JP7177932B6 - Low viscosity UV curable formulations for 3D printing - Google Patents

Low viscosity UV curable formulations for 3D printing Download PDF

Info

Publication number
JP7177932B6
JP7177932B6 JP2021526550A JP2021526550A JP7177932B6 JP 7177932 B6 JP7177932 B6 JP 7177932B6 JP 2021526550 A JP2021526550 A JP 2021526550A JP 2021526550 A JP2021526550 A JP 2021526550A JP 7177932 B6 JP7177932 B6 JP 7177932B6
Authority
JP
Japan
Prior art keywords
monomer
liquid precursor
meth
acrylate
acrylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021526550A
Other languages
Japanese (ja)
Other versions
JP2022507525A (en
JP7177932B2 (en
Inventor
シヴァパキア ガナパティアッパン,
アンキット ヴォラ,
ボイ フー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2022507525A publication Critical patent/JP2022507525A/en
Application granted granted Critical
Publication of JP7177932B2 publication Critical patent/JP7177932B2/en
Publication of JP7177932B6 publication Critical patent/JP7177932B6/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/736Grinding or polishing equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • C08F220/365Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate containing further carboxylic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/012Additives improving oxygen scavenging properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、付加製造、より具体的には、付加製造システムにおける吐出のための組成物に関する。 The present invention relates to additive manufacturing and, more particularly, to compositions for dispensing in additive manufacturing systems.

固体自由形状製造又は3D印刷としても知られる付加製造(AM)は、原材料(例えば、粉末、液体、懸濁液、又は融解固形物)を連続的に分注して2次元の層を形成することから3次元の対象物を作り上げる製造プロセスを意味する。対照的に、従来の機械加工技術は、物品がストック材料(例えば、木片、プラスチック、複合材料、又は金属)から切り出されるサブトラクティブプロセスを含む。 Additive manufacturing (AM), also known as solid freeform manufacturing or 3D printing, continuously dispenses raw materials (e.g., powders, liquids, suspensions, or molten solids) to form two-dimensional layers. Hence, it refers to a manufacturing process that builds up a three-dimensional object. In contrast, conventional machining techniques involve subtractive processes in which articles are cut from stock material (eg, wood, plastic, composites, or metal).

化学機械研磨用の研磨パッドは、典型的には、ポリウレタン材料を型成形又は鋳造することにより作製される。型成形の場合、研磨パッドは、例えば射出成形によって1つずつ作製され得る。鋳造の場合、液体前駆体が鋳造され、硬化されて固形物になり、その後この固形物が、個別のパッド片にスライスされる。これらのパッド片は次いで、最終的な厚さに機械加工され得る。溝が、研磨面に機械加工され得るか、又は、射出成形プロセスの一部として形成され得る。 Polishing pads for chemical mechanical polishing are typically made by molding or casting a polyurethane material. In the case of molding, the polishing pads can be made one by one, for example by injection molding. For casting, a liquid precursor is cast and cured into a solid, which is then sliced into individual pad pieces. These pad pieces can then be machined to final thickness. Grooves can be machined into the polished surface or can be formed as part of the injection molding process.

研磨パッドは、3D印刷技法によっても製造され得る。液体前駆体材料は、支持体の上方を移動するノズルから分注され、硬化されて、研磨パッドの層が形成され得る。 Polishing pads can also be manufactured by 3D printing techniques. A liquid precursor material may be dispensed from a nozzle that moves over the support and cured to form a layer of the polishing pad.

一態様では、付加製造プロセスにおける分注のための液体前駆体材料は、メタ(アクリレート)官能性オリゴマー、反応性希釈剤、メタ(アクリルアミド)モノマー、及びN-ビニル含有モノマーを含む。 In one aspect, a liquid precursor material for dispensing in an additive manufacturing process comprises a meth(acrylate) functional oligomer, a reactive diluent, a meth(acrylamide) monomer, and an N-vinyl containing monomer.

別の態様では、研磨パッドの研磨層を製造する方法は、3Dプリンタを用いて研磨層の複数の副層を連続的に堆積させることを含む。複数の副層の各副層は、液体前駆体材料をノズルから吐出することであって、前駆体材料が、メタ(アクリレート)官能性オリゴマー、反応性希釈剤、メタ(アクリルアミド)モノマー、及びN-ビニル含有モノマーを含む、液体前駆体材料をノズルから吐出すること、及び前駆体材料を硬化して、副層の凝固した研磨層を形成することにより堆積される。 In another aspect, a method of manufacturing a polishing layer of a polishing pad includes sequentially depositing multiple sublayers of the polishing layer using a 3D printer. Each sublayer of the plurality of sublayers ejects a liquid precursor material from a nozzle, the precursor material comprising a meth(acrylate) functional oligomer, a reactive diluent, a meth(acrylamide) monomer, and N - Deposited by ejecting a liquid precursor material, including a vinyl-containing monomer, from a nozzle and curing the precursor material to form a solidified abrasive layer of the sublayer.

潜在的な利点には、以下の一又は複数が含まれ得るが、それらに限定されない。 Potential benefits may include, but are not limited to, one or more of the following.

前駆体材料は、減少した粘度を有し得るが、迅速な硬化、高い弾性率、及び高い最大引張強さ(UTS)も有し得る。さらに、これらの特性は、最終的な硬化部品の吸水率を低く維持しながら達成され得る。さらに、高分子量(MW)オリゴマーのより高いローディングが加えられることにより、より頑丈な層(すなわち、UTSを維持しながらより高い破断伸びを有する層)が可能になり得る。調合物の組成を調整することにより、室温の水に4日間浸漬させた後に、アクリルアミド又はN-ビニル含有モノマーを含むUV硬化性調合物の吸水率を元の重量の<10%に減少させることが可能である。インクジェットに基づく3D印刷技法によって作製される部品にとって、これは特に望ましい。 Precursor materials may have reduced viscosity, but may also have rapid cure, high modulus, and high ultimate tensile strength (UTS). Moreover, these properties can be achieved while maintaining low water absorption in the final cured part. In addition, higher loadings of high molecular weight (MW) oligomers may be added to allow for tougher layers (ie, layers with higher elongation to break while maintaining UTS). Adjusting the composition of the formulation to reduce the water absorption of UV curable formulations containing acrylamide or N-vinyl containing monomers to <10% of the original weight after immersion in room temperature water for 4 days. is possible. This is particularly desirable for parts made by inkjet-based 3D printing techniques.

一又は複数の実施態様の詳細が、添付図面及び以下の説明に明記される。他の特徴、目的、及び利点は、明細書及び図面、並びに特許請求の範囲から明らかになる。 The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the specification and drawings, and from the claims.

例示的な付加製造システムを示す概略断面側面図である。1 is a schematic cross-sectional side view of an exemplary additive manufacturing system; FIG. 対照UV架橋性調合物を列挙した表である。1 is a table listing control UV-crosslinkable formulations. アクリルアミド及びN-ビニルモノマーを含む複数の調合物を列挙した表である。1 is a table listing several formulations containing acrylamide and N-vinyl monomers. 3D印刷された複数の調合物を列挙した表である。1 is a table listing multiple 3D printed formulations. 図4の調合物の3D印刷された試験片の機械的特性を列挙した表である。5 is a table listing the mechanical properties of 3D printed specimens of the formulation of FIG. 4; 例示の研磨パッドの概略断面側面図である。1 is a schematic cross-sectional side view of an exemplary polishing pad; FIG.

