JP7180316B2 - Heat storage material and its manufacturing method - Google Patents

Heat storage material and its manufacturing method Download PDF

Info

Publication number
JP7180316B2
JP7180316B2 JP2018219693A JP2018219693A JP7180316B2 JP 7180316 B2 JP7180316 B2 JP 7180316B2 JP 2018219693 A JP2018219693 A JP 2018219693A JP 2018219693 A JP2018219693 A JP 2018219693A JP 7180316 B2 JP7180316 B2 JP 7180316B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
methyl
storage material
propanediol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018219693A
Other languages
Japanese (ja)
Other versions
JP2020084018A (en
Inventor
直宏 田中
類 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2018219693A priority Critical patent/JP7180316B2/en
Publication of JP2020084018A publication Critical patent/JP2020084018A/en
Application granted granted Critical
Publication of JP7180316B2 publication Critical patent/JP7180316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、蓄放熱材料、及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a heat storage material and a manufacturing method thereof.

近年、より効率的な熱利用を目的として、発生した熱エネルギーを蓄熱し、蓄えていた熱を状況に合わせて発熱させる技術が求められている。蓄熱材として、硫酸ナトリウム十水和物等の水和塩、パラフィン、直鎖脂肪族アミン等が知られている(特許文献1)。しかしながら、この潜熱蓄熱材は、液体-固体の相転移であるため体積変動、熱抵抗といった問題を有し容器やマイクロカプセル化等の対応が必要となる。 In recent years, for the purpose of more efficient heat utilization, there has been a demand for a technique for storing the generated thermal energy and generating heat according to the situation. As heat storage materials, hydrated salts such as sodium sulfate decahydrate, paraffin, linear aliphatic amines, and the like are known (Patent Document 1). However, since this latent heat storage material undergoes liquid-solid phase transition, it has problems such as volume fluctuation and thermal resistance, and needs to be dealt with by means of a container, microencapsulation, or the like.

上述した潜熱蓄熱以外に、固体―固体の相変化を利用した潜熱蓄熱が知られており、これらは容器が不要で、熱を発生する部品に直接、設置することが可能であり、熱源と蓄熱材との間の濡れ性を考慮する必要がない。例えば、特許文献2には、2-アミノ-2-メチル-1,3-プロパンジオールをはじめとする蓄熱材と樹脂とを含む熱エネルギー貯蔵材料が記載されている。しかし、2-アミノ-2-メチル-1,3-プロパンジオールは非常に親水性が高く、特許文献2の方法では含水率が高くなってしまうため、発熱量が不十分であった。 In addition to the latent heat storage described above, there are also known latent heat storage systems that utilize solid-solid phase change. There is no need to consider wettability with the material. For example, Patent Document 2 describes a thermal energy storage material containing a heat storage material such as 2-amino-2-methyl-1,3-propanediol and a resin. However, 2-amino-2-methyl-1,3-propanediol is highly hydrophilic, and the method of Patent Document 2 results in a high water content, resulting in an insufficient calorific value.

特開2018-145219号公報JP 2018-145219 A 特開昭61-233904号公報JP-A-61-233904

本発明の課題は、蓄熱量及び発熱量が高く優れた蓄放熱性を有し、かつ蓄放熱の繰り返し耐性に優れる蓄放熱材料を提供することにある。 An object of the present invention is to provide a heat storage and heat release material that has a high heat storage amount and heat generation amount, has excellent heat storage and heat release properties, and is excellent in resistance to repeated heat storage and release.

本発明は、以下の[1]~[4]に関する。 The present invention relates to the following [1] to [4].

[1] 2-アミノ-2-メチル-1,3-プロパンジオールを含む蓄放熱材料であって、前記蓄放熱材料の含水率が5質量%以下であり、-50℃から70℃までの加温条件下における発熱量が50J/g以上である、蓄放熱材料。 [1] A heat storage/radiation material containing 2-amino-2-methyl-1,3-propanediol, wherein the moisture content of the heat storage/radiation material is 5% by mass or less, and the material is heated from -50°C to 70°C. A heat storage and heat release material having a calorific value of 50 J/g or more under hot conditions.

[2] 前記2-アミノ-2-メチル-1,3-プロパンジオールの平均一次粒子径が0.2~20μmである、[1]に記載の蓄放熱材料。 [2] The heat storage material according to [1], wherein the 2-amino-2-methyl-1,3-propanediol has an average primary particle size of 0.2 to 20 μm.

