JP7179757B2 - ディープ畳み込みニューラルネットワークを使用した医用画像化のための線量低減 - Google Patents
ディープ畳み込みニューラルネットワークを使用した医用画像化のための線量低減 Download PDFInfo
- Publication number
- JP7179757B2 JP7179757B2 JP2019557559A JP2019557559A JP7179757B2 JP 7179757 B2 JP7179757 B2 JP 7179757B2 JP 2019557559 A JP2019557559 A JP 2019557559A JP 2019557559 A JP2019557559 A JP 2019557559A JP 7179757 B2 JP7179757 B2 JP 7179757B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- dose
- low
- images
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013527 convolutional neural network Methods 0.000 title claims description 19
- 230000009467 reduction Effects 0.000 title claims description 18
- 238000002059 diagnostic imaging Methods 0.000 title description 3
- 238000000034 method Methods 0.000 claims description 90
- 238000009206 nuclear medicine Methods 0.000 claims description 24
- 230000005855 radiation Effects 0.000 claims description 18
- 238000012549 training Methods 0.000 claims description 13
- 238000012937 correction Methods 0.000 claims description 11
- 238000003384 imaging method Methods 0.000 claims description 9
- 239000000700 radioactive tracer Substances 0.000 claims description 8
- 230000009286 beneficial effect Effects 0.000 claims description 5
- JXSJBGJIGXNWCI-UHFFFAOYSA-N diethyl 2-[(dimethoxyphosphorothioyl)thio]succinate Chemical compound CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC JXSJBGJIGXNWCI-UHFFFAOYSA-N 0.000 claims description 5
- 230000010412 perfusion Effects 0.000 claims description 5
- 238000011176 pooling Methods 0.000 claims description 5
- 230000003044 adaptive effect Effects 0.000 claims description 4
- 238000013528 artificial neural network Methods 0.000 claims description 4
- 238000002372 labelling Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 2
- 238000002603 single-photon emission computed tomography Methods 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000002600 positron emission tomography Methods 0.000 description 62
- 238000002595 magnetic resonance imaging Methods 0.000 description 36
- 238000013135 deep learning Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 10
- 230000002503 metabolic effect Effects 0.000 description 8
- 230000006872 improvement Effects 0.000 description 7
- ZCXUVYAZINUVJD-AHXZWLDOSA-N 2-deoxy-2-((18)F)fluoro-alpha-D-glucose Chemical compound OC[C@H]1O[C@H](O)[C@H]([18F])[C@@H](O)[C@@H]1O ZCXUVYAZINUVJD-AHXZWLDOSA-N 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 6
- 208000005017 glioblastoma Diseases 0.000 description 6
- 238000012636 positron electron tomography Methods 0.000 description 6
- 238000010176 18-FDG-positron emission tomography Methods 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000002790 cross-validation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 238000012879 PET imaging Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000003759 clinical diagnosis Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 1