様々な図面における類似の参照記号は、類似の要素を示している。 Similar reference symbols in the various drawings indicate similar elements.

光に基づく硬化、例えばUV硬化を使用する多くの3D印刷技法には、低粘度の調合物が非常に望ましい。これは、最終的な調合物の粘度がジェット温度(60-90℃)で10-20cPである必要があるインクジェットに基づく3D印刷技法にとって重要であり得る。従来、このような低粘度を達成するために、調合物のほとんど(~70-80%)は低粘度の反応性希釈剤であり、調合物のわずか20-25%が、必要な機械的特性を最終的な層に提供する高粘度のオリゴマーである。よって、ほとんどの場合、逐次重合技法によって得ることができるより頑丈な材料とは対照的に、インクジェットに基づく3D技法によって得られる最終的なUV硬化層は非常に脆性で硬い。 Low viscosity formulations are highly desirable for many 3D printing techniques that use light-based curing, such as UV curing. This can be important for inkjet-based 3D printing techniques where the viscosity of the final formulation needs to be 10-20 cP at the jet temperature (60-90° C.). Conventionally, to achieve such low viscosities, most (~70-80%) of the formulation is a low viscosity reactive diluent, and only 20-25% of the formulation has the required mechanical properties. to the final layer. Thus, in most cases, the final UV-cured layer obtained by inkjet-based 3D techniques is very brittle and hard, in contrast to the more robust materials that can be obtained by sequential polymerization techniques.

UV硬化性層に使用されるほとんどの反応性希釈剤は、アクリレート及びメタクリレートモノマーと、モノ、ジ、トリ、又はテトラ官能性の反応性(メタ)アクリレート基との組み合わせである。このように通常使用されるアクリレートモノマーの一つは、~8cPのRT粘度と~90CのTgとを有するイソボルニルアクリレートである。シクロヘキシルメタクリレート及びメチルメタクリレートのような低粘度の他のメタクリレートモノマーも、反応性希釈剤として使用される。しかしながら、これらのモノマーに基づく調合物は、メタクリレート基の反応性が遅いため、硬化が非常に遅いか、又は硬化を完了するために非常に高線量の放射線を必要とする。このため、このようなモノマーを調合物に大量に使用することは実用的ではない。 Most reactive diluents used in UV curable layers are combinations of acrylate and methacrylate monomers with mono-, di-, tri-, or tetra-functional reactive (meth)acrylate groups. One such commonly used acrylate monomer is isobornyl acrylate, which has an RT viscosity of ˜8 cP and a Tg of ˜90C. Other low viscosity methacrylate monomers such as cyclohexyl methacrylate and methyl methacrylate are also used as reactive diluents. However, formulations based on these monomers are either very slow to cure or require very high doses of radiation to complete cure due to the slow reactivity of the methacrylate groups. Therefore, it is impractical to use large amounts of such monomers in formulations.

しかしながら、アクリルアミドとN-ビニル含有モノマー、例えば、N,N ジメチルアクリルアミド、N,N ジエチルアクリルアミド及びN-ビニルピロリドンとを含む調合物は、これらの問題に対処することができる。 However, formulations containing acrylamide and N-vinyl containing monomers such as N,N dimethylacrylamide, N,N diethylacrylamide and N-vinylpyrrolidone can address these problems.

図1は、3D印刷プロセスを使用して部品、例えば研磨パッドを製造するための例示のシステム10の簡略図である。システム10は、上に部品が製造される支持体20と、液滴吐出プリントヘッド30とを含み、液滴吐出プリントヘッド30は一又は複数のノズル32を含む。液体前駆体材料の液滴34は、一又は複数のノズル32から吐出され得る。液滴吐出プリンタは、インクジェットプリンタに類似していることがあるが、インクではなく前駆体材料を使用する。プリントヘッド30及びノズル32は、(矢印Aで示すように)支持体20全体を平行移動する。例えば、プリントヘッド30は、線形トラック36上に支持され、線形アクチュエータ38、例えばスクリュードライブモータによってトラック36に沿って動かされる。あるいは、プリントヘッド30は静止状態であり得、支持体20はモータによって水平に移動され得る。 FIG. 1 is a simplified diagram of an exemplary system 10 for manufacturing parts, such as polishing pads, using a 3D printing process. System 10 includes a support 20 on which components are manufactured, and a droplet ejection printhead 30 , which includes one or more nozzles 32 . Droplets 34 of liquid precursor material may be ejected from one or more nozzles 32 . Droplet ejection printers may be similar to inkjet printers, but use precursor materials rather than inks. The printhead 30 and nozzles 32 translate across the support 20 (as indicated by arrow A). For example, the printhead 30 is supported on a linear track 36 and moved along the track 36 by a linear actuator 38, such as a screw drive motor. Alternatively, the printhead 30 can be stationary and the support 20 moved horizontally by a motor.

ある実装態様では、支持体20は垂直アクチュエータ22によって移動され得る。例えば、各層が堆積された後、支持体20は、堆積されたばかりの層の厚さに等しい距離だけ低下され得る。代替的に、又は追加的に、プリントヘッド30は、例えば、垂直変位の一部又はすべてを提供するために垂直に移動され得る。これは、ノズル32と、上に液滴34が堆積されている表面との間の均一な距離を確実にすることができ、これにより、製造の均一性を改善し、制御電子装置を簡潔にすることができる。 In some implementations, support 20 may be moved by vertical actuator 22 . For example, after each layer is deposited, support 20 may be lowered a distance equal to the thickness of the layer just deposited. Alternatively or additionally, printhead 30 may be moved vertically, for example to provide some or all of the vertical displacement. This can ensure a uniform distance between the nozzle 32 and the surface on which the droplets 34 are deposited, thereby improving manufacturing uniformity and simplifying control electronics. can do.

支持体20は堅い基部であってよい、又は例えばポリテトラフルオロエチレン(PTFE)の層等の柔軟性のある膜であってよい。支持体20が膜である場合には、支持体20は、物品の一部を形成し得る。例えば、支持体20は、バッキング層を、又はバッキング層と研磨パッドの研磨層との間の層を形成し得る。あるいは、部品を支持体20から取り除くことができる。 Support 20 may be a rigid base or may be a flexible membrane, such as a layer of polytetrafluoroethylene (PTFE). If the support 20 is a membrane, the support 20 may form part of the article. For example, support 20 may form a backing layer or a layer between the backing layer and the polishing layer of the polishing pad. Alternatively, the component can be removed from support 20 .

図1は、単一のノズル32を示しているが、実際には、プリントヘッド30は、独立して制御可能なノズルの線形配列を含み得る。ノズルは、支持体表面に平行に、かつプリントヘッド30の運動方向に対して斜め又は垂直な方向に延在し得る。ノズル32の配列は、支持体20の構築エリアの幅に広がることができる。 Although FIG. 1 shows a single nozzle 32, in practice printhead 30 may include a linear array of independently controllable nozzles. The nozzles may extend in a direction parallel to the support surface and oblique or perpendicular to the direction of motion of the printhead 30 . The array of nozzles 32 can span the width of the build area of the support 20 .