[3] 2-アミノ-2-メチル-1,3-プロパンジオールを含む蓄放熱材料の製造方法であって、2-アミノ-2-メチル-1,3-プロパンジオールと有機溶剤とを含む混合液を、メディア分散機によって分散した後、有機溶剤を除去することを特徴とする、蓄放熱材料の製造方法。 [3] A method for producing a heat storage material containing 2-amino-2-methyl-1,3-propanediol, comprising a mixture containing 2-amino-2-methyl-1,3-propanediol and an organic solvent A method for producing a heat storage material, characterized by removing the organic solvent after dispersing the liquid with a media dispersing machine.

[4] 前記有機溶剤が、25℃における2-アミノ-2-メチル-1,3-プロパンジオールの溶解度が2質量%以下である、[3]に記載の蓄放熱材料の製造方法。 [4] The method for producing a heat storage material according to [3], wherein the organic solvent has a solubility of 2-amino-2-methyl-1,3-propanediol at 25°C of 2% by mass or less.

本発明により、蓄熱量及び発熱量が高く優れた蓄放熱性を有し、かつ蓄放熱の繰り返し耐性に優れる蓄放熱材料を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a heat storage and release material that has high heat storage and heat generation, excellent heat storage and heat release properties, and excellent resistance to repeated heat storage and release.

<蓄放熱材料>
本発明の蓄放熱材料は、2-アミノ-2-メチル-1,3-プロパンジオールを含み、前記蓄放熱材料の含水率が5質量%以下であり、-50℃から70℃までの加温条件下における発熱量が50J/g以上であることを特徴とする。発熱量は、好ましくは100J/g以上である。蓄放熱材料の含水率が5質量%以下であることにより、含まれる2-アミノ-2-メチル-1,3-プロパンジオールが結晶状態となり、良好な蓄放熱性を発揮する。
以下に本発明について詳細に説明する。
<Heat storage material>
The heat storage and heat storage material of the present invention contains 2-amino-2-methyl-1,3-propanediol, has a water content of 5% by mass or less, and is heated from -50°C to 70°C. It is characterized by having a calorific value of 50 J/g or more under certain conditions. The calorific value is preferably 100 J/g or more. When the water content of the heat and heat storage material is 5% by mass or less, the 2-amino-2-methyl-1,3-propanediol contained in the heat and heat storage material is in a crystalline state, exhibiting good heat and heat storage properties.
The present invention will be described in detail below.

<2-アミノ-2-メチル-1,3-プロパンジオール>
2-アミノ-2-メチル-1,3-プロパンジオールは、固体-固体相転移による相変化により蓄放熱性を発現する材料であり、25℃付近から80℃~100℃付近への加温で吸熱し、吸熱状態で-50℃付近まで降温しても吸熱状態が維持される。その後、-50℃付近から0℃~70℃付近までの加熱や物理的刺激、種結晶の導入などで発熱する。
より詳細には、25℃から95℃まで昇温過程で吸熱し、95℃から-50℃までの降温では発熱せず吸熱状態を保持し、この状態から70℃までの昇温で発熱する。さらに繰り返しても、再び吸熱及び発熱をする。具体的には、上記70℃までの昇温で発熱した状態から、95℃まで昇温過程で再び吸熱し、95℃から-50℃までの降温では発熱せず吸熱状態を保持し、この状態から70℃までの昇温で発熱する。
<2-amino-2-methyl-1,3-propanediol>
2-Amino-2-methyl-1,3-propanediol is a material that exhibits heat storage properties due to a phase change due to a solid-solid phase transition. It absorbs heat and maintains the endothermic state even if the temperature is lowered to around -50°C in the endothermic state. After that, heat is generated by heating from around -50°C to around 0°C to 70°C, physical stimulation, introduction of seed crystals, and the like.
More specifically, it absorbs heat in the process of increasing the temperature from 25°C to 95°C, does not generate heat when the temperature is decreased from 95°C to -50°C, but maintains the endothermic state, and generates heat when the temperature is increased from this state to 70°C. Even if it is repeated, heat absorption and heat generation occur again. Specifically, from the state where heat is generated when the temperature is raised to 70° C., heat is absorbed again in the process of raising the temperature to 95° C., and when the temperature is lowered from 95° C. to −50° C., the endothermic state is maintained without generating heat. to 70°C.

一般的な潜熱蓄熱材は、温度の上昇時に吸熱し、温度低下時に放熱するため、吸熱状態を維持するためには、相変化温度以上に保温した状態で保持する必要があるが、上述したように、2-アミノ-2-メチル-1,3-プロパンジオールは、温度の上昇時に吸熱するが、温度低下時に放熱しない特性を有する。したがって、一般的な潜熱蓄熱材と異なり、相変化温度以上に保温した状態で保持する必要がなく、様々な未利用熱の活用に利用できる。 A general latent heat storage material absorbs heat when the temperature rises and releases heat when the temperature drops. In addition, 2-amino-2-methyl-1,3-propanediol has the property of absorbing heat when the temperature rises but not releasing heat when the temperature drops. Therefore, unlike general latent heat storage materials, there is no need to maintain heat retention above the phase change temperature, and unused heat can be utilized in various ways.

