JP7174854B2 - 単一のケーシング反応器流出物圧縮機を有するプロパン脱水素システム及び方法 - Google Patents

単一のケーシング反応器流出物圧縮機を有するプロパン脱水素システム及び方法 Download PDF

Info

Publication number
JP7174854B2
JP7174854B2 JP2021533615A JP2021533615A JP7174854B2 JP 7174854 B2 JP7174854 B2 JP 7174854B2 JP 2021533615 A JP2021533615 A JP 2021533615A JP 2021533615 A JP2021533615 A JP 2021533615A JP 7174854 B2 JP7174854 B2 JP 7174854B2
Authority
JP
Japan
Prior art keywords
centrifugal compressor
section
bara
comprised
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021533615A
Other languages
English (en)
Other versions
JP2022514503A (ja
Inventor
ゲッツィ、セルジオ
マティナ、ダリオ
ファロミ、ステファーノ
イウリスチ、ジゥセッペ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuovo Pignone Technologie SRL
Original Assignee
Nuovo Pignone Technologie SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuovo Pignone Technologie SRL filed Critical Nuovo Pignone Technologie SRL
Publication of JP2022514503A publication Critical patent/JP2022514503A/ja
Application granted granted Critical
Publication of JP7174854B2 publication Critical patent/JP7174854B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • F04D29/286Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors multi-stage rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • F04D1/08Multi-stage pumps the stages being situated concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本明細書に開示される主題の実施形態は、一般に脱水素システム及び方法に関する。より具体的には、本明細書に開示される実施形態は、プロパン脱水素によってプロピレンを生成するためのシステム及び方法のための圧縮トレインに関する。
プロピレンは、一般式(CH=CH-CH)の無色の気体(室温及び圧力で)炭化水素である。プロピレンは、例えば、ポリプロピレン、様々な用途で使用されるポリマーの製造のために、いくつかの化学プロセスにおいて使用される。プロピレンは、現在、ナフサ及び液化石油ガス(liquefied petroleum gas、LPG)などの液体原料の水蒸気分解からの副生成物として、並びに精錬所で流体触媒分解単位で生成されたオフガスから副生成物として生成される。本開示が関連する代替のプロピレン製造プロセスは、プロパン脱水素(propane dehydrogenation、PDH)を伴う。
プロパン(CHCHCH)の脱水素は、以下の吸熱還元反応に基づく。
Figure 0007174854000001
強力な吸熱反応は、プロパン流を触媒と接触させることによって実施され、反応器区分から、圧縮区分を通って生成物回収区分まで送達される流出物を得る。現在の技術によるシステムの圧縮区分は、単一のドライバによって駆動されるか、又は複数のドライバ、例えば2つの電動モータによって駆動される、いずれかの配列での圧縮機の組み合わせを含む。圧縮区分は、大きい設置面積を有し、複雑な機械装置を伴う。
いくつかの脱水素プロセス及びプラントが開発されており、当該技術分野において既知である。
-UOP LLCによって開発されたOleflex(商標)脱水素(Universal Oil Products LLC,USAとしても知られている)、
-ABB Lummus Globalによって開発されたCATOFINプロセス、
-Snamprogetti,Italyにより開発された流動床脱水素プロセス、
-Linde-BASF-Statoil脱水素プロセス、
-Krupp Udheにより開発された水蒸気活性改質(steam active reforming、STAR)技術。
これらのプロセスは、多数の機械及び複雑な機械的かつ流体継手を伴う。機械の数及び設置面積の観点からの改善は有益であろう。
図1は、現在の技術によるプロピレンを生成するための脱水素システム101を概略的に示す。図1の例示的な脱水素プラント101は、反応器区分103、触媒再生区分105、及び生成物回収区分107を含む。反応器区分103は、供給経路111に沿って順々、すなわち直列に配置されている反応器109を含む。供給経路111は、入口端部111Aから始まり、流出物圧縮区分113の入口で終端する。
加熱器セル115、117.1、117.2、及び117.3は、第1の反応器109(ヒーターセル115)の上流にある供給経路111に沿って、かつ連続的に配置されている反応器109(ヒータセル117.1、117.2、117.3)の各対の間に配置されている。触媒回路119は、各反応器109にわたって触媒流を送達する。連続触媒再生ユニット121は、ほとんどの下流反応器109から使用済み触媒を回収し、再生触媒を最も上流の反応器109に送達する。