システム10はまた、放射線42を放出して、液体前駆体材料34を凝固、例えば硬化させるためのエネルギー源40を含む。例えば、エネルギー源40は、一又は複数のUVランプを含み得る。例えば、エネルギー源40は、直線配列のLED、例えばUV発光ダイオードを含み得る。直線配列のLEDは、支持体20の構築エリアの幅に広がることができる。エネルギー源40はまた、支持体20全体を、例えばプリントヘッド30と同じ方向において平行移動し得る。例えば、プリントヘッド30及びエネルギー源40は、1ユニットとして移動される共通フレーム上に支持され得るか、又はプリント30及びエネルギー源40は、同じ又は異なるトラックに沿って独立して移動可能であり得る。 System 10 also includes an energy source 40 for emitting radiation 42 to solidify, eg, cure liquid precursor material 34 . For example, energy source 40 may include one or more UV lamps. For example, energy source 40 may include a linear array of LEDs, such as UV light emitting diodes. The linear array of LEDs can span the width of the build area of the support 20 . The energy source 40 may also translate the entire support 20 , for example in the same direction as the printhead 30 . For example, printhead 30 and energy source 40 may be supported on a common frame that is moved as a unit, or printhead 30 and energy source 40 may be independently movable along the same or different tracks. .

凝固は重合によって実現可能である。例えば、パッド前駆体材料の層50はモノマーであってよく、モノマーはUV硬化によってインシトゥで重合させることができる。パッド前駆体材料は、実質的に堆積の直後に硬化し得るが、パッド前駆体材料の全層50が堆積した後に、全層50を同時に硬化させることもできる。 Coagulation can be achieved by polymerization. For example, the layer of pad precursor material 50 can be a monomer, and the monomer can be polymerized in situ by UV curing. The pad precursor material may be cured substantially immediately after deposition, although all layers 50 of pad precursor material may be cured simultaneously after all layers 50 are deposited.

製造プロセスでは、材料の薄層が徐々に堆積され、凝固する。例えば、前駆体材料の液滴34は、ノズル32から吐出されて、層50を形成する。堆積させた第1の層50aにおいて、ノズル34は支持体20上に噴出し得る。その次に堆積させた層50bにおいては、ノズル34はすでに凝固した材料56上に吐出し得る。各層50が凝固した後、完全な3次元部品、例えば研磨パッドが製造されるまで、新たな層が前の堆積層の上に堆積する。各層50は、部品の総厚の50%未満(例えば10%未満、例えば5%未満、例えば1%未満)である。 In the manufacturing process, thin layers of material are gradually deposited and solidified. For example, droplets 34 of precursor material are ejected from nozzle 32 to form layer 50 . At the deposited first layer 50a, the nozzle 34 can jet onto the support 20. As shown in FIG. In the subsequently deposited layer 50b, the nozzle 34 may discharge onto the material 56 that has already solidified. After each layer 50 solidifies, new layers are deposited over the previous deposited layers until a complete three-dimensional part, eg a polishing pad, is manufactured. Each layer 50 is less than 50% (eg, less than 10%, such as less than 5%, such as less than 1%) of the total thickness of the part.

プリントヘッド30が支持体に対して移動する場合に、各層が、コンピュータ60上の非一時的なコンピュータ可読媒体、例えば、3D描画コンピュータプログラムにデータとして格納されたパターンで適用されるよう、コンピュータ60はさまざまなノズル34からの液滴の吐出を制御し得る。コンピュータ60は、例えばプリントヘッド30及び/又はエネルギー源40の平行移動速度を制御するために、さまざまなアクチュエータを制御することができ、例えば放射線42の強度を制御して、それによって硬化速度を制御するためにエネルギー源40を制御することができ、支持体20の垂直アクチュエータを制御することができる。 Computer 60 so that each layer is applied in a pattern stored as data in a non-transitory computer readable medium, e.g., a 3D rendering computer program, on computer 60 as print head 30 moves relative to the substrate. may control droplet ejection from various nozzles 34 . The computer 60 can control various actuators, for example to control the translation speed of the printhead 30 and/or the energy source 40, for example to control the intensity of the radiation 42 and thereby control the curing speed. The energy source 40 can be controlled to do so, and the vertical actuators of the support 20 can be controlled.

液滴34の液体前駆体材料は、アクリルアミドと、例えば、N,N ジメチルアクリルアミド、N,N ジエチルアクリルアミド及び/又はN-ビニルピロリドンなどのN-ビニル含有モノマーとを含む調合物であり得る。そのような調合物は、付加製造、例えばインクジェットに基づく3D印刷においてUV硬化性層を形成するのに適した低粘度を有し得る。しかしながら、調合物は、他の3D印刷技法、例えば、光造形法(SLA)又はデジタル光処理(DLP)にも使用され得る。さらに、調合物は、他の用途、例えば他の物品上のコーティング、例えば保護コーティングにも適用可能であり得る。これらの3D印刷部品の潜在的な用途には、機能及びプロトタイピングの用途、並びに半導体製造用の化学機械平坦化(CMP)用の研磨パッドの製造が含まれる。 The liquid precursor material of droplets 34 can be a formulation comprising acrylamide and N-vinyl containing monomers such as, for example, N,N dimethylacrylamide, N,N diethylacrylamide and/or N-vinylpyrrolidone. Such formulations may have low viscosities suitable for forming UV curable layers in additive manufacturing, such as inkjet-based 3D printing. However, the formulation can also be used for other 3D printing techniques, such as stereolithography (SLA) or digital light processing (DLP). Additionally, the formulations may be applicable to other uses, such as coatings on other articles, such as protective coatings. Potential applications for these 3D printed parts include functional and prototyping applications, as well as manufacturing polishing pads for chemical mechanical planarization (CMP) for semiconductor manufacturing.

アクリルアミド及びN-ビニルモノマーなどのUV硬化性モノマーは、これらのモノマーの水溶性が高いため、ヒドロゲルなどの高吸水システムの3D印刷以外のUV硬化性調合物に以前は使用された。驚くべきことに、そのような調合物は減少した粘度を有し得るが、迅速な硬化、高い弾性率、及び高い最大引張強さ(UTS)も有し得ることが発見された。さらに、これらの特性は、最終的な硬化部品の水分吸収を低く維持しながら達成され得る。さらに、高分子量(MW)オリゴマーのより高いローディングが加えられることにより、より頑丈な層(すなわち、UTSを維持しながらより高い破断伸びを有する層)が可能になり得る。調合物の組成を調整することにより、室温の水に4日間浸漬させた後に、アクリルアミド又はN-ビニル含有モノマーを含むUV硬化性調合物の水分吸収を元の重量の<10%に減少させることが可能である。インクジェットに基づく3D印刷技法によって作製される部品にとって、これは特に望ましい。 UV curable monomers such as acrylamide and N-vinyl monomers have previously been used in UV curable formulations other than 3D printing of superabsorbent systems such as hydrogels due to the high water solubility of these monomers. Surprisingly, it was discovered that such formulations can have reduced viscosity, but can also have rapid cure, high modulus, and high ultimate tensile strength (UTS). Moreover, these properties can be achieved while maintaining low moisture absorption in the final cured part. In addition, higher loadings of high molecular weight (MW) oligomers may be added to allow for tougher layers (ie, layers with higher elongation to break while maintaining UTS). Adjusting the composition of the formulation to reduce the moisture absorption of UV curable formulations containing acrylamide or N-vinyl containing monomers to <10% of the original weight after immersion in room temperature water for 4 days. is possible. This is particularly desirable for parts made by inkjet-based 3D printing techniques.