また、2-アミノ-2-メチル-1,3-プロパンジオールは、非常に親水性が高いため、近接する水の量が多くなると含水率が増加し溶解状態となり、蓄放熱性が顕著に低下してしまう。したがって、蓄放熱材料の含水率を5質量%以下とすること、即ち、2-アミノ-2-メチル-1,3-プロパンジオールの含水率を下げることが非常に重要である。蓄放熱材料の含水率は、蓄放熱性及び蓄放熱性の繰り返し耐性の観点から、好ましくは3質量%以下であり、特に好ましくは1質量%以下である。 In addition, 2-amino-2-methyl-1,3-propanediol is very hydrophilic, so when the amount of water in the vicinity increases, the water content increases and becomes a dissolved state, and the heat storage property decreases significantly. Resulting in. Therefore, it is very important to set the water content of the heat storage and heat storage material to 5% by mass or less, that is, to lower the water content of 2-amino-2-methyl-1,3-propanediol. The moisture content of the heat storage and heat storage material is preferably 3% by mass or less, particularly preferably 1% by mass or less, from the viewpoint of heat storage property and heat resistance to repeated heat storage.

本発明の蓄放熱材料は、蓄放熱性を損なわない範囲で、2-アミノ-2-メチル-1,3-プロパンジオール以外の蓄放熱材料を含んでいてもよく、例えば、パラフィンワックス、酸化チタンや酸化バナジウム等の無機酸化物、2-メチルー2-ニトロー1,3-プロパンジオール等の多価アルコール等が挙げられる。
蓄放熱性の観点から、蓄放熱材料全量中、2-アミノ-2-メチル-1,3-プロパンジオールの比率は50質量%以上であることが好ましい。2-アミノ-2-メチル-1,3-プロパンジオールの含有量は、蓄放熱性の観点から、より好ましくは蓄放熱材料中の全固形分に対して50~100質量%であり、好ましくは80~100質量%である。
The heat storage material of the present invention may contain a heat storage material other than 2-amino-2-methyl-1,3-propanediol as long as the heat storage property is not impaired. Examples include paraffin wax and titanium oxide. and inorganic oxides such as vanadium oxide, and polyhydric alcohols such as 2-methyl-2-nitro-1,3-propanediol.
From the viewpoint of heat storage property, the ratio of 2-amino-2-methyl-1,3-propanediol in the total heat storage material is preferably 50% by mass or more. From the viewpoint of heat storage property, the content of 2-amino-2-methyl-1,3-propanediol is more preferably 50 to 100% by mass based on the total solid content in the heat storage material. 80 to 100% by mass.

また、2-アミノ-2-メチル-1,3-プロパンジオールの平均一次粒子径は、好ましくは0.2~20μmである。より好ましくは0.5μm~10μmであり、特に好ましくは1μm~5μmである。0.2μm以上であることで、完全な溶解状態と異なり粒子形状を持っていることで蓄放熱量が増加し、さらに蓄放熱の繰り返し耐性が良化するため好ましい。また、20μm以下であることで、適切な粒子状態をとり蓄放熱量が増加し、さらに蓄放熱の繰り返し耐性が良化するため好ましい。 Also, the average primary particle size of 2-amino-2-methyl-1,3-propanediol is preferably 0.2 to 20 μm. It is more preferably 0.5 μm to 10 μm, particularly preferably 1 μm to 5 μm. A particle size of 0.2 μm or more is preferable because it has a particle shape unlike a completely dissolved state, thereby increasing the amount of stored heat and heat, and further improving resistance to repeated heat storage and heat release. In addition, when the particle size is 20 μm or less, an appropriate particle state is obtained, and the amount of heat and heat storage increases, and the resistance to repeated heat and heat storage is improved, which is preferable.

2-アミノ-2-メチル-1,3-プロパンジオールの平均一次粒子径を0.2~20μmとする方法は特に限定されないが、分散処理を行うことで、上記粒子径のものを容易に得ることができる。例えば、2-アミノ-2-メチル-1,3-プロパンジオールと有機溶剤とを含む混合液を、メディア分散機によって分散した後、有機溶剤を除去する方法が好適に用いられる。 The method for adjusting the average primary particle size of 2-amino-2-methyl-1,3-propanediol to 0.2 to 20 μm is not particularly limited, but the above particle size can be easily obtained by performing a dispersion treatment. be able to. For example, a method of dispersing a mixture containing 2-amino-2-methyl-1,3-propanediol and an organic solvent with a media disperser and then removing the organic solvent is preferably used.