プロパン(C)は、供給経路111に沿って送達され、加熱器セル115、117.1、117.2、及び117.3、並びに触媒からの熱によって促進される、上記の式(1)による還元反応を受ける。供給経路111の出口側には、プロパン(C)、プロピレン(C)、及び水素(H)を含有する混合物からなる流出物が存在する。
反応器区分103の出口側の流出物は、典型的には、周囲圧力未満の低圧値を有し、生成物回収区分107内のその成分を回収するために高圧で加圧しなければならない。圧縮区分113は、流出物の圧縮、及び生成物回収区分107を通じた圧縮流出物の送達を提供する。生成物回収区分107は、乾燥機131と、液体/気体分離器133とを含み、ここで、水素及びプロパンは、プロピレンと分離することができ、プロピレンは、分離器133の底部に収集され、更に処理され、例えば、重合されて、ポリプロピレンを生成する。
回収された水素及びプロパンは、ターボ膨張器134内で膨張され、供給経路111の入口端部111Aに向かって再循環される。
圧縮区分113は、直列に配置されている複数の別個の圧縮機を含む圧縮トレイン141を備える。図1の概略図では、圧縮トレイン141は、2つの別個の圧縮機ケーシング内に配置され、かつ軸線147に駆動的に連結された、第1の圧縮機143及び第2の圧縮機145を備える。ドライバ149、例えば、電動モータ又はタービンは、圧縮機143、145を駆動して、回転させる。
少なくとも3つの回転機械及び関連する軸線(複数の圧縮機をドライバに接続する)を含む圧縮トレイン141は、プラント101の重要な部分であり、大きな設置面積を伴う。圧縮トレインの多数の機械及び機械構成要素は、圧縮区分を設置及び運転するのに高価であり、エネルギーを消費し、故障しやすくなる。高価で頻繁な維持介入が必要とされる。
したがって、現在の技術のプラントの欠点を克服又は緩和することを目的とした、プロピレン生成のための脱水素プラントを改善する必要性が存在する。
本開示の第一態様によれば、プロピレン生成のための脱水素プラントのための圧縮トレインが提供される。圧縮トレインは、ドライバと、ドライバに駆動的に連結された単一の遠心圧縮機とを含む。ドライバは、圧縮機を回転させるように適合されている任意の機械的電力源とすることができる。本明細書に開示される実施形態によれば、遠心圧縮機は、単一のケーシングと、ケーシング内の複数の圧縮機区分と、を含む。各圧縮機区分は、ケーシング内で回転するように配置されている少なくとも1つのインペラを含む。圧縮機は、プロパン、プロピレン、及び水素を含有する混合物を圧縮するように構成されており、約0.2barA~約1.5barAの吸引圧力から約11barA~約20barAの送達圧力まで、約20~約35g/molの分子量を有し、約120,000m/h~約950,000m/hに含まれる体積流量を有する。
更なる態様によれば、プロパン脱水素によるプロピレンの生成のためのプラントが本明細書に開示される。このプラントは、反応器区分と、触媒再生区分と、生成物回収区分、反応器区分と生成回収区分との間の圧縮トレインと、を備える。圧縮トレインは、反応器区分から生成物回収区分へ流出物の流れを加圧し、供給するように適合されている。圧縮トレインは、上述のように、ドライバ及び単一の遠心圧縮機を含むことができる。
更に別の態様によれば、脱水素プラントにおいてプロパンの脱水素によってプロピレンを生成するための方法が本明細書に開示される。本方法の第1の工程は、上記脱水素プラントの反応器区分内のプロパンの触媒還元反応を行う工程を含む。プロピレンを含有する流出物は、反応区分から回収され、反応器区分の出口側の第1の低圧から、脱水素プラントの生成物回収区分の入口における第2の高圧まで圧縮される。流出物の圧縮は、単一のケーシングと、上記ケーシング内の複数の圧縮機区分とを有する単一の圧縮機を使用して実施され、各圧縮機区分は、ケーシング内で回転するように配置されている少なくとも1つのインペラを備え、上記単一の圧縮機は、反応器区分の出口における第1の低圧から、生成物回収区分の入口における第2の高圧まで流出物を圧縮するように適合される。
本開示の方法及びシステムの更なる有利な特徴及び実施形態が以下に記載され、添付の特許請求の範囲に記載される。
本発明の開示された実施形態、及びその付随する利点の多くのより完全な理解は、添付図面と関連して考慮されるときに、以下の詳細な説明を参照することによって、より良く理解されるように、容易に取得されるだろう。
現在の技術によるプロパン脱水素プラントの概略図を示す。 本開示によるプロパン脱水素プラントの概略図を示す。 図2のシステムのための2区分高圧比圧縮機の3つの構成を示す。 図2のシステムのための2区分高圧比圧縮機の3つの構成を示す。 図2のシステムのための2区分高圧比圧縮機の3つの構成を示す。 図2のシステムのための3つの高圧比圧縮機の5つの構成を示す。 図2のシステムのための3つの高圧比圧縮機の5つの構成を示す。 図2のシステムのための3つの高圧比圧縮機の5つの構成を示す。 図2のシステムのための3つの高圧比圧縮機の5つの構成を示す。 図2のシステムのための3つの高圧比圧縮機の5つの構成を示す。 本開示による方法を要約するフローチャートを示す。
プロパン脱水素によるプロピレンの生成のためのプラントのための新規かつ有用な圧縮トレインが開発されてきた。上述したように、プロピレンは、プロパンの脱水素によって(すなわち、プロパン分子(CHCHCH)から1個の水素原子を除去し、水素(H)及びプロピレンを得ることによって)得られる一般式CH=CH-CHの脂肪族炭化水素である。プロセスの1つの部分は、通常は、周囲気圧未満の低圧、及び約30~約70℃の範囲の温度で、脱水素プラントの反応器区分によって送達される、プロパン、水素、及びプロピレンのガス状混合物を圧縮することを伴う。通常流出物と称される、プロピレン、水素、及びプロパンガス混合物は、高圧値で、最大約11barA以上、例えば最大約15barA以上で圧縮されるものとする。