調合物には、メタ(アクリレート)官能性オリゴマー、反応性希釈剤、メタ(アクリルアミド)モノマー、及びN-ビニル含有モノマーが含まれる。反応性希釈剤は、脂肪族、脂環式、複素環式、芳香族、直鎖状、又は分岐状のメタ(アクリレート)モノマーであり得る。N-ビニル含有モノマーは、N,N ジメチルアクリルアミド、N,N ジエチルアクリルアミド及び/又はN-ビニルピロリドンを含み得る。調合物は、光開始剤、光増感剤、及び/又は酸素捕捉剤を含み、パフォーマンスを改善し得る。しかしながら、調合物の化学的に反応する部分は、メタ(アクリレート)官能性オリゴマー、反応性希釈剤、メタ(アクリルアミド)モノマー、N-ビニル含有モノマーのみを含み得る、例えばそれらからなる。 The formulation includes a meth(acrylate) functional oligomer, a reactive diluent, a meth(acrylamide) monomer, and an N-vinyl containing monomer. Reactive diluents can be aliphatic, cycloaliphatic, heterocyclic, aromatic, linear or branched meta(acrylate) monomers. N-vinyl containing monomers may include N,N dimethylacrylamide, N,N diethylacrylamide and/or N-vinylpyrrolidone. The formulation may contain photoinitiators, photosensitizers, and/or oxygen scavengers to improve performance. However, the chemically reactive portion of the formulation may only comprise, eg consist of, meth(acrylate) functional oligomers, reactive diluents, meth(acrylamide) monomers, N-vinyl containing monomers.

図2は、EB270オリゴマー(脂肪族ウレタンアクリレート)及びBR744BTオリゴマー(脂肪族ポリエステルウレタンアクリレート)を使用した対照UV架橋性調合物を列挙した表である。モノマー1はイソボルニルアクリレート(IBOA)である。モノマー3は、「SR 351 LV」の商品名でSartomer Americasから入手可能な低粘度のトリメチロールプロパントリアクリレート(TMPTA)である。光開始剤(PI)は、米国ノースカロライナ州Charlotteに本社があるIGM Resins USA社から入手可能なOmniradTM819である。オリゴマー、モノマー1、モノマー3、及び光開始剤の重量パーセント(%)が示されている。図2から5の表において、粘度は70℃でセンチポアズ(cP)で示される。最大引張強さ(UTS)はミリパスカル(MPa)で示される。% EIは、破断点伸びのパーセントである。貯蔵弾性率は、30℃(E30)、60℃(E60)、及び90℃(E90)で示される。 FIG. 2 is a table listing control UV crosslinkable formulations using EB270 oligomer (aliphatic urethane acrylate) and BR744BT oligomer (aliphatic polyester urethane acrylate). Monomer 1 is isobornyl acrylate (IBOA). Monomer 3 is a low viscosity trimethylolpropane triacrylate (TMPTA) available from Sartomer Americas under the tradename "SR 351 LV". The photoinitiator (PI) is Omnirad 819 available from IGM Resins USA, Inc., Charlotte, North Carolina, USA. Weight percentages (%) of oligomer, monomer 1, monomer 3, and photoinitiator are indicated. In the tables of Figures 2 to 5, viscosity is given in centipoise (cP) at 70°C. Ultimate Tensile Strength (UTS) is given in millipascals (MPa). % EI is the percent elongation at break. The storage modulus is given at 30°C (E30), 60°C (E60), and 90°C (E90).

図2の表に示されているとおり、代表的なオリゴマーのうちの二つについては、2つのモデル調合物の粘度が高すぎ、ラピッドプロトタイピング又は3D印刷による機能部品の製造には機械的特性がまだ不十分である。 As shown in the table of Figure 2, for two of the representative oligomers, the viscosities of the two model formulations were too high and the mechanical properties were too high for the production of functional parts by rapid prototyping or 3D printing. is still insufficient.

図3は、図2の表中の対照調合物よりも低い粘度及び良好な機械的特性を有する、アクリルアミド及びN-ビニルモノマーを含む複数の調合物を列挙した表である。モノマーDEAAは、N,N-ジエチルアクリルアミドである。モノマーDMAAは、N,N-ジメチルアクリルアミドである。モノマーNVPは、N-ビニルピロリドンである。オリゴマー、モノマー1、モノマー2、モノマー3、モノマー4、及び光開始剤(PI)の重量パーセント(%)が括弧中に示されている。 FIG. 3 is a table listing several formulations containing acrylamide and N-vinyl monomers having lower viscosities and better mechanical properties than the control formulation in the table of FIG. Monomeric DEAA is N,N-diethylacrylamide. Monomeric DMAA is N,N-dimethylacrylamide. Monomer NVP is N-vinylpyrrolidone. Weight percentages (%) of oligomer, Monomer 1, Monomer 2, Monomer 3, Monomer 4, and photoinitiator (PI) are shown in brackets.

DLP、SLA、及びポリジェット技法のような3D印刷技法では、ラピッドプロトタイピング又は機能部品の製造を可能にする低粘度の調合物が非常に望ましい。低粘度の調合物は、より扱いやすく、印刷時により高い解像度を提供する。このような低粘度を達成するために、インク組成物は、ほとんどが、例えば、少なくとも約50%、例えば70-80%が、低粘度の液体、例えば、メタ(アクリレート)モノマー、メタ(アクリルアミド)モノマー、及びN-ビニル含有モノマーであり得る。組成物の約20-30%、例えば20-25%は、必要な機械的特性を最終的な硬化層に提供する高粘度のオリゴマーであり得る。 For 3D printing techniques such as DLP, SLA, and Polyjet techniques, low viscosity formulations that enable rapid prototyping or production of functional parts are highly desirable. Low viscosity formulations are easier to handle and provide higher resolution when printed. To achieve such low viscosities, the ink composition comprises mostly, for example, at least about 50%, such as 70-80%, low viscosity liquids such as meth(acrylate) monomers, meth(acrylamide). monomers, and N-vinyl containing monomers. About 20-30%, such as 20-25%, of the composition may be high viscosity oligomers that provide the required mechanical properties to the final cured layer.