- 208000004547 Hallucinations Diseases 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000010984 neurological examination Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001337 psychedelic effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4417—Constructional features of apparatus for radiation diagnosis related to combined acquisition of different diagnostic modalities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/501—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the head, e.g. neuroimaging or craniography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5205—Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4007—Scaling of whole images or parts thereof, e.g. expanding or contracting based on interpolation, e.g. bilinear interpolation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/40—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/542—Control of apparatus or devices for radiation diagnosis involving control of exposure
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10104—Positron emission tomography [PET]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10108—Single photon emission computed tomography [SPECT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20004—Adaptive image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
- G06V2201/031—Recognition of patterns in medical or anatomical images of internal organs
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Veterinary Medicine (AREA)
- Optics & Photonics (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Multimedia (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Urology & Nephrology (AREA)
- Quality & Reliability (AREA)
- Computational Linguistics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Neurosurgery (AREA)
Description
Claims (10)
- 放射線画像化モダリティ及び核医学用途のための画像を生成する方法であって、
畳み込みネットワークを使用して低線量放射線画像を処理するステップであって、前記低線量放射線画像は、(i)患者体内の放射性トレーサの少なくとも4倍に等しい線量低減係数(DRF)を有する低線量核医学画像の複数のスライス、または(ii)前記低線量核医学画像の複数のスライス及びそれと共に取得された複数のマルチコントラスト画像との組み合わせを入力として含み、前記畳み込みネットワークがN個の畳み込みニューラルネットワーク(CNN)ステージを含み、前記CNNステージの各々が、K×Kのカーネルを有するM個の畳み込み層を含む、該処理するステップを含み、
前記処理するステップが、
前記CNNステージ間で、プーリングを用いたダウンサンプリング、及び双線形補間を用いたアップサンプリングを行うステップであって、前記CNNにより前記低線量放射線画像から特徴を抽出して、前記患者体内の放射性トレーサの少なくとも1倍に等しい線量低減係数(DRF)を有する標準線量核医学画像と同等の画像品質を有する標準線量放射線画像をシミュレートし、前記標準線量放射線画像の前記画像品質は前記低線量放射線画像よりも改善された解像度、コントラスト、及び信号対ノイズ比を有する、該ステップと、を含み、
前記畳み込みネットワークは、前記標準線量放射線画像の局所的な情報及び解像度を保持するべく、互いに対応する前記CNNステージ間に対称連結接続を有するエンコーダ-デコーダ構造をさらに含むことを特徴とする方法。 - 請求項1に記載の方法であって、
前記低線量核医学画像の前記DRFは、4から200の範囲内であることを特徴とする方法。 - 請求項1に記載の方法であって、
前記標準線量放射線画像は、マルチモダリティ入力としての前記低線量核医学画像及びそれに対応するマルチコントラストMR画像から生成されることを特徴とする方法。 - 請求項1に記載の方法であって、
前記低線量放射線画像は、CT、PET、PET/CT、PET/MR、SPECT、及び他の画像化方法からなる群より選択される方法を用いて生成されることを特徴とする方法。 - 請求項1に記載の方法であって、
前記低線量放射線画像の信号対ノイズ比(SNR)が、連結スキップ接続を有するエンコーダ-デコーダ残差ディープネットワークを使用して増大され、
前記連結スキップ接続は、当該方法の入力から出力への残差接続、または、互いに対応するエンコーダ層及びデコーダ層間の連結接続を含むことを特徴とする方法。 - 請求項1に記載の方法であって、
前記低線量放射線画像は、前記低線量核医学画像の複数のスライス及びそれと共に取得された複数のコントラスト画像との組み合わせを入力としてさらに含むことを特徴とする方法。 - 請求項6に記載の方法であって、
前記低線量核医学画像の複数のスライスと前記複数のコントラスト画像との前記組み合わせは、T1w MR画像、T2w MR画像、FLAIR MR画像、拡散MR画像、潅流MRI画像、磁化率MR画像、MRベースの減衰補正マップ、MR水-脂肪画像、CT画像、及びCTベースの減衰補正マップからなる群より選択され、
前記潅流MRI画像は、動脈スピンラベル標識シーケンスを含むことを特徴とする方法。 - 請求項6に記載の方法であって、
アルゴリズムを使用して、当該方法に最も有益な入力スライスの数及び入力コントラスト画像を決定するステップをさらに含み、
前記アルゴリズムは、前記入力スライスの数及び使用する前記入力コントラスト画像を適応的に決定することを特徴とする方法。 - 請求項1に記載の方法であって、
前記畳み込みネットワークは、L1/平均絶対誤差、構造的類似性損失、及び適応訓練損失からなる群より選択される混合コスト関数を使用して訓練されたものであり、
前記適応訓練損失は、ネットワークモデルを使用する敵対的生成ネットワーク損失及び知覚損失関数を含むことを特徴とする方法。 - 放射線画像モダリティ及び核医学用途のための画像を生成するシステムであって、
(a)医用イメージャを使用して、(i)患者体内の放射性トレーサの少なくとも4倍に等しい線量低減係数(DRF)を有する低線量核医学画像の複数のスライス、または(ii)前記低線量核医学画像の複数のスライス及びそれと共に取得された複数のマルチコントラスト画像を含む低放射線量入力を、当該システムへの入力画像である低線量放射線画像としての複数の2次元画像または3次元画像のスタッキングとして取得し、
(b)前記入力画像にディープネットワークベースの回帰タスクを適用するように構成され、
前記ディープネットワークベースの回帰タスクが、
(i)N個の畳み込みニューラルネットワーク(CNN)ステージであって、前記CNNステージの各々がK×Kのカーネルを有するM個の畳み込み層を含み、前記CNNが、互いに対応する前記CNNステージ間に対称連結接続を有するエンコーダ-デコーダ構造をさらに含む、該ステージと、
