JP7180637B2 - 水電解システム、および水電解システムの制御方法 - Google Patents

水電解システム、および水電解システムの制御方法 Download PDF

Info

Publication number
JP7180637B2
JP7180637B2 JP2020088153A JP2020088153A JP7180637B2 JP 7180637 B2 JP7180637 B2 JP 7180637B2 JP 2020088153 A JP2020088153 A JP 2020088153A JP 2020088153 A JP2020088153 A JP 2020088153A JP 7180637 B2 JP7180637 B2 JP 7180637B2
Authority
JP
Japan
Prior art keywords
water electrolysis
power
stack
hydrogen
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020088153A
Other languages
English (en)
Other versions
JP2021181605A (ja
Inventor
元 村田
智之 香山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2020088153A priority Critical patent/JP7180637B2/ja
Publication of JP2021181605A publication Critical patent/JP2021181605A/ja
Application granted granted Critical
Publication of JP7180637B2 publication Critical patent/JP7180637B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、水電解システムに関する。
水の電気分解によって水素と酸素を生成する水電解システムにおいて、従来、PEM(Polymer Electrolyte Membrane:固体高分子電解質膜)型水電解システムが知られている。固体高分子電解質膜の両面には、電極触媒層が設けられて膜電極接合体(以下、「MEA」とも呼ぶ)が構成されるとともに、MEAの両側には、給電体が配設され水電解セルが形成される。複数の水電解セルを直列に積層して、水電解スタックが構成される。水電解システムにおいて、複数の水電解スタックを備える構成が提案されている。
水電解システムにおいて、水電解スタックに供給される電力源として、太陽光、水力、風力、波力、バイオマス、地熱などの再生可能エネルギー由来の電源(以下、「再生可能エネルギー源」とも呼ぶ)を用いることが検討されている。しかし、再生可能エネルギー源は、供給される電力量が大きく変動しやすいという問題がある。
この問題に対し、特許文献1には、複数の水電解スタックを備える水電解システムにおいて、再生可能エネルギー源等の電圧変動電源からの総電解電流を、各水電解スタックの効率ピーク電流で除算し、その整数値に1を加えた数のスタックに、均等に電流を分配することにより、電圧変動電源からの供給電力量に応じて良好な電解効率を得る技術が提案されている。
また、特許文献2には、複数の電気分解セルを有する電気分解スタックを、複数のセグメントに電気的に分割し、作動させるセグメントを切替える技術が提案されている。
特開2007-031813号公報 特許第6058205号明細書
上述の再生可能エネルギー源等の電圧変動電源を、水電解スタックに用いた場合、発電電力が低いときは、水電解スタックに供給される電流が低電流になる。この時、特許文献1および特許文献2に記載の技術によって、複数の水電解スタックに、均等に電流を分配すると、作動する各水電解スタックに流れる電流が小さくなる。このような低電流条件では、酸素極への水素透過分の割合が酸素発生速度に対し大きくなる。また、このような低電流条件では、水素極への酸素透過も大きくなり、水素極内で比較的酸素濃度が高い状態が維持されることになる。水素および酸素が電解質膜を透過する現象は、一般に、「クロスリーク」とも言われている。クロスリークにより、触媒上で酸素と水とが反応すると、過酸化水素が発生し、電解質膜を分解することで、水電解スタックの劣化が生じる可能性がある。
本発明は、上述した課題を解決するためになされたものであり、水電解システムにおいて、水電解スタックの耐久性を向上させる技術を提供することを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、水電解システムが提供される。この水電解システムは、n(n≧1の整数)個の固体高分子型の水電解スタックを備える水電解システムであって、前記n個の前記水電解スタックのそれぞれに対して、電源から入力される入力電力を、個別に分配可能な電力供給部と、前記n個の水電解スタックのうち、m(1≦m≦nの整数)個の前記水電解スタックを選択し、前記電力供給部を制御して、前記m個の水電解スタックのそれぞれへ、下限電流値以上の電流の電力を供給させる、制御部と、を備え、前記下限電流値は、前記水電解スタックの電流効率が98%以上となり、かつ、前記電源の電源効率と、前記水電解スタックの電力効率と、の積である総合電力効率が最大となる電流値であり、前記mは、前記入力電力に応じて決定され、前記m個の水電解スタックのそれぞれに、前記下限電流値で電力を供給可能な最大数である。
この構成によれば、入力電力に応じて作動させる水電解スタックの数を決定することができる。そして、作動させる水電解スタックのそれぞれに、下限電流値以上の電流の電力を供給することができる。下限電流値を、いわゆるクロスリークの量を低減可能な電流範囲の内、総合電力効率が最大となるよう設定しているため、水電解スタックの耐久性を向上させると共に、水電解スタックの電力効率を適切にすることができる。例えば、入力電力が変動して、入力電力が小さい場合に、n個の水電解スタックの全てに均等に電力を分配する場合と比較して、供給電力の低電流化を抑制することができ、低電流による電解質膜の劣化を抑制することができる。
(2)上記形態の水電解システムであって、前記下限電流値は、前記水電解スタックの電流効率が、99%以上になるように決定されてもよい。このようにすると、作動させる水電解スタックにおけるクロスリークを、更に、抑制することができる。
(3)上記形態の水電解システムであって、前記制御部は、前記m個の水電解スタックのそれぞれに前記下限電流値で電力を供給した場合の合計電力が前記入力電力より小さい場合、前記入力電力から前記合計電力を減じた残余の入力電力を、前記m個の水電解スタックの1個以上に供給させてもよい。このようにすると、入力電力の全てを、m個の水電解スタックに供給することができる。