過去では、流出物は、大規模の多ケーシング圧縮トレインを使用して圧縮され、それらの圧縮トレインは、互いに分離し、かつ駆動器によって回転駆動されるシャフトラインに駆動的に連結された、少なくとも2つの圧縮機ケーシングを含む。これらの圧縮トレインは、多くの空間を占めた。ここで、圧縮トレインは、単一の圧縮機が複数の圧縮機区分を収容する単一のケーシングを使用して、圧縮トレインを小さくすることができることが発見された。そのため、圧縮トレインの設置面積(及び基礎工事)を低減することができる。いくつかの実施形態では、圧縮トレインの設置面積の最大50%の減少が達成され得る。
本開示の圧縮トレインを駆動するための総電力消費量は、現在の技術の圧縮トレインを駆動するために必要とされる電力と同じであるか、又はそれよりも低くすることができる。
脱水素プラントの反応器区分の出口における流出物の低圧から、生成物回収区分の入口側の流出物の高圧までの全圧力増加は、単一の多段遠心圧縮機を介して得られる。特に有利な実施形態では、圧縮機は、高圧比圧縮機(high pressure ratio compressor、HPRC)である。全体的な設置面積及び基礎工事に加えて、単一の圧縮機ケーシングを有する圧縮トレインを使用することにより、また、シール、ドライバ、及びギアボックスなどの補助装置及び機械装置の数も低減し、したがって、圧縮トレインの信頼性及び利用可能性が増加する。
本明細書で理解されるように、圧縮機のケーシングは、圧縮機ロータを収容し、かつ吸引側から延在する構成要素であり、低吸引圧力でのプロセス流体は、圧縮機に送達側まで入り、そこで、高い送達圧での処理流体が圧縮機から出る。プロピレンの生成のためのプロパン脱水素プラントでは、吸引圧力は、流出物が反応器区分から流出する圧力であり、送達圧力は、流出物が生成物回収区分に入る圧力である。
先行技術のシステムとは異なり、本明細書に開示される圧縮トレイン及び関連する方法は、単一のケーシング圧縮機において、プロパン脱水素プラントの反応器区分から生成物回収区分への全圧力増加を実施する。完全圧縮工程は、単一のケーシング内で実行される。単一の圧縮機の送達側の下流には、更なる圧縮機が必要とされない。
以下で説明するように、圧縮機の少なくとも2つの区分間に中間冷却を提供することにより、圧縮トレインの効率を向上させることができる。
圧縮トレインの単一の圧縮機は、垂直方向に分割された圧縮機であり得る。本明細書で使用するとき、「垂直方向に分割された」という用語は、圧縮機を示し、そのケーシングは垂直平面に沿って開放され得る。いくつかの実施形態では、ケーシングは、中心胴部及び1つの取り外し可能な端子閉鎖部、又は2つの軸方向に対向するケーシングの端部に2つの反対側の端子閉鎖部を含み得る。他の実施形態では、単一の圧縮機は、水平方向に分割された圧縮機であり得る。本明細書で使用するとき、「水平方向に分割された」という用語は、圧縮機を示し、そのケーシングは、水平面に沿って互いに連結され、かつ圧縮機ケーシングを開放するように分離され得る、2つの部分に含まれている。
図2は、プロピレンを生成するための脱水素プラント1を示す。プラントの一般的な構造は既知であり、使用される技術に応じて変化し得る。一般的な用語では、本開示の新規な圧縮トレインは、ポリプロピレン製造のための任意の脱水素プラントにおいて使用することができ、プロパン、プロピレン、及び水素の混合物からなる流出物は、プラントの反応区分の低圧出口側で回収され、生成物回収区分の入口でより高い圧力まで圧縮されなければならない。したがって、本明細書に開示される圧縮トレインの新規な特徴は、図2に示されるものとは異なる脱水素プラントにおいて実装することができる。
図2の例示的な脱水素プラント1は、反応器区分3、触媒再生区分5、及び生成物回収区分7を含む。反応器区分3は、入口端11Aから延在し、かつ流出物圧縮トレイン13の吸引側で終端する、供給経路11に沿って配置されている1つ以上の反応器9を含む。
加熱器セル15、17.1、17.2、及び17.3は、第1の反応器9の上流にある供給経路11に沿って、かつ連続的に配置されている反応器9の各対の間に配置されている。触媒回路19は、各反応器9にわたって触媒流を送達する。連続触媒再生ユニット21は、ほとんどの下流反応器9から使用済み触媒を回収し、再生触媒を最も上流の反応器9に送達する。
プロパン(C)は、供給経路11に沿って送達され、加熱器セル15、17.1、17.2、17.3及び触媒からの熱によって促進される還元反応を受ける。供給経路11の出口側には、プロパン(C)、プロピレン(C)、及び水素(H)を含有するガス状混合物からなる流出物が存在する。流出物組成物及び他の動作パラメータの例は、後に与えられる。
圧縮トレイン13は、流出物の圧力を上昇させ、圧縮された流出物を生成物回収区分7に送達する。いくつかの実施形態では、図2に例として示されるように、生成物回収区分7は、乾燥機31と、液体/気体分離器33とを含むことができ、ここで、水素及びプロパンは、プロピレンと分離することができ、プロピレンは、分離器33の底部に収集され、更に処理され、例えば、重合されて、ポリプロピレンを生成する。
回収された水素及びプロパンは、例えば、エネルギー回収目的のために、ターボ膨張器34内で膨張され、供給経路11の入口端部11Aに向かって及び/又はガス分離器33に対して再循環され得る。
反応器区分3の出口側の低圧(ここでは「第1の圧力」とも称される)から、生成物回収区分7の入口側の高圧(ここでは「第2の圧力」とも称される)までの加圧は、圧縮トレイン13によって実施され、圧縮トレイン13は、例えば、単一の遠心圧縮機、具体的には、単一の高圧比圧縮機を含む。
図3は、図2の脱水素プラント1で使用することができ、単一の遠心圧縮機を含む圧縮トレイン13の第1の実施形態を示す。圧縮機は、35とラベル付けされ、駆動器36によってシャフトライン38を通って回転するように駆動され得る。ドライバは、例えば、電気モータ、又は蒸気タービンであり得る。他の実施形態では、ガスタービンエンジンは、原動機として、すなわち、圧縮機35のためのドライバとして使用することができる。ドライバは、ギアボックスを介して、又はギアボックスを介さずに圧縮機に接続することができる。