<有機溶剤>
本発明の蓄放熱材料の製造方法は、2-アミノ-2-メチル-1,3-プロパンジオールと有機溶剤とを含む混合液を、メディア分散機によって分散した後、有機溶剤を除去することを特徴とする。
有機溶剤としては、25℃で液状の媒体が好ましい。具体的には、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル系溶剤、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール等のアルコール系溶剤、ベンゼン、トルエン、キシレン等の芳香族系溶剤、アセトン、メチルエチルケトン、ジイソプロピルケトン、シクロヘキサノン等のケトン系溶剤、n-オクタンなどの炭化水素系溶剤などの公知の溶剤を、単独又は複数組み合わせて使用できる。
<Organic solvent>
The method for producing a heat storage material of the present invention comprises dispersing a mixed liquid containing 2-amino-2-methyl-1,3-propanediol and an organic solvent with a media dispersing machine, and then removing the organic solvent. Characterized by
As the organic solvent, a medium that is liquid at 25°C is preferable. Specifically, ester solvents such as ethyl acetate, n-propyl acetate, isopropyl acetate, isobutyl acetate, and propylene glycol monomethyl ether acetate; alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, and n-butanol; and benzene. , Toluene, xylene and other aromatic solvents, acetone, methyl ethyl ketone, diisopropyl ketone, cyclohexanone and other ketone solvents, and n-octane and other hydrocarbon solvents can be used alone or in combination.

2-アミノ-2-メチル-1,3-プロパンジオールが有機溶剤に溶解すると、2-アミノ-2-メチル-1,3-プロパンジオールの分散効果が低下するため、有機溶剤は、2-アミノ-2-メチル-1,3-プロパンジオールの溶解度が低いものが好ましい。中でも、25℃における2-アミノ-2-メチル-1,3-プロパンジオールの溶解度が10%以下であるものが好ましく、より好ましくは溶解度が2%以下、特に好ましくは溶解度が1%以下の有機溶剤である。溶解度が1%以下である有機溶剤の好ましい例として、メチルエチルケトンが挙げられる。 When 2-amino-2-methyl-1,3-propanediol dissolves in an organic solvent, the dispersing effect of 2-amino-2-methyl-1,3-propanediol decreases. -2-Methyl-1,3-propanediol with low solubility is preferred. Among them, the solubility of 2-amino-2-methyl-1,3-propanediol at 25° C. is preferably 10% or less, more preferably 2% or less, particularly preferably 1% or less. is a solvent. A preferable example of the organic solvent having a solubility of 1% or less is methyl ethyl ketone.

分散機としては特に制限はなく、例えば、ニーダー、アトライター、ボールミル、ガラスビーズやジルコニアビーズなどを使用したサンドミル、スキャンデックス、アイガーミル、ペイントコンディショナー、ペイントシェイカー等のメディア分散機、コロイドミルなどが使用できる。 There are no particular restrictions on the disperser, and examples include kneaders, attritors, ball mills, sand mills using glass beads or zirconia beads, scandex, Eiger mills, paint conditioners, media dispersers such as paint shakers, and colloid mills. can.

<その他成分>
本発明の蓄放熱材料は、さらに顔料分散剤、顔料誘導体、界面活性剤、難燃剤、充填剤、およびその他各種添加剤を含むことができる。
顔料誘導体とは、カラーインデックスに記載されている有機顔料残基に、特定の置換基を導入したものである。難燃剤としては例えば、水酸化アルミニウム、水酸化マグネシウム、およびリン酸化合物等が挙げられる。また、添加剤としては例えば、基材密着性を高めるためのカップリング剤、吸湿時・高温時の信頼性を高めるためのイオン捕捉剤・酸化防止剤、およびレベリング剤等が挙げられる。
<Other ingredients>
The heat storage material of the present invention can further contain pigment dispersants, pigment derivatives, surfactants, flame retardants, fillers, and various other additives.
A pigment derivative is obtained by introducing a specific substituent into an organic pigment residue described in the Color Index. Examples of flame retardants include aluminum hydroxide, magnesium hydroxide, and phosphoric acid compounds. Additives include, for example, a coupling agent for enhancing adhesion to a substrate, an ion scavenger/antioxidant for enhancing reliability during moisture absorption and at high temperatures, and a leveling agent.

以下、実施例をあげて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、本発明における部及び%は、特に注釈の無い場合、質量部及び質量%を表す。 EXAMPLES The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these Examples. Parts and % in the present invention represent parts by mass and % by mass unless otherwise specified.