図4は、StratasysのConnex 500プリンタを使用して3D印刷され、タイプIV及びタイプVのドッグボーン及びDMAクーポン試料を形成する、複数の調合物(#10-14)を列挙した表である。印刷後、3D印刷された試料を90℃で1時間硬化し、この時点で試料を室温に冷却した。試料を室温で24時間置いた後、すべての試料の特性評価を行った。UTS、破断点伸び%、30℃及び90℃での貯蔵弾性率、並びに室温での浸漬試験の96時間後の吸水率について、試料を特性評価した。3D印刷した試料の好ましい値は、UTS、破断点伸び%、E30、E90、及び吸水率について、それぞれ25-35MPa、20-75%、~1GPa-1.5GPa、35-200MPa、及び>10%である。 FIG. 4 is a table listing multiple formulations (#10-14) that were 3D printed using a Stratasys Connex 500 printer to form Type IV and Type V dogbone and DMA coupon samples. After printing, the 3D printed samples were cured at 90° C. for 1 hour, at which point the samples were cooled to room temperature. All samples were characterized after the samples were placed at room temperature for 24 hours. Samples were characterized for UTS, % elongation at break, storage modulus at 30° C. and 90° C., and water absorption after 96 hours of immersion testing at room temperature. Preferred values for 3D printed samples are 25-35 MPa, 20-75%, ~1 GPa-1.5 GPa, 35-200 MPa, and >10% for UTS, % elongation at break, E30, E90, and water absorption, respectively. is.

表4の表では、オリゴマー、モノマー1、モノマー2、モノマー3、モノマー4、及び光開始剤(PI)の重量パーセント(%)が括弧中に示されている。モノマーSR 420は、Sartomer Americasの非常に低粘度の単官能性アクリルモノマーである。モノマーTMCHAは、3,3,5-トリメチルシクロヘキシルメタクリレートである。モノマー1.4 BDDAは、1,4-ブタンジオール ジアクリレートである。 In Table 4, the weight percentages (%) of oligomer, Monomer 1, Monomer 2, Monomer 3, Monomer 4, and photoinitiator (PI) are shown in brackets. Monomer SR 420 is a very low viscosity monofunctional acrylic monomer from Sartomer Americas. Monomer TMCHA is 3,3,5-trimethylcyclohexyl methacrylate. Monomer 1.4 BDDA is 1,4-butanediol diacrylate.

図5は、図4の表の調合物#11-#14の3D印刷された試験片の機械的特性を列挙した表である。 FIG. 5 is a table listing the mechanical properties of 3D printed specimens of Formulations #11-#14 of the table of FIG.

低粘度でアクリルアミド及びN-ビニルモノマーを含む調合物は、付加製造に特に望ましい。ポリジェット3D印刷技法を使用する調合物のこのような用途の一つは、より高い伸び及びUTSを有する先進的な化学気化研磨(CMP)パッドを作製することである。ジェット温度での調合物の粘度範囲は、10cPから25cPの間、例えば12cpから20cPの間、例えば13cpから16cPの間であり得る。このような調合物のジェット温度は、50℃と100℃の間、例えば55℃と80℃の間、例えば60℃と70℃の間であり得る。 Formulations with low viscosity and containing acrylamide and N-vinyl monomers are particularly desirable for additive manufacturing. One such application of formulations using the PolyJet 3D printing technique is to make advanced chemical vapor polishing (CMP) pads with higher elongation and UTS. The viscosity range of the formulation at jet temperature may be between 10 cP and 25 cP, such as between 12 cp and 20 cP, such as between 13 cp and 16 cP. The jet temperature of such formulations may be between 50°C and 100°C, such as between 55°C and 80°C, such as between 60°C and 70°C.

図6A及び6Bは、上記及び表3と4で検討された前駆体材料の調合物を使用する付加製造により製造され得る研磨パッド100を示している。図6Aに示すとおり、研磨パッド100は、上記の前駆体材料を使用する付加製造により製造された研磨層102からなる単層パッドであり得る。あるいは、図6Bに示す通り、研磨パッド100は、研磨層102及び少なくとも一つのバッキング層104を含むマルチレイヤパッドであり得る。 6A and 6B illustrate a polishing pad 100 that can be produced by additive manufacturing using the precursor material formulations discussed above and in Tables 3 and 4. FIG. As shown in FIG. 6A, polishing pad 100 can be a single layer pad consisting of a polishing layer 102 manufactured by additive manufacturing using the precursor materials described above. Alternatively, as shown in FIG. 6B, polishing pad 100 can be a multi-layer pad including polishing layer 102 and at least one backing layer 104 .

研磨層102は、研磨プロセスにおいて不活性材料であり得る。研磨層102は、ショアDスケールの約40~80、例えば50~65の硬度を有し得る。いくつかの実装態様では、研磨層102は、均質な組成物の層であり得る。いくつかの実装態様では、研磨層102は、ポア、例えば小さなボイドを含む。ポアは、50~100ミクロンの幅であってよい。 Polishing layer 102 may be an inert material in the polishing process. The polishing layer 102 may have a hardness of about 40-80, such as 50-65, on the Shore D scale. In some implementations, polishing layer 102 can be a layer of homogeneous composition. In some implementations, the polishing layer 102 includes pores, eg, small voids. The pores may be 50-100 microns wide.

研磨層102は、80ミル以下、例えば50ミル以下、例えば25ミル以下の厚さD1を有し得る。調整プロセスによりカバー層がすり減りやすいため、研磨層102の厚さは、研磨パッド100に例えば3000回の研磨及び調整サイクルの有用な寿命が提供されるように選択され得る。 The polishing layer 102 may have a thickness D1 of 80 mils or less, such as 50 mils or less, such as 25 mils or less. Because the conditioning process tends to wear away the cover layer, the thickness of polishing layer 102 may be selected to provide polishing pad 100 with a useful life of, for example, 3000 polishing and conditioning cycles.

顕微鏡スケールでは、研磨層102の研磨面106は、例えば2~4ミクロンrmsの粗い質感の表面を有し得る。例えば、研磨層102に研削プロセス又は調整プロセスを施して、粗い表面性状を生成することができる。加えて、3D印刷により、例えば200ミクロンまでの小さく均一な特徴部が提供され得る。 On a microscopic scale, the polishing surface 106 of the polishing layer 102 can have a rough textured surface, eg, 2-4 microns rms. For example, polishing layer 102 can be subjected to a grinding or conditioning process to produce a rough surface texture. Additionally, 3D printing can provide small uniform features, for example, up to 200 microns.

研磨面106は顕微鏡スケールでは粗いことがあるが、研磨パッド自体の肉眼的スケールでは、研磨層106は良好な厚さ均一性を有し得る(この均一性は、研磨層の底面に対する研磨面106の高さの全体的な変動を指し、研磨層に意図的に形成されたいかなる肉眼的な溝又は貫通孔をも含むものではない)。例えば、厚さの非均一性は1ミル未満であり得る。 The polishing surface 106 can be rough on a microscopic scale, but on the macroscopic scale of the polishing pad itself, the polishing layer 106 can have good thickness uniformity (this uniformity is measured by the thickness of the polishing surface 106 relative to the bottom surface of the polishing layer). and does not include any gross grooves or through-holes intentionally formed in the polishing layer). For example, the thickness non-uniformity can be less than 1 mil.