(ii)連結スキップ接続を有するエンコーダ-デコーダ残差ディープネットワークであって、前記連結スキップ接続が入力画像から出力画像への残差接続を含む、該ネットワークと、
(iii)前記患者体内の放射性トレーサの少なくとも1倍に等しい線量低減係数(DRF)を有する標準線量核医学画像と同等の画像品質を有する放射線画像を標準線量放射線画像として出力することを含み、前記画像品質が、前記低放射線量入力よりも改善された解像度、コントラスト、及び信号対ノイズ比を有し、
前記エンコーダ-デコーダ構造が、前記標準線量放射線画像の局所的な情報及び解像度を保持する
ことを特徴とするシステム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022183029A JP7539954B2 (ja) | 2017-04-25 | 2022-11-16 | ディープ畳み込みニューラルネットワークを使用した医用画像化のための線量低減 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762489518P | 2017-04-25 | 2017-04-25 | |
US62/489,518 | 2017-04-25 | ||
PCT/US2018/029103 WO2018200493A1 (en) | 2017-04-25 | 2018-04-24 | Dose reduction for medical imaging using deep convolutional neural networks |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022183029A Division JP7539954B2 (ja) | 2017-04-25 | 2022-11-16 | ディープ畳み込みニューラルネットワークを使用した医用画像化のための線量低減 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020517946A JP2020517946A (ja) | 2020-06-18 |
JP7179757B2 true JP7179757B2 (ja) | 2022-11-29 |
Family
ID=63920142
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019557559A Active JP7179757B2 (ja) | 2017-04-25 | 2018-04-24 | ディープ畳み込みニューラルネットワークを使用した医用画像化のための線量低減 |
JP2022183029A Active JP7539954B2 (ja) | 2017-04-25 | 2022-11-16 | ディープ畳み込みニューラルネットワークを使用した医用画像化のための線量低減 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022183029A Active JP7539954B2 (ja) | 2017-04-25 | 2022-11-16 | ディープ畳み込みニューラルネットワークを使用した医用画像化のための線量低減 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11361431B2 (ja) |
EP (1) | EP3616097A4 (ja) |
JP (2) | JP7179757B2 (ja) |
KR (2) | KR20230129195A (ja) |
CN (1) | CN110753935A (ja) |
WO (1) | WO2018200493A1 (ja) |
Families Citing this family (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11361431B2 (en) * | 2017-04-25 | 2022-06-14 | The Board Of Trustees Of The Leland Stanford Junior University | Dose reduction for medical imaging using deep convolutional neural networks |
US11026651B2 (en) * | 2018-01-19 | 2021-06-08 | Konica Minolta, Inc. | Radiographing control apparatus, radiographic imaging apparatus and radiographic imaging system |
US11580410B2 (en) * | 2018-01-24 | 2023-02-14 | Rensselaer Polytechnic Institute | 3-D convolutional autoencoder for low-dose CT via transfer learning from a 2-D trained network |
WO2019224823A1 (en) * | 2018-05-22 | 2019-11-28 | Ramot At Tel-Aviv University Ltd. | Method and system for imaging and image processing |
WO2019224800A1 (en) * | 2018-05-25 | 2019-11-28 | Mahajan Vidur | Method and system for simulating and constructing original medical images from one modality to other modality |
US11164067B2 (en) * | 2018-08-29 | 2021-11-02 | Arizona Board Of Regents On Behalf Of Arizona State University | Systems, methods, and apparatuses for implementing a multi-resolution neural network for use with imaging intensive applications including medical imaging |
US11481934B2 (en) * | 2018-10-10 | 2022-10-25 | New York University | System, method, and computer-accessible medium for generating magnetic resonance imaging-based anatomically guided positron emission tomography reconstruction images with a convolutional neural network |
TWI716762B (zh) * | 2018-11-07 | 2021-01-21 | 國家中山科學研究院 | 一種利用神經網路去除牙齒影像雜訊之方法 |
NL2021956B1 (en) | 2018-11-08 | 2020-05-15 | Univ Johannesburg | Method and system for high speed detection of diamonds |