<蓄放熱材料の含水率>
蓄放熱層の含水率は、JIS K0068:2001(化学製品の水分測定方法)のカールフィッシャー滴定法(水分気化法)によって求めた。具体的には、電子天秤を用いて蓄放熱材50.0mgを採取し、京都電子工業社製カールフィッシャー水分計(電量法)MKC-610及び水分気化装置ADP-611にセットして水分量を測定し、当該水分量を組成物の単位質量あたりの割合に換算して蓄放熱層の含水率とした。なお、測定は、陽極液、陰極液にそれぞれ京都電子工業社製ケムアクア陽極液AKE、ケムアクア陰極液CGEを使用し、測定温度を140℃とし、キャリアガスに窒素を用いて、その流量を200mL/minとして行った。
<Moisture content of heat storage material>
The moisture content of the heat-storage layer was obtained by the Karl Fischer titration method (moisture vaporization method) of JIS K0068:2001 (method for measuring moisture content of chemical products). Specifically, 50.0 mg of the heat storage material is sampled using an electronic balance, and set in a Karl Fischer moisture meter (coulometric method) MKC-610 manufactured by Kyoto Electronics Industry Co., Ltd. and a moisture vaporizer ADP-611 to measure the moisture content. The moisture content was converted into a ratio per unit mass of the composition to determine the moisture content of the heat storage/radiation layer. The measurement was carried out using ChemAqua anolyte AKE and ChemAqua catholyte CGE manufactured by Kyoto Electronics Industry Co., Ltd. as the anolyte and catholyte, respectively, at a measurement temperature of 140° C., using nitrogen as the carrier gas, and at a flow rate of 200 mL/ I went as min.

<蓄放熱材料の製造>
[実施例1]
(蓄放熱材料1)
含水率が10%の2-アミノ-2-メチル-1,3-プロパンジオールを、温度60℃で48時間乾燥して、含水率が0.2%の蓄放熱材料1を得た。
<Production of heat storage material>
[Example 1]
(Storage and heat release material 1)
2-Amino-2-methyl-1,3-propanediol with a water content of 10% was dried at a temperature of 60° C. for 48 hours to obtain a heat-storage material 1 with a water content of 0.2%.

[実施例2]
(蓄放熱材料2)
乾燥時間を24時間に変更した以外は、蓄放熱材料1と同様にして、含水率が2.3%の蓄放熱材料2を得た。
[Example 2]
(Storage and heat release material 2)
A heat and storage material 2 having a moisture content of 2.3% was obtained in the same manner as for the heat and heat storage material 1, except that the drying time was changed to 24 hours.

[実施例3]
(蓄放熱材料3)
乾燥時間を17時間に変更した以外は、蓄放熱材料1と同様にして、含水率が4.5%の蓄放熱材料3を得た。
[Example 3]
(Storage and heat release material 3)
A heat and storage material 3 having a moisture content of 4.5% was obtained in the same manner as for the heat and heat storage material 1, except that the drying time was changed to 17 hours.

[実施例4]
(蓄放熱材料4)
含水率が0.2%である蓄放熱材料1を10.0部、メチルエチルケトン30.0部、直径3mmガラスビーズ20部を容器に入れ、撹拌混合し、ペイントシェーカーで1.5時間分散した。その後、得られた分散体を温度50℃で2時間乾燥させて有機溶剤を除去して蓄放熱材料4aを得た。得られた蓄放熱材料4aを温度25℃湿度80%RH条件下で2時間静置し、含水率10%の蓄放熱材料4bとした。次いで、蓄放熱材料4bを温度60℃で48時間乾燥して、含水率が0.2%の蓄放熱材料4を得た。なお、メチルエチルケトンの25℃における2-アミノ-2-メチル-1,3-プロパンジオールの溶解度は、1%以下である。
[Example 4]
(Storage and heat release material 4)
10.0 parts of heat-storage material 1 having a water content of 0.2%, 30.0 parts of methyl ethyl ketone, and 20 parts of glass beads with a diameter of 3 mm were placed in a container, stirred and mixed, and dispersed with a paint shaker for 1.5 hours. After that, the obtained dispersion was dried at a temperature of 50° C. for 2 hours to remove the organic solvent, thereby obtaining a heat storage/radiation material 4a. The heat storage/radiation material 4a thus obtained was allowed to stand at a temperature of 25° C. and a humidity of 80% RH for 2 hours to obtain a heat storage/radiation material 4b having a moisture content of 10%. Next, heat storage material 4b was dried at a temperature of 60° C. for 48 hours to obtain heat storage material 4 with a moisture content of 0.2%. The solubility of 2-amino-2-methyl-1,3-propanediol in methyl ethyl ketone at 25° C. is 1% or less.