圧縮機35は、複数の圧縮機段が配置され得る単一のケーシング37を備える。各圧縮機段は、圧縮機ケーシング37内で回転するように配置されている遠心インペラを備えることができる。他の実施形態では、圧縮機段は、複数の圧縮機用インペラを含むことができる。遠心圧縮機段は、複数の遠心圧縮機区分、例えば、2つ又は3つの遠心圧縮機区分にグループ分けすることができる。
各遠心インペラは、シュラウド付きインペラ、又はシュラウドのないインペラであり得る。いくつかの実施形態では、圧縮機35は、シュラウド付きインペラと、シュラウドのないインペラとの組み合わせを備えることができる。例えば、遠心圧縮機区分は、シュラウド付きのインペラのみを含むことができ、別の遠心圧縮機区分は、シュラウドのないインペラのみを含むことができる。他の実施形態では、少なくとも1つ、いくつかの、又は全ての遠心圧縮機区分は、シュラウド付きインペラと、シュラウドのないインペラとの組み合わせを含むことができる。
圧縮機35は、1つ以上の遠心圧縮機区分を含むことができ、各々は、少なくとも1つの積層されたインペラ又は複数の連続的に配置されている積層されたインペラをそれぞれ含む。軸方向に積層されたインペラが1つのみ提供される場合、インペラは、軸方向シャフトの2つの部分と軸方向に積層される。
軸方向に積層されたインペラは、圧縮機ロータの高速回転速度を可能にし、したがって、本明細書に開示される構成に関与する圧力比の範囲において特に有用である。当技術分野において通常理解されるように、軸方向に積層されたインペラは、回転軸に沿って互いに積層され、かつ、Hirth連結又は類似の接続によって、一方のインペラから他方のインペラまで、又はインペラからシャフト部分までトルクを伝達するために、相互に互いに結合されているインペラである。当業者には既知のように、Hirthジョイントとも呼ばれるHirth継手は、互いに連結される2つのシャフトの対向する端部にテーパ状の歯を使用する。テーパ状の歯は、噛み合って、一方のシャフトから他方のシャフトにトルクを伝達する。
いくつかの実施形態では、圧縮機35は、1つ以上の半径方向収縮フィットインペラを含むことができる。遠心圧縮機の当業者に既知であるように、収縮フィットインペラは、インペラを互いに接続する中央シャフト上に取り付けられる。
いくつかの実施形態では、圧縮機35は、半径方向収縮フィットインペラと軸方向に積層されたインペラとの組み合わせを含むことができる。
図3の例示的な実施形態では、2つの遠心圧縮機区分39.1及び39.2がケーシング37内に配置されている。各遠心圧縮機区分39.1、39.2は、40.1(区分39.1について)及び40.2(区分39.2について)に概略的に示される複数の遠心圧縮機インペラを含むことができる。図3の実施形態では、遠心圧縮機区分39.1、39.2は、インライン構成で配置されている。本明細書で使用するとき、「インライン」という用語は、気体が同じ方向に全体的に2つの区分に流れる構成を示す。図3では、流出ガスは、左から右に、第1の区分39.1を通って流れ、第2の区分39.2を通って流れる。図3並びにそれに続く図4~図10の遠心圧縮機区分(「第1」及び「第2の」遠心圧縮機区分)の番号付けは、圧縮機35を通じた圧力増加に従う。すなわち、第1の遠心圧縮区分39.1は、低圧のものであり、第2の遠心圧縮機区分39.2の上流側に配置されており、これによって、流出物は、第1の遠心圧縮機区分39.1内で、次いで、第2の遠心圧縮機区分39.2内で、順次圧縮される。
圧縮機の効率を向上させるために、いくつかの実施形態では、流出流は、第1のcom遠心昇圧区分(com centrifugal pressor section)39.1と第2の遠心圧縮機区分39.2との間に流体連結された中間冷却器内で冷却される。
より具体的には、第1の遠心圧縮機区分39.1は、吸入側39.1Sと、送達側39.1Dとを備えている。流出物は、吸入側39.1Sで第1の遠心圧縮機区分39.1に入り、送達側39.1Dで第1の遠心圧縮機区分39.1から出て、吸入側39.2Sで第2の遠心圧縮機区分39.2に順次入り、それぞれの送達側39.2Dで第2の遠心圧縮機区分39.2から出る。送達側39.1Dと吸引側39.2Sとの間で、流出物は中間冷却器43内で冷却される。
いくつかの実施形態では、圧縮機35は、第1の遠心圧縮機区分39.1と第2の遠心圧縮機区分39.2との間に第1の秤ドラム45を備えることができる。圧縮機は、第2の遠心圧縮機区分39.2の送達側に配置されている第2秤ドラム47を含むことができる。代替的に、第1の遠心圧縮機区分39.1の吸引側に秤ドラム47が配置され得る。
いくつかの実施形態では、圧縮機35の吸引側の温度は、約35℃~約65℃に含まれ得る。
別途記載のない限り、本明細書で使用するとき、パラメータ又は量の値と称されるとき、「約」という用語は、記載された値の+5%以内の任意の値を含むものとして理解することができる。したがって、例えば、「約x」の値は、(x-0.05x)及び(x+0.05x)の範囲内の任意の値を含む。
いくつかの実施形態では、反応器区分3の出口における低圧は、約0.5barA(bar絶対値)~約1.1barAに含まれ得、好ましくは約0.8barAである。圧縮機35の送達圧力は、約13barA~約19barA、好ましくは約14barA~約16barAに含まれ得、より好ましくは約15barAである。圧縮機35は、例えば、約120,000~約600,000m/h、好ましくは約150,000~約500,000m/hに含まれる体積流量を有し得る。当該技術分野において一般的に理解されるように、体積流量は、圧縮機の吸引側における流量である。
流出物は、以下のような混合物を含むことができ、MOL%で表される。
プロパン 30~34%
プロピレン 13~17%
水素 44~49%
約23~24g/mol、特に約23.4g/molの範囲の分子量を有する。
