed, the open-cell urethane foam is simultaneously formed with the adsorption member recessed part 3bcb for accommodating the adsorption member 3bb. be.

また、吸着部材3bbは、真空断熱体3bの内部に発生する水や空気など、或いは外部から侵入する水や空気などを吸着する。 Also, the adsorption member 3bb adsorbs water, air, etc., generated inside the vacuum insulator 3b, or water, air, etc., entering from the outside.

図13は、吸着部材の環境温度と吸着速度の関係を示すグラフであり、温度が高いほど吸着速度が速くなることを示している。 FIG. 13 is a graph showing the relationship between the environmental temperature of the adsorption member and the adsorption speed, showing that the higher the temperature, the faster the adsorption speed.

以上のように構成された真空断熱筐体について、以下その動作、作用を説明する。 The operation and effects of the vacuum heat insulating housing constructed as described above will be described below.

真空断熱体3b内の芯材3bcに配置された吸着部材3bbは、芯材3bcの外板3a側(高温側)に配置されているので、吸着部材3bbの吸着速度と環境温度特性から、吸着速度を速くでき、冷蔵庫が組み立てられて、冷蔵庫を運転した状態で真空断熱体3b内の真空度を長期に亘って維持することができ、冷蔵庫の信頼性を高めることができる。 The adsorption member 3bb arranged on the core material 3bc in the vacuum insulator 3b is arranged on the outer plate 3a side (high temperature side) of the core material 3bc. The speed can be increased, the degree of vacuum in the vacuum insulator 3b can be maintained for a long period of time while the refrigerator is assembled and the refrigerator is in operation, and the reliability of the refrigerator can be improved.

また、芯材3bcは、多孔性構造体である連続気泡ウレタンフォームで形成され、芯材3bcを形成する際、連続気泡ウレタン発泡と同時に吸着部材3bbを収納するための吸着部材凹部3bcbが成形されるので、吸着部材3bbを容易に配置できるとともに、組立工程時の欠品を防止できる。 The core material 3bc is made of open-cell urethane foam, which is a porous structure. When the core material 3bc is formed, the open-cell urethane foam is simultaneously formed with the adsorption member recessed part 3bcb for accommodating the adsorption member 3bb. Therefore, it is possible to easily arrange the adsorption member 3bb and to prevent shortage of parts during the assembly process.

また、吸着部材凹部3bcbに吸着部材3bbを収納することで、芯材3bcと外板3aとの間に凹凸が生じることなく、冷蔵室扉3の組立性を高めることができる。 Further, by storing the adsorption member 3bb in the adsorption member concave portion 3bcb, it is possible to improve the assemblability of the refrigerating compartment door 3 without causing unevenness between the core member 3bc and the outer plate 3a.

また、吸着部材3bbは、真空断熱体3bの内部に発生する水や空気など、或いは外部から侵入する水や空気などを吸着するので、真空断熱体3b内の真空度を長期に保つことで断熱性能も長期に保つことができる。 In addition, since the adsorption member 3bb adsorbs water, air, etc., generated inside the vacuum insulator 3b, or water, air, etc., entering from the outside, heat insulation can be achieved by maintaining the degree of vacuum in the vacuum insulator 3b for a long period of time. Performance can be maintained for a long time.

(実施の形態3)
図14は、本発明の実施の形態3における真空断熱筐体の芯材の発泡成形型構成図、図15は、本発明の実施の形態3における真空断熱筐体の芯材と発泡成形型の分割構成図である。なお、実施の形態1、2と同一構成部分は同一符号を付して詳細な説明は省略する。
(Embodiment 3)
FIG. 14 is a configuration diagram of a foaming mold for the core material of the vacuum insulation casing according to Embodiment 3 of the present invention, and FIG. It is a division|segmentation block diagram. The same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.

以下、連続気泡発泡ウレタンの連続気泡発泡成形金型7について説明する。 The open-cell foaming mold 7 for open-cell foamed urethane will be described below.

図14に示すように、連続気泡発泡ウレタンの連続気泡発泡成形金型7は、発泡成形上型7aと、発泡成形下型7bの上下分割型構造としている。 As shown in FIG. 14, the open-cell foaming mold 7 for open-cell foamed urethane has a vertically split structure of a foaming-molding upper mold 7a and a foaming-molding lower mold 7b.

また、図15に示すように、発泡成形上型7a、および発泡成形下型7bを、さらに複数の分割構造としている。具体的には、発泡成形上型7aの吸着部材凹部3bcbを形成する部分を上面分割型7abとして、合わせ面を分割型ラインとしている。また、発泡成形下型7bは、それぞれの側部を分割した下面分割型7ba(4面)として、芯材3bcの角部に対応する部分で、対角線状(斜辺状)に合わせ面として分割型ラインとしている。 Further, as shown in FIG. 15, the foam-molding upper mold 7a and the foam-molding lower mold 7b are further divided into a plurality of structures. Specifically, the portion of the foam molding upper mold 7a that forms the suction member concave portion 3bcb is the upper split mold 7ab, and the mating surface is the split mold line. In addition, the foam molding lower mold 7b is divided into lower surface split molds 7ba (four surfaces) having respective side portions, and the portions corresponding to the corners of the core material 3bc are divided diagonally (hypotenside) as mating surfaces. line.