US11948676B2 (en) | 2018-12-14 | 2024-04-02 | The Board Of Trustees Of The Leland Stanford Junior University | Qualitative and quantitative MRI using deep learning |
JP7258540B2 (ja) * | 2018-12-20 | 2023-04-17 | キヤノンメディカルシステムズ株式会社 | データ処理装置、磁気共鳴イメージング装置、学習装置および学習方法 |
US10373317B1 (en) * | 2019-01-22 | 2019-08-06 | StradVision, Inc. | Learning method and learning device for attention-driven image segmentation by using at least one adaptive loss weight map to be used for updating HD maps required to satisfy level 4 of autonomous vehicles and testing method and testing device using the same |
US20220058803A1 (en) | 2019-02-14 | 2022-02-24 | Carl Zeiss Meditec Ag | System for oct image translation, ophthalmic image denoising, and neural network therefor |
EP3939003B1 (en) | 2019-03-12 | 2024-04-03 | Bayer HealthCare, LLC | Systems and methods for assessing a likelihood of cteph and identifying characteristics indicative thereof |
EP3938968A4 (en) * | 2019-03-15 | 2022-11-16 | The Trustees of Columbia University in the City of New York | SYSTEM, METHOD AND COMPUTER-ACCESSIBLE MEDIUM FOR IMAGE RECONSTRUCTION OF NON-CARTHESIAN MAGNETIC RESONANCE IMAGING INFORMATION USING DEPTH LEARNING |
WO2020190821A1 (en) | 2019-03-15 | 2020-09-24 | Genentech, Inc. | Deep convolutional neural networks for tumor segmentation with positron emission tomography |
US11398026B2 (en) | 2019-03-28 | 2022-07-26 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for synthetic medical image generation |
US11176428B2 (en) * | 2019-04-01 | 2021-11-16 | Canon Medical Systems Corporation | Apparatus and method for sinogram restoration in computed tomography (CT) using adaptive filtering with deep learning (DL) |
CN109993702B (zh) * | 2019-04-10 | 2023-09-26 | 大连民族大学 | 基于生成对抗网络的满文图像超分辨率重建方法 |
CN110101401B (zh) * | 2019-04-18 | 2023-04-07 | 浙江大学山东工业技术研究院 | 一种肝脏对比剂数字减影造影方法 |
CN110097611B (zh) * | 2019-04-28 | 2023-09-22 | 上海联影智能医疗科技有限公司 | 图像重建方法、装置、设备及存储介质 |
CN110378850B (zh) * | 2019-07-09 | 2021-03-30 | 浙江大学 | 一种结合块匹配和神经网络的变焦图像生成方法 |
CN110610527B (zh) * | 2019-08-15 | 2023-09-22 | 苏州瑞派宁科技有限公司 | 计算suv的方法、装置、设备、系统及计算机存储介质 |
US20210150671A1 (en) * | 2019-08-23 | 2021-05-20 | The Trustees Of Columbia University In The City Of New York | System, method and computer-accessible medium for the reduction of the dosage of gd-based contrast agent in magnetic resonance imaging |
US11540798B2 (en) | 2019-08-30 | 2023-01-03 | The Research Foundation For The State University Of New York | Dilated convolutional neural network system and method for positron emission tomography (PET) image denoising |
CN110619359B (zh) * | 2019-09-06 | 2020-11-27 | 上海杏脉信息科技有限公司 | 一种根据人体医学影像确定肺结核分级的方法与装置 |
JP2022548716A (ja) | 2019-09-18 | 2022-11-21 | バイエル、アクチエンゲゼルシャフト | 肝臓のmri画像の生成 |
ES2955349T3 (es) | 2019-09-18 | 2023-11-30 | Bayer Ag | Predicción de imágenes MRI mediante un modelo de predicción entrenado por aprendizaje supervisado |
CN113329688B (zh) | 2019-09-18 | 2023-11-28 | 拜耳公司 | 用于确定组织体素的特征的方法、系统和计算机可读介质 |
US11496769B2 (en) * | 2019-09-27 | 2022-11-08 | Apple Inc. | Neural network based image set compression |
CN112581554B (zh) * | 2019-09-30 | 2024-02-27 | 中国科学院深圳先进技术研究院 | 一种ct成像方法、装置、存储设备及医学成像系统 |
CA3157469A1 (en) | 2019-10-11 | 2021-04-15 | Bayer Aktiengesellschaft | Acceleration of mri examinations |
CN111325750B (zh) * | 2020-02-25 | 2022-08-16 | 西安交通大学 | 一种基于多尺度融合u型链神经网络的医学图像分割方法 |
CN111325695B (zh) * | 2020-02-29 | 2023-04-07 | 深圳先进技术研究院 | 基于多剂量等级的低剂量图像增强方法、系统及存储介质 |