(4)上記形態の水電解システムであって、前記制御部は、前記残余の入力電力を均等に分配してもよい。このようにすると、入力電力がm個の水電解スタックに均等に供給される。このようにすると、制御を簡易化することができる。
(5)上記形態の水電解システムであって、前記水電解スタックの抵抗値を計測する抵抗値計測装置と、前記水電解スタックの温度を計測する温度計測装置と、を、さらに備え、前記制御部は、前記抵抗値計測装置で計測された前記抵抗値、および前記温度計測装置で計測された前記温度を用いて、前記抵抗値の温度依存性を算出し、前記温度依存性に基づいて、前記抵抗値の変化を、電極触媒の酸化に起因する可逆劣化と、前記電極触媒の溶出に起因する不可逆劣化に分離し、前記可逆劣化及び/又は前記不可逆劣化の大きさに基づいて、前記水電解スタックを選択してもよい。このようにすると、電極触媒の劣化の程度に応じて、電力を供給する水電解スタックを選択することができる。そのため、例えば、劣化の程度が小さい水電解スタックを優先的に選択して、水電解スタックの作動に伴う電極触媒の劣化を平準化することができる。また、例えば、例えば、劣化の程度が大きい水電解スタックを優先的に選択して、水電解スタックの作動に伴う電極触媒の劣化を増進させて、劣化の程度が進んだ水電解スタックを交換、修理する等により、水電解システム全体の耐久性を向上させることができる。
(6)上記形態の水電解システムであって、前記制御部は、前記水電解スタックの温度が前記水電解スタックの耐熱温度以下となるように、前記水電解スタックに電力を供給させてもよい。例えば、水電解スタックの総合電力効率の下限を定めることにより、水電解スタックの温度が水電解スタックの耐熱温度以下となるよう制御することができる。このようにしても、水電解スタックの耐久性を、向上させることができる。
(7)上記形態の水電解システムであって、前記水電解スタックの温度を計測する温度計測装置と、前記水電解スタックの圧力を計測する圧力計測装置と、前記水電解スタックの温度および圧力の少なくともいずれか一方と、前記水電解スタックにおける水素透過量との関係を示す水素透過量情報が記憶される記憶部と、を、備え、前記制御部は、前記温度計測装置により計測された、作動中の前記水電解スタックの温度、および前記圧力計測装置により計測された、前記作動中の水電解スタックの圧力の少なくともいずれか一方と、前記水素透過量情報とを用いて、前記作動中の水電解スタックの水素透過量を予測し、予測された前記水素透過量を用いて前記下限電流値を補正してもよい。このようにすると、作動中の水電解スタック中の水素透過量を予測し、その結果を下限電流値に反映させることができるため、より適切に電力供給制御を行うことができ、水電解スタックの耐久性を向上させることができる。
(8)上記形態の水電解システムであって、前記水電解スタックから排出される酸素が流れる流路上に設けられ、水素を検知する水素検知器を備え、前記制御部は、前記水素検知器による検知結果の変化に応じて、前記水電解スタックに供給する電力の前記下限電流値を修正してもよい。このようにすると、作動中の水電解スタック中の水素透過量の実測値を用いて、下限電流値に反映させることができるため、より適切に電力供給制御を行うことができ、水電解スタックの耐久性を向上させることができる。
なお、本発明は、種々の態様で実現することが可能であり、例えば、水電解システムを備えるメタン製造システム、水電解システムを備える二酸化炭素回収システム、水電解システムを備える水素ステーション、水電解システムの制御方法、水電解方法、水電解システムの制御をコンピュータに実行させるコンピュータプログラム、コンピュータプログラムを配布するためのサーバ装置、コンピュータプログラムを記憶した一時的でない記憶媒体等などの形態で実現することができる。
第1実施形態の水電解システムの構成を概念的に示す模式図である。 水電解セルの概略構成を概念的に示す説明図である。 制御部における供給電力制御の説明図である。 本実施形態の下限電流値の説明図である。 水電解セルにおける水素の発生量と透過量の関係を示す図である。 水電解セルにおける水素の発生量と限界値の関係を示す図である。 下限電流値と電流効率との関係を示す図である。 電流効率および電圧効率を示す図である。 水電解スタックの電力効率と電源の電源効率を示す図である。 第2実施形態の下限電流値の説明図である。 第3実施形態の下限電流値の説明図である。 第4実施形態の電力効率下限値を示す説明図である。 水素透過係数の事前測定を示すフローチャートである。 水素透過量の圧力依存、水素透過係数の温度依存を示す図である。 本実施形態の下限電流値の設定を示すフローチャートである。 水電解スタックの作動時間に伴う水素透過係数の変化を示す図である。
<第1実施形態>
図1は、第1実施形態の水電解システム100の構成を概念的に示す模式図である。本実施形態の水電解システム100では、4つの水電解スタック10を備え、各水電解スタック10において水を電気分解することで酸素と水素を生成する。水電解システム100は、4個の水電解スタック10と、4個の水電解スタック10に電力を分配する電力供給部20と、水電解システム100の作動を制御する制御部30と、4個の水電解スタック10に対して水を供給可能な水供給部40と、を備える。
4個の水電解スタック10を区別する場合には、それぞれ、第1水電解スタック11、第2水電解スタック12、第3水電解スタック13、および第4水電解スタック14と、呼ぶ。なお、水電解スタック10の個数は、本実施形態に限定されず、目的に応じて、任意に設定することができる。
水電解スタック10は、高分子電解質膜を隔膜に用いた水電解セルが複数個積層されて形成される。
図2は、水電解セル10Cの概略構成を概念的に示す説明図である。水電解セル10Cは、PEM(Polymer Electrolyte Membrane:固体高分子電解質膜)型水電解セルであって、膜電極接合体(以下、「MEA」という)1を有する。MEA1は、プロトン(H+)と水を通すことが可能な電解質膜1aの両面に、水を分解し酸素とプロトン(水素イオン)を生成する酸素極1bと、水素イオンから水素を生成する水素極1cと、が接合されたものである。酸素極1bの表面には、金属メッシュ等から成る給電体5が配置され、MEA1の酸素極1b側には、ガスケット2を介してセパレータ4が配置されている。同様に、水素極1cの表面には、金属メッシュ等から成る給電体6が配置され、MEA1の水素極1c側には、ガスケット3を介してセパレータ4が配置されている。セパレータ4は、いわゆる、複極板である。
水電解セル10Cの構造は、水電解が可能である限りにおいて、特に限定されない。例えば、水電解セル10Cは、
(a)酸素極側及び水素極側の双方において、水を循環させる両極循環方式、
(b)酸素極側のみ水を循環させる片側循環方式
のいずれであっても良い。