他の実施形態によれば、反応器区分3の出口における低圧は、約0.2barA~約0.4barAに含まれ得、好ましくは約0.3barAである。圧縮機35の送達圧力は、約11barA~約15barA、好ましくは約12barA~約14barAに含まれ得、より好ましくは約13barAである。圧縮機は、圧縮機35の吸引側に、例えば、約120,000~約850,000m/h、好ましくは約150,000~約750,000m/hに含まれる体積流量を有し得る。
流出物は、以下のような混合物を含むことができ、MOL%で表される。
プロパン 33~36%
プロピレン 23~25%
水素 29~31%
約29g/molの平均分子量を有する。
図3では、インライン構成の圧縮機35が示されているが、背中合わせの構成などの他の圧縮機構成が可能である。図4及び図5は、背中合わせの構成にある高圧圧縮機35の2つの実施形態を概略的に示す。図3で使用した同じ参照番号を図4及び図5に使用して、同じ又は対応する部分を指定するが、これらは再度記載されない。本明細書で使用するとき、「背中合わせの」という用語は、流出物が2つの圧縮機区分において反対方向に流れる構成として理解される。例えば、図4において、流出物は、第1の遠心圧縮区分39.1の左から右に、第2の遠心圧縮区分39.2の右から左へ流出する。
図4及び図5の圧縮機は、主に秤ドラム配置を考慮して互いに異なる。図4では、2つの遠心圧縮機区分39.1、39.2の間に配置されている秤ドラム45のみが設けられている一方で、図5では、第2秤ドラム47は、第2の遠心圧縮機区分39.2の吸引側に設けられている。代替的に、第1の遠心圧縮機区分39.1の吸引側に秤ドラム47が配置され得る。
いくつかの実施形態では、圧縮機35は、3つ以上の遠心圧縮機区分を備え得る。図6、図7、図8、図9、及び図10は、それぞれ、39.1、39.2及び39.3とラベル付けされた3つの遠心圧縮機区分をそれぞれ含む圧縮機35の5つの実施形態を示す。例えば、図6の圧縮機35は、3つの遠心圧縮機区分39.1、39.2、及び39.3を収容する単一のケーシング37を備える。図6の例示的な実施形態では、第1及び第2の遠心圧縮機区分39.1、39.2は、中央に位置する第3の遠心圧縮機区分39.3の両側に配置されている。本開示では、別途指示がない限り、区分は、圧力に増加に応じて(すなわち、第1の遠心圧縮機区分39.1から第2の遠心圧縮機区分39.2へと移動する際に、及び第2の遠心圧縮機区分39.2から第3の遠心圧縮機区分39.3まで移動する際に、プロセスガス圧は増加する)、順番に番号を付けられる。第1の遠心圧縮機区分39.1と第3の遠心圧縮機区分39.3との間には、秤ドラム45が配置されている。
各遠心圧縮機区分は、文字Sが続く、遠心圧縮機区分の参照番号で指定された吸引側と、文字Dが続く、遠心圧縮機区分の参照番号でラベル付けされた送達側と、を含む。第1の遠心圧縮機区分39.1の送達側39.1Dは、第1の中間冷却器43.1を介して、第2の遠心圧縮機区分39.2の吸引側39.2Sに流体連結される。同様に、第2の遠心圧縮機区分39.2の送達側39.2Dは、第3の遠心圧縮機区分39.3の吸入側39.3Sに第2の中間冷却器43.2を介して流体連結されている。
他の実施形態では、1つの中間冷却器のみを設けることができ、例えば、中間冷却器43.1のみ、又は中間冷却器43.2のみを設けることができる。
図6の実施形態では、第1の遠心圧縮機区分39.1と第3の遠心圧縮機区分39.3とは、背中合わせの構成で配置される一方、第2の遠心圧縮機区分39.2と第3の遠心圧縮機区分39.3とは、インライン構成で配置されている。
図7は、3つの遠心圧縮機区分39.1、39.2、39.3を有する更なる高圧比圧縮機35を示す。図7の圧縮機は、主に、秤ドラムの異なる位置、並びに第1、第2、及び第3の遠心圧縮機区分の配列を考慮して、図6の圧縮機とは異なる。秤ドラム45は、第2の遠心圧縮機区分39.2と第3の遠心圧縮機区分39.3との間に位置する。また、第1の遠心圧縮区分39.1と第2の遠心圧縮区分39.2とは、直列構成になっている一方で、第2の遠心圧縮区分39.2と第3の遠心圧縮機区分39.3とは、背中合わせの校正で配置されている。
図2の脱水素プラント1で使用するための圧縮機35の更なる実施形態を図8に示す。図6及び図7の同じ参照番号は、同じ又は対応する部分を指定するが、これらは再度記載されない。図8の圧縮機35は、主に、第2の遠心圧縮機区分39.2の吸引側に配置されている第2の秤ドラム47を考慮して、図6の圧縮機35とは異なる。代替的に、秤ドラム47は、第1の遠心圧縮機区分39.1の吸引側に配置され得る。
図9は、第3の遠心圧縮機区分39.3の吸引側に配置されている追加の秤ドラム47を考慮して、図7の圧縮機とは異なる高圧比圧縮機35の更に更なる実施形態を示す。代替的に、追加の秤ドラム47は、第1の遠心圧縮機区分39.1の吸引側に配置され得る。
図6、図7、図8、及び図9は、2つの隣接する遠心圧縮機区分が背中合わせの構成にある実施形態を示し、図10は、3つの遠心圧縮機区分39.1、39.2、及び39.3がインライン構成で配置されている更なる実施形態を示す。単一の秤ドラム37は、第3の遠心圧縮機区分39.3の吸引側に位置する。
図11を参照すると、新規かつ有用な圧縮トレインを使用した脱水素プラント1の動作サイクルについて説明する。参考文献1001は、触媒還元区分を通してプロパン含有ガス混合物の流れを供給する工程を示す。工程1002は、反応器区分内のプロパンの触媒還元反応を行うことを伴う。サイクルは、反応区分からプロピレンを含有する流出物を回収することを更に含む(工程1003)。流出物は、単一の圧縮機35を使用して、反応器区分の出口側の第1の低圧から、脱水素プラント1の生成物回収区分の入口における第2の高圧まで圧縮される(工程1004)。
本発明は、様々な特定の実施形態に関して説明されてきたが、当業者には、特許請求の範囲の趣旨及び範囲を逸脱することなく多くの修正、変更、及び省略が可能であることが、当業者には明らかであろう。加えて、本明細書で別段の指定がない限り、任意のプロセス又は方法工程の順序又は配列は、代替の実施形態に従って変更又は再配列され得る。