KR102119687B1 (ko) * | 2020-03-02 | 2020-06-05 | 엔에이치네트웍스 주식회사 | 영상 이미지 학습장치 및 방법 |
CN111539885B (zh) * | 2020-04-21 | 2023-09-19 | 西安交通大学 | 一种基于多尺度网络的图像增强去雾方法 |
CN113643189A (zh) * | 2020-04-27 | 2021-11-12 | 深圳市中兴微电子技术有限公司 | 图像去噪方法、装置和存储介质 |
CN111598964B (zh) * | 2020-05-15 | 2023-02-14 | 厦门大学 | 一种基于空间自适应网络的定量磁化率图像重建方法 |
CN111784788A (zh) * | 2020-06-04 | 2020-10-16 | 深圳深透医疗科技有限公司 | 一种基于深度学习的pet快速成像方法和系统 |
CN112053412B (zh) * | 2020-08-31 | 2022-04-29 | 浙江大学 | 基于教师-学生生成器的低剂量Sinogram去噪与PET图像重建方法 |
CN112085736B (zh) * | 2020-09-04 | 2024-02-02 | 厦门大学 | 一种基于混维卷积的肾肿瘤分割方法 |
KR102336103B1 (ko) | 2020-09-09 | 2021-12-08 | 울산과학기술원 | 딥러닝 기반 영상 디블러링 방법 및 이를 수행하는 장치 |
WO2022076516A1 (en) * | 2020-10-09 | 2022-04-14 | The Trustees Of Columbia University In The City Of New York | Adaptable automated interpretation of rapid diagnostic tests using self-supervised learning and few-shot learning |
US20220130079A1 (en) * | 2020-10-23 | 2022-04-28 | Siemens Medical Solutions Usa, Inc. | Systems and methods for simultaneous attenuation correction, scatter correction, and de-noising of low-dose pet images with a neural network |
CN112270951B (zh) * | 2020-11-10 | 2022-11-01 | 四川大学 | 基于多任务胶囊自编码器神经网络的全新分子生成方法 |
JP7562223B2 (ja) | 2020-11-17 | 2024-10-07 | キヤノンメディカルシステムズ株式会社 | 核医学診断装置および核医学データ処理装置 |
KR102635484B1 (ko) * | 2020-11-24 | 2024-02-14 | 고려대학교 산학협력단 | 뇌신경망 구조 영상처리 시스템, 뇌신경망 구조 영상처리 방법 및 이를 제공하기 위한 컴퓨터 프로그램이 기록된 컴퓨터-판독가능매체 |
KR102357350B1 (ko) * | 2020-11-26 | 2022-02-07 | 한국과학기술연구원 | 딥러닝을 이용한 저선량 ct 영상의 통계적 영상 복원 방법 및 시스템 |
CN112348936B (zh) * | 2020-11-30 | 2023-04-18 | 华中科技大学 | 一种基于深度学习的低剂量锥束ct图像重建方法 |
CN112330575B (zh) * | 2020-12-03 | 2022-10-14 | 华北理工大学 | 一种卷积神经网络医学ct图像去噪方法 |
WO2022120737A1 (zh) * | 2020-12-10 | 2022-06-16 | 深圳先进技术研究院 | 用于低剂量pet重建的多任务学习型生成式对抗网络生成方法及系统 |
CN112767505B (zh) * | 2020-12-31 | 2023-12-22 | 深圳市联影高端医疗装备创新研究院 | 图像处理方法、训练方法、装置、电子终端及存储介质 |
CN112801945A (zh) * | 2021-01-11 | 2021-05-14 | 西北大学 | 基于双重注意力机制特征提取的深度高斯混合模型颅骨配准方法 |
CN112819713B (zh) * | 2021-01-28 | 2022-11-04 | 明峰医疗系统股份有限公司 | 基于无监督学习的低剂量pet图像降噪方法 |
US11890124B2 (en) * | 2021-02-01 | 2024-02-06 | Medtronic Navigation, Inc. | Systems and methods for low-dose AI-based imaging |
CN112837782B (zh) * | 2021-02-04 | 2024-07-02 | 北京大学第三医院(北京大学第三临床医学院) | 一种基于深度学习的放疗三维剂量预测方法 |
DE102021201855A1 (de) * | 2021-02-26 | 2022-09-01 | Siemens Healthcare Gmbh | Verfahren zur Rauschreduzierung in einem Röntgenbild, Bildverarbeitungseinrichtung, Computerprogramm und elektronisch lesbarer Datenträger |
CA3212207A1 (en) | 2021-03-02 | 2022-09-09 | Bayer Aktiengesellschaft | Machine learning in the field of contrast-enhanced radiology |
JP2024512369A (ja) | 2021-03-09 | 2024-03-19 | バイエル・アクチエンゲゼルシヤフト | 造影放射線学の分野における機械学習 |
CN112950612A (zh) * | 2021-03-18 | 2021-06-11 | 西安智诊智能科技有限公司 | 一种基于卷积神经网络的脑肿瘤图像分割方法 |
CN113065551B (zh) * | 2021-03-19 | 2023-08-08 | 杭州迪英加科技有限公司 | 利用深度神经网络模型执行图像分割的方法 |
US12099152B2 (en) | 2021-03-25 | 2024-09-24 | Rensselaer Polytechnic Institute | X-ray photon-counting data correction through deep learning |
US12073538B2 (en) * | 2021-04-08 | 2024-08-27 | Canon Medical Systems Corporation | Neural network for improved performance of medical imaging systems |
CN113130014B (zh) * | 2021-04-23 | 2023-02-07 | 华东交通大学 | 一种基于多分支神经网络的稀土萃取模拟方法及系统 |
CN113052840B (zh) * | 2021-04-30 | 2024-02-02 | 江苏赛诺格兰医疗科技有限公司 | 一种基于低信噪比pet图像的处理方法 |
CN113239782B (zh) * | 2021-05-11 | 2023-04-28 | 广西科学院 | 一种融合多尺度gan和标签学习的行人重识别系统及方法 |