水電解セル10Cでは、水供給部40から酸素極側に水が供給されている状態において、電力が供給されると、酸素極1bにおいて水が電気分解され、酸素と水素イオンが生成される。生成された酸素は、電気分解されなかった水の一部とともに排出される。酸素極1bで生成された水素イオンは、水(随伴水)とともに、水素極側に移動し、水素極1cにおいて電子と結合することで水素になる。水素極1cにおいて生成された水素は、電解質膜を透過した透過水、および随伴水とともに排出される。
図2に示すように、水素極1cで生成された水素が、水素極側と酸素極側との圧力差(水素極側の圧力が高い)および水素濃度差により、電解質膜1aを透過して酸素極側に移動する場合がある。また、同様に、酸素極1bで生成された酸素が、水素極側と酸素極側との酸素濃度差により、水素極側に移動する場合がある。これを、「クロスリーク」とも言う。クロスリークは、低電流域で生じやすい。
電力供給部20(図1)は、電源200と接続されると共に、4個の水電解スタック10のそれぞれと接続されている。電力供給部20は、いわゆる、電力調整器を備え、電源200から入力される入力電力を、4個の水電解スタック10のそれぞれに対して、個別に分配する。
制御部30は、水電解システム100全体の作動を制御する。また、電力供給部20を制御して、水電解スタック10へ電力を供給させる、電力供給制御を行う。電力供給制御では、電源200からの電力を供給して作動させる水電解スタック10の個数を決定し、決定した個数の水電解スタック10に、電源200から入力される入力電力を、分配する。電力供給制御については、後に詳述する。
水供給部40は、水電解スタック10の酸素極1bに水を供給可能に構成されている。酸素極1bに供給される水は、電解の原料となる。水供給部40の構造は、作動する水電解スタック10(以下、「作動水電解スタック」)とも呼ぶ)に必要量の水を供給可能なものである限りにおいて、特に限定されない。水電解スタック10の酸素極1bに水を供給しても、電力が供給されない限り電解は行われない。そのため、水供給装置は、すべての水電解スタック10に同時に水を供給するものでも良く、あるいは、作動する水電解スタック10に選択的に水を供給するものでも良い。
なお、水電解システム10は、水電解スタック10の水素極1cに水を供給するための第2水供給部をさらに備えていても良い。電解中に水素極1cに水を供給すると、水素極1cの表面に吸着した水素ガスの脱離を促進させることができる。
電源200は、水電解スタック10に電力を供給する。本実施形態において、電源200は、再生可能エネルギー源である。すなわち、電源200に入力される入力電力は、比較的大きく変動する。電源200の種類は、特に限定されず、商用電源であっても良い。
図3は、制御部30における供給電力制御の説明図である。図3の左側には、電力供給部20に入力される入力電力の経時変化を示す。図3の右側には、入力電力の変動に対応する電力分配を示す。図に示す「ILOW」は、下限電流値(後述する)である。
上述の通り、電源200は再生可能エネルギー源であり、発電量が変動するため、電力供給部20に入力される入力電力は、図示するように変動する。本実施形態の制御部30は、1個の水電解スタック10に供給する電流が下限電流値ILOW以上になるように、作動水電解スタックの数を決定する。具体的には、入力電力から、下限電流値ILOWで電力を供給可能な水電解スタック10の最大数を、作動させる水電解スタック10の個数として決定し、決定した個数の水電解スタック10に、入力電力を均等に分配する。すなわち、本実施形態の水電解システム100において、水電解システム100は、常に、下限電流値ILOW以上の電力で運転される。
図3に示す例では、時間<1>のとき、1個の水電解スタック10に下限電流値ILOWで電力を供給すると、入力電力の残りが下限電流値ILOWより小さいため、制御部30は、電力を供給する水電解スタック10(作動水電解スタック)の個数を1個と決定し、入力電力の全てを第1水電解スタック11(図1)のみに供給する。
時間<2>のとき、2個の水電解スタック10に下限電流値ILOWで電力を供給すると、入力電力の残りが0のため、制御部30は、作動水電解スタックの個数を2個と決定し、入力電力を、第1水電解スタック11と第2水電解スタック12に、下限電流値ILOWで均等に分配する。
時間<3>のとき、2個の水電解スタック10に下限電流値ILOWで電力を供給すると、入力電力の残りが下限電流値ILOWより小さいため、制御部30は、作動水電解スタックの個数を2個と決定する。そして、入力電力の残りを第1水電解スタック11と第2水電解スタック12に均等に分配し、下限電流値ILOWと合わせて下限電流値ILOWより大きい電流密度で、第1水電解スタック11と第2水電解スタック12に均等に分配する。
時間<4>のとき、4個の水電解スタック10に下限電流値ILOWで電力を供給しても、入力電力が余るため、制御部30は、作動水電解スタックの個数を4個(すべて)と決定する。そして、入力電力の残りを4個の水電解スタック10に均等に分配し、下限電流値ILOWと合わせて下限電流値ILOWより大きい電流密度で、4個の水電解スタック10の全てに均等に分配する。
このように、本実施形態の水電解システム100では、作動水電解スタックの個数に応じて水電解スタック10を選択する際、第1水電解スタック11から昇順に(数の小さいものから大きいものへ)選択する。
図4は、本実施形態の下限電流値ILOWの説明図である。図4では、水電解スタック10における電流密度と総合電力効率との関係を、電解質膜1aの膜厚みが互いに異なる4種類(10μm、25μm、50μm、175μm)の水電解セルについて図示している。ここで、総合電流効率は、水電解スタック10の電力効率と電源200の電源効率の積である(後述する)。本実施形態において、下限電流値ILOWより低い電流は、水電解スタック10に供給されないため、図4では、各膜厚みについて、下限電流値ILOWより低い電流密度を、点線で図示している。図示するように、下限電流値は、電解質膜1aの膜厚みによって異なる。膜厚みが25μmの電解質膜1aを用いた場合について示すように、本実施形態の下限電流値ILOWは、総合電力効率が最大になる電流値IMより高い。膜厚みが10μmの場合も同様に、下限電流値ILOWは、総合電力効率が最大になる電流値より高い。膜厚みが50μmの電解質膜1aを用いた場合は、下限電流値ILOWは、総合電力効率が最大になる電流値Iと、ほぼ一致している。膜厚みが175μmの電解質膜1aを用いた場合は、下限電流値ILOWは、ほぼ0であり、全電流域を利用することができる。本実施形態において、各膜厚について、作動水電解スタックの1個当たりの電流効率が98%以上となり、かつ、電源200の電源効率と、作動水電解スタックの1個当たりの電力効率と、の積である総合電力効率が最大となる電流を、下限電流値ILOWとしている。
下限電流値ILOWの決定方法について、図4~図9を用いて説明する。図4~図9は、7気圧時を図示している。