Claims (16)

  1. 脱水素プラント(1)のための圧縮トレイン(13)であって、
    ドライバ(36)と、
    前記ドライバ(36)に駆動的に連結された単一の遠心圧縮機(35)と、を備え、
    前記遠心圧縮機(35)が、単一のケーシング(37)と、前記ケーシング(37)内の複数の遠心圧縮機区分(39.1、39.2、39.3)と、を備え、各前記遠心圧縮機区分が、前記ケーシング(37)内で回転するように配置されている少なくとも1つのインペラ(40.1、40.2)を備え、前記複数の遠心圧縮機区分(39.1、39.2、39.3)が直列に流体結合され、共通の回転軸周りに回転可能であり、
    前記複数の遠心圧縮機区分(39.1、39.2、39.3)のうちの少なくとも1つが、回転軸方向に積層された複数のインペラを含み、
    前記遠心圧縮機(35)が、プロパン、プロピレン、及び水素を含有するガス混合物を、前記複数の遠心圧縮機区分(39.1、39.2、39.3)を通して吸引圧力からから送達圧力まで順次圧縮するように適合されており、
    前記ガス混合物の分子量が20g/mol~35g/molに含まれ
    前記遠心圧縮機(35)の吸引側の体積流量が、120,000m/h~950,000m/hに含まれ
    前記遠心圧縮機(35)の前記吸引側の前記ガス混合物の温度が、30℃~70℃に含まれ、
    前記吸引圧力が、0.5barA~1.1barAに含まれるとともに、前記送達圧力が、13barA~19barAに含まれる、又は、前記吸引圧力が、0.2barA~0.4barAに含まれるとともに、前記送達圧力が、11barA~15barAに含まれる、
    圧縮トレイン(13)。
  2. 2つの互いに隣接する前記遠心圧縮機区分(39.1、39.2、39.3)の間に配置された秤ドラムを備える、請求項1に記載の圧縮トレイン(13)。
  3. 前記回転軸方向に積層された複数のインペラがハース継手によって互いに結合されている、請求項1又は2に記載の圧縮トレイン(13)。
  4. 前記インペラ(40.1、40.2)のうちの少なくとも1つが、シュラウドのないインペラである、請求項1から3のいずれか項に記載の圧縮トレイン(13)。
  5. 前記複数の遠心圧縮機区分(39.1、39.2、39.3)のうちの少なくとも2つがインライン構成で配置されている、請求項1から4のいずれか項に記載の圧縮トレイン(13)。
  6. 前記複数の遠心圧縮機区分(39.1、39.2、39.3)のうちの少なくとも2つが、背中合わせの構成で配置されている、請求項1から4のいずれか項に記載の圧縮トレイン(13)。
  7. 前記複数の遠心圧縮機区分(39.1、39.2、39.3)のうちの少なくとも2つの間の中間冷却器(43、43.1、43.2)を含む、請求項1から6のいずれか項に記載の圧縮トレイン(13)。
  8. 前記体積流量が、150,000m/h~750,000m/hに含まれている、請求項1から7のいずれか1項に記載の圧縮トレイン(13)。
  9. 前記複数の遠心圧縮機区分が、
    シュラウドのない、回転軸に沿って積層された複数のインペラを含む少なくとも1つの第1の遠心圧縮機区分と、
    シュラウドを有する、複数の径方向収縮フィットインペラを含む第2の遠心圧縮機区分と、を備え、前記ガス混合物を前記少なくとも1つの第1の遠心圧縮機区分から前記第2の遠心圧縮機区分に流すように構成されている、請求項1から8のいずれか1項に記載の圧縮トレイン(13)。
  10. 前記複数の遠心圧縮機区分(39.1、39.2)が、前記第1の遠心圧縮機区分(39.1)と、前記第2の遠心圧縮機区分(39.2)と、からなる、請求項9に記載の圧縮トレイン(13)。
  11. 前記第1又は第2の遠心圧縮機区分(39.1、39.2)の吸引側と送達側にそれぞれ秤ドラムが配置される、請求項10に記載の圧縮トレイン(13)。
  12. 前記複数の遠心圧縮機区分(39.1、39.2、39.3)が3つの遠心圧縮機区分からなる、請求項1から9のいずれか1項に記載の圧縮トレイン(13)。
  13. 前記3つの遠心圧縮機区分のうちの一対の遠心圧縮機区分が、背中合わせの構成で配置され、当該背中合わせの一対の遠心圧縮機区分の間に秤ドラムが配置されている、請求項12に記載の圧縮トレイン(13)。
  14. プロパン脱水素によるプロピレンの生成のためのシステムであって、
    反応器区分(3)と、
    触媒再生区分(5)と、
    生成物回収区分(7)と、
    前記反応器区分(3)と前記生成回収区分(7)との間に、前記反応器区分(3)から前記生成物回収区分(7)へ流出物の流れを供給するように適合されている、請求項1から13のいずれか項に記載の圧縮トレイン(13)と、を備える、システム。
  15. 請求項14に記載のシステムを用いて、プロパンの脱水素によってプロピレンを生成するための方法であって、
    応器区分内のプロパンの触媒還元反応を行う工程と、
    前記反応器区分からプロピレンを含有する流出物を回収する工程と、
    単一のケーシングと、前記ケーシング内の複数の圧縮機区分とを有する単一の圧縮機を使用して、前記反応器区分の出口側における第1の低圧である吸引圧力から、生成物回収区分の入口における第2の高圧である送達圧力まで圧縮する工程と、を含み、
    前記圧縮する工程において、
    前記圧縮機の吸引側の体積流量が、120,000m/h~950,000m/hに含まれ
    前記圧縮機の前記吸引側の前記流出物の温度が、30℃~70℃に含まれ、
    前記第1の低圧が、0.5~1.1barAに含まれるとともに、前記第2の高圧が、13barA~19barAに含まれる、又は、前記第1の低圧が、0.2barA~0.4barAに含まれるとともに、前記第2の高圧が、11barA~15barAに含まれる、
    方法。
  16. 少なくとも2つの連続して配置されている圧縮機区分の間で前記流出物を中間冷却する工程を含む、請求項15に記載の方法。
JP2021533615A 2018-12-14 2019-12-12 単一のケーシング反応器流出物圧縮機を有するプロパン脱水素システム及び方法 Active JP7174854B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT102018000011099A IT201800011099A1 (it) 2018-12-14 2018-12-14 Sistema di de-idrogenazione di propano con un compressore di effluente di reattore a cassa singola e metodo
IT102018000011099 2018-12-14
PCT/EP2019/025457 WO2020119950A1 (en) 2018-12-14 2019-12-12 Propane dehydrogenation system with single casing reactor effluent compressor and method

Publications (2)

Publication Number Publication Date
JP2022514503A JP2022514503A (ja) 2022-02-14
JP7174854B2 true JP7174854B2 (ja) 2022-11-17

Family

ID=65767252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021533615A Active JP7174854B2 (ja) 2018-12-14 2019-12-12 単一のケーシング反応器流出物圧縮機を有するプロパン脱水素システム及び方法

Country Status (10)

Country Link
US (1) US20210293243A1 (ja)
EP (1) EP3894708A1 (ja)
JP (1) JP7174854B2 (ja)
KR (1) KR102559487B1 (ja)
CN (1) CN113227582A (ja)
AU (1) AU2019399804B2 (ja)
CA (1) CA3121683C (ja)
IT (1) IT201800011099A1 (ja)
RU (1) RU2769923C1 (ja)
WO (1) WO2020119950A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11987377B2 (en) * 2022-07-08 2024-05-21 Rtx Corporation Turbo expanders for turbine engines having hydrogen fuel systems
WO2024017496A1 (en) * 2022-07-20 2024-01-25 Nuovo Pignone Tecnologie - S.R.L. Method and system for efficient hydrogen compression

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040173529A1 (en) 2003-03-07 2004-09-09 Membrane Technology And Research, Inc. Liquid-phase separation of low molecular weight organic compounds
JP2007530859A (ja) 2004-03-24 2007-11-01 エリオット・カンパニー インペラロックアセンブリ及び方法
JP2009543760A (ja) 2006-05-24 2009-12-10 ビーエーエスエフ ソシエタス・ヨーロピア プロパンからのアクロレインまたはアクリル酸あるいはその混合物の製造方法
JP2015518941A (ja) 2012-06-06 2015-07-06 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. 複数の中間冷却を有する高圧比圧縮機および関連する方法
JP2015189717A (ja) 2014-03-28 2015-11-02 三菱化学株式会社 プロピレンの製造方法
US20170030377A1 (en) 2014-04-17 2017-02-02 Siemens Aktiengesellschaft Arrangement of components in a fluid energy machine and assembly method
JP2018150930A (ja) 2017-01-24 2018-09-27 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータNuovo Pignone Tecnologie S.R.L. 1つの遠心圧縮機を含む圧縮トレインおよびlngプラント
US20180283404A1 (en) 2017-03-28 2018-10-04 Uop Llc Reactor loop fouling monitor for rotating equipment in a petrochemical plant or refinery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062766A (en) * 1988-09-14 1991-11-05 Hitachi, Ltd. Turbo compressor
FR2774135B1 (fr) * 1998-01-28 2000-04-07 Inst Francais Du Petrole Dispositif et methode de compression pour gaz humide avec evaporation du liquide
US7842847B2 (en) * 2008-06-27 2010-11-30 Lummus Technology Inc. Separation process for olefin production
EP2326899B1 (en) * 2008-08-06 2017-04-05 Lummus Technology Inc. Method of cooling using extended binary refrigeration system
IT1392796B1 (it) * 2009-01-23 2012-03-23 Nuovo Pignone Spa Sistema reversibile di iniezione ed estrazione del gas per macchine rotative a fluido
DE102012204403A1 (de) * 2012-03-20 2013-09-26 Man Diesel & Turbo Se Radialverdichtereinheit
US9718747B2 (en) * 2013-06-19 2017-08-01 Uop Llc Process for high temperature removal of trace chloride contaminants in a catalytic dehydrogenation process
US20170241433A1 (en) * 2014-10-17 2017-08-24 Nuovo Pignone Srl Centrifugal turbomachine with two stages arranged back-to-back and with an annular transfer duct between the stages
CN105782118B (zh) * 2014-12-22 2017-12-15 沈阳透平机械股份有限公司 离心压缩机内置双向变截面排气涡室结构
ITUB20152497A1 (it) * 2015-07-24 2017-01-24 Nuovo Pignone Tecnologie Srl Treno di compressione di gas di carica di etilene
WO2018102601A1 (en) * 2016-12-02 2018-06-07 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
CN106762714A (zh) * 2017-03-17 2017-05-31 沈阳斯特机械制造有限公司 异丁烷脱氢装置用带中间冷却器的离心压缩机
US10844290B2 (en) 2017-03-28 2020-11-24 Uop Llc Rotating equipment in a petrochemical plant or refinery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040173529A1 (en) 2003-03-07 2004-09-09 Membrane Technology And Research, Inc. Liquid-phase separation of low molecular weight organic compounds
JP2007530859A (ja) 2004-03-24 2007-11-01 エリオット・カンパニー インペラロックアセンブリ及び方法
JP2009543760A (ja) 2006-05-24 2009-12-10 ビーエーエスエフ ソシエタス・ヨーロピア プロパンからのアクロレインまたはアクリル酸あるいはその混合物の製造方法
JP2015518941A (ja) 2012-06-06 2015-07-06 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. 複数の中間冷却を有する高圧比圧縮機および関連する方法
JP2015189717A (ja) 2014-03-28 2015-11-02 三菱化学株式会社 プロピレンの製造方法
US20170030377A1 (en) 2014-04-17 2017-02-02 Siemens Aktiengesellschaft Arrangement of components in a fluid energy machine and assembly method
JP2018150930A (ja) 2017-01-24 2018-09-27 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータNuovo Pignone Tecnologie S.R.L. 1つの遠心圧縮機を含む圧縮トレインおよびlngプラント
US20180283404A1 (en) 2017-03-28 2018-10-04 Uop Llc Reactor loop fouling monitor for rotating equipment in a petrochemical plant or refinery

Also Published As

Publication number Publication date
EP3894708A1 (en) 2021-10-20
US20210293243A1 (en) 2021-09-23
WO2020119950A1 (en) 2020-06-18
RU2769923C1 (ru) 2022-04-08
CA3121683C (en) 2023-10-10
AU2019399804A1 (en) 2021-07-01
KR20210099645A (ko) 2021-08-12
CA3121683A1 (en) 2020-06-18
CN113227582A (zh) 2021-08-06
JP2022514503A (ja) 2022-02-14
KR102559487B1 (ko) 2023-07-24
IT201800011099A1 (it) 2020-06-14
AU2019399804B2 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
JP7174854B2 (ja) 単一のケーシング反応器流出物圧縮機を有するプロパン脱水素システム及び方法
AU2009301191B2 (en) Method of controlling a compressor and apparatus therefor
AU2008333840B2 (en) Compressor system and method for gas liquefaction system
US9746234B2 (en) Mixed refrigerant compression circuit
US10809000B2 (en) Compression train including one centrifugal compressor and LNG plant
KR20190084872A (ko) 암모니아 생산 설비
JP7000309B2 (ja) エチレン用チャージガス圧縮トレイン
AU2011229143A1 (en) A centrifugal compressor
AU2022203966A1 (en) Process and apparatus for compressing hydrogen gas in a hybrid compression system
CN110966052A (zh) 一种压缩机透平一体式机组及其运行方法
CN109026762A (zh) 一种芳烃加氢装置用离心压缩机
EP3812597A1 (en) Charge gas compressor train for ethylene plant
US20180209427A1 (en) Lng plant including an axial compressor and a centrifugal compressor
CN219580203U (zh) 低温甲醇洗装置
CN110500299B (zh) 超音速超高压二氧化碳压缩机机组
CN214660938U (zh) 一种丙烯压缩机
WO2023078584A1 (en) System for ammonia production including hydrogen leak recovery from dry gas seals of hydrogen compressor, and method
CN113544370A (zh) 多级压缩机-膨胀机涡轮机构型

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R150 Certificate of patent or registration of utility model

Ref document number: 7174854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150