[実施例5]
(蓄放熱材料5)
温度60℃で48時間乾燥工程の乾燥時間を24時間に変更した以外は、蓄放熱材料4と同様にして、含水率が2.4%の蓄放熱材料5を得た。
[Example 5]
(Storage and heat release material 5)
A heat and storage material 5 having a moisture content of 2.4% was obtained in the same manner as for the heat and heat storage material 4, except that the drying time in the 48-hour drying process at a temperature of 60°C was changed to 24 hours.

[実施例6]
(蓄放熱材料6)
温度60℃で48時間乾燥工程の乾燥時間を17時間に変更した以外は、蓄放熱材料4と同様にして、含水率が4.5%の蓄放熱材料6を得た。
[Example 6]
(Storage and heat release material 6)
A heat-storage material 6 having a moisture content of 4.5% was obtained in the same manner as the heat-storage material 4, except that the drying time in the 48-hour drying process at a temperature of 60°C was changed to 17 hours.

[実施例7]
(蓄放熱材料7)
ペイントシェーカーでの分散時間を3.5時間とした以外は蓄放熱材料4と同様にして、含水率が0.2%の蓄放熱材料7を得た。
[Example 7]
(Storage and heat release material 7)
Heat storage material 7 having a water content of 0.2% was obtained in the same manner as heat storage material 4, except that the dispersion time in the paint shaker was 3.5 hours.

[実施例8]
(蓄放熱材料8)
ペイントシェーカーでの分散時間を5.5時間とした以外は蓄放熱材料4と同様にして、含水率が0.2%の蓄放熱材料8を得た。
[Example 8]
(Storage and heat release material 8)
Heat storage material 8 having a water content of 0.2% was obtained in the same manner as heat storage material 4, except that the dispersion time in the paint shaker was 5.5 hours.

[比較例1]
(蓄放熱材料101)
含水率が10%の2-アミノ-2-メチル-1,3-プロパンジオールを蓄放熱材料101とした。
[Comparative Example 1]
(Storage and heat release material 101)
2-Amino-2-methyl-1,3-propanediol having a moisture content of 10% was used as the heat-storage material 101 .

[比較例2]
(蓄放熱材料102)
含水率が0.1%の2-メチル-2-ニトロ-1,3-プロパンジオールを蓄放熱材料102とした。
[Comparative Example 2]
(Storage and heat release material 102)
2-Methyl-2-nitro-1,3-propanediol with a water content of 0.1% was used as the heat-storage material 102 .

<蓄放熱材料の評価>
得られた蓄放熱材料について、以下の評価を実施した。結果を表1に示す。
<Evaluation of heat storage material>
The following evaluations were carried out on the obtained heat storage/radiation material. Table 1 shows the results.

[平均一次粒子径]
蓄放熱材料を、走査型電子顕微鏡(SEM)により観察し、蓄放熱材の粒子10個を任意に選択し、目視にて一次粒子径を測定し、その平均値を平均一次粒子径とした。
[Average primary particle size]
The heat-storage material was observed with a scanning electron microscope (SEM), 10 particles of the heat-storage material were arbitrarily selected, and the primary particle diameters were visually measured, and the average value was taken as the average primary particle diameter.

[-50℃から70℃までの加温条件下における発熱量、蓄放熱の繰り返し耐性]
メトラー・トレド社製「DSC-1」を使用し、得られた蓄放熱材料約5mgをアルミニウム製標準容器に秤量し、以下に記載の4サイクル試験を行い、可逆成分の示差熱曲線から吸熱量と発熱量を算出した。
(1サイクル目)
25℃から95℃まで10℃/分で昇温した。次に、95℃で5分間維持した後、95℃から-50℃まで10℃/分で降温し、-50℃で5分間維持した。次に、-50℃から70℃まで10℃/分で昇温して、その間の発熱量を算出した。
(2サイクル目)
1サイクル目終了後に引き続き、10℃/分で95℃まで昇温して、その間の吸熱量を算出した。次に、95℃で5分間維持した後、95℃から-50℃まで10℃/分で降温し、-50℃で5分間維持した。次に、-50℃から70℃まで10℃/分で昇温して、その間の発熱量を算出した。
(3サイクル目)
2サイクル目と同様にして、昇温、降温、昇温を行い、吸熱量と発熱量を算出した。
(4サイクル目)
2サイクル目と同様にして、昇温、降温、昇温を行い、吸熱量と発熱量を算出した。
[Heat generation amount under heating conditions from -50°C to 70°C, repeated resistance to storage and heat release]
Using Mettler-Toledo's "DSC-1", about 5 mg of the obtained heat storage and heat storage material is weighed in an aluminum standard container, the following 4-cycle test is performed, and the endothermic amount is determined from the differential heat curve of the reversible component. and the calorific value were calculated.
(first cycle)
The temperature was raised from 25°C to 95°C at a rate of 10°C/min. After maintaining the temperature at 95° C. for 5 minutes, the temperature was lowered from 95° C. to −50° C. at a rate of 10° C./min, and the temperature was maintained at −50° C. for 5 minutes. Next, the temperature was raised from -50°C to 70°C at a rate of 10°C/min, and the amount of heat generated during that time was calculated.
(second cycle)
After the end of the first cycle, the temperature was raised to 95°C at a rate of 10°C/min, and the amount of heat absorbed during that time was calculated. After maintaining the temperature at 95° C. for 5 minutes, the temperature was lowered from 95° C. to −50° C. at a rate of 10° C./min, and the temperature was maintained at −50° C. for 5 minutes. Next, the temperature was raised from -50°C to 70°C at a rate of 10°C/min, and the amount of heat generated during that time was calculated.
(3rd cycle)
The temperature was raised, lowered, and raised in the same manner as in the second cycle, and the amount of heat absorbed and the amount of heat generated were calculated.
(4th cycle)
The temperature was raised, lowered, and raised in the same manner as in the second cycle, and the amount of heat absorbed and the amount of heat generated were calculated.

なお、-50℃から70℃までの加温条件下における発熱量は、発熱量が0J/gである場合を除き、算出された発熱量の中での最少値を用いた。例えば実施例1の場合、-50℃から70℃までの加温条件下における発熱量は131J/gである。 For the calorific value under heating conditions from -50°C to 70°C, the minimum calorific value among the calculated calorific values was used, except when the calorific value was 0 J/g. For example, in the case of Example 1, the calorific value under heating conditions from -50°C to 70°C is 131 J/g.

Figure 0007180316000001
Figure 0007180316000001

表1中の略称を示す。
AMP:2-アミノ-2-メチル-1,3-プロパンジオール
Abbreviations in Table 1 are shown.
AMP: 2-amino-2-methyl-1,3-propanediol

表1の評価結果より、含水率が5質量%以下である蓄放熱材料を用いた実施例は、いずれも蓄放熱性を有し、さらに蓄放熱性の繰り返し耐性に優れることを確認した。また、含水率が1質量%以下である場合に、より優れた蓄放熱量を示した(実施例1~3、4~6)。一方、含水率が高い比較例1は、蓄放熱性を発現しなかった。 From the evaluation results in Table 1, it was confirmed that all of the examples using heat and energy storage materials with a water content of 5% by mass or less have heat and energy storage properties and are excellent in repeated resistance to heat and heat storage properties. Further, when the water content was 1% by mass or less, a more excellent heat storage amount was exhibited (Examples 1 to 3, 4 to 6). On the other hand, Comparative Example 1, which has a high moisture content, did not exhibit heat storage properties.

さらに、実施例4~6は、分散工程を経て平均一次粒子径が小さくなっているため、分散工程を経ていない実施例1~3と比較して、含水率が同様の場合でも蓄放熱量が増加していた。 Furthermore, in Examples 4 to 6, the average primary particle size is reduced through the dispersion step, so compared to Examples 1 to 3 that have not undergone the dispersion step, even when the water content is the same, the heat storage amount is increased. was increasing.

実施例7及び8は、分散時間を変更しており、実施例7は実施例4と同等以上の性能を示した。一方、実施例8は、過分散に起因する一次粒子の融着と推察される平均一次粒子径の増大が確認されたが、良好な蓄放熱性と蓄放熱の繰り返し耐性を示した。 In Examples 7 and 8, the dispersion time was changed, and Example 7 showed performance equal to or better than Example 4. On the other hand, in Example 8, an increase in the average primary particle diameter presumed to be due to fusion of primary particles due to overdispersion was confirmed, but good heat storage properties and resistance to repeated heat storage and heat release were observed.

比較例102は、2-アミノ-2-メチル-1,3-プロパンジオールを使用していないため、含水率に依らず、蓄放熱性を発現しなかった。

Since Comparative Example 102 did not use 2-amino-2-methyl-1,3-propanediol, it did not develop heat storage properties regardless of the water content.