図5は、水電解セル10Cにおける水素の発生量と透過量の関係を示す図である。図6は、水電解セル10Cにおける水素の発生量と限界値の関係を示す図である。図5、図6では、電解質膜1aの膜厚みが互いに異なる5種類(10μm、25μm、50μm、100μm、175μm)の水電解セルについて図示している。本実施形態において、限界値として、酸素発生の4%を用いている。
図5、図6に示すように、水素の透過量は、膜厚みに反比例する。これにかかる係数は透過係数と言われるもので材質や、温度の影響を受ける。一方、水素および酸素の発生量は、電流に応じて変わる。図6に示す限界値(二重線)は、上述の通り、酸素発生の4%を用いている。水素の爆発下限が、一般的に、酸素の4%と言われているためである。図6に矢印で示すように、限界値(二重線)より右側の電流密度で、水電解スタック10を運転することにより、水素透過量を酸素発生量の4%以内に抑制することができ、安全に運転することができる。
水素透過量は、使用する電解質膜の材質によって、異なる値が出たり、拘束状態によっても変わるので、予め、使用する水電解セル10Cを用いて測定しておくことが望ましい。差圧法(JIS K7126-1)や等圧法(JIS K7126-2)などで測定することで情報を得ることができる。この方法で、予め、温度依存性や圧力依存性を計測し、把握しておくと作動環境が変わってもより精度高く、透過水素の見積りが可能となる。それにより、爆発限界以下となる電流条件を予め見積り可能となる。
図7は、下限電流値ILOWと電流効率との関係を示す図である。上段の図は、図6の水素透過量と限界値との関係を示す図の横軸(電流密度)の範囲を広げたものである。下段の図は、限界値と電流効率との関係を示す図である。図7を用いて、水素透過を用いた電流効率、電力効率の算出を、具体的に説明する。
通常の水電解反応は以下の反応がほぼ100%の電流効率で起きる。
2O → H2 + 1/2O2
例えば、発生した水素の1%の水素が電解質膜を透過して酸素極側に抜けてしまった場合、利用できる水素は発生した水素の99%であり、これは電流効率が99%で反応したことと等価である。発生した水素の2%の水素が透過した場合は、電流効率が98%の場合と等価である。
より具体的な例を挙げて説明する。100cc/minで水素が発生する条件で、1cc/minのレートで水素が酸素極側に透過したとすると、使える水素は99cc/minに限られる。また、この時、酸素極側では、50cc/minの酸素が発生しているので、酸素極側の環境は、発生酸素50cc/min+透過水素1cc/minという状況になる(発生酸素が、水素極側に透過していないと仮定した場合)。つまり、酸素極側は、約2%の水素濃度と言うことになる。正確には、1/(50+1)=1.96%である。
仮に、透過水素が2cc/minだとすると、使える水素は98cc/minである。酸素極側の環境は、この時、発生酸素50cc/min+透過水素2cc/minで、約4%の水素濃度ということになる。正確には、2/(50+2)=3.8%である。すなわち、透過水素が2cc/minの場合には、水素濃度が、爆発下限(酸素の4%)にかなり近づいてしまう。
このように、透過水素分が電流効率でみてA%だけ落ちる分に匹敵するとき、対極(酸素極)での水素濃度は約2×A%になる。逆の見方をすると、水素濃度が4%に達しないようにするためには、透過水素の分が電流効率で2.1%以下に抑制する必要がある。
ここで、どのような運転環境で爆発限界に達するかは定性的には以下のような議論で説明できる。
(1)酸素発生側への水素透過量は、水素圧力に比例し、電流密度に依存しない。
(2)酸素発生量は、水素圧力に依存せず、電流密度に比例する。
上記(1)、(2)の理由により、
(3)低電流密度では、酸素発生量の割に、水素透過量が多い環境になる。
(4)高電流密度では、酸素発生量の割に、水素透過量が少ない環境になる。
上記(3)、(4)に述べたように、低電流密度ほど爆発下限に近づく可能性が高い。
図7の上段の図に示す限界値と水素透過量との交点が下限電流値ILOWであり、下段の図の破線と電流効率との交点に一致する。破線は電流効率が98%のラインであり、電流効率が98%以上となるように、水電解スタックへ電力を供給することにより、酸素極側における水素濃度を、爆発下限より低くすることができる。
図8は、電流効率および電圧効率を示す図であり、図9は、水電解スタックの電力効率と電源の電源効率を示す図である。図8の上段に示す電流効率は、水素透過係数、膜厚、および圧力差から透過水素割合を導出し、電流効率に換算したものである。図9の上段に示す水電解スタックの電力効率は、図7に示す電流効率と電圧効率の積である。この水電解スタックの電力効率の図において、電流効率(図7上段)が98%以下となる電流密度の範囲は、点線で図示している。本実施形態において、点線で示す電力効率では、水電解スタックを運転しない。なお、電流効率および電圧効率は、温度一定のモデルで試算しており、実システムでは低電流密度域は、低温なので電圧効率は下がる傾向(左側に垂れるイメージ)になる。
図9の下段には、電源の電源効率を示す。低電流密度では、整流用の部品や冷却ファン、制御用ICなどによる損失の寄与が大きいため、電源効率が悪い。他方、高電流密度では、それらの寄与は小さくなるが、電源内の配線の太さや伝導度によっては抵抗損失が大きくなり、効率が低下する。
図9に示した水電解スタックの電力効率と電源の電力効率の積により、図4に示した総合電力効率が得られる。
以上説明したように、本実施形態の水電解システム100によれば、電源200から入力される入力電力に応じて作動させる水電解スタック10の数を決定することができる。そして、作動させる水電解スタックのそれぞれに、下限電流値ILOW以上の電流の電力を供給することができる。下限電流値ILOWを、水素透過量が酸素発生量の4%以内になるように設定しているため、酸素極側の水素濃度を水素の爆発下限以下に抑制することができ、水電解システム100の安全性を向上させることができる。なお、PEM型水電解スタックでは、水が潤沢にある環境であるため、水素濃度が4%を超えても、爆発する危険性は低いと言える。
また、水素透過量を抑制すると共に、酸素透過量を抑制することができるため、電解質膜1aの劣化を抑制することができ、水電解スタック10の耐久性を向上させることができる。例えば、入力電力が変動して、入力電力が小さい場合に、4個の水電解スタックの全てに均等に電力を分配する場合と比較して、供給電力の低電流化を抑制することができ、低電流による電解質膜の劣化を抑制することができる。
PEM型水電解セルにおいて、水電解性能向上等の要請により、電解質膜の薄型化が検討されている。従来より薄い電解質膜を用いた場合、クロスリークが発生しやすいため、本実施形態の水電解システム100を適用すると、水電解スタック10の耐久性を向上させることができ、より好適である。