場合によっては、研磨面106の少なくとも一部は、スラリーを運ぶために研磨面に形成された複数の溝108を含み得る。溝108は、溝に対応する位置に前駆体材料を単に吐出しないことによって形成することができる。溝108は、例えば同心円、直線、斜交平行、螺旋等のほぼすべてのパターンのものであってもよい。溝108があると仮定すると、研磨面106、すなわち溝108間の平坦域は、研磨パッド100の水平表面積全体の約25~90%になってもよい。したがって、溝108は、研磨パッド18の水平表面積全体の10~75%を占めてもよい。溝26間の平坦域は、約0.1~2.5mmの横幅を有し得る。 In some cases, at least a portion of polishing surface 106 may include a plurality of grooves 108 formed therein for carrying slurry. Grooves 108 can be formed by simply not ejecting precursor material at locations corresponding to the grooves. The grooves 108 can be of almost any pattern, such as concentric circles, straight lines, cross-hatching, spirals, and the like. Assuming grooves 108 , the polishing surface 106 , ie, the plateau between grooves 108 , may amount to about 25-90% of the total horizontal surface area of polishing pad 100 . Thus, grooves 108 may occupy 10-75% of the total horizontal surface area of polishing pad 18 . The plateaus between grooves 26 may have a lateral width of about 0.1-2.5 mm.

いくつかの実装態様では、例えばバッキング層104がある場合、溝108は研磨層102を完全に貫通して延在し得る。一部の実装態様では、溝108は、研磨層102の厚さの約20~80%(例えば40%)を通って延在し得る。溝108の深さD2は0.25~1mmであってよい。例えば、50ミルの厚さの研磨層102を有する研磨パッド100では、溝108は約20ミルの深さD2であり得る。 In some implementations, grooves 108 may extend completely through polishing layer 102 , for example when backing layer 104 is present. In some implementations, grooves 108 may extend through approximately 20-80% (eg, 40%) of the thickness of polishing layer 102 . The depth D2 of groove 108 may be between 0.25 and 1 mm. For example, in a polishing pad 100 having a polishing layer 102 that is 50 mils thick, grooves 108 can be about 20 mils deep D2.

バッキング層104は、研磨層102よりも柔軟で、より圧縮性であり得る。バッキング層104は、ショアAスケールで80以下の硬度、例えば約60ショアAの硬度を有し得る。バッキング層104は、研磨層102よりも厚い、又は薄い、又は同じ厚さであってよい。 Backing layer 104 may be softer and more compressible than polishing layer 102 . The backing layer 104 may have a hardness of 80 or less on the Shore A scale, such as about 60 Shore A hardness. The backing layer 104 may be thicker, thinner, or the same thickness as the polishing layer 102 .

例えば、バッキング層は、ボイドを有するポリウレタン又はポリシリコン等のオープンセル又はクローズセル発泡体であってよく、これにより加圧下でセルがつぶれ、バッキング層が圧縮される。適切なバッキング層の材料は、コネクチカット州ロジャースのロジャース社のPORON4701-30、又はRohm&Haas社のSUBA-IVである。バッキング層の硬度は、層材料と空隙率を選択することによって調節可能である。 For example, the backing layer may be an open-cell or closed-cell foam, such as polyurethane or polysilicon, with voids that cause the cells to collapse under pressure, compressing the backing layer. Suitable backing layer materials are PORON 4701-30 from Rogers, Inc. of Rogers, Connecticut, or SUBA-IV from Rohm & Haas. The hardness of the backing layer can be adjusted by selecting the layer material and porosity.

一部の実装態様では、バッキング層104も、3D印刷プロセスによって製造され得る。例えば、バッキング層104と研磨層102とは、付加製造システム10によって、1つの連続工程で製造されることも可能である。バッキング層104には、異なる前駆体材料を使用することによって、及び/又は異なる硬化量、例えば、異なるUV放射強度を使用することによって、研磨層102とは異なる硬度が与えられ得る。 In some implementations, the backing layer 104 may also be manufactured by a 3D printing process. For example, backing layer 104 and polishing layer 102 can be manufactured by additive manufacturing system 10 in one continuous process. The backing layer 104 may be given a different hardness than the polishing layer 102 by using different precursor materials and/or by using different amounts of curing, eg, different UV radiation intensities.

他の実装態様では、バッキング層104は、従来型のプロセスによって製造されてから、研磨層102に固定される。例えば、研磨層102は、感圧接着剤などである薄型接着層によって、バッキング層104に固定され得る。 In other implementations, the backing layer 104 is manufactured by conventional processes and then secured to the polishing layer 102 . For example, abrasive layer 102 may be secured to backing layer 104 by a thin adhesive layer, such as a pressure sensitive adhesive.

数々の実施態様が説明されてきた。それでもなお、本発明の本質及び範囲から逸脱することなく様々な改変が行われ得ることが、理解されよう。 A number of implementations have been described. Nevertheless, it will be understood that various modifications can be made without departing from the spirit and scope of the invention.

層の各層の厚さ、及び、ボクセルの各々のサイズは、実装態様ごとに変動し得る。一部の実装態様では、支持体20上に分注が行われる時に、各ボクセルは、例えば10μm~50μm(10μm~30μm、20μm~40μm、30μm~50μm、およそ20μm、およそ30μm、又はおよそ50μmなど)の幅を有し得る。各層は、所定の厚さを有し得る。この厚さは、例えば、0.10μm~125μm(例えば、0.1μm~1μm、1μm~10μm、10μm~20μm、10μm~40μm、40μm~80μm、80μm~125μm、およそ15μm、およそ25μm、およそ60μm、又はおよそ100μm)であり得る。 The thickness of each layer of layers and the size of each of the voxels may vary from implementation to implementation. In some implementations, each voxel is, for example, 10 μm to 50 μm (10 μm to 30 μm, 20 μm to 40 μm, 30 μm to 50 μm, approximately 20 μm, approximately 30 μm, or approximately 50 μm, etc.) when dispensed onto support 20. ). Each layer may have a predetermined thickness. The thickness is for example 0.10 μm to 125 μm (for example 0.1 μm to 1 μm, 1 μm to 10 μm, 10 μm to 20 μm, 10 μm to 40 μm, 40 μm to 80 μm, 80 μm to 125 μm, approximately 15 μm, approximately 25 μm, approximately 60 μm, or approximately 100 μm).

研磨パッドは、円形又は何か他の形状のパッドとすることができる。 The polishing pad can be a circular or some other shaped pad.

エネルギー源は、異なる波長範囲を有する多数の光源を含み得る。例えば、エネルギー源は、2列のUV光源を含むことがあり、2列は異なる波長帯を有する。 The energy source may include multiple light sources with different wavelength ranges. For example, the energy source may include two rows of UV light sources, the two rows having different wavelength bands.

研磨パッドの製造に関連して装置について説明してきたが、この装置は、付加製造によるその他の物品の製造にも適合し得る。 Although the apparatus has been described in connection with the manufacture of polishing pads, the apparatus may also be adapted to manufacture other articles by additive manufacturing.

したがって、その他の実施態様も、以下の特許請求の範囲内に含まれる。 Accordingly, other implementations are also within the scope of the following claims.

Claims (15)

付加製造プロセスにおける液体前駆体であって、
メタ(アクリレート)官能性オリゴマーと、
反応性希釈剤と、
メタ(アクリルアミド)モノマーと、
N,N ジエチルアクリルアミドモノマー又はN,N ジメチルアクリルアミドモノマーあるいはその双方と、
を含
反応性希釈剤と、メタ(アクリルアミド)モノマーと、N,N ジエチルアクリルアミドモノマー又はN,N ジメチルアクリルアミドモノマーあるいはその双方とが、液体前駆体の70-80%である、液体前駆体。
A liquid precursor in an additive manufacturing process, comprising:
a meta(acrylate) functional oligomer;
a reactive diluent;
a meta(acrylamide) monomer;
N,N diethylacrylamide monomer and/or N,N dimethylacrylamide monomer ;
including
A liquid precursor wherein the reactive diluent, meta(acrylamide) monomer, N,N diethylacrylamide monomer or N,N dimethylacrylamide monomer or both are 70-80% of the liquid precursor .
反応性希釈剤がメタ(アクリレート)モノマーを含む、請求項1に記載の液体前駆体。 2. The liquid precursor of Claim 1, wherein the reactive diluent comprises a meth(acrylate) monomer. メタ(アクリレート)モノマーが、脂肪族、脂環式、複素環式、芳香族、直鎖状、及び/又は分岐状のメタ(アクリレート)モノマーを含む、請求項2に記載の液体前駆体。 3. The liquid precursor of claim 2, wherein the meth(acrylate) monomers comprise aliphatic, cycloaliphatic, heterocyclic, aromatic, linear and/or branched meth(acrylate) monomers. 液体前駆体、N-ビニルピロリドンを含まない、請求項1に記載の液体前駆体。 2. The liquid precursor of claim 1, wherein the liquid precursor does not contain N -vinylpyrrolidone. 液体前駆体におけるオリゴマーが、メタ(アクリレート)官能性オリゴマーのみであり、メタ(アクリレート)官能性オリゴマーが、液体前駆体の20-30%を占める、請求項1に記載の液体前駆体。 Liquid precursor according to claim 1, wherein the oligomers in the liquid precursor are only meth(acrylate) functional oligomers, the meth(acrylate) functional oligomers accounting for 20-30% of the liquid precursor. メタ(アクリレート)官能性オリゴマーが、液体前駆体の20-25%を占める、請求項5に記載の液体前駆体。 6. The liquid precursor of claim 5, wherein the meth(acrylate) functional oligomer comprises 20-25% of the liquid precursor. 光開始剤、光増感剤、及び/又は酸素捕捉剤を含む、請求項1に記載の液体前駆体。 2. The liquid precursor of Claim 1, comprising a photoinitiator, a photosensitizer, and/or an oxygen scavenger. 液体前駆体が、メタ(アクリレート)官能性オリゴマー、反応性希釈剤、メタ(アクリルアミド)モノマー、及びN-ビニル含有モノマーと、場合によっては、光開始剤、光増感剤、及び/又は酸素捕捉剤のうちの一又は複数とからなる、請求項1に記載の液体前駆体。 The liquid precursor comprises a meth(acrylate) functional oligomer, a reactive diluent, a meth(acrylamide) monomer, and an N-vinyl-containing monomer, and optionally a photoinitiator, photosensitizer, and/or oxygen scavenger. 2. The liquid precursor of claim 1, consisting of one or more of the agents. 研磨パッドの研磨層を製造する方法であって、
研磨層の複数の副層を3Dプリンタを用いて連続的に堆積させることであって、複数の副層の各副層が、
液体前駆体材料をノズルから吐出することであって、液体前駆体材料が、メタ(アクリレート)官能性オリゴマー、反応性希釈剤、メタ(アクリルアミド)モノマーと、N,N ジエチルアクリルアミドモノマー又はN,N ジメチルアクリルアミドモノマーあるいはその双方とを含反応性希釈剤と、メタ(アクリルアミド)モノマーと、N,N ジエチルアクリルアミドモノマー又はN,N ジメチルアクリルアミドモノマーあるいはその双方とが、液体前駆体材料の70-80%である、液体前駆体材料をノズルから吐出すること、及び
液体前駆体材料を硬化して、液体前駆体材料を凝固させて、副層の凝固した研磨層材料を形成することであって、凝固した研磨層材料の吸水率が、室温の水に4日間浸漬させた後、元の重量の10%未満である、副層の凝固した研磨層材料を形成することにより堆積される、
研磨層の複数の副層を3Dプリンタを用いて連続的に堆積させることを含む、
方法。
A method of manufacturing a polishing layer of a polishing pad, comprising:
sequentially depositing a plurality of sublayers of the polishing layer using a 3D printer, each sublayer of the plurality of sublayers comprising:
Dispensing a liquid precursor material from a nozzle, wherein the liquid precursor material comprises a meth(acrylate) functional oligomer , a reactive diluent , a meth(acrylamide) monomer , a N,N diethylacrylamide monomer or N ,N dimethylacrylamide monomer or both , wherein the reactive diluent, the meta(acrylamide) monomer, and the N,N diethylacrylamide monomer and/or the N,N dimethylacrylamide monomer form the liquid precursor material. ejecting a liquid precursor material from a nozzle that is 70-80% ; and
Curing the liquid precursor material to solidify the liquid precursor material to form a solidified abrasive layer material of the sublayer, wherein the water absorption of the solidified abrasive layer material is reduced to four days in room temperature water. deposited by forming a sublayer of solidified abrasive layer material that is less than 10% of its original weight after soaking ;
sequentially depositing multiple sublayers of the polishing layer using a 3D printer;
Method.
液体前駆体材料におけるオリゴマーが、メタ(アクリレート)官能性オリゴマーのみであり、複数の副層の各副層の厚さが、研磨層の総厚の50%未満である、請求項9に記載の方法。 10. The method of claim 9 , wherein the oligomers in the liquid precursor material are only meth(acrylate) functional oligomers and the thickness of each sublayer of the plurality of sublayers is less than 50% of the total thickness of the polishing layer. Method. 反応性希釈剤が、メタ(アクリレート)モノマーであり、液体前駆体の化学的に反応する部分は、メタ(アクリレート)官能性オリゴマーと、メタ(アクリレート)モノマーと、メタ(アクリルアミド)モノマーと、N,N ジメチルアクリルアミドモノマー又はN,N ジエチルアクリルアミドモノマーあるいはその双方とのみを含み、複数の副層の各副層の厚さが、研磨層の総厚の1%未満である、請求項10に記載の方法。 The reactive diluent is a meth(acrylate) monomer, and the chemically reactive portions of the liquid precursor are a meth(acrylate) functional oligomer, a meth(acrylate) monomer, a meth(acrylamide) monomer, N ,N dimethylacrylamide monomer and/or N,N diethylacrylamide monomer, wherein the thickness of each sublayer of the plurality of sublayers is less than 1% of the total thickness of the polishing layer. the method of. 反応性希釈剤がメタ(アクリレート)モノマーを含む、請求項9に記載の方法。 10. The method of claim 9, wherein the reactive diluent comprises a meth(acrylate) monomer. 液体前駆体材料が、N-ビニルピロリドンを含まない、請求項9に記載の方法。 10. The method of claim 9, wherein the liquid precursor material does not contain N-vinylpyrrolidone. メタ(アクリレート)官能性オリゴマーが、液体前駆体材料の20-30%を占める、請求項9に記載の方法。 10. The method of claim 9, wherein the meth(acrylate) functional oligomer comprises 20-30% of the liquid precursor material . 液体前駆体材料が、メタ(アクリレート)官能性オリゴマー、反応性希釈剤、メタ(アクリルアミド)モノマー、及びN,N ジエチルアクリルアミドモノマー又はN,N ジメチルアクリルアミドモノマーあるいはその双方と、場合によっては、光開始剤、光増感剤、及び/又は酸素捕捉剤のうちの一又は複数とからなる、請求項に記載の方法。 The liquid precursor material comprises a meth(acrylate) functional oligomer, a reactive diluent, a meth(acrylamide) monomer, and N,N diethylacrylamide and/or N,N dimethylacrylamide monomers , and optionally photoinitiation. 10. The method of claim 9 , comprising one or more of an agent, a photosensitizer, and/or an oxygen scavenger.
JP2021526550A 2018-11-19 2019-11-13 Low viscosity UV curable formulations for 3D printing Active JP7177932B6 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862769493P 2018-11-19 2018-11-19
US62/769,493 2018-11-19
PCT/US2019/061285 WO2020106526A1 (en) 2018-11-19 2019-11-13 Low viscosity uv-curable formulation for 3d printing

Publications (3)

Publication Number Publication Date
JP2022507525A JP2022507525A (en) 2022-01-18
JP7177932B2 JP7177932B2 (en) 2022-11-24
JP7177932B6 true JP7177932B6 (en) 2022-12-16

Family

ID=70726997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021526550A Active JP7177932B6 (en) 2018-11-19 2019-11-13 Low viscosity UV curable formulations for 3D printing

Country Status (5)

Country Link
US (1) US20200157265A1 (en)
JP (1) JP7177932B6 (en)
KR (1) KR102633514B1 (en)
CN (1) CN113056496B (en)
WO (1) WO2020106526A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210069860A1 (en) * 2019-09-11 2021-03-11 Applied Materials, Inc. Compositions and Methods of Additive Manufacturing of Polishing Pads
EP4229104A1 (en) * 2020-10-19 2023-08-23 CMC Materials, Inc. Uv-curable resins used for chemical mechanical polishing pads
EP4108364A1 (en) * 2021-06-22 2022-12-28 Evonik Operations GmbH Material system for 3d printing
WO2023145933A1 (en) * 2022-01-31 2023-08-03 株式会社クラレ Method for manufacturing resin sheet by using 3d printer, and polishing pad having polishing layer obtained thereby

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517922A (en) 2012-04-25 2015-06-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Chemical mechanical polishing pad by printing
WO2017047615A1 (en) 2015-09-16 2017-03-23 Kjケミカルズ株式会社 (meth)acrylamide-based urethane oligomer and active-energy-ray-curable resin composition containing same
WO2017074773A1 (en) 2015-10-30 2017-05-04 Applied Materials, Inc. An apparatus and method of forming a polishing article that has a desired zeta potential

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051088A (en) * 2011-01-11 2011-05-11 珠海保税区天然宝杰数码科技材料有限公司 White ink composition for ultraviolet curing ink jet recording and ink jet recording method
US9322991B2 (en) * 2014-02-03 2016-04-26 Corning Incorporated Primary coating compositions with reinforcing polymer
CN106029727B (en) * 2014-03-17 2018-11-13 科捷化成品公司 Urethane oligomer and actinic energy ray curable resion composition containing it
TWI689406B (en) * 2014-10-17 2020-04-01 美商應用材料股份有限公司 Polishing pad and method of fabricating the same
JP6334000B2 (en) * 2014-12-16 2018-05-30 富士フイルム株式会社 Actinic ray curable inkjet ink composition for 3D printing, three-dimensional modeling method, and actinic ray curable inkjet ink set for 3D printing
KR102340472B1 (en) * 2015-02-06 2021-12-16 케이제이 케미칼즈 가부시키가이샤 Production method for 3d modeled object, photocurable ink, supporting material and 3d modeled object
KR102125596B1 (en) * 2016-04-08 2020-06-22 주식회사 엘지화학 An Ink Composition for 3D Printing Support
US10239255B2 (en) * 2017-04-11 2019-03-26 Molecule Corp Fabrication of solid materials or films from a polymerizable liquid
CN112823171B (en) * 2018-10-08 2023-06-30 汉高股份有限及两合公司 Photocurable composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517922A (en) 2012-04-25 2015-06-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Chemical mechanical polishing pad by printing
WO2017047615A1 (en) 2015-09-16 2017-03-23 Kjケミカルズ株式会社 (meth)acrylamide-based urethane oligomer and active-energy-ray-curable resin composition containing same
WO2017074773A1 (en) 2015-10-30 2017-05-04 Applied Materials, Inc. An apparatus and method of forming a polishing article that has a desired zeta potential
JP2018538152A (en) 2015-10-30 2018-12-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus and method for forming an abrasive article having a desired zeta potential

Also Published As

Publication number Publication date
CN113056496B (en) 2023-09-08
TW202028369A (en) 2020-08-01
US20200157265A1 (en) 2020-05-21
KR102633514B1 (en) 2024-02-02
WO2020106526A1 (en) 2020-05-28
JP2022507525A (en) 2022-01-18
KR20210076204A (en) 2021-06-23
JP7177932B2 (en) 2022-11-24
CN113056496A (en) 2021-06-29

Similar Documents

Publication Publication Date Title
JP7177932B6 (en) Low viscosity UV curable formulations for 3D printing
JP6673912B2 (en) Polishing pad manufactured by additive manufacturing process
JP7299970B2 (en) Formulations for improved polishing pads
US11826876B2 (en) Hydrophilic and zeta potential tunable chemical mechanical polishing pads
KR102344467B1 (en) Printed chemical mechanical polishing pad
US20200325353A1 (en) Anionic polishing pads formed by printing processes
CN109075057A (en) Mat structure and manufacturing method
TWI779796B (en) Additive manufacturing of polishing pads on a conveyor
JP2021534017A (en) A method of manufacturing a three-dimensional molded product by depositing a layered material.
KR20210021941A (en) Three-dimensional molding device and three-dimensional molding method using dissimilar materials
US20230219190A1 (en) Additive manufacturing of polishing pads
CN114728400A (en) Compositions and methods for additive manufacturing of polishing pads
JP6685503B2 (en) Three-dimensional modeling powder material, three-dimensional modeling kit, three-dimensional modeling green body, three-dimensional model and three-dimensional modeling green body manufacturing method, three-dimensional model and three-dimensional modeling green body manufacturing apparatus
US20230256560A1 (en) Additive manufacturing of polishing pads
TWI841626B (en) Low viscosity uv-curable formulation for 3d printing
JP2017024259A (en) Method for manufacturing three-dimensional molded object and apparatus for manufacturing the same
JP2017024260A (en) Method for manufacturing three-dimensional molded object and apparatus for manufacturing the same
CN114630853A (en) Additive manufacturing of polishing pads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7177932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150