Claims (3)

2-アミノ-2-メチル-1,3-プロパンジオールを含む蓄放熱材料であって、
前記蓄放熱材料の含水率が5質量%以下であり、-50℃から70℃までの加温条件下における発熱量が50J/g以上であり、前記2-アミノ-2-メチル-1,3-プロパンジオールの平均一次粒子径が0.2~20μmである、蓄放熱材料
A heat-storage material containing 2-amino-2-methyl-1,3-propanediol,
The water content of the heat storage and heat release material is 5% by mass or less, the calorific value under heating conditions from −50° C. to 70° C. is 50 J/g or more, and the 2-amino-2-methyl-1, A heat-storage material in which 3-propanediol has an average primary particle size of 0.2 to 20 μm .
2-アミノ-2-メチル-1,3-プロパンジオールを含む蓄放熱材料の製造方法であって、
2-アミノ-2-メチル-1,3-プロパンジオールと有機溶剤とを含む混合液を、メディア分散機によって分散した後、有機溶剤を除去することを特徴とする、蓄放熱材料の製造方法。
A method for producing a heat storage material containing 2-amino-2-methyl-1,3-propanediol,
1. A method for producing a heat storage material, comprising dispersing a mixed liquid containing 2-amino-2-methyl-1,3-propanediol and an organic solvent with a media dispersing machine, and then removing the organic solvent.
前記有機溶剤が、25℃における2-アミノ-2-メチル-1,3-プロパンジオールの溶解度が2質量%以下である、請求項に記載の蓄放熱材料の製造方法。

3. The method for producing a heat storage material according to claim 2 , wherein the organic solvent has a solubility of 2-amino-2-methyl-1,3-propanediol at 25° C. of 2% by mass or less.

JP2018219693A 2018-11-22 2018-11-22 Heat storage material and its manufacturing method Active JP7180316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018219693A JP7180316B2 (en) 2018-11-22 2018-11-22 Heat storage material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018219693A JP7180316B2 (en) 2018-11-22 2018-11-22 Heat storage material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020084018A JP2020084018A (en) 2020-06-04
JP7180316B2 true JP7180316B2 (en) 2022-11-30

Family

ID=70906511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018219693A Active JP7180316B2 (en) 2018-11-22 2018-11-22 Heat storage material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7180316B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077831A (en) 2017-10-26 2019-05-23 国立大学法人北海道大学 Heat storage medium, heat storage device and method for using heat storage medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575173B1 (en) * 1984-12-20 1987-02-13 Armines THERMAL ENERGY STORAGE MATERIAL AND METHOD FOR PROTECTING AGAINST THERMAL SHOCK OF COMPONENTS, ESPECIALLY ELECTRIC OR ELECTRONIC

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077831A (en) 2017-10-26 2019-05-23 国立大学法人北海道大学 Heat storage medium, heat storage device and method for using heat storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
後藤凌平ら,2-amino-2-methly-1,3-propanediolの固相-固相結晶転移による潜熱を利用した蓄熱材の開発,第54回日本伝熱シンポジウム講演論文集,日本,公益社団法人 日本伝熱学会,2017年06月23日,D124

Also Published As

Publication number Publication date
JP2020084018A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
Arshad et al. Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (NePCMs) for thermal management of microelectronics
Liu et al. Highly efficient thermal energy storage using a hybrid hypercrosslinked polymer
Zhichao et al. Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material
Deka et al. Development and characterization of form‐stable porous TiO2/tetradecanoic acid based composite PCM with long‐term stability as solar thermal energy storage material
Zhang et al. A novel solid–solid phase change material: pentaglycerine/expanded graphite composite PCMs
Png et al. Triazine derivatives as organic phase change materials with inherently low flammability
JP6800145B2 (en) Compositions for heat storage and heat transfer
Raj et al. Effect of nano-gallium capsules on thermal energy storage characteristics of manganese organometallic SS-PCM
WO2018105617A1 (en) Composition for forming thermal-storage layer
JP7180316B2 (en) Heat storage material and its manufacturing method
Zhu et al. Crystallohydrate loaded halloysite nanocontainers for thermal energy storage
Oh et al. Thermal properties of graphite/salt hydrate phase change material stabilized by nanofibrillated cellulose
WO2004041956A1 (en) Heat transfer medium liquid composition
Mngomezulu et al. Structure and properties of phase‐change materials based on high‐density polyethylene, hard Fischer–Tropsch paraffin wax, and wood flour
JP7132827B2 (en) Hollow silica particles and method for producing the same
JP2010020964A (en) Sealing material, method of manufacturing the same, and solid oxide fuel cell using its sealing material
JP5660949B2 (en) Thermal storage material composition
Zhou et al. Experimental study of metal‐oxide nanoparticles on the thermal properties of erythritol for thermal energy storage
CN107075353A (en) The accumulator for power plant based on phase-change material (PCM)
TWI473764B (en) Molten salt composition
Isaza-Ruiz et al. Development of a New Method for Synthesizing HITEC Salt-Based Alumina Nanofluids
JP7422132B2 (en) Heat storage material composition and heat storage device
JP5356209B2 (en) Organic solvent dispersed high concentration silicic acid solution
JP7470508B2 (en) Silica powder, method for producing silica powder, and method for producing calcined silica powder
JP2012012472A (en) Coating composition and inkjet ink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221031

R151 Written notification of patent or utility model registration

Ref document number: 7180316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151