CN115457614B (zh) * | 2021-05-20 | 2023-08-04 | 马上消费金融股份有限公司 | 一种图像质量评价方法、模型训练方法及装置 |
WO2022246677A1 (zh) * | 2021-05-26 | 2022-12-01 | 深圳高性能医疗器械国家研究院有限公司 | 一种增强ct图像的重建方法 |
KR102631539B1 (ko) * | 2021-06-04 | 2024-01-31 | 한국과학기술정보연구원 | 딥러닝 기반 강수 예측 방법, 그리고 이를 구현하기 위한 장치 |
CN113450296B (zh) * | 2021-07-12 | 2022-09-06 | 首都医科大学附属北京天坛医院 | 一种医学图像生成方法、装置、电子设备及存储介质 |
CN113284579A (zh) * | 2021-07-21 | 2021-08-20 | 深圳百胜扬工业电子商务平台发展有限公司 | 一种放射图像数据生成与管理的仿真系统 |
CN113487600B (zh) * | 2021-07-27 | 2024-05-03 | 大连海事大学 | 一种特征增强尺度自适应感知船舶检测方法 |
CN113706379B (zh) * | 2021-07-29 | 2023-05-26 | 山东财经大学 | 一种基于医学图像处理的层间插值方法及系统 |
CN113436118B (zh) * | 2021-08-10 | 2022-09-27 | 安徽工程大学 | 一种基于多尺度卷积编码网络的低剂量ct图像复原方法 |
CN113808106B (zh) * | 2021-09-17 | 2023-05-30 | 浙江大学 | 一种基于深度学习的超低剂量pet图像重建系统及方法 |
WO2023055721A1 (en) * | 2021-09-29 | 2023-04-06 | Subtle Medical, Inc. | Systems and methods for contrast dose reduction |
CN113842134B (zh) * | 2021-11-09 | 2024-04-12 | 清华大学 | 基于双路人工神经网络的双序列加速核磁成像优化方法 |
CN114129171B (zh) * | 2021-12-01 | 2022-06-03 | 山东省人工智能研究院 | 一种基于改进的残差密集网络的心电信号降噪方法 |
WO2023101959A1 (en) * | 2021-12-01 | 2023-06-08 | Arizona Board Of Regents On Behalf Of Arizona State University | Deep residual inception encoder-decoder network for amyloid pet harmonization |
KR102691232B1 (ko) * | 2021-12-20 | 2024-08-05 | 사회복지법인 삼성생명공익재단 | 학습모델 기반의 저 선량 ct 복원 방법 및 영상처리장치 |
CN114387430B (zh) * | 2022-01-11 | 2024-05-28 | 平安科技(深圳)有限公司 | 基于人工智能的图像描述生成方法、装置、设备及介质 |
WO2023220169A1 (en) * | 2022-05-10 | 2023-11-16 | New York University | System, method and computer-accessible medium for direct visualization with power spectrum regularization |
CN115063501A (zh) * | 2022-06-15 | 2022-09-16 | 同心智医科技(北京)有限公司 | 基于DUNet的DTI图像重建方法及系统 |
US20240005451A1 (en) * | 2022-06-30 | 2024-01-04 | GE Precision Healthcare LLC | Methods and systems for super-resolution with progressive sub-voxel up-sampling |
WO2024150791A1 (ja) * | 2023-01-11 | 2024-07-18 | 国立大学法人九州大学 | 画像変換装置、画像変換方法及び画像変換プログラム |
CN115841866B (zh) * | 2023-02-20 | 2023-05-23 | 北京唯迈医疗设备有限公司 | 一种低辐射剂量图像的生成方法、终端设备和存储介质 |
CN116503506B (zh) * | 2023-06-25 | 2024-02-06 | 南方医科大学 | 一种图像重建方法、系统、装置及存储介质 |
US12086990B1 (en) * | 2024-04-23 | 2024-09-10 | MultiFunctional Imaging LLC | Systems and methods for simultaneous imaging of multiple positron emission tomography (PET) tracers |
CN118370940B (zh) * | 2024-06-26 | 2024-08-27 | 西南科技大学 | 高能X射线Flash放疗人体三维辐射剂量分布重建方法 |
CN118397129B (zh) * | 2024-06-28 | 2024-08-23 | 应急总医院 | Ct图像的处理方法、处理系统和计算机可读存储介质 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002086821A1 (fr) | 2001-04-19 | 2002-10-31 | Kabushiki Kaisha Toshiba | Procede et dispositif de traitement d'image |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5602934A (en) | 1993-09-08 | 1997-02-11 | The Regents Of The University Of California | Adaptive digital image signal filtering |
JPH0951890A (ja) * | 1995-08-11 | 1997-02-25 | Ge Yokogawa Medical Syst Ltd | X線透視撮影方法及びx線透視撮影装置 |
US7649176B2 (en) * | 2003-11-14 | 2010-01-19 | Siemens Medical Solutions Usa, Inc. | Method for improving clinical data quality in positron emission tomography |
KR20060055776A (ko) * | 2004-11-19 | 2006-05-24 | 삼성전자주식회사 | 잡음 제거 기능을 가지는 적응형 에지-보존 평활 필터 및필터링 방법 |
US8442353B2 (en) * | 2006-08-03 | 2013-05-14 | The Regents Of The University Of California | Incorporation of mathematical constraints in methods for dose reduction and image enhancement in tomography |