また、本実施形態の水電解システム100では、いわゆるクロスリークの量を低減可能な電流範囲の内、総合電力効率が最大となるよう設定しているため、水電解スタック10の電力効率を適切にすることができる。すなわち、スタック効率と安全性を両立すると共に、さらにはスタックの耐久性向上も実現する。
<第2実施形態>
図10は、第2実施形態の下限電流値の説明図である。図10は、第1実施形態の図4に対応する図であり、7気圧時の電流密度と総合電力効率との関係を、電解質膜の膜厚みが互いに異なる4種類(10μm、25μm、50μm、175μm)の水電解セルについて図示している。本実施形態では、水電解スタック10の電流効率が99%以上となるように供給可能電流域を定めた。図10では、膜厚み10μmの水電解スタック10について、本実施形態の下限電流値ILOW2と、第1実施形態の下限電流値ILOWを図示している。水素透過による酸素極側の水素濃度について、より安全をみて、発生酸素の2%になるように、供給電力を決定すると、図示するように、供給可能な電流範囲のうち低電流側が、第1実施形態よりもカットされ、作動可能な電流範囲が高電流側にくる(図10において、矢印で図示)。換言すると、本実施形態では、下限電流値が第1実施形態より高い。例えば、電解質膜の膜厚みが10μmの場合、約3A/cm2が下限電流値となる。
このようにすると、さらに、透過水素の量を低減させることができ、水電解システムの安全性を向上させることができる。同様に、透過酸素の量も低減させることができるため、電解質膜の劣化をさらに抑制することができ、水電解スタックの耐久性を、さらに向上させることができる。
<第3実施形態>
図11は、第3実施形態の下限電流値の説明図である。図11も、図4に対応する図である。本実施形態では、水電解スタック10の電流効率が99.5%以上となるように供給可能電流域を定めた。図11では、膜厚み10μmの水電解スタック10について、第2実施形態の下限電流値ILOW2と、第1実施形態の下限電流値ILOWを図示している。水素透過による酸素極側の水素濃度について、より安全をみて、酸素の1%になるように、供給電力を決定すると、図示するように、供給可能な電流範囲のうち低電流側が、第2実施形態よりも、さらにカットされ、供給可能な電流範囲がさらに高電流側にくる(図11中矢印)。換言すると、本実施形態では、下限電流値が第2実施形態よりさらに高い。例えば、電解質膜の膜厚みが10μmの場合は、図11に示す電流範囲より高い電流値が下限電流値となる。このようにすると、さらに、水電解システムの安全性および耐久性を向上させることができる。但し、供給可能な電流範囲が、より高電流側になるため、電解質膜の厚さによっては、第1、2実施形態のように、電流効率を98%~99%程度にすると、水電解システムの安全性、耐久性とスタック効率が両立されるため、好ましい。
<第4実施形態>
図12は、第4実施形態の電力効率下限値を示す説明図である。第4実施形態では、水電解スタック10の電流効率98%以上を使用可能域とし、図12では、電流効率98%未満の電力効率曲線を、点線で図示している。第4実施形態では、水電解スタックの総合電力効率の下限値を決定している。すなわち、下限値の総合電力効率が発現する電流密度より小さい電流密度で、あるいはその下限値の総合電力効率が発現するセル電圧より高い電圧で、水電解スタック10が作動するように、電力を供給する。本実施形態では、総合電力効率の下限値を、熱負荷点(耐熱温度)を超えないように決定する。温度により許容できる熱負荷が異なるように設定するのが合理的であるためである。なぜなら、低温では発熱が大きくても材料の耐熱温度には達しにくいが高温で同等の発熱が起きると、材料の耐熱温度に達する可能性があるからである。よって、こうした環境の違いに応じて設定する。図12では、電解質膜の膜厚みが50μmの熱負荷点と、それに対応する総合電力効率の下限値を図示している。
本実施形態では、水電解スタックの総合電力効率の下限値を、熱負荷点を超えないように定めて、水電解スタックへの供給電力を、決定している。このようにしても、水電解システムの耐久性を向上させることができる。
<第5実施形態>
図13は、水素透過係数の事前測定を示すフローチャートである。図14は、水素透過量の圧力依存、水素透過係数の温度依存を示す図である。
本実施形態では、水電解スタック10に供給する電力の下限電流値の設定に用いられる酸素極中の水素濃度を、予め実験的に測定された水素透過量を用いて作成された推測水素濃度mapを用いて推測する。以下に、推測水素濃度mapの生成について、図13、図14を用いて説明する。
水電解システムに、実際に用いる水電解セルを用いて、予め、実験的に水素透過係数を測定する。電解質膜の水素透過は、水電解セルの流路や給電体などの部材による拘束具合によっても変わるため、実際に用いる水電解セルを用いるのが好ましい。図13に示すように、水素極側に水素、酸素極側に窒素を供給し、水素透過係数を測定する。酸素極を窒素とすることで、透過した水素が酸素と反応せずに計測できるため、真の透過量を求めることができる。すなわち、意図せず、酸素極触媒上で水素と酸素とが反応してしまい、透過量が過小評価されることを防ぐことができる。
温度を固定し、圧力変えて水素透過係数を測定する。これを何水準か温度別に行うことにより、水素透過係数の圧力依存、温度依存を得ることができる。図14の上段には、温度50℃における水素透過量の圧力依存を示す。なお、このような図を、40℃、60℃、70℃、80℃、90℃それぞれについて作成する。
圧力に比例する成分と依存しない成分があるが、差圧をかける運転において後者はほとんど無視できるので前者に注目する。圧力依存性の傾きが急なほど漏れ(水素透過)が大きい。この傾きから水素透過係数を算出する(図14の上段の図)。その結果、図14の下段の図に示すように、低温域では水素透過係数はほぼ一定であり、高温域では、若干低下する。これは、電解質膜の高分子の構造の変化が原因であり、高分子の含水率が上がり、ガスが通る隙間が小さくなる影響と考えられる。
本実施形態では、上述の通り予め実験的に測定された水素透過係数を、水素透過量情報として、温度および圧力を関連付けて記憶させておく。そして、制御部30は、水素透過量情報用いて、作動中の水電解セルの温度や圧力の値から水素透過量を予測し、作動中の酸素極側の水素濃度を求めて、推測水素濃度mapを用意する。制御部30は、温度別に下限電流値に反映させる制御を実施する。このようにすると、簡易な制御で、比較的精度よく、下限電流値を決定することができる。
水素透過量情報は、水素透過係数に限定されず、他の実施形態では、水素透過量でもよいし、水素濃度でもよい。
なお、水素透過が問題になるのは低電流域側である。低電流域側は低負荷で運転する領域であるため、発熱が少ない。よって、そもそも温度が低いので、温度域は70℃以下とすると、図14の下段の図に示すように、温度依存性はほぼないとみなすこともできる。そのため、他の実施形態では、簡単な制御にするために、温度依存を考慮しない制御にしてもよい。
<第6実施形態>
図15は、本実施形態の下限電流値の設定を示すフローチャートである。図16は、水電解スタックの作動時間に伴う水素透過係数の変化を示す図である。
図16に示すように、水電解スタックで電解質劣化が起きると、作動時間に伴い、水素透過量が増加し、計算上は水素透過係数が増加するように見える。これは、電解質膜が化学的に劣化し薄くなることや、部分的な引きつれが起きること、ピンホールの形成が始まることが原因である。ここに挙げたような膜の変化は、外部からは観測できないため、水素透過係数の算出は膜厚みが変化しないと仮定して行うことになる。その結果、図16に示すように、算出された水素透過係数が増加するように見える。このように、長時間の運転で水素透過係数が変わる可能性があることから、本実施形態では、水電解スタックの作動時間に伴う電解質膜の劣化に応じて、下限電流値を補正する。
具体的には、本実施形態の水電解システムは、水素検知器を備え、水素検知器による検知結果(透過水素量)を用いて、下限電流値を補正する。水素検知器の検知は、システムの下流で評価するため、途中で水素と酸素が反応を起こし、過酸化水素や水が生成されると、水電解セルにおける水素透過量が低く見積もられてしまう。そのため、水素検知器による実測値の絶対値を使うという方法は望ましいとは言えない。そこで、本実施形態では、上記のように、電解質膜の種類に応じた電流設定にすることを基本とし、初期の水素透過量に対し、どの程度の水素透過量が増えたかの、増加率を電流設定に反映させる(図15)。例えば、水素透過量から算出される水素透過係数が初期より2倍に増加していれば、その透過係数を元に、水電解スタックの電流効率が98%以上となる電流条件を算出し、下限電流値を補正する。
このようにすると、電解質膜の経時劣化が進み、水素透過が増えてきた場合、それに応じて、下限電流値を上げることができる。本実施形態によれば、水電解スタックの作動時間に伴う電解質膜の劣化に応じて、水電解スタックに供給する電力量を決定することができるため、電解質膜が劣化した場合にも、適切なスタック効率で運転させることができると共に、水電解システムの安全性と耐久性を向上させることができる。また、この方法によれば、複雑な演算等が不要となり、下限電流値の補正を簡便に実施することができる。
<第7実施形態>
本実施形態の水電解システムは、第1実施形態の水電解システム100の構成に加え、さらに、水電解スタック10の抵抗値を計測する抵抗値計測装置(不図示)と、水電解スタック10の温度を計測する温度計測装置(不図示)と、を、さらに備え、制御部は、抵抗値計測装置で計測された抵抗値、および温度計測装置で計測された温度を用いて、抵抗値の温度依存性を算出し、温度依存性に基づいて、抵抗値の変化を、電極触媒の酸化に起因する可逆劣化と、電極触媒の溶出に起因する不可逆劣化に分離し、可逆劣化及び/又は不可逆劣化の大きさに基づいて、作動水電解スタックを選択する。
[可逆劣化と不可逆劣化]
水電解スタック10の抵抗値は、電解質膜のイオン抵抗成分、及び接触抵抗成分(例えば、電極触媒の劣化)に限定された情報であるため、例えば、触媒被毒等の影響を受けがたく、劣化状態を診断する指標として適している。なお、本発明において、「抵抗値」という時は、特に断らない限り、
(a)抵抗値計測装置により計測された狭義の抵抗値(Ω)、又は、
(b)狭義の抵抗値(Ω)から算出される物性値であって、水電解システム100の制御に適したもの(例えば、面積抵抗値(Ω・cm2)など)、
の双方を表す。
水電解スタック10の抵抗値は、経時劣化により増加する。抵抗値の増分は、接触抵抗成分の増分と、イオン抵抗成分の増分に分けられる。「可逆劣化」とは、接触抵抗成分の増分をいう。「接触抵抗成分の増分」とは、電極触媒が酸化されることにより生じる抵抗値の増分をいう。可逆劣化は、温度依存性が殆どない。可逆劣化により性能が低下した水電解スタック10は、再生処理により、ある程度性能を回復させることができる。
一方、「不可逆劣化」とは、イオン抵抗成分の増分をいう。「イオン抵抗成分の増分」とは、電極触媒が溶出し、電解質膜のプロトンが触媒金属イオンでイオン交換されることにより生じる抵抗値の増分をいう。不可逆劣化は、温度依存性が強い。不可逆劣化により性能が低下したスタックは、再生処理による性能回復が期待できない。そのため、不可逆劣化が過度に進行した水電解スタック10は、速やかに交換するのが好ましい。
制御部30は、抵抗値計測装置及び温度計測装置で計測された抵抗値及び温度を用いて、抵抗値の温度依存性を算出し、算出した温度依存性に基づいて、抵抗値の変化を、電極触媒の酸化に起因する可逆劣化と、電極触媒の溶出に起因する不可逆劣化に分離する。すなわち、温度依存性がほとんどない場合は可逆劣化に分類し、温度依存性が強い場合は不可逆劣化に分類する。そして、制御部30は、可逆劣化及び/又は不可逆劣化の大きさに基づいて、作動水電解スタックを選択する。具体的には、本件出願人が出願済みの特願2018-219808に記載された方法により、選択する。
選択方法としては、具体的には、以下のような方法がある。
(1)可逆劣化の程度が低いものを優先的に選択してもよい。この場合、水電解スタック10が急激に劣化する可能性は低いので、相対的に長時間の連続運転を行うことができる。
(2)可逆劣化の程度が高いものをあえて選択してもよい。
(3)不可逆劣化の程度が高いものをあえて選択してもよい。
このように、作動水電解スタックを選択すると、特定の水電解スタック10のみが酷使されるのを回避することができる。また、各水電解スタック10の作動期間が平準化されるので、水電解スタック10の寿命が長くなり、水電解スタック10の交換に要する費用の増加も抑制することができる。
<本実施形態の変形例>
本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
・上記実施形態において、入力電力に応じて選択された複数の水電解スタック10に、均等に電力を分配する例を示したが、均等に分配されなくてもよい。選択された水電解スタックのそれぞれに下限電流値で電力を供給した場合の合計電力が入力電力より小さい場合、入力電力から合計電力を減じた残余の入力電力を、選択された水電解スタックの1個以上に供給させてもよい。また、残余の入力電力を、二次電池に供給させて貯蔵させてもよい。また、二次電池は、電力と水素の需給バランスが崩れた時等に、余剰電力を一時的に貯蔵してもよい。
・水素透過量の求め方は、上記実施形態に限定されず、種々の方法で求めることができる。
以上、実施形態、変形例に基づき本発明について説明してきたが、上記した態様の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
1…MEA
1a…電解質膜
1b…酸素極
1c…水素極
2、3…ガスケット
4…セパレータ
5、6…給電体
10…水電解システム
10、11、12、13、14…水電解スタック
10C…水電解セル
20…電力供給部
30…制御部
40…水供給部
100…水電解システム
200…電源

Claims (9)

  1. n(n≧1の整数)個の固体高分子型の水電解スタックを備える水電解システムであって、
    前記n個の前記水電解スタックのそれぞれに対して、電源から入力される入力電力を、個別に分配可能な電力供給部と、
    前記n個の水電解スタックのうち、m(1≦m≦nの整数)個の前記水電解スタックを選択し、前記電力供給部を制御して、前記m個の水電解スタックのそれぞれへ、下限電流値以上の電流の電力を供給させる、制御部と、
    を備え、
    前記下限電流値は、
    前記水電解スタックの電流効率が98%以上となり、かつ、前記電源の電源効率と、前記水電解スタックの電力効率と、の積である総合電力効率が最大となる電流値であり、
    前記mは、
    前記入力電力に応じて決定され、前記m個の水電解スタックのそれぞれに、前記下限電流値で電力を供給可能な最大数である、
    水電解システム。
  2. 請求項1に記載の水電解システムであって、
    前記下限電流値は、
    前記水電解スタックの電流効率が、99%以上になるように決定される、
    水電解システム。
  3. 請求項1または請求項2に記載の水電解システムであって、
    前記制御部は、
    前記m個の水電解スタックのそれぞれに前記下限電流値で電力を供給した場合の合計電力が前記入力電力より小さい場合、前記入力電力から前記合計電力を減じた残余の入力電力を、前記m個の水電解スタックの1個以上に供給させる、
    水電解システム。
  4. 請求項3に記載の水電解システムであって、
    前記制御部は、
    前記残余の入力電力を均等に分配する、
    水電解システム。
  5. 請求項1から請求項4のいずれか一項に記載の水電解システムであって、
    前記水電解スタックの抵抗値を計測する抵抗値計測装置と、
    前記水電解スタックの温度を計測する温度計測装置と、
    を、さらに備え、
    前記制御部は、
    前記抵抗値計測装置で計測された前記抵抗値、および前記温度計測装置で計測された前記温度を用いて、前記抵抗値の温度依存性を算出し、前記温度依存性に基づいて、前記抵抗値の変化を、電極触媒の酸化に起因する可逆劣化と、前記電極触媒の溶出に起因する不可逆劣化に分離し、前記可逆劣化及び/又は前記不可逆劣化の大きさに基づいて、前記水電解スタックを選択する、
    水電解システム。
  6. 請求項1から請求項5のいずれか一項に記載の水電解システムであって、
    前記制御部は、
    前記水電解スタックの温度が前記水電解スタックの耐熱温度以下となるように、前記水電解スタックに電力を供給させる、
    水電解システム。
  7. 請求項1から請求項6のいずれか一項に記載の水電解システムであって、
    前記水電解スタックの温度を計測する温度計測装置と、
    前記水電解スタックの圧力を計測する圧力計測装置と、
    前記水電解スタックの温度および圧力の少なくともいずれか一方と、前記水電解スタックにおける水素透過量との関係を示す水素透過量情報が記憶される記憶部と、を、備え、
    前記制御部は、
    前記温度計測装置により計測された、作動中の前記水電解スタックの温度、および前記圧力計測装置により計測された、前記作動中の水電解スタックの圧力の少なくともいずれか一方と、前記水素透過量情報とを用いて、前記作動中の水電解スタックの水素透過量を予測し、予測された前記水素透過量を用いて前記下限電流値を補正する、
    水電解システム。
  8. 請求項1から請求項6のいずれか一項に記載の水電解システムであって、
    前記水電解スタックから排出される酸素が流れる流路上に設けられ、水素を検知する水素検知器を備え、
    前記制御部は、
    前記水素検知器による検知結果の変化に応じて、前記水電解スタックに供給する電力の前記下限電流値を修正する、
    水電解システム。
  9. n(n≧1の整数)個の固体高分子型の水電解スタックを備える水電解システムの制御方法であって、
    電源から入力される入力電力に応じて、前記水電解スタックの電流効率が98%以上となり、かつ、前記電源の電源効率と、前記水電解スタックの電力効率と、の積である総合電力効率が最大となる下限電流値で電力を、均等に供給できる最大数を、mとして、前記n個の前記水電解スタックから前記m個の前記水電解スタックを選択し、前記m個の水電解スタックのそれぞれに、前記下限電流値以上の電力量を供給させる、
    水電解システムの制御方法。
JP2020088153A 2020-05-20 2020-05-20 水電解システム、および水電解システムの制御方法 Active JP7180637B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020088153A JP7180637B2 (ja) 2020-05-20 2020-05-20 水電解システム、および水電解システムの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020088153A JP7180637B2 (ja) 2020-05-20 2020-05-20 水電解システム、および水電解システムの制御方法

Publications (2)

Publication Number Publication Date
JP2021181605A JP2021181605A (ja) 2021-11-25
JP7180637B2 true JP7180637B2 (ja) 2022-11-30

Family

ID=78606243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020088153A Active JP7180637B2 (ja) 2020-05-20 2020-05-20 水電解システム、および水電解システムの制御方法

Country Status (1)

Country Link
JP (1) JP7180637B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023157554A (ja) * 2022-04-15 2023-10-26 株式会社日立製作所 水素製造システム、水素製造方法
WO2024014438A1 (ja) * 2022-07-15 2024-01-18 旭化成株式会社 運転支援装置、運転支援方法および運転支援プログラム
WO2024106099A1 (ja) * 2022-11-16 2024-05-23 パナソニックIpマネジメント株式会社 水電解装置及び水電解装置の運転方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126792A (ja) 2003-10-27 2005-05-19 Ishikawajima Harima Heavy Ind Co Ltd 水素製造設備
JP2007031813A (ja) 2005-07-29 2007-02-08 Honda Motor Co Ltd 水電解システム及びその運転方法
JP2012111981A (ja) 2010-11-19 2012-06-14 Takasago Thermal Eng Co Ltd 水素製造方法及び水素製造システム
WO2013046958A1 (ja) 2011-09-30 2013-04-04 株式会社日立製作所 水素製造システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126792A (ja) 2003-10-27 2005-05-19 Ishikawajima Harima Heavy Ind Co Ltd 水素製造設備
JP2007031813A (ja) 2005-07-29 2007-02-08 Honda Motor Co Ltd 水電解システム及びその運転方法
JP2012111981A (ja) 2010-11-19 2012-06-14 Takasago Thermal Eng Co Ltd 水素製造方法及び水素製造システム
WO2013046958A1 (ja) 2011-09-30 2013-04-04 株式会社日立製作所 水素製造システム

Also Published As

Publication number Publication date
JP2021181605A (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
JP7180637B2 (ja) 水電解システム、および水電解システムの制御方法
US8192879B2 (en) Method for maximum net power calculation for fuel cell system based on online polarization curve estimation
US7682719B2 (en) Method for adaptive prediction of stack voltage in automotive fuel cell systems
JP5330753B2 (ja) 燃料電池システム
US9184456B2 (en) Fuel cell system and method for limiting current thereof
JP5326423B2 (ja) 燃料電池システム、および、燃料電池の状態検知方法
JP5343509B2 (ja) 燃料電池システムおよび燃料電池の状態検知方法
JP5578294B1 (ja) 燃料電池システム
US8507141B2 (en) Membrane permeation adjustment in PEM fuel cell
JP5145630B2 (ja) 燃料電池システム
JP4973138B2 (ja) 燃料電池システム
JP5502553B2 (ja) 燃料電池システム
JP6946308B2 (ja) 燃料電池コントローラ、燃料電池システム、および動作方法
JP5829936B2 (ja) 固体酸化物形燃料電池システム、及び、固体酸化物形燃料電池システムの運転方法
JP2015220211A (ja) 燃料電池の制御装置及び燃料電池の制御方法
JP5403874B2 (ja) 固体高分子形燃料電池及びその特性回復方法
JP2014209416A (ja) 燃料電池システム、および燃料電池システムの制御方法
US11271229B2 (en) Method of controlling measurement of cell voltage of fuel cell and apparatus for executing the same
WO2010123144A1 (en) Method of controlling fuel cell system
JP2013134866A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5329291B2 (ja) 燃料電池モジュールの制御プログラム
KR101610492B1 (ko) 자체발열 셀을 갖는 연료전지 스택
JP2012059611A (ja) 燃料電池システム
JP2010123374A (ja) 燃料電池システムの運転方法
US8889310B2 (en) Fuel cell system and driving method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221031

R150 Certificate of patent or registration of utility model

Ref document number: 7180637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150