JP7175805B2 - Electromagnetic horn antenna and directivity control system - Google Patents

Electromagnetic horn antenna and directivity control system Download PDF

Info

Publication number
JP7175805B2
JP7175805B2 JP2019047044A JP2019047044A JP7175805B2 JP 7175805 B2 JP7175805 B2 JP 7175805B2 JP 2019047044 A JP2019047044 A JP 2019047044A JP 2019047044 A JP2019047044 A JP 2019047044A JP 7175805 B2 JP7175805 B2 JP 7175805B2
Authority
JP
Japan
Prior art keywords
plate
horn antenna
electromagnetic
molded body
electromagnetic horn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019047044A
Other languages
Japanese (ja)
Other versions
JP2020150436A (en
Inventor
真男 藤田
俊雄 廣井
伸二 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Priority to JP2019047044A priority Critical patent/JP7175805B2/en
Publication of JP2020150436A publication Critical patent/JP2020150436A/en
Application granted granted Critical
Publication of JP7175805B2 publication Critical patent/JP7175805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

本開示は、電磁波を送受信する電磁ホーンアンテナ、および電磁波の指向性を制御する指向性制御システムに関し、ミリ波帯と称される数十ギガヘルツ(GHz)以上の高い周波数帯域の電磁波の送受信を、指向性を変化させて行うことができる、電磁ホーンアンテナ、および、指向性制御システムに関する。 The present disclosure relates to an electromagnetic horn antenna that transmits and receives electromagnetic waves, and a directivity control system that controls the directivity of electromagnetic waves. The present invention relates to an electromagnetic horn antenna and a directivity control system capable of changing directivity.

マイクロ波の送受信を高い指向性で行うために、電磁ホーンアンテナが用いられている。電磁ホーンアンテナは、導波路(導波管)の断面形状に対応させて方形または円形の水平断面を有し、導波路と接続された基部側から先端部側に向かってその水平断面積が徐々に大きくなるように形成されたラッパ状の部材であり、導波路の内部を伝送された電磁波を開口端反射することなく空間に放出、または、空間を伝わった電磁波を減衰を抑えて受信するものである。 Electromagnetic horn antennas are used to transmit and receive microwaves with high directivity. The electromagnetic horn antenna has a rectangular or circular horizontal cross-section corresponding to the cross-sectional shape of the waveguide (waveguide), and the horizontal cross-sectional area gradually increases from the base side connected to the waveguide toward the tip side. It is a trumpet-shaped member that is formed so as to be large, and emits electromagnetic waves transmitted inside the waveguide into space without reflection at the open end, or receives electromagnetic waves that have traveled through the space while suppressing attenuation. is.

このような電磁ホーンアンテナとして、ミリ波帯域の高い周波数の電磁波の送受信を強い指向性で行うことができる電磁ホーンアンテナを実現するために、先端部に形成される電波放射面の全面にわたって扇形の中心から電波放射面までの長さの通路長が等しくなるように構成したものが提案されている(特許文献1参照)。 As such an electromagnetic horn antenna, in order to realize an electromagnetic horn antenna capable of transmitting/receiving high-frequency electromagnetic waves in the millimeter wave band with strong directivity, a fan-shaped A configuration has been proposed in which the path lengths from the center to the radio wave radiating surface are equal (see Patent Document 1).

特開2005-318038号公報JP-A-2005-318038

上記従来の電磁ホーンアンテナでは、鋼板や金属メッキされたプラスチック材料によって所望する扇形の形状を正確に構成するとともに、扇形の面同士を接続する両側壁部の内側に炭素繊維の布やフェライト材により構成された電磁波吸収材を張り付けて、指向性を向上させている。 In the above-mentioned conventional electromagnetic horn antenna, a desired fan-shaped shape is accurately formed by steel plate or metal-plated plastic material, and carbon fiber cloth or ferrite material is placed inside both side walls connecting the fan-shaped surfaces to each other. The configured electromagnetic wave absorbing material is attached to improve the directivity.

しかし、従来の電磁ホーンアンテナは、指向性を変えることができず、アンテナから送信される電磁波の受信部や、アンテナで受信する電磁波の送信源の大きさやアンテナとの距離、配置位置などの条件が変化した場合に、いずれかの条件には対応できるが条件の変化に対応して常に所望される指向性を実現することができなかった。 However, the conventional electromagnetic horn antenna cannot change the directivity, and the conditions such as the receiving part of the electromagnetic wave transmitted from the antenna, the size of the transmission source of the electromagnetic wave received by the antenna, the distance from the antenna, the placement position etc. changes, it is possible to cope with any of the conditions, but it is impossible to always achieve the desired directivity in response to the change in conditions.

本開示は、上記従来の課題を解決し、ミリ波帯域以上の高い周波数帯域の電磁波の送受信を、指向性を変化させて行うことができる電磁ホーンアンテナ、および、ミリ波帯域以上の高い周波数帯域の電磁波の送受信における指向性の制御を行うことができる指向性制御システムを実現することを目的とする。 The present disclosure solves the above-described conventional problems, and provides an electromagnetic horn antenna capable of transmitting and receiving electromagnetic waves in a high frequency band of the millimeter wave band or higher by changing the directivity, and a high frequency band of the millimeter wave band or higher. It is an object of the present invention to realize a directivity control system capable of controlling directivity in transmission and reception of electromagnetic waves.

上記課題を解決するため本願で開示する電磁ホーンアンテナは、ミリ波帯域以上の高周波帯域の電磁波の送受信に用いられる電磁ホーンアンテナであって、複数の板状成型体が、開口部側が径大で導波路側が径小となる中空の略円錐台形状を構成するように配置され、前記板状成型体それぞれの前記開口部側の端部を、径方向に移動可能とする駆動機構を有し、前記板状成型体が、前記電磁波を吸収する電磁波吸収部材で形成されていることを特徴とする。 An electromagnetic horn antenna disclosed in the present application for solving the above problems is an electromagnetic horn antenna used for transmitting and receiving electromagnetic waves in a high frequency band of millimeter waves or higher, wherein a plurality of plate-like moldings have a large diameter on the opening side. a driving mechanism disposed so as to form a hollow truncated cone having a smaller diameter on the waveguide side, and capable of radially moving the end portion of each of the plate-shaped moldings on the opening side; The plate-shaped molding is characterized by being formed of an electromagnetic wave absorbing member that absorbs the electromagnetic wave.

また、本願で開示する指向性制御システムは、ミリ波帯域以上の高周波数で発振する発振部、および/または、ミリ波帯域以上の高周波数の電磁波を受信する受信部と、前記発振部または前記受信部に接続された導波路と、前記導波路に接続された本願で開示する電磁ホーンアンテナとを備え、前記電磁ホーンアンテナの前記開口部側の径の大きさを変更することにより電磁波の指向性を変化させることを特徴とする。 Further, the directivity control system disclosed in the present application includes an oscillator that oscillates at a high frequency in the millimeter wave band or higher and/or a receiver that receives electromagnetic waves at a high frequency in the millimeter wave band or higher; Equipped with a waveguide connected to a receiving part, and an electromagnetic horn antenna disclosed in the present application connected to the waveguide, and directing electromagnetic waves by changing the size of the diameter of the electromagnetic horn antenna on the opening side Characterized by changing sex.

本願で開示する電磁ホーンアンテナは、アンテナのコーン部を電磁波吸収部材である複数の板状成型体によって形成し、この板状成型体の開口部側の端部を径方向に移動可能とする駆動機構を備えている。このため、駆動機構によって開口部の径を変化させることができ、ミリ波帯域以上の高周波数の電磁波の送受信を、指向性を変化させて行うことができる。 In the electromagnetic horn antenna disclosed in the present application, the cone portion of the antenna is formed by a plurality of plate-shaped molded bodies that are electromagnetic wave absorbing members, and the end of the plate-shaped molded body on the opening side can be moved in the radial direction. It has mechanism. Therefore, the diameter of the opening can be changed by the drive mechanism, and high-frequency electromagnetic waves in the millimeter wave band or higher can be transmitted and received by changing the directivity.

また、本願で開示する指向性制御システムは、上記本願で開示する電磁ホーンアンテナと、導波路と、発振部および/または受信部とを備え、板状成型体の開口部を径方向に変化させることで、送受信するミリ波帯域以上の高い周波数帯域の電磁波の指向性を制御することができる。 Further, the directivity control system disclosed in the present application includes the electromagnetic horn antenna disclosed in the present application, a waveguide, an oscillating section and/or a receiving section, and changes the opening of the plate-like molded body in the radial direction. This makes it possible to control the directivity of electromagnetic waves in a high frequency band above the millimeter wave band to be transmitted and received.

本実施形態にかかる指向性制御システムの、指向性が絞られていない状態の全体構成を示す図である。It is a figure which shows the whole structure of the directivity control system concerning this embodiment in the state in which the directivity is not narrowed down. 本実施形態にかかる指向性制御システムの、指向性が絞られている状態の全体構成を示す図である。It is a figure which shows the whole structure of the directivity control system concerning this embodiment in the state where the directivity is narrowed down. 板状成型体の構成例を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a configuration example of a plate-like molded body; シミュレーションを行った電磁ホーンアンテナの形状を説明する図である。It is a figure explaining the shape of the electromagnetic horn antenna which simulated. シミュレーション結果としての、本実施形態にかかる電磁ホーンアンテナの指向性特性を示す図である。FIG. 5 is a diagram showing directivity characteristics of the electromagnetic horn antenna according to the present embodiment as simulation results; 本実施形態にかかる電磁ホーンアンテナの指向性を変化させる、駆動機構の構成を説明するためのイメージ図である。FIG. 4 is an image diagram for explaining the configuration of a driving mechanism that changes the directivity of the electromagnetic horn antenna according to the present embodiment; 本実施形態にかかる電磁ホーンアンテナの隣り合う板状成型体をつなげる規制部の構成を示すイメージ図である。FIG. 4 is an image diagram showing the configuration of a restricting portion that connects adjacent plate-shaped moldings of the electromagnetic horn antenna according to the present embodiment;

本願で開示する電磁ホーンアンテナは、ミリ波帯域以上の高周波帯域の電磁波の送受信に用いられる電磁ホーンアンテナであって、複数の板状成型体が、開口部側が径大で導波路側が径小となる中空の略円錐台形状を構成するように配置され、前記板状成型体それぞれの前記開口部側の端部を、径方向に移動可能とする駆動機構を有し、前記板状成型体が、前記電磁波を吸収する電磁波吸収部材で形成されている。 The electromagnetic horn antenna disclosed in the present application is an electromagnetic horn antenna used for transmitting and receiving electromagnetic waves in a high-frequency band of millimeter waves or higher, wherein a plurality of plate-shaped moldings have a large diameter on the opening side and a small diameter on the waveguide side. and a driving mechanism for radially moving an end portion of each of the plate-shaped moldings on the side of the opening, wherein the plate-shaped moldings are and an electromagnetic wave absorbing member that absorbs the electromagnetic wave.

上記構成の本願で開示する電磁ホーンアンテナは、電磁波吸収体で形成されている板状成型体の開口部側の端部を、駆動機構によって径方向に動かすことで、開口部の径を変化させることができる。このため、ミリ波帯域以上の高周波数の電磁波の送受信を、指向性を変化させて行うことができる。 The electromagnetic horn antenna disclosed in the present application having the above configuration changes the diameter of the opening by radially moving the end of the plate-shaped molded body formed of an electromagnetic wave absorber on the opening side by a driving mechanism. be able to. Therefore, it is possible to transmit and receive high-frequency electromagnetic waves in the millimeter wave band or higher while changing the directivity.

上記本願で開示する電磁ホーンアンテナにおいて、前記板状成型体が、ミリ波帯以上の周波数で磁気共鳴する磁性酸化鉄を含むことが好ましい。ミリ波帯域以上の周波数で磁気共鳴する磁性酸化鉄が板状成型体に入射する電磁波を良好に吸収することができるため、電磁ホーンアンテナ内での電磁波の反射を低減することができ、高い精度で指向性を制御して電磁波の送受信を行うことができる。 In the electromagnetic horn antenna disclosed in the present application, it is preferable that the plate-like molded body contains magnetic iron oxide that magnetically resonates at frequencies in the millimeter wave band or higher. Since the magnetic iron oxide that magnetically resonates at frequencies above the millimeter wave band can well absorb the electromagnetic waves incident on the plate-shaped molded body, it is possible to reduce the reflection of electromagnetic waves in the electromagnetic horn antenna, resulting in high accuracy. It is possible to transmit and receive electromagnetic waves by controlling the directivity.

この場合において、前記板状成型体に含まれる前記磁性酸化鉄の割合が5~50体積%であることが好ましい。このようにすることで、電磁波の吸収特性と、電磁ホーンアンテナの構造体として十分な脆性を有する板状成型体により電磁ホーンアンテナを構成することができる。 In this case, it is preferable that the proportion of the magnetic iron oxide contained in the plate-like molding is 5 to 50% by volume. By doing so, the electromagnetic horn antenna can be constructed from the plate-shaped molded body having electromagnetic wave absorption characteristics and sufficient brittleness as the structure of the electromagnetic horn antenna.

また、前記板状成型体の厚み方向における前記磁性酸化鉄の割合が異なり、前記板状成型体の内面側の割合よりも外面側の割合の方が大きいことが好ましい。このようにすることで、電磁ホーアンテナの内側面において、基部から出る電磁波の吸収が少なくなり指向性が高く強度の高い電磁波を出すことができるとともに、アンテナ外部からの電磁波ノイズを効果的に吸収でき、ノイズの影響を低減させることができる。 In addition, it is preferable that the ratio of the magnetic iron oxide in the thickness direction of the plate-shaped compact is different, and the ratio on the outer surface side is larger than the ratio on the inner surface side of the plate-shaped compact. By doing so, on the inner surface of the electromagnetic antenna, absorption of electromagnetic waves emitted from the base is reduced, and electromagnetic waves with high directivity and high intensity can be emitted, and electromagnetic noise from the outside of the antenna can be effectively absorbed. can reduce the influence of noise.

この場合において、前記板状成型体が、前記磁性酸化鉄が含まれる割合の異なる複数の成型体の積層体として構成されていることが好ましい。このようにすることで、厚み方向で磁性酸化鉄の含有割合が異なる板状成型体を、容易に形成することができる。 In this case, it is preferable that the plate-like molded body is configured as a laminate of a plurality of molded bodies containing the magnetic iron oxide at different ratios. By doing so, it is possible to easily form a plate-shaped molding having a different content ratio of magnetic iron oxide in the thickness direction.

さらに、前記板状成型体は、前記開口部側が前記導波路側よりも幅広に形成され、厚みが1~10mmであることが好ましい。このようにすることで、板状成型体の電磁波吸収特性と剛性とを確保するとともに、開口端部を径方向に動かした際の開口径の大きさの変化を大きくすることができる。 Further, it is preferable that the plate-like molded body is wider on the opening side than on the waveguide side and has a thickness of 1 to 10 mm. By doing so, it is possible to ensure the electromagnetic wave absorption characteristics and rigidity of the plate-shaped molded body, and to increase the change in the size of the opening when the opening end is moved in the radial direction.

なお、前記板状成型体の前記電磁ホーンアンテナ内側表面の導電率が500S/m以上とすることが好ましい。 In addition, it is preferable that the electrical conductivity of the inner surface of the electromagnetic horn antenna of the plate-like molded body is 500 S/m or more.

さらに、前記駆動機構が、前記板状成型体の前記導波路側の端部に配置され前記板状成型体をその主面に垂直な方向に回動可能とする回動部と、前記板状成型体の前記導波路側の端部近傍に固着されて前記板状成型体を回動させる駆動部とを有することが好ましい。このようにすることで、簡易な構成で板状成型体の開口部の位置を変化させることができる。 Further, the drive mechanism includes a rotating portion arranged at an end portion of the plate-shaped molded body on the waveguide side and capable of rotating the plate-shaped molded body in a direction perpendicular to the main surface thereof; It is preferable to have a drive unit fixed to the vicinity of the waveguide-side end of the molded body for rotating the plate-shaped molded body. By doing so, it is possible to change the position of the opening of the plate-shaped molding with a simple configuration.

また、前記板状成型体それぞれの前記開口部側に、側面に形成された突起部と、隣り合う他の前記板状成型体の前記突起部が摺動可能に形成された溝部とを有することが好ましい。このようにすることで、複数の板状成型体の角度の変化を規制して、開口部や軸に垂直な断面を略円形の状態を維持したままその径を変化させることができる。 In addition, each of the plate-like molded bodies has a protrusion formed on the side surface thereof on the side of the opening, and a groove formed in which the protrusion of the adjacent plate-shaped molded body is slidable. is preferred. By doing so, it is possible to regulate the change in the angle of the plurality of plate-like moldings, and to change the diameter while maintaining the substantially circular state of the opening and the cross section perpendicular to the axis.

また、本願で開示する指向性制御システムは、ミリ波帯域以上の高周波数で発振する発振部、および/または、ミリ波帯域以上の高周波数の電磁波を受信する受信部と、前記発振部または前記受信部に接続された導波路と、前記導波路に接続された本願で開示する電磁ホーンアンテナとを備え、前記電磁ホーンアンテナの前記開口部側の径の大きさを変更することにより電磁波の指向性を変化させる。 Further, the directivity control system disclosed in the present application includes an oscillator that oscillates at a high frequency in the millimeter wave band or higher and/or a receiver that receives electromagnetic waves at a high frequency in the millimeter wave band or higher; Equipped with a waveguide connected to a receiving part, and an electromagnetic horn antenna disclosed in the present application connected to the waveguide, and directing electromagnetic waves by changing the size of the diameter of the electromagnetic horn antenna on the opening side change gender.

このようにすることで、本願で開示する指向性制御システムでは、一つの電磁ホーンアンテナを用いて、送受信する電磁波の指向性を容易に、かつ、確実に制御することができる。 By doing so, the directivity control system disclosed in the present application can easily and reliably control the directivity of electromagnetic waves to be transmitted and received using one electromagnetic horn antenna.

以下、本願で開示する電磁波ホーンアンテナと電磁波の指向性制御システムについて、図面を参照して説明する。 An electromagnetic horn antenna and an electromagnetic wave directivity control system disclosed in the present application will be described below with reference to the drawings.

(実施の形態)
図1は、本実施形態にかかる指向性制御システムの全体構成を説明するための斜視図である。図1では、指向性を弱く設定している(絞られていない)状態の形状が示されている。
(Embodiment)
FIG. 1 is a perspective view for explaining the overall configuration of a directivity control system according to this embodiment. FIG. 1 shows a shape in which the directivity is set weak (not narrowed).

図1に示すように、本実施形態として示す指向性制御100システムは、本実施形態にかかる電磁ホーンアンテナ10と、基部20とを有している。 As shown in FIG. 1 , a directivity control system 100 shown as this embodiment has an electromagnetic horn antenna 10 according to this embodiment and a base 20 .

図1に示す電磁ホーンアンテナ10は、8枚の板状成型体11~18によって、全体として基部20側が径小で基部20とは反対側の開口部10a側が径大となる中空の略円錐台形状となっている。より詳細には、図1に示すように、それぞれの板状成型体(11~18)において、中心(円錐台の中心)に向かう方向に向かって右側の側面(板状成型体11では右側側面11a)が、隣り合う他の板状成型体の内面12b(中心側の面)の端部、すなわち、板状成型体12の内面12bのうち、板状成型体11側の端部に接触するように配置されている。このように、本実施形態の電磁ホーンアンテナ10では、それぞれの板状成型体(11)の側面(11a)が、隣り合う他の板状成型体(12)の内面(12b)の板状成型体11側の端部と重なり合うことによって、開口部10aや、いわゆるコーン部に相当する略円錐台形状において中心軸に垂直な断面の形状が、いずれも略円形となるようになっている。 The electromagnetic horn antenna 10 shown in FIG. 1 is formed by eight plate-like moldings 11 to 18. As a whole, the base portion 20 side has a small diameter and the opening portion 10a side opposite to the base portion 20 has a large diameter. It has a shape. More specifically, as shown in FIG. 1, in each of the plate-shaped molded bodies (11 to 18), the right side surface (the right side surface in the plate-shaped molded body 11) in the direction toward the center (the center of the truncated cone) 11a) contacts the edge of the inner surface 12b (surface on the center side) of another adjacent plate-like molded body, that is, the edge of the inner surface 12b of the plate-shaped molded body 12 on the plate-shaped molded body 11 side. are arranged as As described above, in the electromagnetic horn antenna 10 of the present embodiment, the side surface (11a) of each plate-shaped molded body (11) is the plate-shaped molding of the inner surface (12b) of the other adjacent plate-shaped molded body (12). By overlapping with the end portion on the body 11 side, the opening 10a and the shape of the cross section perpendicular to the central axis of the substantially truncated cone shape corresponding to the so-called cone portion are all substantially circular.

なお、本実施形態にかかる電磁ホーンアンテナ10は、複数(図1に例示するものの場合8枚)の板状成型体(11~18)によって構成されているため、略円錐台形状の中心軸に垂直な断面は厳密に言えば多角形、すなわち、図1に例示するものの場合は全体として8角形であり、さらに詳細には、板状成型体(11~18)の重なり部分でその厚みによる段差が生じる形状となっている。このため、電磁ホーンアンテナの全体の形状を中空の「角錐台」形状と把握することも可能である。しかし、複数の板状成型体により形成された本実施形態にかかる電磁ホーンアンテナのコーン部の形状は、本来的には中空の円錐台形状の電磁ホーンアンテナのコーン部を模して複数の板状成型体で実現された形状であるため、本明細書では電磁ホーンアンテナの全体形状を中空の「略円錐台形状」と称する。また、電磁ホーンアンテナの開口部10aの形状、コーン部の中心軸に垂直な断面の形状をいずれも「略円形」と称する。 Since the electromagnetic horn antenna 10 according to the present embodiment is composed of a plurality of (eight in the case of the example shown in FIG. 1) plate-like moldings (11 to 18), the central axis of the substantially truncated cone shape Strictly speaking, the vertical cross section is a polygon, that is, an octagon as a whole in the case of the example shown in FIG. It has a shape that produces For this reason, it is also possible to grasp the overall shape of the electromagnetic horn antenna as a hollow "truncated pyramid" shape. However, the shape of the cone portion of the electromagnetic horn antenna according to the present embodiment, which is formed of a plurality of plate-shaped moldings, is originally a hollow truncated cone shape of the electromagnetic horn antenna. In this specification, the overall shape of the electromagnetic horn antenna is referred to as a hollow "substantially truncated cone shape" because it is a shape realized by a shaped body. Also, the shape of the opening 10a of the electromagnetic horn antenna and the shape of the cross section perpendicular to the central axis of the cone are both referred to as "substantially circular".

図2は、本実施形態にかかる指向性制御システムの全体構成を説明するための斜視図である。図2では、指向性を強く設定している(絞られている)状態の形状が示されている。 FIG. 2 is a perspective view for explaining the overall configuration of the directivity control system according to this embodiment. FIG. 2 shows a shape in which directivity is strongly set (closed).

図2に示す、指向性が強く設定されている場合、すなわち、高い指向性を有して電磁波の放射を行う場合、または、受信する電磁波の方向を狭く設定する場合には、電磁ホーンアンテナ10を形成する板状成型体(11~18)同士の重なり具合が大きくなる。すなわち、図1と図2との比較から明らかなように、本実施形態にかかる指向性制御システム100では、電磁ホーンアンテナ10を構成する板状成型体(11~18)の重なり具合を変化させることで、電磁ホーンアンテナの開口部10aの径を変化させて、電磁波の指向性の制御が行われる。 When the directivity shown in FIG. 2 is set to be strong, that is, when the electromagnetic wave is radiated with high directivity, or when the direction of the received electromagnetic wave is set narrowly, the electromagnetic horn antenna 10 The degree of overlap between the plate-shaped moldings (11 to 18) forming the is increased. That is, as is clear from the comparison between FIGS. 1 and 2, in the directivity control system 100 according to the present embodiment, the degree of overlap of the plate-shaped moldings (11 to 18) constituting the electromagnetic horn antenna 10 is changed. Thus, the directivity of the electromagnetic wave is controlled by changing the diameter of the opening 10a of the electromagnetic horn antenna.

電磁波の指向性を強く絞っている場合には、図2に示すように、それぞれの板状成型体において中心(略円錐台形状の中心)に向かう方向に向かって右側の側面(板状成型体11では右側側面11a)が、隣り合う他の板状成型体の内面の略中央部分(板状成型体12の内面12bのうち、板状成型体12の幅方向の中央の位置)に接触するように配置されている。このように、本実施形態の電磁ホーンアンテナ10では、一つの板状成型体(11)の側面(11a)が、隣り合う他の板状成型体(12)の内面(12b)における中央部分に位置することにより、板状成型体同士が約半分ずつ重なり合うようになって、開口部10aの略円形の径、および、コーン部を形成する中心軸に対して垂直な断面である略円形の径が、いずれも、図1に示した指向性が弱く設定されている場合よりも小さくなるようになっている。 When the directivity of electromagnetic waves is strongly narrowed, as shown in FIG. In 11, the right side surface 11a) contacts the substantially central portion of the inner surface of another adjacent plate-shaped molded body (the central position in the width direction of the plate-shaped molded body 12 among the inner surfaces 12b of the plate-shaped molded body 12). are arranged as As described above, in the electromagnetic horn antenna 10 of the present embodiment, the side surface (11a) of one plate-shaped molded body (11) is located at the central portion of the inner surface (12b) of the other adjacent plate-shaped molded body (12). By positioning, the plate-shaped molded bodies overlap each other by about half, and the diameter of the substantially circular shape of the opening 10a and the diameter of the substantially circular shape of the section perpendicular to the central axis forming the cone portion are formed. However, both are smaller than when the directivity is set weakly as shown in FIG.

なお、本実施形態にかかる指向性制御システムにおいて、板状成型体同士の重なり具合を変化させて開口部の径の大きさを変化させる駆動機構については、後に詳述する。 In the directivity control system according to the present embodiment, a driving mechanism for changing the degree of overlap between the plate-like moldings to change the diameter of the opening will be described in detail later.

図1、図2に示される、本実施形態にかかる指向性制御システム100における基部20は、一例として、外観が略直方体形状の部材として構成されていて、基部20の1つの主面、すなわち面積が大きな一対の面の内の一方の面20aに形成された開口21から、電磁ホーンアンテナ10が突出するように配置されている。なお、基部20としては、上述した略直方体形状以外にも、基部側の面積が狭く開口部側の面積が広い略扇形の形状のものを採用することができる。 As an example, the base 20 in the directivity control system 100 according to the present embodiment shown in FIGS. The electromagnetic horn antenna 10 is arranged to protrude from an opening 21 formed in one of the pair of large surfaces 20a. As the base portion 20, in addition to the above-described substantially rectangular parallelepiped shape, a substantially fan-shaped shape having a narrower area on the base side and a wider area on the opening side can be adopted.

電磁ホーンアンテナ10の基部20側の径小の開口は、径大の開口部10aや、中間部分の中心軸に垂直な断面と同様に略円形状となっており、基部20内で断面が円形の導波路(導波管)22のアンテナ側の端部と接続されている。なお、図示は省略するが、導波路22の電磁ホーンアンテナ10に接続されている側の端部とは反対側の端部には、本実施形態にかかる指向性制御システム100で送信されるミリ波帯域以上の高い周波数帯域の電磁波を発生させる発振部、または、本実施形態にかかる指向性制御システム100が、受信する電磁波の受信部のいずれか、または、発振部と受信部の両方が配置される。 The small-diameter opening of the electromagnetic horn antenna 10 on the side of the base 20 has a substantially circular shape like the large-diameter opening 10a and the cross section perpendicular to the central axis of the intermediate portion, and the cross section is circular in the base 20. is connected to the end of the waveguide (waveguide) 22 on the antenna side. Although not shown, the end of the waveguide 22 opposite to the end of the waveguide 22 connected to the electromagnetic horn antenna 10 is provided with a millimeter signal transmitted by the directivity control system 100 according to the present embodiment. Either an oscillating unit that generates electromagnetic waves in a frequency band higher than the wave band, or a receiving unit that receives electromagnetic waves received by the directivity control system 100 according to the present embodiment, or both the oscillating unit and the receiving unit are arranged. be done.

このように、本実施形態にかかる電磁波の指向性制御システムでは、コーン部を形成する板状成型体の重なり具合を変化させて、指向性を変化させることができる本実施形態にかかる電磁ホーンアンテナの特長を活かして、電磁ホーンアンテナの開口部の径を変化させる。例えば、指向性を強くして限られた方向にのみ電磁波を送信する場合には、図2に示すように板状成型体の重なり具合を大きくし、反対に、指向性を弱くしてより広い範囲に向かって電磁波を送信する場合には、図1に示すように、板状成型体の重なり具合を小さくする。同様に、広い範囲からの電磁波を受信する場合には、図1に示すように板状成型体の重なり具合を小さくして指向性を弱め、特定の方向からの電磁波を受信する場合には、図2に示すように板状成型体の重なり具合を大きくして強い指向性を持たせる。また、電磁ホーンアンテナのコーン部を形成する板状成型体が、ミリ波帯域以上の高周波数の電磁波を吸収する電磁波吸収部材であるため、電磁ホーンアンテナ内面での電磁波の不所望な反射を抑制することができ、高い精度で電磁波の指向性の制御を行うことができる。 As described above, in the electromagnetic wave directivity control system according to the present embodiment, the electromagnetic horn antenna according to the present embodiment can change the directivity by changing the degree of overlapping of the plate-shaped moldings forming the cone portion. The diameter of the opening of the electromagnetic horn antenna is changed by making use of the features of For example, when the directivity is strengthened and electromagnetic waves are transmitted only in a limited direction, as shown in FIG. When transmitting electromagnetic waves toward a range, as shown in FIG. Similarly, when receiving electromagnetic waves from a wide range, as shown in FIG. As shown in FIG. 2, a strong directivity is imparted by increasing the degree of overlapping of the plate-like moldings. In addition, since the plate-shaped molded body forming the cone portion of the electromagnetic horn antenna is an electromagnetic wave absorbing member that absorbs high-frequency electromagnetic waves above the millimeter wave band, unwanted reflection of electromagnetic waves on the inner surface of the electromagnetic horn antenna is suppressed. It is possible to control the directivity of electromagnetic waves with high accuracy.

[板状成型体]
本実施形態にかかる電磁ホーンアンテナ10を構成する板状成型体(11~18)は、図1、および、図2に示すように、長手方向と幅方向とを有する略長方形の主面と、これら長手方向と幅方向との大きさに比べて小さな厚さを有する、細長い薄板状部材である。
[Plate shaped body]
As shown in FIGS. 1 and 2, the plate-shaped molded bodies (11 to 18) constituting the electromagnetic horn antenna 10 according to the present embodiment have a substantially rectangular main surface having a longitudinal direction and a width direction, It is an elongated thin plate-like member having a small thickness compared to the size in the longitudinal direction and the width direction.

本実施形態にかかる電磁ホーンアンテナ10では、一例として、8枚の板状成型体(11~18)で電磁ホーンアンテナ10が形成されていて、8枚の板状成型体(11~18)はいずれも同じ形状となっている。また、図1、および、図2に示すように、それぞれの板状成型体(11~18)は、電磁ホーンアンテナ10の開口部10a側が基部20側よりもわずかに幅広となっている。このようにすることで、隣り合う板状成型体(11~18)同士の間に電磁波の漏洩につながる隙間が生じない状態で、図1に示す、指向性を絞っていない状態での電磁ホーンアンテナ10の開口部10aの径をより径大とすることができる。なお、本実施形態にかかる電磁ホーンアンテナ10において、板状成型体(11~18)の開口部10a側の幅をより幅広に形成することは必須ではなく、長手方向の全域にわたって同じ幅の板状成型体(11~18)を用いることもできる。 In the electromagnetic horn antenna 10 according to the present embodiment, as an example, the electromagnetic horn antenna 10 is formed of eight plate-shaped molded bodies (11 to 18), and the eight plate-shaped molded bodies (11 to 18) are All have the same shape. Further, as shown in FIGS. 1 and 2, each plate-shaped molded body (11 to 18) is slightly wider on the opening 10a side of the electromagnetic horn antenna 10 than on the base 20 side. By doing so, the electromagnetic horn shown in FIG. The diameter of the opening 10a of the antenna 10 can be made larger. In addition, in the electromagnetic horn antenna 10 according to the present embodiment, it is not essential to form the width of the plate-shaped molded body (11 to 18) on the side of the opening 10a wider. Shaped bodies (11 to 18) can also be used.

板状成型体にわずかな曲面を付与し、電磁ホーンアンテナ10の内側が凹形状となるようにして複数の板状成型体によって電磁ホーンアンテナ10を形成した場合には、中心軸に垂直な断面の形状がいずれも略円形に近い形状の電磁ホーンアンテナ10を得ることができる。 When the electromagnetic horn antenna 10 is formed from a plurality of plate-shaped molded bodies by giving a slightly curved surface to the plate-shaped molded body so that the inside of the electromagnetic horn antenna 10 has a concave shape, the cross section perpendicular to the central axis It is possible to obtain the electromagnetic horn antenna 10 whose shape is almost circular.

板状成型体(11~18)は、非導電性の有機材料のバインダー中に、ストロンチウムフェライト、六方晶フェライト、イプシロン酸化鉄などのフェライト系の磁性酸化鉄(粉)を分散して含有した磁性塗料を所定の形状に成型して構成されている。 The plate-shaped moldings (11 to 18) are magnetic particles containing ferritic magnetic iron oxide (powder) such as strontium ferrite, hexagonal ferrite, and epsilon iron oxide dispersed in a non-conductive organic material binder. It is constructed by molding paint into a predetermined shape.

磁性酸化鉄粉としては、ストロンチウムフェライト、六方晶フェライト、イプシロン酸化鉄などのフェライト系磁性酸化鉄の粉体が良好に使用でき、特に、イプシロン酸化鉄は保磁力が高く電磁波を吸収する特性に優れている。これらのフェライト系磁性酸化鉄は磁性体の種類によってジャイロ磁気定数が異なり、このジャイロ磁気定数によって吸収できる電磁波が異なる。一例として、10~140GHzの範囲の電磁波を吸収する材料としては、ストロンチウムフェライトが好ましく、30~300GHzの範囲の電磁波を吸収する材料としてはイプシロン酸化鉄を用いることが好ましい。このように、必要な吸収帯域に応じてフェライト系磁性酸化鉄を適宜選択することができる。さらに、これらの異なるフェライト系磁性酸化鉄を2種類以上混ぜることで、吸収する電磁波の周波数帯域を広げることも可能である。 As the magnetic iron oxide powder, ferritic magnetic iron oxide powder such as strontium ferrite, hexagonal ferrite, and epsilon iron oxide can be used favorably. In particular, epsilon iron oxide has a high coercive force and is excellent in absorbing electromagnetic waves. ing. These ferritic magnetic iron oxides have different gyromagnetic constants depending on the type of magnetic material, and the electromagnetic waves that can be absorbed differ depending on the gyromagnetic constants. For example, strontium ferrite is preferable as a material that absorbs electromagnetic waves in the range of 10 to 140 GHz, and epsilon iron oxide is preferably used as a material that absorbs electromagnetic waves in the range of 30 to 300 GHz. Thus, the ferritic magnetic iron oxide can be appropriately selected according to the required absorption band. Furthermore, by mixing two or more of these different ferritic magnetic iron oxides, it is possible to widen the frequency band of electromagnetic waves to be absorbed.

板状成型体(11~18)を構成するバインダーとしては、エポキシ系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、アクリル系樹脂、フェノール系樹脂、メラミン系樹脂などの各種の樹脂材料を用いることができる。樹脂材料の選択に当たっては、板状成型体(11~18)として、指向性の制御に伴う形状の変化(例えば、図1に示す状態と図2に示す状態の変化)に対して、十分に耐えうる剛性を備えている必要がある。このため、熱硬化性の樹脂材料を用いることが好ましく、使用範囲の温度条件では軟化しない熱可塑性の樹脂材料も使用可能である。一方で、弾性が大きく通常の使用状態で全体形状の変化が生じるゴム系の樹脂材料は好ましくない。 Various resin materials such as epoxy-based resins, polyester-based resins, polyurethane-based resins, acrylic-based resins, phenol-based resins, and melamine-based resins can be used as binders constituting the plate-shaped moldings (11 to 18). . In selecting the resin material, the plate-shaped moldings (11 to 18) should be sufficiently adapted to the change in shape (for example, the change between the state shown in FIG. 1 and the state shown in FIG. 2) accompanying directivity control. It must have the strength to withstand. For this reason, it is preferable to use a thermosetting resin material, and a thermoplastic resin material that does not soften under temperature conditions within the operating range can also be used. On the other hand, it is not preferable to use a rubber-based resin material that has a large elasticity and causes a change in the overall shape during normal use.

板状成型体(11~18)に含まれる上述したフェライト系の磁性酸化鉄粉は、いずれもミリ波帯域以上の周波数で磁気共鳴し、板状成型体(11~18)に入射した電磁波を熱に変換して吸収することができる。また、磁性酸化鉄が樹脂製のバインダーに含まれた磁性体塗料を成型して板状成型体(11~18)を形成することで、板状成型体(11~18)の形状、大きさを容易に所定のものとすることができる。 All of the ferrite-based magnetic iron oxide powders contained in the plate-shaped moldings (11 to 18) undergo magnetic resonance at frequencies in the millimeter wave band or higher, and emit electromagnetic waves incident on the plate-shaped moldings (11 to 18). It can be converted into heat and absorbed. Further, by forming the plate-shaped moldings (11-18) by molding a magnetic paint containing magnetic iron oxide in a resin binder, the plate-shaped moldings (11-18) can be shaped and sized. can be easily determined.

なお、本実施形態にかかるホーンアンテナに用いられる板状成型体(11~18)として、その厚さ方向における磁性酸化鉄が含まれる量、すなわち、単位体積当たりの含有量を異ならせることができる。この場合、板状成型体(11~18)の内面側の磁性酸化鉄の含有量を低くするとともに、外面側の磁性炭化鉄の含有量を大きくすることが好ましい。 The amount of magnetic iron oxide contained in the thickness direction, that is, the content per unit volume of the plate-shaped moldings (11 to 18) used for the horn antenna according to the present embodiment can be varied. . In this case, it is preferable to reduce the magnetic iron oxide content on the inner surface side of the plate-shaped compacts (11 to 18) and increase the magnetic iron carbide content on the outer surface side.

図5は、厚さ方向における磁性酸化鉄の含有量を異ならせた板状成型体の状態を説明するための模式図である。なお、図5(a)、図5(b)、図5(c)それぞれにおいて、図中の色の濃淡が磁性酸化鉄の含有量の濃淡に対応するように示している。 FIG. 5 is a schematic diagram for explaining the state of the plate-shaped compacts with different contents of magnetic iron oxide in the thickness direction. 5(a), 5(b), and 5(c), the shades of colors in the figures correspond to the shades of the magnetic iron oxide content.

図5(a)が、一枚の板状成型体110(板状成型体11~18のそれぞれ)において、外面側に配置される部分の磁性酸化鉄の含有量が、内面側に配置される磁性酸化鉄の含有量よりも大きい状態のものを示している。また、図5(b)は、板状成型体120(板状成型体11~18のそれぞれ)が磁性酸化物の含有量の大きな部材121と、磁性酸化鉄の含有量が小さな部材122との二層の積層体として構成されている状態を示している。さらに、図5(c)は、板状成型体130(板状成型体11~18のそれぞれ)が磁性酸化物の含有量の大きな部材131と、磁性酸化鉄の含有量が中間的な部材132と、磁性酸化鉄の含有量が小さな部材133との三層の積層体として構成されている状態を示している。 FIG. 5(a) shows that in one plate-shaped molding 110 (each of the plate-shaped moldings 11 to 18), the content of magnetic iron oxide in the portion arranged on the outer surface side is arranged on the inner surface side. It shows a state in which the content of magnetic iron oxide is larger than that of the magnetic iron oxide. In addition, FIG. 5(b) shows that the plate-shaped molded bodies 120 (each of the plate-shaped molded bodies 11 to 18) is composed of a member 121 having a large content of magnetic oxide and a member 122 having a small content of magnetic iron oxide. It shows a state in which it is configured as a two-layer laminate. Furthermore, FIG. 5(c) shows that the plate-shaped molded bodies 130 (each of the plate-shaped molded bodies 11 to 18) is a member 131 having a large content of magnetic oxide and a member 132 having an intermediate content of magnetic iron oxide. and a member 133 having a small magnetic iron oxide content.

図3に例示した構成例のように、板状成型体の内面側の磁性酸化鉄の含有量を少なくすることで、基部から出る電磁波の吸収が少なくなり、指向性が高く強度の高い電磁波を出すことができる。また、板状成型体の外面側の磁性酸化鉄の含有量を大きくすることによって、外部からの電磁波ノイズを、磁性酸化鉄の量が多い外面で吸収することができるため、ノイズの影響を低減させることができる。 As in the configuration example illustrated in FIG. 3, by reducing the content of magnetic iron oxide on the inner surface side of the plate-shaped molded body, the absorption of electromagnetic waves emitted from the base is reduced, and electromagnetic waves with high directivity and high intensity can be generated. can take out. In addition, by increasing the content of magnetic iron oxide on the outer surface side of the plate-shaped molded body, electromagnetic wave noise from the outside can be absorbed by the outer surface, which has a large amount of magnetic iron oxide, thereby reducing the influence of noise. can be made

なお、図3に示したような、板状成型体の厚さ方向における磁性酸化鉄含有量に分布を設ける場合は、電磁ホーンアンテナのコーン形状部分を構成する全ての板状成型体、すなわち、図1に示す例の場合は、板状成型体11から板状成型体18の8枚全てに適用することが好ましい。しかし、例えば、半数の4枚の板状成型体について、厚さ方向で磁性酸化鉄濃度の異なるものを採用することによっても、上述した、放射する電磁波の指向性の向上や外部の不要磁界を吸収する一定の効果が得られるため、必ずしも全ての板状成型体を図3に例示した板状成型体とする必要はない。 When providing a distribution in the magnetic iron oxide content in the thickness direction of the plate-like molded body as shown in FIG. In the case of the example shown in FIG. 1, it is preferable to apply to all the eight plate-like moldings 11 to 18 . However, for example, by adopting magnetic iron oxide having different magnetic iron oxide densities in the thickness direction for half of the four plate-shaped molded bodies, it is possible to improve the directivity of the electromagnetic waves to be radiated and eliminate the external magnetic field as described above. It is not always necessary to use the plate-shaped molded bodies illustrated in FIG.

また、板状成型体(11~18)が形成する電磁ホーンアンテナの導電率は500S/m以上であることが好ましく、5000S/m以上がより好ましい。この範囲とすることで導波路から出た電磁波が板状成型体で反射するため、電磁波の指向性をよりいっそう高めることができる。導電率の上限は1x105S/m以上に高くしても効果が飽和するため、上限としては、1x105S/m程度が好ましい。導電率が500S/mより小さくなると、板状成型体表面で電磁波を反射する効果が小さくなるため、電磁波の指向性が低下する。 Further, the electrical conductivity of the electromagnetic horn antenna formed by the plate-shaped moldings (11 to 18) is preferably 500 S/m or more, more preferably 5000 S/m or more. With this range, the electromagnetic waves emitted from the waveguide are reflected by the plate-shaped molded body, so that the directivity of the electromagnetic waves can be further enhanced. Even if the upper limit of the conductivity is increased to 1×10 5 S/m or more, the effect is saturated, so the upper limit is preferably about 1×10 5 S/m. If the electrical conductivity is less than 500 S/m, the effect of reflecting electromagnetic waves on the surface of the plate-shaped molded body is reduced, and the directivity of electromagnetic waves is reduced.

なお、上述した好ましい範囲の導電率とするのは、板状成型体の厚さ方向全体であっても良いし、電磁ホーンアンテナの内側表面のみであっても良い。板状成型体の厚さ方向全体を好ましい範囲の導電率とする場合は、バインダーにカーボンブラックや金属粒子を混合し、この混合量によって所望の導電率の板状成型体を形成することができる。板状成型体の内側表面を所定の導電率とする場合は、バインダーにカーボンブラックや金属粒子を混合した組成物で板状成型体の表面に導電膜を形成しても良いし、蒸着、スパッタ、イオンプレーティングなどの真空方法で表面に導電膜を形成することも可能である。 It should be noted that the electrical conductivity within the preferred range described above may be applied to the entire thickness direction of the plate-like molding, or may be applied only to the inner surface of the electromagnetic horn antenna. When the electrical conductivity of the entire thickness direction of the plate-like molding is to be within a preferable range, the binder can be mixed with carbon black or metal particles, and the plate-like molding having the desired electrical conductivity can be formed by adjusting the mixed amount. . When the inner surface of the plate-shaped molded body has a predetermined conductivity, a conductive film may be formed on the surface of the plate-shaped molded body with a composition in which carbon black or metal particles are mixed with a binder, or vapor deposition or sputtering may be used. It is also possible to form a conductive film on the surface by a vacuum method such as ion plating.

ここで、板状成型体(11~18)を作製する方法の一例を説明する。 Here, one example of the method for producing the plate-shaped moldings (11 to 18) will be described.

上述したように板状成型体(11~18)を作製するために、まず磁性塗料を作製する。 In order to produce the plate-like moldings (11 to 18) as described above, a magnetic paint is first produced.

磁性塗料は、たとえば磁性酸化鉄粉としてイプシロン酸化鉄を用いた場合には、イプシロン酸化鉄粉と、分散剤であるリン酸化合物、樹脂製バインダーとしてのエポキシ樹脂の混練物を得て、これを希釈し、さらに分散した後に、フィルタで濾過することによって作製される。 For example, when epsilon iron oxide is used as the magnetic iron oxide powder, the magnetic paint is obtained by obtaining a kneaded product of epsilon iron oxide powder, a phosphoric acid compound as a dispersant, and an epoxy resin as a resin binder. It is prepared by filtering through a filter after dilution and dispersion.

混練物は、加圧式の回分式ニーダで混練すること、その他の方法により得られる。また、混練物の分散は、一例としてジルコニアなどのビーズを充填したサンドミルを用いて分散液として得ることができる。なお、このとき、必要に応じて架橋剤を配合することができる。 The kneaded product is obtained by kneading with a pressurized batch type kneader or by other methods. Further, the kneaded material can be dispersed as a dispersion using, for example, a sand mill filled with beads such as zirconia. At this time, a cross-linking agent can be blended as necessary.

このようにして得られた磁性塗料を、剥離性を有する支持体、一例としてシリコンコートにより剥離処理された所定の厚さのポリエチレンテレフタレート(PET)のシート上に、テーブルコータやバーコータなどを用いて塗布する。 The magnetic paint thus obtained is coated on a releasable support, such as a polyethylene terephthalate (PET) sheet having a predetermined thickness that has been subjected to a release treatment with a silicone coat, using a table coater or bar coater. apply.

その後、wet状態の磁性塗料を80℃で乾燥し、さらにカレンダ装置を用いて所定温度でカレンダ処理を行って、支持体上に所定の形状と大きさを有する板状成型体(11~18)を形成できる。 Thereafter, the magnetic paint in a wet state is dried at 80° C., and further calendered at a predetermined temperature using a calendering device to form plate-like moldings (11 to 18) having a predetermined shape and size on a support. can be formed.

また、板状成型体(11~18)を作製する別の方法として、押し出し成型法を用いることができる。 As another method for producing the plate-like moldings (11 to 18), an extrusion molding method can be used.

押し出し成型法を用いる場合は、たとえば、まず、磁性酸化鉄粉とバインダーと必要に応じて分散剤、酸化防止剤などを予めブレンドし、ブレンドされたこれら材料を押出成型機の樹脂供給口から可塑性シリンダ内に供給し、シリンダ内に配置されたスクリューにより可塑化溶融することができる。なお、押出成型機としては、可塑性シリンダと、可塑性シリンダの先端に設けられたダイと、可塑性シリンダ内に回転自在に配設されたスクリューと、スクリューを駆動させる駆動機構とを備えた通常の押出成型機を用いることができる。 When the extrusion molding method is used, for example, magnetic iron oxide powder, a binder, and, if necessary, a dispersant, an antioxidant, etc., are first blended in advance, and these blended materials are extruded from a resin supply port of an extruder to produce plasticity. It can be fed into a cylinder and plasticized and melted by a screw arranged in the cylinder. As an extruder, a normal extruder equipped with a plastic cylinder, a die provided at the tip of the plastic cylinder, a screw rotatably disposed in the plastic cylinder, and a drive mechanism for driving the screw A molding machine can be used.

押出成型機のバンドヒータによって可塑化された溶融材料が、スクリューの回転によって前方に送られて先端からシート状に押し出される。押し出された材料を、ペレタイザーで粉砕し、樹脂ペレットを作製する。このペレットは電磁波吸収材料として磁性酸化鉄粉が樹脂中に分散されたマスターバッチとなる。 The molten material plasticized by the band heater of the extruder is sent forward by the rotation of the screw and extruded from the tip in the form of a sheet. The extruded material is pulverized by a pelletizer to produce resin pellets. This pellet becomes a masterbatch in which magnetic iron oxide powder as an electromagnetic wave absorbing material is dispersed in a resin.

続いて得られた樹脂ペレットを、射出成型機の投入口から可塑化シリンダ内に投入し、スクリューにより可塑化熔融した後、射出成型機の先端に接続された金型に射出を行い、任意の形状に成形する。この場合、樹脂ペレットに、さらに別の樹脂を混合して投入口から可塑化シリンダ内に投入してもよい。 Subsequently, the obtained resin pellets are put into the plasticizing cylinder from the inlet of the injection molding machine, plasticized and melted by the screw, and then injected into the mold connected to the tip of the injection molding machine. Mold into shape. In this case, another resin may be mixed with the resin pellets and charged into the plasticizing cylinder through the inlet.

板状成型体(11~18)の成形に際しては、磁性塗料を塗布して厚さ方向に、単位体積中に含まれる磁性酸化鉄の含有量を変える場合、磁性酸化鉄の含有量が異なる磁性塗料を作製し、板状成型体の外面側の磁性酸化鉄の含有量が、内面側より大きくなるように各磁性塗料を含有量の大小の順に積層して形成することができる。この場合、各塗料を同時に積層しても良いし、各層を別々に形成した後接着剤や粘着テープで貼り付けて形成しても良い。同時に積層する場合、押出成型機を用いて、予め磁性酸化鉄の量が異なるペレットを作製し、二色成型により磁性酸化鉄の含有率が異なる板状成型体を作製することができる。 When forming the plate-shaped moldings (11 to 18), when magnetic paint is applied to change the content of magnetic iron oxide contained in a unit volume in the thickness direction, the content of magnetic iron oxide varies. Paints are prepared, and each magnetic paint is laminated in order of the content so that the content of magnetic iron oxide on the outer surface side of the plate-like molding is greater than that on the inner surface side. In this case, each coating may be laminated at the same time, or each layer may be separately formed and then attached with an adhesive or adhesive tape. In the case of simultaneous lamination, pellets having different amounts of magnetic iron oxide can be prepared in advance using an extruder, and plate-shaped compacts having different contents of magnetic iron oxide can be prepared by two-color molding.

さらに、板状成型体(11~18)を作製する方法として、磁性酸化鉄粉とバインダーとを含んだ磁性コンパウンドを作製して、これを所定の厚さで成型し、架橋させる方法を用いることもできる。 Furthermore, as a method of producing the plate-shaped moldings (11 to 18), a method of producing a magnetic compound containing a magnetic iron oxide powder and a binder, molding it to a predetermined thickness, and cross-linking it is used. can also

この場合は、先ず、磁性コンパウンドを作製する。磁性コンパウンドは、磁性酸化鉄粉とバインダー、必要に応じて分散剤を混練することによって得ることができる。混練物は、一例として、加圧式の回分式ニーダで混練することにより得られる。なお、このとき、必要に応じて架橋剤を配合することができる。 In this case, first, a magnetic compound is produced. A magnetic compound can be obtained by kneading a magnetic iron oxide powder, a binder, and, if necessary, a dispersant. The kneaded material is obtained, for example, by kneading with a pressurized batch kneader. At this time, a cross-linking agent can be blended as necessary.

得られた磁性コンパウンドを、一例として油圧プレス機などを用いて150℃の温度で所定の形状に架橋・成型する。その後、恒温槽内において170℃の温度で2次架橋処理を施す。このようにして、所定の形状の板状成型体(11~18)を作製することができる。 The resulting magnetic compound is crosslinked and molded into a predetermined shape at a temperature of 150° C. using, for example, a hydraulic press. After that, secondary cross-linking treatment is performed at a temperature of 170° C. in a constant temperature bath. In this manner, the plate-shaped moldings (11 to 18) having a predetermined shape can be produced.

以上のようにして作製された所定形状の板状成型体(11~18)を、支持体上から剥離し、複数の板状成型体(11~18)に後述する駆動機構を取り付けることで、所定形状の板状成型体(11~18)により構成された電磁ホーンアンテナを作製することができる。 The plate-shaped moldings (11 to 18) having a predetermined shape produced as described above are peeled off from the support, and a plurality of plate-shaped moldings (11 to 18) are attached with a drive mechanism, which will be described later. An electromagnetic horn antenna composed of plate-shaped moldings (11 to 18) having a predetermined shape can be produced.

このようにして形成される板状成型体の大きさは、一例として、長手方向が60mm、幅を20~30mmとすることができる。なお、図1、図2に示すように板状成型体の幅を長手方向において可変する場合は、幅広となる開口部側の幅が、幅狭の基部側の幅に対して、10~50%程度幅広となるようにすることが好ましい。一例として、基部側の幅が20mm、開口部側の幅が25mm(基部側の幅の125%、すなわち25%幅広)とすることができる。 The size of the plate-shaped molding formed in this manner can be, for example, 60 mm in the longitudinal direction and 20 to 30 mm in width. As shown in FIGS. 1 and 2, when the width of the plate-like molded body is variable in the longitudinal direction, the width of the wide opening side is 10 to 50% of the width of the narrow base side. % is preferable. As an example, the width on the base side may be 20 mm and the width on the opening side may be 25 mm (125% of the width on the base side, ie 25% wider).

板状成型体の厚さについては、板状成型体の電磁波吸収能力を勘案して定めることが好ましい。 It is preferable to determine the thickness of the plate-shaped molded body in consideration of the electromagnetic wave absorption capability of the plate-shaped molded body.

下記の表1は、板状成型体に含まれる磁性酸化鉄粉として、ストロンチウムフェライト(SrFe1219)を用いた場合を想定して、比透磁率(χsO)が0.08、ダンピング定数(a)が4.00E-02、誘電率の実部が7、虚部が0.5として、板状成型体の厚さと、磁性酸化鉄粉の含有率(体積%)とを変化させた場合の、板状成型体による電磁波の吸収特性のシミュレーション結果をdBで表したものである。 Table 1 below shows the case where strontium ferrite (SrFe 12 O 19 ) is used as the magnetic iron oxide powder contained in the plate-shaped molding, and the relative magnetic permeability (χ s O) is 0.08, damping The constant (a) is 4.00E-02, the real part of the dielectric constant is 7, and the imaginary part is 0.5. The result of the simulation of the absorption characteristics of the electromagnetic wave by the plate-like molded body is expressed in dB.

Figure 0007175805000001
Figure 0007175805000001

板状成型体としては、表面から入射する電磁波を10分の1程度以下(電磁波吸収量が約10dB)に減衰することができれば、電磁ホーンアンテナの内面での電磁波の反射を十分に低減して、電磁ホーンアンテナから放射する、または、電磁ホーンアンテナに入射する電磁波の指向性の精度を十分に高めることができると考えられる。上記表1のシミュレーション結果から、板状成型体の厚さが1mm以上、磁性酸化鉄粉の含有率が5体積%以上であれば、板状成型体による電磁波吸収特性が10dB以上となって、内面での電磁波の反射を低減して指向性の精度を高めるために十分であることがわかる。 If the plate-shaped molded body can attenuate the electromagnetic wave incident from the surface to about 1/10 or less (the electromagnetic wave absorption amount is about 10 dB), the reflection of the electromagnetic wave on the inner surface of the electromagnetic horn antenna can be sufficiently reduced. , the precision of the directivity of the electromagnetic waves radiated from the electromagnetic horn antenna or incident on the electromagnetic horn antenna can be sufficiently improved. From the simulation results in Table 1 above, when the thickness of the plate-shaped molded body is 1 mm or more and the content of the magnetic iron oxide powder is 5% by volume or more, the electromagnetic wave absorption characteristic of the plate-shaped molded body is 10 dB or more. It can be seen that this is sufficient to reduce the reflection of electromagnetic waves on the inner surface and improve the accuracy of directivity.

なお、上記表1からも明らかなように、板状成型体の厚みが厚いほど、電磁波吸収特性が向上する。しかし、図1、図2に示したように、本実施形態にかかる電磁ホーンアンテナでは、板状成型体の端部が隣り合う板状成型体に重なって配置されるため、板状成型体の厚さが厚いと重複部分の段差が大きくなって、板状成型体によって構成されるコーン部の理想とする円形の断面形状から乖離してしまい指向性の精度が低下する。また、板状成型体の厚みが厚いと、板状成型体の相互の重なり具合を変化させて電磁ホーンアンテナのコーン部分の径を変更するための機構がより大がかりなものとなって、コスト高になるともに、コーン部分の形状変化を正確に制御することが困難となる。したがって、板状成型体の厚さとしては、10mm以下とすることが好ましい。 As is clear from Table 1 above, the greater the thickness of the plate-like molded body, the better the electromagnetic wave absorption characteristics. However, as shown in FIGS. 1 and 2, in the electromagnetic horn antenna according to the present embodiment, the end portions of the plate-shaped moldings are arranged so as to overlap the adjacent plate-shaped moldings. If the thickness is large, the step of the overlapped portion becomes large, deviating from the ideal circular cross-sectional shape of the cone portion formed by the plate-like molded body, and directivity accuracy is lowered. In addition, if the thickness of the plate-shaped molded body is large, the mechanism for changing the overlapping state of the plate-shaped molded bodies to change the diameter of the cone portion of the electromagnetic horn antenna becomes larger, resulting in high cost. As a result, it becomes difficult to accurately control the shape change of the cone portion. Therefore, it is preferable to set the thickness of the plate-like molding to 10 mm or less.

また、表1から、板状成型体に含まれる磁性酸化鉄粉の含有量が高いほど、板状成型体の電磁波吸収特性が向上することがわかる。しかし、磁性酸化鉄粉の含有率が大きくなりすぎると、バインダーによる磁性酸化鉄粉の分散効果が低下して、板状成型体が脆くなってしまい、コーン部の形状変化時に加わる力や外部からの衝撃などによって、板状成型体の割れや欠けなどが生じやすくなる。このような観点から、板状成型体の脆性が低下しすぎない範囲として、磁性酸化鉄粉の含有率は50体積%以下とすることが好ましい。 Further, from Table 1, it can be seen that the higher the content of the magnetic iron oxide powder contained in the plate-shaped molded body, the better the electromagnetic wave absorption characteristics of the plate-shaped molded body. However, if the content of the magnetic iron oxide powder is too high, the effect of dispersing the magnetic iron oxide powder by the binder will be reduced, making the plate-like molded body brittle, and the force exerted when the shape of the cone will change, or from external forces. Cracks and chipping of the plate-shaped molded body are likely to occur due to the impact of the metal. From this point of view, the content of the magnetic iron oxide powder is preferably 50% by volume or less as long as the brittleness of the plate-like molding does not decrease excessively.

発明者らは、本願で開示する板状成型体を用いて、シミュレーションにより電磁波の指向性の評価を行った。 The inventors evaluated the directivity of electromagnetic waves by simulation using the plate-like molding disclosed in the present application.

図4に、シミュレーションを行った際の電磁ホーンアンテナの形状を示す。 FIG. 4 shows the shape of the electromagnetic horn antenna used in the simulation.

シミュレーションでは、樹脂に磁性酸化鉄粉としてストロンチウムフェライトを13体積%含有し、内面の導電率が70000S/m、厚さ1.0mmの板状成型体を用いq場合を計算した。電磁ホーンアンテナの形状は、図4に示したように、開口部の長辺(W)が30.0mm、短辺(H)が22.8mm、長さ(L)が59.6mmとした。また、用いた板状成型体は、透磁率がμ’=1.06、μ’’=0.16、誘電率がεr’=0.83、εr’’=0.05であった。 In the simulation, 13% by volume of strontium ferrite was contained as magnetic iron oxide powder in the resin, and calculation was performed using a plate-shaped body having an inner surface conductivity of 70000 S/m and a thickness of 1.0 mm. As for the shape of the electromagnetic horn antenna, as shown in FIG. 4, the long side (W) of the opening was 30.0 mm, the short side (H) was 22.8 mm, and the length (L) was 59.6 mm. Further, the plate-like molding used had a magnetic permeability of .mu.'=1.06 and .mu.''=0.16, and a dielectric constant of .epsilon.r'=0.83 and .epsilon.r''=0.05.

これらの条件を用い、電磁界解析ソフトウエアであるANSYS HFSS(ANSYS JAPAN株式会社製)を用いて、導波路から電磁ホーンアンテナに出力される、周波数75GHzの電磁波の異方性のシミュレーションを行った。 Using these conditions, the electromagnetic field analysis software ANSYS HFSS (manufactured by ANSYS JAPAN Co., Ltd.) was used to simulate the anisotropy of the electromagnetic wave with a frequency of 75 GHz output from the waveguide to the electromagnetic horn antenna. .

図5に、シミュレーションの結果を示す。 FIG. 5 shows the results of the simulation.

図5(a)は、導波路の電磁波の出射口を中心とした球体において、図4に示したXZ平面断面の電磁波の強度を示した図である。また、図5(b)は、導波路の電磁波の出射口を中心とした球体において、図4に示すXY平面断面の電磁波の強度を示した図である。 FIG. 5(a) is a diagram showing the intensity of the electromagnetic wave in the cross section of the XZ plane shown in FIG. FIG. 5(b) is a diagram showing the intensity of electromagnetic waves in the XY plane cross section shown in FIG.

図5(a)、図5(b)に示す結果から、本願の板状成型体を用いた電磁ホーンアンテナは、電磁波の出射方向(X方向)に強い異方性を有することが確認できた。 From the results shown in FIGS. 5(a) and 5(b), it was confirmed that the electromagnetic horn antenna using the plate-shaped molding of the present application has strong anisotropy in the electromagnetic wave emission direction (X direction). .

[駆動機構]
次に、本実施形態にかかる電磁ホーンアンテナ10において、コーン部を構成する板状成型体の重なり具合を変化させて指向性を制御する駆動機構について説明する。
[Driving mechanism]
Next, in the electromagnetic horn antenna 10 according to the present embodiment, a driving mechanism for controlling the directivity by changing the degree of overlap of the plate-like moldings forming the cone will be described.

図6は、本実施形態にかかる電磁ホーンアンテナの形状を変化させる駆動機構の構成例を示すイメージ図である。図6は、板状成型体を側面方向から見た状態を示している。 FIG. 6 is an image diagram showing a configuration example of a drive mechanism for changing the shape of the electromagnetic horn antenna according to this embodiment. FIG. 6 shows a state in which the plate-like molding is viewed from the side.

図6に示すように、本実施形態にかかる電磁ホーンアンテナ10は、コーン部を形成する板状成型体(11~18)それぞれの導波路22側の端部に、駆動機構としての回動部30と駆動部40とが形成されている。 As shown in FIG. 6, in the electromagnetic horn antenna 10 according to the present embodiment, a rotation portion as a driving mechanism is provided at each end portion of the plate-shaped molded bodies (11 to 18) forming the cone portion on the waveguide 22 side. 30 and a driving part 40 are formed.

回動部30は、それぞれの板状成型体(11~18)をその主面(図1、図2における板状成型体12の内面12b)に垂直な方向に回動可能とする部材であり、開口部10a側の端部を開口部10aの径方向に移動させることができる状態で、それぞれの板状成型体(11~18)を保持している。具体的に本実施形態にかかる電磁ホーンアンテナ10の回動部30は、図6に示すように、板状成型体(図6では12を例示)の主面12bと平行に配置された回動軸31と、板状成型体12を回動軸31の周りを回動可能に保持する保持部32、回動軸31を支える支持部33とにより構成されたいわゆるヒンジ機構である。この回動部30を板状成型体(11~18)の導波路22側端部に配置することで、板状成型体12は、内面12bの導波路22側の端部の位置12cをほとんど変化させずに、すなわち、導波路22と電磁ホーンアンテナ10とを実質的に接続した状態で、開口部10a側の端部の位置を開口部10aの径方向に変化させること、すなわち、導波路22の開放端の平面Aに対する板状成型体12の傾斜角度αを変化させることができる。 The rotating part 30 is a member that allows each plate-shaped molded body (11 to 18) to rotate in a direction perpendicular to its main surface (the inner surface 12b of the plate-shaped molded body 12 in FIGS. 1 and 2). , hold the respective plate-shaped moldings (11 to 18) in a state in which the end portion on the side of the opening 10a can be moved in the radial direction of the opening 10a. Specifically, as shown in FIG. 6, the rotating portion 30 of the electromagnetic horn antenna 10 according to the present embodiment is a rotating portion arranged in parallel with the main surface 12b of the plate-shaped molded body (12 is illustrated in FIG. 6). This is a so-called hinge mechanism composed of a shaft 31 , a holding portion 32 that holds the plate-like molding 12 so as to be rotatable around the rotation shaft 31 , and a support portion 33 that supports the rotation shaft 31 . By arranging this rotating portion 30 at the waveguide 22 side end portion of the plate-shaped molded bodies (11 to 18), the plate-shaped molded body 12 has almost the position 12c of the waveguide 22 side end portion of the inner surface 12b. Without change, that is, in a state in which the waveguide 22 and the electromagnetic horn antenna 10 are substantially connected, the position of the end on the opening 10a side is changed in the radial direction of the opening 10a, that is, the waveguide The inclination angle α of the plate-like molding 12 with respect to the plane A of the open end of 22 can be changed.

駆動部40は、それぞれの板状成型体(11~18)の導波路22側端部の近傍に配置され、板状成型体(11~18)の開口部10a側の端部を開口部10aの径方向に動かす部材である。駆動部40は、一例として図6に示すように、板状成型体12の外側面12dに接続される接続部41と、接続部41に接続されて板状成型体12を主面(12b、12d)に対して垂直な方向力を加えるロッド42により構成されて、図示しない動力機構によってロッド42が図6中の白矢印a方向、または、b方向に移動することで、板状成型体12を回動部40の回動軸42の周りに回動させて傾斜角度αを変化させる。 The driving unit 40 is arranged near the waveguide 22 side end of each of the plate-shaped moldings (11 to 18), and moves the opening 10a side end of the plate-shaped moldings (11 to 18) to the opening 10a. It is a member that moves in the radial direction of the As shown in FIG. 6 as an example, the driving section 40 includes a connecting portion 41 connected to the outer side surface 12d of the plate-like molded body 12, and a connecting portion 41 connected to the connecting portion 41 to move the plate-shaped molded body 12 to the main surfaces (12b, 12d). 12d), and a power mechanism (not shown) moves the rod 42 in the direction of the white arrows a or b in FIG. is rotated around the rotating shaft 42 of the rotating portion 40 to change the inclination angle α.

このようにして、本実施形態にかかる電磁ホーンアンテナ10では、駆動部40によって加えられる力で板状成型体(11~18)が回動軸32の周りを回動して、複数の板状成型体(11~18)によって構成される開口部10aの径が変化して、図1に示した指向性が弱い状態と、図2に示した強い指向性を示す状態とを切り替えることができる。 In this manner, in the electromagnetic horn antenna 10 according to the present embodiment, the plate-shaped moldings (11 to 18) are rotated around the rotation shaft 32 by the force applied by the drive unit 40, and a plurality of plate-shaped moldings are formed. By changing the diameter of the opening 10a formed by the moldings (11 to 18), it is possible to switch between the weak directivity state shown in FIG. 1 and the strong directivity state shown in FIG. .

なお、図6に示すとおり、回動部30と駆動部40とは、板状成型体(図6における12)の外側面(12d)側に配置されている。本実施形態にかかる電磁ホーンアンテナ10では、板状成型体(11~18)の内面(12b)が電磁ホーンアンテナ10のコーン部を形成するため、内面(12b)に突起物が存在すると電磁ホーンアンテナ10内部での電磁波が乱れ、正確な指向性の制御ができなくなってしまうことを回避するためである。 As shown in FIG. 6, the rotating portion 30 and the driving portion 40 are arranged on the outer surface (12d) side of the plate-like molding (12 in FIG. 6). In the electromagnetic horn antenna 10 according to this embodiment, since the inner surface (12b) of the plate-shaped moldings (11 to 18) forms the cone portion of the electromagnetic horn antenna 10, if a protrusion is present on the inner surface (12b), the electromagnetic horn This is to avoid the disturbance of the electromagnetic wave inside the antenna 10 and the inability to control the directivity accurately.

次に、本実施形態にかかる電磁ホーンアンテナ10において、複数の板状成型体(11~18)の傾斜角度(図6のα)の変化を全体としてよりスムーズに行うための機構について説明する。 Next, in the electromagnetic horn antenna 10 according to the present embodiment, a mechanism for smoothly changing the inclination angles (α in FIG. 6) of the plate-shaped moldings (11 to 18) as a whole will be described.

図7は、本実施形態にかかる電磁ホーンアンテナの板状成型体同士を繋いで形状の変化を規制する規制部の構成を示すイメージ図である。 FIG. 7 is an image diagram showing the configuration of a restricting portion that connects the plate-like moldings of the electromagnetic horn antenna according to the present embodiment and restricts a change in shape.

本実施形態にかかる電磁ホーンアンテナ10は、それぞれの板状成型体(11~18)を開口部10aに近い位置で繋げて、板状成型体(11~18)の動きによる開口部10aの径の変化をスムーズに行わせる規制部50を有している。より具体的に図7に示すように、本実施形態にかかる電磁ホーンアンテナ10は、規制部50として、一つの板状成型体(一例として板状成型体11)の中心軸に向かって右側の側面(11a)に、側方へと突出する突起部51が形成され、この板状成型体(11)の右側に隣り合って配置される他の板状成型体(12)の内面12b には、板状成型体11の突起部51がその内部を摺動することができるように形成された溝部52を備えている。 In the electromagnetic horn antenna 10 according to this embodiment, each plate-shaped molded body (11 to 18) is connected at a position near the opening 10a, and the diameter of the opening 10a is increased by the movement of the plate-shaped molded body (11 to 18). It has a regulating portion 50 that smoothly changes the . More specifically, as shown in FIG. 7, in the electromagnetic horn antenna 10 according to the present embodiment, the restricting portion 50 is positioned on the right side of the center axis of one plate-shaped molded body (plate-shaped molded body 11 as an example). A protrusion 51 is formed on the side surface (11a) to protrude sideways, and the inner surface 12b of another plate-shaped molded body (12) arranged adjacent to the right side of this plate-shaped molded body (11) has a , a groove portion 52 formed so that the projection portion 51 of the plate-shaped molded body 11 can slide inside thereof.

図7に示すように、それぞれの板状成型体(11~18)の側面に形成された突起部51が、隣り合う他の板状成型体(11~18)の内面に形成された溝部52内を摺動する規制部50を備えることで、板状成型体(11~18)が上述した駆動機構の駆動部40によって中心軸側、またはその反対側への力を受けたときに、それぞれの板状成型体(11~18)がばらばらに動くことを防止できる。また、板状成型体(11~18)の開口部10a側に規制部50が形成されていることで、規制部50によってそれぞれの板状成型体(11~18)の開口部側が繋がれて周方向に作用する力が働く。この結果、複数の板状成型体(11~18)が、導波路22の開口部が形成する面Aに対して同じ角度αを維持した状態で移動して、板状成型体(11~18)の開口部10aや中心軸に垂直な断面に形成される略円形状を保ったまま、その径の大小を変化させることができる。 As shown in FIG. 7, protrusions 51 formed on the side surfaces of the respective plate-shaped molded bodies (11 to 18) are grooves 52 formed on the inner surfaces of adjacent plate-shaped molded bodies (11 to 18). By providing the regulating portion 50 that slides inside, when the plate-shaped moldings (11 to 18) receive a force toward the central axis side or the opposite side by the driving portion 40 of the driving mechanism described above, respectively can be prevented from moving apart. In addition, since the regulating portion 50 is formed on the opening 10a side of the plate-shaped moldings (11 to 18), the openings of the plate-shaped moldings (11 to 18) are connected by the regulating portion 50. A force acts in the circumferential direction. As a result, the plurality of plate-shaped moldings (11-18) move while maintaining the same angle α with respect to the plane A formed by the opening of the waveguide 22, and the plate-shaped moldings (11-18) ), the size of the diameter can be changed while maintaining the substantially circular shape formed in the cross section perpendicular to the opening 10a and the central axis.

なお、上記実施形態では、板状成型体全てに力を加える駆動部が8枚の板状成型体全てに取り付けられている例を示したが、規制部が設けられることで、全ての板状成型体の角度αが良好に連動する場合には、駆動部が全ての板状成型体に取り付けられている必要はない。板状成型体の半分(上記実施形態の場合は4つ)、または、それ以下の枚数の板状成型体に駆動機構が形成されていればよい。反対に、全ての板状成型体に駆動部が配置されている場合であって、それぞれの駆動部による板状成型体の角度の変化が統一されて制御できるのであれば規制部を設ける必要はなく、本実施形態に示す電磁ホーンアンテナにおいて、規制部は必須の構成要件ではない。 In the above-described embodiment, an example is shown in which the drive unit that applies force to all the plate-shaped molded bodies is attached to all eight plate-shaped molded bodies. If the angle α of the moldings is well interlocked, it is not necessary to attach the drive to all the plate-shaped moldings. Half of the plate-like molded bodies (four in the case of the above embodiment), or less than half of the plate-shaped molded bodies, may be provided with drive mechanisms. On the other hand, in the case where all the plate-like moldings are provided with driving portions, and if the change in the angle of the plate-like moldings by the respective driving portions can be unified and controlled, there is no need to provide the regulating portion. However, in the electromagnetic horn antenna shown in this embodiment, the restricting portion is not an essential component.

また、板状成型体の角度を変化させるために、駆動部のロッドに力を加える動力機構としては、モータなどの電気的手段、ダイヤルやハンドルを回すことによる機械的手段の、いずれを採用することもできる。 In order to change the angle of the plate-shaped molded body, either an electric means such as a motor or a mechanical means such as turning a dial or a handle is adopted as a power mechanism for applying force to the rod of the drive section. can also

以上説明したように、本願で開示する電磁ホーンアンテナ、および、電磁波の指向性制御システムは、ミリ波帯域以上の高周波帯域の電磁波吸収部材によって形成された、複数の板状成型体により電磁ホーンアンテナが構成されていることで、電磁ホーンアンテナの内側表面における電磁波の不所望な反射を低減して、送受信する電磁波の指向性の制御を正確に行うことができる。また、電磁ホーンアンテナを構成する複数の板状成型体が、開口部側の端部を開口部の径方向に移動可能とする駆動機構を有しているため、開口部径を変化させて、容易に指向性の制御を行うことができる。 As described above, the electromagnetic horn antenna and the electromagnetic wave directivity control system disclosed in the present application are formed by a plurality of plate-shaped moldings formed of electromagnetic wave absorbing members for a high frequency band above the millimeter wave band. is configured, it is possible to reduce unwanted reflection of electromagnetic waves on the inner surface of the electromagnetic horn antenna and to accurately control the directivity of the transmitted and received electromagnetic waves. In addition, since the plurality of plate-shaped moldings constituting the electromagnetic horn antenna have a driving mechanism for moving the end on the side of the opening in the radial direction of the opening, the diameter of the opening can be changed, Directivity can be easily controlled.

このため、指向性の強さを変化させることができる電磁ホーンアンテナを、簡単な構成で安価に実現することができる。このため、たとえば車載レーダの送信部、および/または、受信部に採用することで、送信する電磁波の広がりや、受信対象の電磁波の発生源の位置の変化に対応して指向性を変化させるなどの新しい用途に良好に使用することができる。 Therefore, an electromagnetic horn antenna capable of changing the strength of directivity can be realized with a simple configuration at a low cost. For this reason, for example, by adopting it in the transmitter and/or receiver of an in-vehicle radar, the directivity can be changed according to the spread of the electromagnetic wave to be transmitted and the change in the position of the source of the electromagnetic wave to be received. can be used successfully for new applications of

なお、上記実施形態において、電磁ホーンアンテナを構成する板状成型体の枚数が8枚のものを例示したが、電磁ホーンアンテナを構成する板状成型体の枚数に制限がないことは言うまでもない。全体が略円錐台形状であると把握できる電磁ホーンアンテナを形成できること、また、構成が複雑になりすぎないこととの観点から許容できる範囲で、板状成型体の枚数は適宜選択可能である。 In the above embodiment, the number of plate-shaped molded bodies constituting the electromagnetic horn antenna is exemplified as eight, but it goes without saying that the number of plate-shaped molded bodies constituting the electromagnetic horn antenna is not limited. The number of plate-like moldings can be appropriately selected within an allowable range from the viewpoints of forming an electromagnetic horn antenna that can be understood to have a substantially truncated cone shape as a whole and not making the configuration too complicated.

また、上記実施形態では、電磁ホーンアンテナの板状成型体が、中心に向かって右側の端部が隣り合う他の板状成型体の内面に接するように重なり合う形態を示したが、各板状成型体の中心に向かって左側の端部が隣り合う他の板状成型体の内面に接するように重なり合う形態であっても問題ないことは言うまでもない。また、板状成型体同士の隙間がほとんどない状態で配置されて、この隙間からの電磁波の漏洩、電磁ホーンアンテナ内での電磁波の不所望な散乱や反射が生じないのであれば、隣り合う板状成型体が重なり合わない状態で配置されていても問題はない。 Further, in the above-described embodiment, the plate-shaped molded body of the electromagnetic horn antenna overlaps with the inner surface of another adjacent plate-shaped molded body so that the end on the right side toward the center is in contact with each other. It is needless to say that there is no problem even if the formed body overlaps with the inner surface of another adjacent plate-shaped molded body so that the left end toward the center of the molded body is in contact with the inner surface. In addition, if the plate-like moldings are arranged in a state where there is almost no gap between them, and electromagnetic waves do not leak from the gaps and do not cause unwanted scattering or reflection of electromagnetic waves in the electromagnetic horn antenna, then the adjacent plates should be separated from each other. There is no problem even if the shaped bodies are arranged in a state in which they do not overlap each other.

さらに、状成型体の厚さ、特に、電磁ホーンアンテナの開口部に向かう方向の厚さは一定でなくてもよく、電磁ホーンアンテナのコーン部の形状が確保でき、所望の電磁波吸収特性を維持できる範囲で、基部側から開口部側に向かって、薄くなるように設計することもできる。 Furthermore, the thickness of the molded body, particularly the thickness in the direction toward the opening of the electromagnetic horn antenna, does not have to be constant. It can also be designed to be thinner from the base side toward the opening side as much as possible.

また、上記実施形態では、板状成型体の外側面に、駆動機構を構成する回動部や駆動部の部材が直接設けられている例を示したが、例えば、板状成型体の基部側端部の少なくとも外面に装着される回動部や駆動部が設けられた金属プレートを使用するなど、板状成型体の角度を所望の状態で変化させることができる他の構成を採用することができる。 Further, in the above-described embodiment, an example was shown in which the members of the rotating portion and the driving portion constituting the driving mechanism are directly provided on the outer surface of the plate-like molded body. It is possible to adopt other configurations that can change the angle of the plate-like molded body in a desired state, such as using a metal plate provided with a rotating portion and a driving portion mounted on at least the outer surface of the end portion. can.

さらに、上記実施形態では、板状成型体が磁気共鳴する磁性酸化鉄を含む構成について説明したが、板状成型体は所定の形状に成型可能であって、かつ、ミリ波帯域以上の高周波数の電磁波を良好に吸収できる他の部材、例えば、カーボン、カーボンファイバーなどを用いて構成することができる。 Furthermore, in the above-described embodiment, the configuration in which the plate-like molded body includes magnetic iron oxide that magnetically resonates has been described. It is also possible to use other materials such as carbon, carbon fiber, etc., which can satisfactorily absorb such electromagnetic waves.

本願で開示する電磁ホーンアンテナ、電磁波の指向性制御システムは、ミリ波帯域以上の高い周波数帯域の電磁波の送信、受信における指向性を制御できるため、高周波数の電磁波を利用する各種の送受信機などに好適に用いることができる。 The electromagnetic horn antenna and electromagnetic wave directivity control system disclosed in the present application can control the directivity in transmitting and receiving electromagnetic waves in a high frequency band above the millimeter wave band, so various transmitters and receivers using high frequency electromagnetic waves It can be suitably used for

10 電磁ホーンアンテナ
10a 開口部
11~18 板状成型体
30 回動部(駆動機構)
40 駆動部(駆動機構)
100 指向性制御システム
Reference Signs List 10 electromagnetic horn antenna 10a opening 11 to 18 plate-like molded body 30 rotating portion (driving mechanism)
40 drive unit (driving mechanism)
100 directional control system

Claims (10)

ミリ波帯域以上の高周波帯域の電磁波の送受信に用いられる電磁ホーンアンテナであって、
複数の板状成型体が、開口部側が径大で導波路側が径小となる中空の略円錐台形状を構成するように配置され、
前記板状成型体それぞれの前記開口部側の端部を、前記開口部の径方向に移動可能とする駆動機構を有し、
前記板状成型体が、前記電磁波を吸収する電磁波吸収部材で形成されていることを特徴とする電磁ホーンアンテナ。
An electromagnetic horn antenna used for transmitting and receiving electromagnetic waves in a high frequency band of millimeter waves or higher,
A plurality of plate-shaped moldings are arranged to form a hollow truncated cone shape with a large diameter on the opening side and a small diameter on the waveguide side,
a driving mechanism for moving the end of each plate-like molded body on the side of the opening in the radial direction of the opening;
An electromagnetic horn antenna, wherein the plate-like molded body is formed of an electromagnetic wave absorbing member that absorbs the electromagnetic wave.
前記板状成型体が、ミリ波帯以上の周波数で磁気共鳴する磁性酸化鉄を含む、請求項1に記載の電磁ホーンアンテナ。 2. The electromagnetic horn antenna according to claim 1, wherein said plate-like molded body contains magnetic iron oxide that magnetically resonates at frequencies above the millimeter wave band. 前記板状成型体に含まれる前記磁性酸化鉄の割合が5~50体積%である、請求項2に記載の電磁ホーンアンテナ。 3. The electromagnetic horn antenna according to claim 2, wherein the magnetic iron oxide contained in the plate-like molding has a ratio of 5 to 50% by volume. 前記板状成型体の厚み方向における前記磁性酸化鉄の割合が異なり、前記板状成型体の内面側の割合よりも外面側の割合の方が大きい、請求項3に記載の電磁ホーンアンテナ。 4. The electromagnetic horn antenna according to claim 3, wherein the ratio of said magnetic iron oxide in the thickness direction of said plate-shaped compact is different, and the ratio on the outer surface side is greater than the ratio on the inner surface side of said plate-shaped compact. 前記板状成型体が、前記磁性酸化鉄が含まれる割合の異なる複数の成型体の積層体として構成されている、請求項3または4に記載の電磁ホーンアンテナ。 5. The electromagnetic horn antenna according to claim 3 or 4, wherein said plate-shaped molded body is constructed as a laminate of a plurality of molded bodies containing different proportions of said magnetic iron oxide. 前記板状成型体は、前記開口部側が前記導波路側よりも幅広に形成され、厚みが1~10mmである、請求項1~5のいずれかに記載の電磁ホーンアンテナ。 6. The electromagnetic horn antenna according to any one of claims 1 to 5, wherein said plate-shaped molded body is wider on said opening side than on said waveguide side, and has a thickness of 1 to 10 mm. 前記板状成型体の前記電磁ホーンアンテナ内側表面の導電率が500S/m以上である、請求項1~6のいずれかに記載の電磁ホーンアンテナ。 7. The electromagnetic horn antenna according to any one of claims 1 to 6, wherein the electrical conductivity of the inner surface of said electromagnetic horn antenna of said plate-like molding is 500 S/m or more. 前記駆動機構が、前記板状成型体の前記導波路側の端部に配置され、前記板状成型体をその主面に垂直な方向に回動可能に保持する回動部と、前記板状成型体の前記導波路側の端部近傍に固着されて、前記板状成型体に対してその主面に対して垂直な方向に力を加える駆動部とを有する、請求項1~7のいずれかに記載の電磁ホーンアンテナ。 The drive mechanism is arranged at the waveguide-side end of the plate-like molded body, and holds the plate-shaped molded body so as to be rotatable in a direction perpendicular to the main surface thereof. 8. The drive unit according to any one of claims 1 to 7, further comprising a driving unit fixed to the vicinity of the waveguide-side end of the molded body and applying a force to the plate-shaped molded body in a direction perpendicular to its main surface. The electromagnetic horn antenna described in 1. 前記板状成型体それぞれの前記開口部側に、側面に形成された突起部と、内面に隣り合う他の前記板状成型体の前記突起部が摺動可能に形成された溝部とを有する、請求項8に記載の電磁ホーンアンテナ。 Each of the plate-shaped moldings has a projection formed on the side surface on the opening side of each of the plate-shaped moldings, and a groove formed so that the projections of the other plate-shaped moldings adjacent to the inner surface are slidable, The electromagnetic horn antenna according to claim 8. ミリ波帯域以上の高周波数で発振する発振部、および/または、ミリ波帯域以上の高周波数の電磁波を受信する受信部と、前記発振部または前記受信部に接続された導波路と、前記導波路に接続された請求項1~9のいずれかに記載された電磁ホーンアンテナとを備え、
前記電磁ホーンアンテナの前記開口部側の径の大きさを変更することにより電磁波の指向性を変化させることを特徴とする、指向性制御システム。
An oscillator that oscillates at a high frequency in the millimeter wave band or higher, and/or a receiver that receives electromagnetic waves at a high frequency in the millimeter wave band or higher, a waveguide connected to the oscillator or the receiver, and the guide. An electromagnetic horn antenna according to any one of claims 1 to 9 connected to a wave path,
A directivity control system, wherein the directivity of electromagnetic waves is changed by changing the size of the diameter of the electromagnetic horn antenna on the opening side.
JP2019047044A 2019-03-14 2019-03-14 Electromagnetic horn antenna and directivity control system Active JP7175805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019047044A JP7175805B2 (en) 2019-03-14 2019-03-14 Electromagnetic horn antenna and directivity control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019047044A JP7175805B2 (en) 2019-03-14 2019-03-14 Electromagnetic horn antenna and directivity control system

Publications (2)

Publication Number Publication Date
JP2020150436A JP2020150436A (en) 2020-09-17
JP7175805B2 true JP7175805B2 (en) 2022-11-21

Family

ID=72432237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019047044A Active JP7175805B2 (en) 2019-03-14 2019-03-14 Electromagnetic horn antenna and directivity control system

Country Status (1)

Country Link
JP (1) JP7175805B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024026912A (en) * 2021-01-14 2024-02-29 パナソニックIpマネジメント株式会社 Millimeter wave emission device and millimeter wave transmission and reception device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318038A (en) 2004-04-27 2005-11-10 Koden Electronics Co Ltd Sector electromagnetic horn antenna

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274602A (en) * 1963-09-16 1966-09-20 North American Aviation Inc Antenna having variable beamwidth achieved by variation of source width
DE8712053U1 (en) * 1987-09-05 1987-10-22 Reglomat Ag, St. Gallen, Ch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318038A (en) 2004-04-27 2005-11-10 Koden Electronics Co Ltd Sector electromagnetic horn antenna

Also Published As

Publication number Publication date
JP2020150436A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP6764465B2 (en) Radio wave absorption sheet
US11005170B2 (en) Millimeter-wave radar cover
RU2410402C2 (en) Porous materials with embedded nanoparticles, preparation methods and use thereof
Huang et al. Development of a wideband and high-efficiency waveguide-based compact antenna radiator with binder-jetting technique
Goulas et al. Fused filament fabrication of functionally graded polymer composites with variable relative permittivity for microwave devices
Whittaker et al. 3D Printing Materials and Techniques for Antennas and Metamaterials: A survey of the latest advances
US10784574B2 (en) Antenna
JP7175805B2 (en) Electromagnetic horn antenna and directivity control system
US11374311B2 (en) Millimeter-wave radar cover
Wang et al. 3D printed antennas for 5G communication: current progress and future challenges
US20220225550A1 (en) Electromagnetic interference shielding composite and electronic device including the same
JP2018056492A (en) Radio wave absorption sheet
KR101387933B1 (en) Device apparatus using of meta-structure
CN112968277B (en) Polarization and frequency reconfigurable antenna based on liquid metal
US20210119343A1 (en) Capacitive stealth composite structure
TWI791789B (en) instant messaging device
Goode et al. 3D printed 18 GHz to 28 GHz horn antenna and gradient index of refraction lens
JPS6312198A (en) Electric wave absorbing electromagnetic shielding member
Zhang et al. Enabling extrusion based additive manufacturing for RF applications: Challenges and opportunities
JPH1027986A (en) Radio wave absorber
JP5735163B1 (en) Conductive slurry for radio wave absorber and radio wave absorber
JP7308312B2 (en) real-time transceiver
Natani et al. Dual frequency notched coplanar tapered slot antenna using split ring resonators on modified slotline
Castro Novel antenna designs using 3D printing and inkjet printing technologies
Tokan et al. Influence of 3D printing process parameters on the radiation characteristics of dense dielectric lens antennas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221109

R150 Certificate of patent or registration of utility model

Ref document number: 7175805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150