US7480365B1 (en) * | 2007-08-06 | 2009-01-20 | Carestream Health, Inc. | Dose reduced digital medical image simulations |
WO2011137374A1 (en) * | 2010-04-30 | 2011-11-03 | Cornell University | System and method for radiation dose reporting |
US20130202079A1 (en) * | 2012-02-07 | 2013-08-08 | Lifeng Yu | System and Method for Controlling Radiation Dose for Radiological Applications |
EP2890300B1 (en) * | 2012-08-31 | 2019-01-02 | Kenji Suzuki | Supervised machine learning technique for reduction of radiation dose in computed tomography imaging |
US9730660B2 (en) * | 2014-01-15 | 2017-08-15 | Alara Systems, Inc. | Converting low-dose to higher dose mammographic images through machine-learning processes |
US10610182B2 (en) * | 2014-01-15 | 2020-04-07 | Alara Systems, Inc | Converting low-dose to higher dose 3D tomosynthesis images through machine-learning processes |
WO2016033458A1 (en) * | 2014-08-29 | 2016-03-03 | The University Of North Carolina At Chapel Hill | Restoring image quality of reduced radiotracer dose positron emission tomography (pet) images using combined pet and magnetic resonance (mr) |
WO2017223560A1 (en) | 2016-06-24 | 2017-12-28 | Rensselaer Polytechnic Institute | Tomographic image reconstruction via machine learning |
CN106204467B (zh) * | 2016-06-27 | 2021-07-09 | 深圳市未来媒体技术研究院 | 一种基于级联残差神经网络的图像去噪方法 |
CN106204449B (zh) * | 2016-07-06 | 2019-09-10 | 安徽工业大学 | 一种基于对称深度网络的单幅图像超分辨率重建方法 |
CN106251303A (zh) * | 2016-07-28 | 2016-12-21 | 同济大学 | 一种使用深度全卷积编码‑解码网络的图像降噪方法 |
US10074038B2 (en) * | 2016-11-23 | 2018-09-11 | General Electric Company | Deep learning medical systems and methods for image reconstruction and quality evaluation |
US11361431B2 (en) * | 2017-04-25 | 2022-06-14 | The Board Of Trustees Of The Leland Stanford Junior University | Dose reduction for medical imaging using deep convolutional neural networks |
-
2018
- 2018-04-24 US US16/615,227 patent/US11361431B2/en active Active
- 2018-04-24 WO PCT/US2018/029103 patent/WO2018200493A1/en unknown
- 2018-04-24 EP EP18792186.1A patent/EP3616097A4/en not_active Ceased
- 2018-04-24 JP JP2019557559A patent/JP7179757B2/ja active Active
- 2018-04-24 CN CN201880040467.5A patent/CN110753935A/zh active Pending
- 2018-04-24 KR KR1020237029365A patent/KR20230129195A/ko not_active Application Discontinuation
- 2018-04-24 KR KR1020197034448A patent/KR102574256B1/ko active IP Right Grant
-
2022
- 2022-05-03 US US17/735,792 patent/US11844636B2/en active Active
- 2022-11-16 JP JP2022183029A patent/JP7539954B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002086821A1 (fr) | 2001-04-19 | 2002-10-31 | Kabushiki Kaisha Toshiba | Procede et dispositif de traitement d'image |
Non-Patent Citations (3)
Title |
---|
Hu Chen et al.,"Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN)",[online],arXiv:1702.00288v1,2017年02月01日,[令和4年4月6日検索],インターネット<URL:http://wwww.arxiv.org/pdf/1702.00288v1.pdf> |
Lvmin Zhang et al.,"Style Transfer for Anime Sketches with Enhanced Residual U-net and Auxiliary Classifier GAN",4th IAPR Asian Conference on Pattern Recognition,2017年11月,p.506-511 |
Zhengxin Zhang et al.,"Road Extraction by Deep Residual U-Net",[online],2017年11月29日,arXiv:1711.10684v1,[令和4年4月6日検索],インターネット<URL:http://wwww.arxiv.org/pdf/1711.10684v1.pdf> |
Also Published As
Publication number | Publication date |
---|---|
JP2020517946A (ja) | 2020-06-18 |
KR102574256B1 (ko) | 2023-09-01 |