上記構成により、連続気泡ウレタンの発泡成形時に発生するガスを抜け易くし、発泡成形上型7aと、発泡成形下型7bの型の合わせに目にガス抜け効果があるので、成形品の表面形状にガス抜けの悪さによる欠肉もない発泡成形品を成形することができる。 With the above configuration, the gas generated during foam molding of open-cell urethane can be easily released, and the alignment of the foam molding upper mold 7a and the foam molding lower mold 7b has the effect of releasing the gas, so the surface shape of the molded product can be improved. It is possible to mold a foamed molded product that does not have insufficient thickness due to poor gas release.

また、発泡成形上型7aは、複数の分割構造とし、連続気泡ウレタンの発泡成形時に発生するガスを抜け易くしているので、成形品の表面形状にガス抜けの悪さによる欠肉もない発泡成形品を成形することができる。 In addition, the foam molding upper mold 7a has a plurality of divided structures, and the gas generated during the foam molding of open-cell urethane can be easily released, so that the surface shape of the molded product does not have a lack of thickness due to poor gas escape. can be molded.

また、発泡成形下型7bは、複数の分割構造とし、連続気泡ウレタンの発泡成形時に発生するガスを抜け易くしているので、成形品の表面形状にガス抜けの悪さによる欠肉もない発泡成形品を成形することができる。 In addition, since the lower mold 7b for foam molding has a multi-split structure to facilitate the escape of gas generated during foam molding of open-cell urethane, the surface shape of the molded product does not suffer from lack of thickness due to poor gas escape. can be molded.

また、連続気泡ウレタンの成形後の成形品の表面は、金型分割構造により、連続気泡ウレタンの発泡成形時に発生するガスを抜け易くしているので、ガス抜き跡の分割部にバリを発生することができるので、成形品の表面形状にガス抜けの悪さによる欠肉もない発泡成形品を成形することができる。 In addition, the surface of the open-cell urethane molded product has a split mold structure that allows the gas generated during foam molding of the open-cell urethane to escape easily, so burrs are generated at the split parts where the gas is released. Therefore, it is possible to mold a foamed molded product that does not have a lack of thickness due to poor gas release in the surface shape of the molded product.

以上のように、本発明に真空断熱筐体は、冷蔵庫に限らず、自動車、ヒートポンプ式給湯機、電気式湯沸かし器、炊飯器、浴槽、住宅の外壁や屋根などの断熱構造にも適用できる。 As described above, the vacuum insulation housing of the present invention can be applied not only to refrigerators but also to insulation structures such as automobiles, heat-pump water heaters, electric water heaters, rice cookers, bathtubs, and outer walls and roofs of houses.

1 冷蔵庫
2 冷蔵庫本体
3 冷蔵室扉(真空断熱筐体)
3a 外板
3b 真空断熱体
3ba シール部材
3bb 吸着部材
3bc 芯材
3bca 補強部材
3bcb 吸着部材凹部
3bcc 補強板位置き決めピン跡
3bd ベース部材
3c 内板
3d ガスケット
4 製氷室扉
5 野菜室扉
6 冷凍室扉
7 連続気泡発泡成形金型
7a 発泡成形上型
7ab 上面分割型
7b 発泡成形下型
7ba 下面分割型
10 凸部
11 フランジ部
12 アンカー部
13 凹部
14 内板外周部
15 内板庫内部
1 Refrigerator 2 Refrigerator Main Body 3 Refrigerator Door (Vacuum Insulation Case)
3a Outer plate 3b Vacuum insulator 3ba Sealing member 3bb Adsorption member 3bc Core material 3bca Reinforcement member 3bcb Adsorption member concave portion 3bcc Reinforcement plate positioning pin mark 3bd Base member 3c Inner plate 3d Gasket 4 Ice making compartment door 5 Vegetable compartment door 6 Freezing compartment Door 7 Open-cell foam molding mold 7a Foam molding upper mold 7ab Upper surface split mold 7b Foam molding lower mold 7ba Lower surface split mold 10 Protruding part 11 Flange part 12 Anchor part 13 Recessed part 14 Inner plate outer peripheral part 15 Inside of inner plate warehouse

Claims (7)

外板と、内板と、前記外板および前記内板の間に配置された真空断熱体とを備え、
前記真空断熱体は、内部に芯材と補強部材とを有し、前記芯材は連続気泡発泡ウレタンの発泡成形品であって、
前記真空断熱体は、シール部材とベース部材とで内部が真空密閉された構造を有し、前記補強部材は、前記芯材の平面部から曲面状に形成され、前記真空断熱体の長手方向に形成されている真空断熱筐体。
an outer plate, an inner plate, and a vacuum insulator disposed between the outer plate and the inner plate;
The vacuum insulator has a core material and a reinforcing member inside, and the core material is a foam molded product of open-cell urethane foam,
The vacuum insulator has a structure in which the interior is vacuum-sealed by a sealing member and a base member. Formed vacuum insulated enclosure.
前記芯材と前記補強部材とが一体構成された請求項1に記載の真空断熱筐体。 2. The vacuum insulation casing according to claim 1, wherein said core member and said reinforcing member are integrally constructed. 前記補強部材は、前記芯材よりも熱収縮による変化の少ない材料で構成されている請求項1または2に記載の真空断熱筐体。 3. The vacuum insulation housing according to claim 1, wherein the reinforcing member is made of a material that undergoes less change due to heat shrinkage than the core material. 前記ベース部材は、熱可塑性樹脂を異材質で積層して形成された請求項1から3のいずれか一項に記載の真空断熱筐体。 4. The vacuum insulation housing according to claim 1, wherein the base member is formed by laminating different materials of thermoplastic resin. 前記シール部材は、アルミ箔の両面を樹脂フィルムでラミネートして積層された請求項1から4のいずれか一項に記載の真空断熱筐体。 5. The vacuum insulation casing according to claim 1, wherein the sealing member is a laminate obtained by laminating both sides of an aluminum foil with a resin film. 前記真空断熱体の内部に吸着部材を備えた請求項1から5のいずれか一項に記載の真空断熱筐体。 6. The vacuum heat insulating housing according to any one of claims 1 to 5, further comprising an adsorption member inside said vacuum heat insulator. 請求項1から6のいずれか一項に記載の真空断熱筐体を備えた冷蔵庫。 A refrigerator comprising the vacuum insulation housing according to any one of claims 1 to 6.
JP2021133090A 2017-03-30 2021-08-18 Vacuum Insulated Enclosures and Refrigerators Active JP7182040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021133090A JP7182040B2 (en) 2017-03-30 2021-08-18 Vacuum Insulated Enclosures and Refrigerators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017066970A JP2018169097A (en) 2017-03-30 2017-03-30 Vacuum heat insulation housing and refrigerator
JP2021133090A JP7182040B2 (en) 2017-03-30 2021-08-18 Vacuum Insulated Enclosures and Refrigerators

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017066970A Division JP2018169097A (en) 2017-03-30 2017-03-30 Vacuum heat insulation housing and refrigerator

Publications (2)

Publication Number Publication Date
JP2022008299A JP2022008299A (en) 2022-01-13
JP7182040B2 true JP7182040B2 (en) 2022-12-02

Family

ID=87890907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021133090A Active JP7182040B2 (en) 2017-03-30 2021-08-18 Vacuum Insulated Enclosures and Refrigerators

Country Status (1)

Country Link
JP (1) JP7182040B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056974A (en) 2005-08-24 2007-03-08 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2013119966A (en) 2011-12-06 2013-06-17 Toshiba Corp Heat insulation box
JP2016186316A (en) 2015-03-27 2016-10-27 パナソニックIpマネジメント株式会社 Vacuum insulation housing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056974A (en) 2005-08-24 2007-03-08 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2013119966A (en) 2011-12-06 2013-06-17 Toshiba Corp Heat insulation box
JP2016186316A (en) 2015-03-27 2016-10-27 パナソニックIpマネジメント株式会社 Vacuum insulation housing

Also Published As

Publication number Publication date
JP2022008299A (en) 2022-01-13

Similar Documents

Publication Publication Date Title
KR101597554B1 (en) Vacuum insulation panel and refrigerator with vacuum insulation panel
JP5513855B2 (en) refrigerator
JP2006242439A (en) Refrigerator and its manufacturing method
KR20120046621A (en) Refrigerator with vacuum insulation panel
JP2009024922A (en) Refrigerator
JP5743973B2 (en) refrigerator
JP2015007526A (en) Refrigerator
TWI727629B (en) refrigerator
JP2013242100A (en) Refrigerator heat-insulation box body
JP2004125394A (en) Refrigerator
JP7182040B2 (en) Vacuum Insulated Enclosures and Refrigerators
CN110494706B (en) Vacuum heat insulation box body and refrigerator using same
JP6850967B2 (en) Foam molding mold
JPH11159950A (en) Heat insulating box body for refrigerator
JP6191008B2 (en) refrigerator
JP2018169097A (en) Vacuum heat insulation housing and refrigerator
JP2018168949A (en) Vacuum heat insulation housing and refrigerator
JP6340549B2 (en) refrigerator
JP2013185730A (en) Refrigerator
JP6482643B2 (en) refrigerator
JP3823993B2 (en) refrigerator
JP2013185732A (en) Refrigerator
JP6970933B2 (en) Vacuum insulated housing
JP6113612B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2016001063A (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R151 Written notification of patent or utility model registration

Ref document number: 7182040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151