EP3616097A1 (en) | 2020-03-04 |
US11361431B2 (en) | 2022-06-14 |
EP3616097A4 (en) | 2021-01-13 |
CN110753935A (zh) | 2020-02-04 |
US20220327700A1 (en) | 2022-10-13 |
WO2018200493A1 (en) | 2018-11-01 |
KR20190137913A (ko) | 2019-12-11 |
US11844636B2 (en) | 2023-12-19 |
KR20230129195A (ko) | 2023-09-06 |
JP7539954B2 (ja) | 2024-08-26 |
US20200311914A1 (en) | 2020-10-01 |
JP2023025056A (ja) | 2023-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7179757B2 (ja) | ディープ畳み込みニューラルネットワークを使用した医用画像化のための線量低減 | |
Xu et al. | 200x low-dose PET reconstruction using deep learning | |
Ouyang et al. | Ultra‐low‐dose PET reconstruction using generative adversarial network with feature matching and task‐specific perceptual loss | |
Wang et al. | 3D conditional generative adversarial networks for high-quality PET image estimation at low dose | |
Kaplan et al. | Full-dose PET image estimation from low-dose PET image using deep learning: a pilot study | |
Wang et al. | 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis | |
Ramon et al. | Improving diagnostic accuracy in low-dose SPECT myocardial perfusion imaging with convolutional denoising networks | |
Wang et al. | A review on medical imaging synthesis using deep learning and its clinical applications | |
JP7515502B2 (ja) | 陽電子放射断層撮影を用いた腫瘍セグメンテーションのための深層畳み込みニューラルネットワーク | |
Kim et al. | A performance comparison of convolutional neural network‐based image denoising methods: The effect of loss functions on low‐dose CT images | |
Dai et al. | Multimodal MRI synthesis using unified generative adversarial networks | |
Spuhler et al. | Full‐count PET recovery from low‐count image using a dilated convolutional neural network | |
Gholamiankhah et al. | Deep learning-based synthetic CT generation from MR images: comparison of generative adversarial and residual neural networks | |
WO2021041772A1 (en) | Dilated convolutional neural network system and method for positron emission tomography (pet) image denoising | |
Schaefferkoetter et al. | Deep learning for whole-body medical image generation | |
Yin et al. | Unpaired low-dose CT denoising via an improved cycle-consistent adversarial network with attention ensemble | |
Li et al. | Learning non-local perfusion textures for high-quality computed tomography perfusion imaging | |
Ernst et al. | Sinogram upsampling using Primal–Dual UNet for undersampled CT and radial MRI reconstruction | |
Flaus et al. | PET image enhancement using artificial intelligence for better characterization of epilepsy lesions | |
Amirkolaee et al. | Development of a GAN architecture based on integrating global and local information for paired and unpaired medical image translation | |
Izadi et al. | Enhanced direct joint attenuation and scatter correction of whole-body PET images via context-aware deep networks | |
Huang et al. | MLNAN: Multi-level noise-aware network for low-dose CT imaging implemented with constrained cycle Wasserstein generative adversarial networks | |
Xue et al. | PET Synthesis via Self-supervised Adaptive Residual Estimation Generative Adversarial Network | |
Garehdaghi et al. | Positron emission tomography image enhancement using magnetic resonance images and U-net structure | |
Shang et al. | Short‐Axis PET Image Quality Improvement by Attention CycleGAN Using Total‐Body PET |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7179757 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |