JP7173981B2 - Circulating fluidized bed boiler and its operation method - Google Patents

Circulating fluidized bed boiler and its operation method Download PDF

Info

Publication number
JP7173981B2
JP7173981B2 JP2019551047A JP2019551047A JP7173981B2 JP 7173981 B2 JP7173981 B2 JP 7173981B2 JP 2019551047 A JP2019551047 A JP 2019551047A JP 2019551047 A JP2019551047 A JP 2019551047A JP 7173981 B2 JP7173981 B2 JP 7173981B2
Authority
JP
Japan
Prior art keywords
containing compound
sulfur element
gas
amount
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019551047A
Other languages
Japanese (ja)
Other versions
JPWO2019082756A1 (en
Inventor
和樹 吉田
隆一 阿川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Publication of JPWO2019082756A1 publication Critical patent/JPWO2019082756A1/en
Application granted granted Critical
Publication of JP7173981B2 publication Critical patent/JP7173981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0069Systems therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

本発明は、循環流動層ボイラ及びその運転方法に関する。 The present invention relates to a circulating fluidized bed boiler and its operating method.

近年、ボイラ設備においてバイオマス燃料などの新エネルギー燃料を使用することが多く要求される。 In recent years, there have been many demands to use new energy fuels such as biomass fuels in boiler facilities.

特許文献1には、バイオマス燃料を使用するボイラ設備において、過熱器の塩化物の堆積を軽減するため、硫酸塩分を含む化合物をスチームボイラ内又は過熱器領域内に供給する技術が開示されている。 Patent Document 1 discloses a technique of supplying a compound containing sulfate into a steam boiler or a superheater area in order to reduce the deposition of chlorides in the superheater in a boiler facility that uses biomass fuel. .

また、特許文献2には、伝熱管の表面に付着した塩化物を剥離するため、燃焼炉内にSOガスを間欠的に共存させて可燃物を燃焼させる技術が開示されている。また、特許文献2の図2には、層内循環流動層炉の流動化空気供給管にSOガス供給管を接続した構成が開示されている。Further, Patent Literature 2 discloses a technique of intermittently allowing SO 2 gas to coexist in a combustion furnace to combust combustibles in order to remove chlorides adhering to the surfaces of heat transfer tubes. FIG. 2 of Patent Document 2 discloses a structure in which an SO 2 gas supply pipe is connected to a fluidizing air supply pipe of an intrabed circulating fluidized bed furnace.

国際公開第2006/134227International Publication No. 2006/134227 特開平9-303743号公報JP-A-9-303743

バイオマス燃料などの多くはアルカリ塩を多く含有しており、燃料として使用することで過熱器へのアルカリ塩の付着及びこれによる過熱器の腐食が問題となる。 Many biomass fuels contain large amounts of alkali salts, and when used as fuel, the adherence of alkali salts to the superheater and the resulting corrosion of the superheater become a problem.

一方、特許文献1の技術では、過熱器領域内に硫酸塩分を含む化合物を供給することで、過熱器の塩化物の堆積を軽減することを図っている。また、特許文献2の技術では、SOガスを共存させて可燃物を燃焼させることで、伝熱管の表面に付着した塩化物を剥離させることを図っている。しかしながら、これらの方法では、アルカリ塩を多く含有する燃料を使用し、排ガスに非常に多くのアルカリ塩が含まれる場合に、排ガス中のアルカリ塩を効率的に化学反応させることが難しいという課題があった。On the other hand, the technique of Patent Document 1 attempts to reduce the accumulation of chlorides in the superheater by supplying a compound containing sulfate into the superheater region. Further, in the technique of Patent Document 2, the chloride adhering to the surface of the heat transfer tube is peeled off by burning the combustible material in the presence of SO 2 gas. However, in these methods, when a fuel containing a large amount of alkali salts is used and the exhaust gas contains an extremely large amount of alkali salts, it is difficult to efficiently chemically react the alkali salts in the exhaust gas. there were.

本発明は、アルカリ塩を多く含有した燃料を用いても、排ガスに含まれるアルカリ塩を効率的に除去し、過熱器へのアルカリ塩の付着及びこれによる過熱器の腐食を抑制できる循環流動層ボイラ及びその運転方法を提供することを目的とする。 The present invention is a circulating fluidized bed that can efficiently remove alkali salts contained in exhaust gas even when fuel containing a large amount of alkali salts is used, and can suppress the adhesion of alkali salts to the superheater and the resulting corrosion of the superheater. An object of the present invention is to provide a boiler and its operation method.

本発明に係る循環流動層ボイラは、
火炉と、
前記火炉から排出された固体粒子を捕集する固気分離装置と、
前記固気分離装置で捕集された固体粒子が、前記火炉内に戻される前に滞留されるリターン部と、
前記リターン部へ硫黄元素含有化合物を導入する導入部と、
前記固気分離装置と前記リターン部との間の通路で前記硫黄元素含有化合物の濃度を計測する第1計測部と、
前記第1計測部の計測結果を用いて前記硫黄元素含有化合物の導入量を制御する制御部と、
を備える構成とした。
The circulating fluidized bed boiler according to the present invention is
a furnace;
a solid-gas separator for collecting solid particles discharged from the furnace;
a return section in which the solid particles collected by the solid-gas separator are retained before being returned to the furnace;
an introduction section for introducing a sulfur element-containing compound into the return section;
a first measuring unit for measuring the concentration of the sulfur element-containing compound in a passage between the solid-gas separation device and the return unit;
A control unit that controls the introduction amount of the sulfur element-containing compound using the measurement result of the first measurement unit;
It was configured to include

本発明に係る循環流動層ボイラの運転方法は、
火炉と、前記火炉から排出された固体粒子を捕集する固気分離装置と、前記固気分離装置で捕集された固体粒子が前記火炉内に戻される前に滞留されるリターン部とを備える循環流動層ボイラの運転方法であって、
前記リターン部へ硫黄元素含有化合物を導入し、
前記固気分離装置と前記リターン部との間の通路で前記硫黄元素含有化合物の濃度を計測し、
前記硫黄元素含有化合物の濃度の計測結果を用いて前記硫黄元素含有化合物の導入量を制御する方法とした。
A method for operating a circulating fluidized bed boiler according to the present invention includes:
A furnace, a solid-gas separation device for collecting solid particles discharged from the furnace, and a return section in which the solid particles collected by the solid-gas separation device are retained before being returned to the furnace. A method of operating a circulating fluidized bed boiler, comprising:
introducing a sulfur element-containing compound into the return section;
measuring the concentration of the sulfur element-containing compound in a passage between the solid-gas separation device and the return section;
A method of controlling the introduction amount of the sulfur element-containing compound using the measurement result of the concentration of the sulfur element-containing compound is employed .

本発明によれば、アルカリ塩を多く含有した燃料を用いても、排ガスに含まれるアルカリ塩を効率的に除去し、過熱器へのアルカリ塩の付着及びこれによる過熱器の腐食を抑制できるという効果が得られる。 According to the present invention, even if a fuel containing a large amount of alkali salt is used, the alkali salt contained in the exhaust gas can be efficiently removed, and the adhesion of the alkali salt to the superheater and the resulting corrosion of the superheater can be suppressed. effect is obtained.

本発明の実施形態1に係る循環流動層ボイラを示す構成図である。1 is a configuration diagram showing a circulating fluidized bed boiler according to Embodiment 1 of the present invention; FIG. 図1の流動材のリターン部の周辺詳細を示す構成図である。FIG. 2 is a configuration diagram showing details around a flow material return portion of FIG. 1 ; 制御部により実行されるSOガスの導入処理の手順を示すフローチャートである。4 is a flowchart showing a procedure of SO 2 gas introduction processing executed by a control unit; 制御部により実行されるSOガスの導入処理を説明するタイムチャートである。4 is a time chart for explaining SO 2 gas introduction processing executed by a control unit; 本発明の実施形態2に係る循環流動層ボイラを示す構成図である。Fig. 2 is a configuration diagram showing a circulating fluidized bed boiler according to Embodiment 2 of the present invention; 本発明の実施形態3に係る循環流動層ボイラを示す構成図である。FIG. 3 is a configuration diagram showing a circulating fluidized bed boiler according to Embodiment 3 of the present invention;

以下、本発明の各実施の形態について図面を参照して詳細に説明する。 Hereinafter, each embodiment of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1は、本発明の実施形態1に係る循環流動層ボイラを示す構成図である。図2は、図1の流動材のリターン部の周辺詳細を示す構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram showing a circulating fluidized bed boiler according to Embodiment 1 of the present invention. FIG. 2 is a block diagram showing the details of the periphery of the flow material return portion of FIG.

本発明の実施形態1に係る循環流動層ボイラ1は、図1に示すように、火炉10、固気分離装置11、固気分離装置11により捕集された流動材を火炉10に戻す循環部12、及び煙道13を備える。循環部12には、SOガスが導入される導入部125と、SOガスの濃度を計測する第1計測部126と、HCl濃度を計測する第2計測部127とが設けられる。さらに、循環流動層ボイラ1は、過熱器14a、14b、SOタンク15、流量可変弁16、集塵機17、ポンプ18、煙突19及び制御部20を備える。A circulating fluidized bed boiler 1 according to Embodiment 1 of the present invention, as shown in FIG. 12, and a flue 13. The circulation section 12 is provided with an introduction section 125 through which the SO2 gas is introduced, a first measurement section 126 that measures the concentration of the SO2 gas, and a second measurement section 127 that measures the HCl concentration. Furthermore, the circulating fluidized bed boiler 1 includes superheaters 14a and 14b, an SO2 tank 15, a variable flow valve 16, a dust collector 17, a pump 18, a chimney 19 and a controller 20.

火炉10は、循環流動床燃焼炉であり、ケイ砂等を流動材(「流動砂」、「ベット材」とも言う)として、バイオマス燃料、低品位炭、スラッジ、廃プラスチック、廃タイヤなどの燃料を燃焼させる。 The furnace 10 is a circulating fluidized bed combustion furnace, and uses silica sand or the like as a fluidizing material (also referred to as "fluidized sand" or "bed material"), and fuels such as biomass fuel, low-grade coal, sludge, waste plastics, and waste tires. to burn.

固気分離装置11は、例えばサイクロンであり、火炉10から排出された排ガスと固体粒子(流動材など)とを分離させる。分離された排ガスは煙道13に送られ、分離された固体粒子は捕集されて循環部12へ送られる。 The solid-gas separator 11 is, for example, a cyclone, and separates the exhaust gas discharged from the furnace 10 from solid particles (fluidized material, etc.). The separated exhaust gas is sent to the flue 13 , and the separated solid particles are collected and sent to the circulation section 12 .

循環部12は、図2にも示すように、ダウンカマー121と、リターン部122と、仕切り123と、リターンシュート124と備える。ダウンカマー121は、固気分離装置11とリターン部122とを結ぶ通路であり、固気分離装置11により捕集された固体粒子を重力によりリターン部122へ降下させる。リターンシュート124は、リターン部122と火炉10とを結ぶ通路であり、リターン部122から火炉10へ重力によって固体粒子を戻す。リターン部122は、捕集された固体粒子が火炉10へ戻される前に滞留される空間である。 The circulation section 12 includes a downcomer 121, a return section 122, a partition 123, and a return chute 124, as also shown in FIG. The downcomer 121 is a passage that connects the solid-gas separation device 11 and the return section 122, and causes the solid particles collected by the solid-gas separation device 11 to descend to the return section 122 by gravity. The return chute 124 is a passage that connects the return section 122 and the furnace 10, and returns the solid particles from the return section 122 to the furnace 10 by gravity. The return section 122 is a space in which collected solid particles are retained before being returned to the furnace 10 .

仕切り123は、リターン部122の空間においてダウンカマー121とリターンシュート124との間を仕切る。仕切り123は、リターン部122の空間のうち少なくとも中段より上方部分を仕切り、下方部分は開放される。仕切り123によって開放された下方部分は常に固体粒子(流動材)によって埋められた状態にされる。この固体粒子によって埋められた部分と仕切り123とは、ループシールを構成し、循環部12において火炉10から煙道13への気体の流れを遮断し、固体粒子のみを火炉10へ戻すことを可能にする。 The partition 123 separates the space of the return section 122 between the downcomer 121 and the return chute 124 . The partition 123 partitions at least the upper part of the space of the return part 122 from the middle stage, and the lower part is open. The lower part opened by the partition 123 is always filled with solid particles (fluid material). The portion filled with the solid particles and the partition 123 form a loop seal, which blocks the flow of gas from the furnace 10 to the flue 13 in the circulation section 12 and allows only the solid particles to return to the furnace 10. to

SOガスをリターン部122に導入する導入部125は、例えば、リターン部122の下部に配置される。導入部125は、特に制限されないが、固体粒子を流動させるために流動エアを導入する導入部を兼ねており、SOガスは流動エアに加えられてリターン部122へ導入される。具体的には、SOガスが蓄積又は生成されるSOタンク15から流量可変弁16を介して流動エアの配管21へSOが供給される。そして、この流動エアが導入部125を介してリターン部122へ送られることで、リターン部122へSOガスが供給される。リターン部122へ導入されたSOガス及び流動エアは、固体粒子を流動させてリターンシュート124から火炉10へ送る作用を及ぼす。また、リターン部122へ導入されたSOガス及び流動エアは、火炉10の排ガスよりも圧力が低いため、火炉10へは流れることはなく、ダウンカマー121を上昇して煙道13へ流れる。An introduction section 125 that introduces the SO 2 gas into the return section 122 is arranged below the return section 122, for example. The introduction part 125 also serves as an introduction part for introducing fluid air for fluidizing the solid particles, although not particularly limited, and the SO 2 gas is added to the fluid air and introduced to the return part 122 . Specifically, SO 2 is supplied from the SO 2 tank 15 in which the SO 2 gas is accumulated or generated to the fluidizing air pipe 21 via the flow rate variable valve 16 . Then, SO 2 gas is supplied to the return portion 122 by sending this flowing air to the return portion 122 via the introduction portion 125 . The SO 2 gas and fluidizing air introduced into the return section 122 have the effect of fluidizing the solid particles and sending them to the furnace 10 through the return chute 124 . Since the SO 2 gas and fluidized air introduced into the return section 122 have a lower pressure than the exhaust gas of the furnace 10 , they do not flow into the furnace 10 but rise through the downcomer 121 and flow into the flue 13 .

第1計測部126及び第2計測部127は、ダウンカマー121に配置されて、ダウンカマー121を通過するガス中のSOガスの濃度とHClガスの濃度とを計測する。第1計測部126及び第2計測部127のうち、ダウンカマー121内に配置される計測用の素子の周囲には気体成分のみを通すフィルタが設けられ、第1計測部126及び第2計測部127は固体成分の影響を排してガスの濃度を計測できる。なお、第1計測部126及び第2計測部127は、直接にガスの濃度を計測する構成でなく、別の物理量を計測し、計測された物理量を変換してガスの濃度を求める構成としてもよい。The first measurement unit 126 and the second measurement unit 127 are arranged in the downcomer 121 and measure the concentration of SO 2 gas and the concentration of HCl gas in the gas passing through the downcomer 121 . Among the first measurement unit 126 and the second measurement unit 127, a filter that allows only gaseous components to pass is provided around the measurement element arranged in the downcomer 121, and the first measurement unit 126 and the second measurement unit 127 can measure the concentration of gas by eliminating the influence of solid components. Note that the first measurement unit 126 and the second measurement unit 127 may be configured to measure another physical quantity and convert the measured physical quantity to obtain the gas concentration instead of directly measuring the gas concentration. good.

制御部20は、第1計測部126及び第2計測部127の計測結果を入力し、また、流量可変弁16を制御してリターン部122へのSOガスの導入量を制御する。The control unit 20 inputs the measurement results of the first measurement unit 126 and the second measurement unit 127 and controls the flow rate variable valve 16 to control the introduction amount of SO 2 gas to the return unit 122 .

一方の過熱器14aは、煙道13に設けられ、高温の排ガスの熱を受けて蒸気を過熱する。もう一方の過熱器14bは、循環部12のリターン部122に設けられ、高温の流動材の熱を受けて蒸気を過熱する。 One superheater 14a is provided in the flue 13 and receives the heat of the high-temperature exhaust gas to superheat the steam. The other superheater 14b is provided in the return section 122 of the circulation section 12 and receives the heat of the high temperature fluid material to superheat the steam.

なお、煙道13の過熱器14aよりも後段には、排ガスの余熱を利用して温水を予熱するエコノマイザ、また、排ガスの余熱を利用して燃焼用空気を予熱する空気予熱器が設けられていてもよい。 An economizer that preheats hot water using residual heat of exhaust gas and an air preheater that preheats combustion air using residual heat of exhaust gas are provided in the flue 13 after the superheater 14a. may

集塵機17は、バグフィルタ及び電気集塵機等であり、低温の排ガスからダストを捕集する。 The dust collector 17 is a bag filter, an electric dust collector, or the like, and collects dust from low-temperature exhaust gas.

ポンプ18及び煙突19は排ガスを空中に排出させる。 A pump 18 and a chimney 19 expel the flue gas into the air.

<燃焼動作>
上記構成の循環流動層ボイラ1においては、アルカリ塩を多く含有するバイオマス燃料等の燃料が火炉10に投入される一方、燃焼用空気が火炉10に供給されて燃料が燃焼される。燃料の燃焼時、アルカリ塩であるガス状のMCl(Mは、K(カリウム)、Na(ナトリウム)等)が多く発生し、排ガスと一緒に火炉10から排出される。また、排ガスの力によって固体粒子の一部が火炉10から排出される。固気分離装置11では、火炉10から排出された排ガスと固体粒子とが分離され、固体粒子が捕集される。固体粒子と排ガスとが分離される際、固体粒子は排ガスに晒され、固体粒子にはMClが多く付着される。固体粒子の多くは流動材であり、循環部12へ戻される。固体粒子に付着されなかった残りのMClは煙道13に送られる。
<Combustion operation>
In the circulating fluidized bed boiler 1 configured as described above, fuel such as biomass fuel containing a large amount of alkali salt is fed into the furnace 10, while combustion air is supplied to the furnace 10 to burn the fuel. When the fuel is burned, a large amount of gaseous MCl (M is K (potassium), Na (sodium), etc.), which is an alkali salt, is generated and discharged from the furnace 10 together with the exhaust gas. Also, some of the solid particles are expelled from the furnace 10 by the force of the exhaust gas. In the solid-gas separator 11, the exhaust gas discharged from the furnace 10 is separated from the solid particles, and the solid particles are collected. When the solid particles and exhaust gas are separated, the solid particles are exposed to the exhaust gas, and a large amount of MCl adheres to the solid particles. Most of the solid particles are fluid material and are returned to the circulation section 12 . The remaining MCl not attached to solid particles is sent to flue 13 .

MClが多く付着した流動材はリターン部122で滞留されかつ導入されたSOガスに晒される。リターン部122に滞留された流動材は、流動エアによって流動されながら一様にSOガスに晒される。この際、例えば反応式(1)に示す化学反応が生じて、流動材に付着したMClが、HCl(塩化水素)及び、MSO(Mは、K(カリウム)、Na(ナトリウム等)に変わる。一般に、ガス対ガスの反応よりも固体対ガスの反応の方が効率的に化学反応を促進できる。リターン部122においては、固体対ガスの反応により、効率的に反応式(1)の化学反応が得られる。The fluid material to which a large amount of MCl adheres is retained in the return section 122 and is exposed to the introduced SO 2 gas. The fluid material retained in the return portion 122 is uniformly exposed to the SO 2 gas while being fluidized by the fluid air. At this time, for example, a chemical reaction represented by the reaction formula (1) occurs, and MCl adhering to the fluid material is converted into HCl (hydrogen chloride) and M 2 SO 4 (M is K (potassium), Na (sodium, etc.) In general, a solid-gas reaction can promote a chemical reaction more efficiently than a gas-gas reaction, and in the return section 122, the solid-gas reaction can efficiently promote reaction (1) chemical reaction is obtained.

MCl+SO+HO → HCl+MSO (1)MCl + SO2 + H2O →HCl+ M2SO4 (1)

リターン部122で生成されたHClガスは、ダウンカマー121を通って煙道13に流れ、リターン部122で生成されたMSOは、例えば流動材と一緒に火炉10に戻されて粉流体として火炉10から回収される。The HCl gas produced in the return section 122 flows through the downcomer 121 into the flue 13, and the M 2 SO 4 produced in the return section 122 is returned to the furnace 10 together with, for example, the fluid material to form a liquid powder. is recovered from the furnace 10 as

さらに、リターン部122に導入され、化学反応しなかったSOガスの一部はダウンカマー121を通って煙道13に流れる。その際、このSOガスは、煙道13に排出されたMClと化学反応して、煙道13の排ガスのMClを削減する作用を及ぼす。Further, part of the SO 2 gas introduced into the return section 122 and not chemically reacted passes through the downcomer 121 and flows into the flue 13 . At that time, this SO 2 gas chemically reacts with MCl discharged into the flue 13 and has the effect of reducing MCl in the exhaust gas of the flue 13 .

<SOガス導入処理>
バイオマス燃料等の燃料はアルカリ塩(MCl)の含有量にバラツキがある。そこで、制御部20は、アルカリ塩の含有量に応じてSOガスの導入量が最適になるよう制御を行う。続いて、制御部20によるSOガスの導入量の制御処理について説明する。
<SO 2 gas introduction process>
Fuels such as biomass fuels vary in content of alkali salts (MCl). Therefore, the control unit 20 performs control so that the introduction amount of the SO 2 gas is optimized according to the alkali salt content. Next, the process of controlling the introduction amount of SO 2 gas by the control unit 20 will be described.

図3は、制御部により実行されるSOガスの導入処理の手順を示すフローチャートである。図4は、制御部により実行されるSOガスの導入処理を説明するタイムチャートである。図4中、「MCl混入量」とは燃料に混入されるアルカリ塩の量を示す。「SO計測量」及び「HCl計測量」とは、第1計測部126及び第2計測部127により計測されるSOの濃度及びHClの濃度を示す。「SO導入量」は、リターン部122へのSOの導入量を示す。図4において、「SO計測量」のスケールは、「HCl計測量」のスケールよりも拡大して示している。FIG. 3 is a flow chart showing the procedure of SO 2 gas introduction processing executed by the control unit. FIG. 4 is a time chart for explaining SO 2 gas introduction processing executed by the control unit. In FIG. 4, "amount of mixed MCl" indicates the amount of alkali salt mixed in the fuel. “Measured amount of SO 2 ” and “measured amount of HCl” indicate concentrations of SO 2 and HCl measured by the first measurement unit 126 and the second measurement unit 127 . “SO 2 introduction amount” indicates the introduction amount of SO 2 to the return section 122 . In FIG. 4, the scale of "measured amount of SO 2 " is enlarged more than the scale of "measured amount of HCl".

図3に示すように、SOガス導入処理において制御部20は、アルカリ塩を含む燃料が投入される期間中、短いサイクルでステップS1~S8のループ処理を繰り返し実行する。このループ処理において、先ず、制御部20は、ダウンカマー121中のSOガスの濃度及びHClガスの濃度を取得する(ステップS1、S2)。ダウンカマー121に流れる気体の流量は一定であり、SOガスの濃度及びHClガスの濃度は、ダウンカマー121を流れるSOガスの流量及びHClガスの流量に略比例する。このため、制御部20は、濃度に比例定数を乗算することでSOガス及びHClガスの流量へ換算できる。As shown in FIG. 3, in the SO 2 gas introduction process, the control unit 20 repeatedly executes the loop process of steps S1 to S8 in short cycles during the period in which the fuel containing alkali salt is supplied. In this loop process, the control unit 20 first acquires the concentration of SO 2 gas and the concentration of HCl gas in the downcomer 121 (steps S1 and S2). The flow rate of the gas flowing through the downcomer 121 is constant, and the concentrations of SO 2 gas and HCl gas are substantially proportional to the flow rates of SO 2 gas and HCl gas flowing through the downcomer 121 . Therefore, the control unit 20 can convert the concentrations into the flow rates of the SO 2 gas and the HCl gas by multiplying the concentrations by the constant of proportionality.

なお、ダウンカマー121を通過する気体の流量が一定でない場合には、ステップS1、S2において制御部20は、気体の流量に濃度を乗算し、ダウンカマー121を通過するSOガスの流量、HClガスの流量を計算してもよい。そして、制御部20は、続く判別のステップ(S3、S5、S7)を、濃度に基づいて判別する代わりに、流量に基づいて判別するように構成してもよい。If the flow rate of the gas passing through the downcomer 121 is not constant, in steps S1 and S2, the control unit 20 multiplies the flow rate of the gas by the concentration, the flow rate of the SO2 gas passing through the downcomer 121, HCl Gas flow rates may be calculated. Then, the control unit 20 may be configured to perform the subsequent determination steps (S3, S5, S7) based on the flow rate instead of the concentration.

ステップS1~S8のループ処理において、制御部20は、ステップS1で取得されたSOガスの濃度が設定下限値以下か(ステップS3)、あるいは、設定上限値以上か(ステップS5)を判別する。ここで、設定下限値とは、導入したSOガスの量に対してアルカリ塩が十分に豊富であるときに、ダウンカマー121で計測されるSOガスの濃度を下限値とし、この下限値よりも少し大きい値として予め設定された値である。また、設定上限値とは、アルカリ塩の量に対して導入したSOガスがやや豊富となったときに、ダウンカマー121で計測されるSOガスの濃度を示すように、予め設定された値である。図4の「SO計測量」のタイムチャートに示すように、ダウンカマー121のSOガスの濃度が設定上限値以下かつ設定下限値以上であれば、SOガスの導入量はリターン部122のアルカリ塩と化学反応するのに適した量であると見なすことができる。In the loop processing of steps S1 to S8, the control unit 20 determines whether the SO 2 gas concentration obtained in step S1 is below the set lower limit (step S3) or above the set upper limit (step S5). . Here, the set lower limit value is the concentration of SO2 gas measured by the downcomer 121 when the alkali salt is sufficiently abundant with respect to the amount of introduced SO2 gas. It is a value preset as a slightly larger value than . The set upper limit value is set in advance so as to indicate the concentration of SO2 gas measured by the downcomer 121 when the introduced SO2 gas is slightly rich with respect to the amount of alkali salt. value. As shown in the time chart of "SO 2 measurement amount" in FIG . can be considered to be a suitable amount to chemically react with the alkali salt of

制御部20は、ステップS3の判別結果がYESとなれば、SOガスの導入量を増加する(ステップS4、図4の期間T1、T3を参照)。また、制御部20は、ステップS4の判別結果がYESとなれば、SOガス導入量を減少させる(ステップS6、図4の期間T2を参照)。If the determination result of step S3 is YES, the controller 20 increases the introduction amount of the SO 2 gas (step S4, see periods T1 and T3 in FIG. 4). Further, if the determination result in step S4 is YES, the control unit 20 reduces the SO 2 gas introduction amount (step S6, see period T2 in FIG. 4).

また、制御部20は、ステップS3、S4の判別結果が共にNOであれば、ステップS2で取得されたHClガスの濃度が減少したか判別する(ステップS7)。具体的には、制御部20は、複数回のループ処理においてステップS2で取得された一連のHClガスの濃度変化から、例えば誤差成分を除去して、変化率を閾値と比較することで、HClガスの濃度が減少したか否かを判別することができる。その結果、HClガスの濃度が減少したと判別された場合には、制御部20は、SOガスの導入量を減少させる(ステップS8、図4の期間T2を参照)。Further, if both determination results in steps S3 and S4 are NO, the control unit 20 determines whether the concentration of HCl gas obtained in step S2 has decreased (step S7). Specifically, the control unit 20 removes, for example, an error component from a series of changes in the concentration of HCl gas obtained in step S2 in a plurality of loop processes, and compares the rate of change with a threshold to obtain HCl It can be determined whether the gas concentration has decreased. As a result, when it is determined that the concentration of HCl gas has decreased, the controller 20 decreases the introduction amount of SO 2 gas (step S8, see period T2 in FIG. 4).

ループ処理において、ステップS3、S5、S7の判別結果が全てNOである場合、制御部20は、SOガスの現在の導入量を維持したまま、処理をステップS1に戻す。In the loop processing, if the determination results of steps S3, S5, and S7 are all NO, the control unit 20 returns the processing to step S1 while maintaining the current introduction amount of SO2 gas.

以上のSOガス導入処理によれば、図4に示したように、燃料のアルカリ塩の含有量が増加したり減少したりした場合に、これらに追従するように、SOガスの導入量が増加あるいは減少するように制御される。さらに、上記のSOガス導入処理によれば、リターン部122においてMClとSOガスとの化学反応が飽和するように、SOガスが少し多めに導入されるように制御される。例えば、図4の期間T1、T3の各終端部に示されるように、SOガスの導入量が多くなって化学反応量が飽和すると、HClの計測量が飽和し、その直後に、SOガスの導入量が維持される。また、図4の期間T2の終端部に示されるように、MClの減少に追従してSOガスの導入量が減少されて化学反応量が飽和すると、HClの計測量が飽和し、その直後に、SOガスの導入量が維持される。According to the SO 2 gas introduction process described above, as shown in FIG. 4, when the alkali salt content of the fuel increases or decreases, the SO 2 gas introduction amount is controlled to increase or decrease. Furthermore, according to the SO 2 gas introduction process described above, the SO 2 gas is controlled to be introduced in a slightly larger amount so that the chemical reaction between the MCl and the SO 2 gas is saturated in the return section 122 . For example, as shown at the end portions of periods T1 and T3 in FIG. 4, when the introduction amount of SO 2 gas increases and the amount of chemical reaction saturates, the measured amount of HCl saturates, and immediately after that, SO 2 The amount of gas introduced is maintained. Further, as shown at the end of period T2 in FIG. 4, when the introduction amount of SO 2 gas is decreased following the decrease in MCl and the chemical reaction amount is saturated, the measured amount of HCl is saturated, and immediately after that, , the introduction amount of SO 2 gas is maintained.

このような制御により、リターン部122において、循環材に付着したMClが大きな割合でSOガスと化学反応させることができ、反応しきらなかったSOガスがダウンカマー121を通って煙道13に送られるようになっている。そして、煙道13に送られたSOガスは、煙道13の排ガス中に含まれるMClと化学反応し、煙道13中のMClを薄める作用を及ぼすことができる。With such control, a large proportion of the MCl adhering to the circulation material can be chemically reacted with the SO 2 gas in the return section 122 , and the SO 2 gas that has not completely reacted passes through the downcomer 121 to the flue 13 . to be sent to Then, the SO 2 gas sent to the flue 13 chemically reacts with MCl contained in the flue gas of the flue 13 and can act to dilute the MCl in the flue 13 .

なお、図3の処理においては、ステップS5の条件又はステップS7の条件を満たした場合に、SOガスの導入量が減少される構成を示したが、何れか一方の条件を満たした場合にのみ、SOガスの導入量を減少させるように構成してもよい。また、別の条件として、制御部20は、SOガスの導入量を増加している期間、HClガスの量が平衡(飽和)になったか否かを判断するように構成してもよい。そして、平衡になったと判断した場合、制御部20は、SOガスの導入量の増加を停止し、SOガスの導入量を維持するように構成してもよい。平衡を判別する条件としては、例えばSOガスの増加率に対するHClガスの増加率の比率が閾値を下回った場合など、誤差変動分を差し引いて飽和を識別できる条件を適用すればよい。In the processing of FIG. 3, the configuration is shown in which the introduction amount of SO 2 gas is reduced when the condition of step S5 or the condition of step S7 is satisfied. Only the amount of SO 2 gas introduced may be reduced. As another condition, the control unit 20 may be configured to determine whether or not the amount of HCl gas reaches equilibrium (saturation) during the period in which the introduction amount of SO 2 gas is being increased. Then, when it is determined that equilibrium has been reached, the controller 20 may be configured to stop increasing the introduction amount of SO 2 gas and maintain the introduction amount of SO 2 gas. As a condition for judging equilibrium, a condition under which saturation can be identified by subtracting an error variation, such as when the ratio of the rate of increase of HCl gas to the rate of increase of SO 2 gas is below a threshold value, may be applied.

以上のように、実施形態1の循環流動層ボイラ1及びその運転方法によれば、固気分離装置11で捕集された流動材が滞留されるリターン部122に、SOガスが導入される。これにより、火炉10で排ガスにガス状のMClが多く排出されても、固気分離装置11においてMClを大きな割合で流動材へ付着させ、リターン部122において流動材に付着したMClとSOガスとを効率的に化学反応させることができる。すなわち、煙道13の前段で多くのMClを排ガスから除去することができる。したがって、リターン部122からMClが付着した流動材が火炉10に戻され、燃焼によってMClが再び融解されて、排ガスに排出されてしまうといった現象が、顕著に低減され、排ガス中のMCl濃度を顕著に低減できる。これらにより、リターン部122に設けられた過熱器14b及び煙道13に設けられた過熱器14aへのアルカリ塩の付着及びアルカリ塩による過熱器14a、14bの腐食を大幅に抑制することができる。As described above, according to the circulating fluidized bed boiler 1 of Embodiment 1 and the operating method thereof, SO 2 gas is introduced into the return section 122 where the fluidized material collected by the solid-gas separation device 11 is retained. . As a result, even if a large amount of gaseous MCl is discharged into the exhaust gas from the furnace 10, a large proportion of the MCl adheres to the fluid material in the solid-gas separation device 11, and the MCl and SO 2 gas adhered to the fluid material in the return section 122 and can be efficiently chemically reacted. That is, a large amount of MCl can be removed from the flue gas in the upstream stage of the flue 13 . Therefore, the phenomenon that the fluidized material to which MCl adheres is returned from the return part 122 to the furnace 10, and the MCl is melted again by combustion and discharged into the exhaust gas is significantly reduced, and the MCl concentration in the exhaust gas is significantly reduced. can be reduced to As a result, adhesion of alkali salts to the superheater 14b provided in the return section 122 and the superheater 14a provided in the flue 13 and corrosion of the superheaters 14a and 14b due to the alkali salt can be greatly suppressed.

特に、リターン部122に配置された過熱器14bにアルカリ塩が付着すると、アルカリ塩が付着し腐食した部分に流動材の摩擦が生じることで、減肉されやすいが、上記のMClの低減作用により、過熱器14bが減肉されることを顕著に抑制できる。 In particular, when the alkali salt adheres to the superheater 14b arranged in the return section 122, friction of the fluid material occurs in the portion corroded by the adherence of the alkali salt, which tends to reduce the wall thickness. , the thinning of the superheater 14b can be significantly suppressed.

また、実施形態1の循環流動層ボイラ1によれば、リターン部122に導入されたSOガスの一部は、ダウンカマー121を通って煙道13に流れる。このため、煙道13を流れる排ガス中のMClもSOガスと反応し、排ガス中のMClの濃度をより低減することができる。これによっても、煙道13に設けられる過熱器14aへのアルカリ塩の付着及びアルカリ塩による過熱器14aの腐食を更に抑制できる。Further, according to the circulating fluidized bed boiler 1 of Embodiment 1, part of the SO 2 gas introduced into the return section 122 flows through the downcomer 121 into the flue 13 . Therefore, the MCl in the exhaust gas flowing through the flue 13 also reacts with the SO 2 gas, and the concentration of MCl in the exhaust gas can be further reduced. Also by this, adhesion of the alkali salt to the superheater 14a provided in the flue 13 and corrosion of the superheater 14a by the alkali salt can be further suppressed.

また、実施形態1の循環流動層ボイラ1及びその運転方法によれば、SOガスの濃度とHClガスの濃度とをそれぞれ計測する第1計測部126と第2計測部127とが、ダウンカマー121に配置される。そして、これらの計測結果に基づいてSOガスの導入量が制御される。ダウンカマー121では、火炉10から排ガスが入ってこないので、排ガスの影響が少ない状態で、リターン部122から送られてくるSOガスの濃度とHClガスの濃度とを計測できる。したがって、リターン部122における化学反応後のSOガスの濃度とHClガスの濃度とを正確に計測することができ、これらに基づきSOガスの導入量を正確に制御できる。Further, according to the circulating fluidized bed boiler 1 and the operating method thereof of Embodiment 1, the first measuring unit 126 and the second measuring unit 127 that measure the concentration of SO 2 gas and the concentration of HCl gas, respectively, are downcomers. 121. Then, the introduction amount of SO 2 gas is controlled based on these measurement results. Since the exhaust gas does not enter the downcomer 121 from the furnace 10, the concentration of SO 2 gas and the concentration of HCl gas sent from the return part 122 can be measured with little influence of the exhaust gas. Therefore, it is possible to accurately measure the concentrations of the SO 2 gas and the HCl gas after the chemical reaction in the return section 122, and based on these, it is possible to accurately control the introduction amount of the SO 2 gas.

また、実施形態1の循環流動層ボイラ1及びその運転方法によれば、図3のステップS3、S5、S7の判別結果に基づくSOガスの導入量の増減処理により、安定的に最適な量のSOガスを導入することができる。Further, according to the circulating fluidized bed boiler 1 of Embodiment 1 and its operating method, the process of increasing or decreasing the introduction amount of SO 2 gas based on the determination results of steps S3, S5, and S7 in FIG. of SO2 gas can be introduced.

(実施形態2)
図5は、本発明の実施形態2に係る循環流動層ボイラを示す構成図である。
(Embodiment 2)
FIG. 5 is a configuration diagram showing a circulating fluidized bed boiler according to Embodiment 2 of the present invention.

実施形態2の循環流動層ボイラ1Aは、実施形態1の構成からリターン部122に配置される過熱器14bを除いた構成であり、その他は実施形態1と同様である。 A circulating fluidized bed boiler 1A of the second embodiment has the same configuration as that of the first embodiment except for the superheater 14b arranged in the return section 122, and the rest is the same as that of the first embodiment.

リターン部122におけるSOガスの導入処理は、上述したように、煙道13に流れていくMClを大幅に低減させる効果を奏する。したがって、この導入処理により、煙道13に配置される過熱器14aへのアルカリ塩の付着及びアルカリ塩による過熱器14aの腐食を大幅に抑制できるという効果を奏する。The SO 2 gas introduction process in the return section 122 has the effect of significantly reducing MCl flowing into the flue 13 as described above. Therefore, this introduction treatment has the effect of significantly suppressing adhesion of alkali salts to the superheater 14a arranged in the flue 13 and corrosion of the superheater 14a due to the alkali salts.

(実施形態3)
図6は、本発明の実施形態3に係る循環流動層ボイラを示す構成図である。
(Embodiment 3)
FIG. 6 is a configuration diagram showing a circulating fluidized bed boiler according to Embodiment 3 of the present invention.

実施形態3の循環流動層ボイラ1Bは、煙突19へ送られる排ガスの一部に、SOタンク15のSOガスを混ぜてリターン部122へ導入するように構成したものであり、その他は実施形態1と同様である。The circulating fluidized bed boiler 1B of Embodiment 3 is configured such that part of the flue gas sent to the chimney 19 is mixed with the SO 2 gas from the SO 2 tank 15 and introduced into the return part 122. Same as form 1.

煙突19から排出される排ガスには、SOが僅かに含まれる。これを有効活用するため、実施形態3では、煙突19の前段からリターン部122まで配管171が通され、煙突19へ送られる排ガスの一部が配管171へ流され、かつ、配管171へSOタンク15からSOガスが加えられるように構成される。そして、配管171からリターン部122へ導入部125を介してガスが導入されるように構成される。The flue gas discharged from the chimney 19 contains a small amount of SO 2 . In order to make effective use of this, in the third embodiment, a pipe 171 is passed from the front stage of the chimney 19 to the return part 122, a part of the exhaust gas sent to the chimney 19 is flowed to the pipe 171, and SO 2 is It is configured to add SO 2 gas from tank 15 . Then, the gas is introduced from the pipe 171 to the return portion 122 through the introduction portion 125 .

排ガスに含まれるSOガスの濃度が略一定であれば、制御部20は、図3と同様の制御によりSOガスの導入処理により、リターン部122に供給されるSOガスを最適量に調整できる。一方、排ガスに含まれるSOガスの濃度が変化するのであれば、この濃度を計測し、制御部20が合計のSOガスの導入量を制御することで、リターン部122に供給されるSOガスを最適量に調整できる。If the concentration of SO 2 gas contained in the exhaust gas is substantially constant, the control unit 20 performs the SO 2 gas introduction process in the same manner as in FIG. Adjustable. On the other hand, if the concentration of SO 2 gas contained in the exhaust gas changes, this concentration is measured, and the control unit 20 controls the total introduction amount of SO 2 gas, so that the SO gas supplied to the return unit 122 2 gas can be adjusted to the optimum amount.

以上、本発明の各実施形態について説明した。しかし、本発明は上記実施形態に限られない。例えば、上記実施形態では、リターン部122に導入する硫黄元素含有化合物としてSOガスを適用した構成を一例として説明した。しかし、硫黄元素含有化合物としては、硫酸、あるいは、黄鉄鉱等の硫化鉱物など、アルカリ塩を硫化水素と硫化物とに置換できる化合物であれば、いずれの硫黄元素含有化合物を用いてもよい。硫酸を用いる場合、リターン部122へは液体として導入され、導入後、リターン部122においてガスに転移する。また、黄鉄鉱を用いる場合、リターン部122へは粒状の固体として導入され、導入後、加熱により次式(2)の反応が生じて、硫黄酸化物をリターン部122で発生させることができる。なお、リターン部へ硫黄元素含有化合物を導入する導入部は、流動材が滞留する領域よりも上方の位置でかつループシールよりも上流に設けてもよい。
4FeS+ 11O → 2Fe +8SO (2)
Each embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiments. For example, in the above embodiment, the configuration in which SO 2 gas is applied as the sulfur element-containing compound to be introduced into the return section 122 has been described as an example. However, as the sulfur element-containing compound, any sulfur element-containing compound, such as sulfuric acid or sulfide minerals such as pyrite, may be used as long as it is a compound that can replace alkali salts with hydrogen sulfide and sulfide. When sulfuric acid is used, it is introduced into the return section 122 as a liquid, and after introduction, changes to a gas in the return section 122 . Further, when pyrite is used, it is introduced into the return section 122 as a granular solid, and after introduction, the reaction of the following formula (2) is caused by heating, and sulfur oxides can be generated in the return section 122. The introduction part for introducing the sulfur element-containing compound to the return part may be provided at a position above the region where the fluid material stays and upstream of the loop seal.
4FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2 (2)

また、上記実施形態では、リターン部122の導入部125は、SOガスと流動エアとを一緒に導入する構成としたが、流動エアの導入部とSOガスの導入部とが別々に設けられていてもよい。なお、ガス又は流体をリターン部へ導入する導入部は、ガス又は流体をリターン部へ注入する注入部と呼んでもよい。In addition, in the above - described embodiment, the introduction part 125 of the return part 122 is configured to introduce the SO2 gas and the flowing air together . may have been Note that the introduction section that introduces gas or fluid into the return section may be called an injection section that injects gas or fluid into the return section.

また、上記実施形態では、第1計測部126と第2計測部127との計測結果に基づき、計測結果が所定の条件を満たした直後に制御部20がSOガスの増減又は維持を切り替える制御方法を示した。しかし、制御部20は、例えばPID(Proportional-Integral-Differential )制御により、計測結果に基づきSOガスの導入量を制御してもよい。また、制御部20は、第1計測部126の計測結果のみを用いて、あるいは、第1計測部126の計測結果とHCl以外の物質の濃度計測結果とを用いて、SOガスの導入量を制御してもよい。その他、実施形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。Further, in the above-described embodiment, the control unit 20 controls switching between increasing, decreasing, and maintaining the SO2 gas immediately after the measurement results of the first measurement unit 126 and the second measurement unit 127 satisfy a predetermined condition. showed how. However, the control unit 20 may control the introduction amount of the SO 2 gas based on the measurement results, for example, by PID (Proportional-Integral-Differential) control. In addition, the control unit 20 uses only the measurement result of the first measurement unit 126, or the measurement result of the first measurement unit 126 and the concentration measurement result of substances other than HCl, to determine the introduction amount of SO 2 gas. may be controlled. Other details shown in the embodiments can be changed as appropriate without departing from the scope of the invention.

本発明は、循環流動層ボイラ及びその運転方法に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for a circulating fluidized bed boiler and its operating method.

1、1A、1B 循環流動層ボイラ
10 火炉
11 固気分離装置
12 循環部
13 煙道
14a、14b 過熱器
15 SOタンク
16 流量可変弁
19 煙突
20 制御部
121 ダウンカマー
122 リターン部
123 仕切り
124 リターンシュート
125 導入部
126 第1計測部
127 第2計測部
171 配管
Reference Signs List 1, 1A, 1B circulating fluidized bed boiler 10 furnace 11 solid-gas separator 12 circulation section 13 flue 14a, 14b superheater 15 SO 2 tank 16 variable flow valve 19 stack 20 control section 121 downcomer 122 return section 123 partition 124 return Chute 125 Introduction part 126 First measurement part 127 Second measurement part 171 Pipe

Claims (6)

火炉と、
前記火炉から排出された固体粒子を捕集する固気分離装置と、
前記固気分離装置で捕集された固体粒子が、前記火炉内に戻される前に滞留されるリターン部と、
前記リターン部へ硫黄元素含有化合物を導入する導入部と、
前記固気分離装置と前記リターン部との間の通路で前記硫黄元素含有化合物の濃度を計測する第1計測部と、
前記第1計測部の計測結果を用いて前記硫黄元素含有化合物の導入量を制御する制御部と、
を備える循環流動層ボイラ。
a furnace;
a solid-gas separator for collecting solid particles discharged from the furnace;
a return section in which the solid particles collected by the solid-gas separator are retained before being returned to the furnace;
an introduction section for introducing a sulfur element-containing compound into the return section;
a first measuring unit for measuring the concentration of the sulfur element-containing compound in a passage between the solid-gas separation device and the return unit;
A control unit that controls the introduction amount of the sulfur element-containing compound using the measurement result of the first measurement unit;
circulating fluidized bed boiler.
前記通路で塩化水素の濃度を計測する第2計測部を更に備え、
前記制御部は、前記第1計測部の計測結果と前記第2計測部の計測結果とを用いて前記硫黄元素含有化合物の導入量を制御する、
請求項記載の循環流動層ボイラ。
Further comprising a second measuring unit for measuring the concentration of hydrogen chloride in the passage,
The control unit uses the measurement result of the first measurement unit and the measurement result of the second measurement unit to control the introduction amount of the sulfur element-containing compound.
The circulating fluidized bed boiler according to claim 1 .
前記制御部は、
前記硫黄元素含有化合物の導入量の増加中に前記通路の塩化水素の量が平衡になったと判断した場合、あるいは、前記通路の前記硫黄元素含有化合物の量が予め設定された設定下限値から設定上限値の間にあると判断した場合に、前記硫黄元素含有化合物の導入量を維持し、
前記通路の前記硫黄元素含有化合物の量が前記設定下限値より低くなったと判断した場合に、前記硫黄元素含有化合物の導入量を増加し、
前記通路の前記硫黄元素含有化合物の量が前記設定上限値より高くなったと判断した場合、あるいは、前記通路の前記塩化水素の量が減少したと判断した場合に、前記硫黄元素含有化合物の導入量を減少させる、
請求項記載の循環流動層ボイラ。
The control unit
When it is determined that the amount of hydrogen chloride in the passage has reached equilibrium while the introduction amount of the sulfur element-containing compound is increasing, or the amount of the sulfur element-containing compound in the passage is set from a preset lower limit value When it is determined that it is between the upper limit values, maintaining the amount of the sulfur element-containing compound introduced,
increasing the introduction amount of the sulfur element-containing compound when it is determined that the amount of the sulfur element-containing compound in the passage has become lower than the set lower limit;
When it is determined that the amount of the sulfur element-containing compound in the passage has become higher than the set upper limit value, or when it is determined that the amount of the hydrogen chloride in the passage has decreased, the introduction amount of the sulfur element-containing compound decrease the
The circulating fluidized bed boiler according to claim 2 .
火炉と、前記火炉から排出された固体粒子を捕集する固気分離装置と、前記固気分離装置で捕集された固体粒子が前記火炉内に戻される前に滞留されるリターン部とを備える循環流動層ボイラの運転方法であって、
前記リターン部へ硫黄元素含有化合物を導入し、
前記固気分離装置と前記リターン部との間の通路で前記硫黄元素含有化合物の濃度を計測し、
前記硫黄元素含有化合物の濃度の計測結果を用いて前記硫黄元素含有化合物の導入量を制御する、
循環流動層ボイラの運転方法。
A furnace, a solid-gas separation device for collecting solid particles discharged from the furnace, and a return section in which the solid particles collected by the solid-gas separation device are retained before being returned to the furnace. A method of operating a circulating fluidized bed boiler, comprising:
introducing a sulfur element-containing compound into the return section;
measuring the concentration of the sulfur element-containing compound in a passage between the solid-gas separation device and the return section;
Controlling the introduction amount of the sulfur element-containing compound using the measurement result of the concentration of the sulfur element-containing compound,
A method of operating a circulating fluidized bed boiler.
前記通路で塩化水素の濃度を計測し、
前記硫黄元素含有化合物の濃度の計測結果と塩化水素の濃度の計測結果とを用いて前記硫黄元素含有化合物の導入量を制御する、
請求項記載の循環流動層ボイラの運転方法。
Measuring the concentration of hydrogen chloride in the passageway,
Controlling the introduction amount of the sulfur element-containing compound using the measurement result of the concentration of the sulfur element-containing compound and the measurement result of the hydrogen chloride concentration,
A method of operating a circulating fluidized bed boiler according to claim 4 .
前記硫黄元素含有化合物の導入量の増加中に前記通路の塩化水素の量が平衡になった場合、あるいは、前記通路の前記硫黄元素含有化合物の量が予め設定された設定下限値から設定上限値の間にある場合に、前記硫黄元素含有化合物の導入量を維持し、
前記通路の前記硫黄元素含有化合物の量が前記設定下限値より低くなった場合に、前記硫黄元素含有化合物の導入量を増加し、
前記通路の前記硫黄元素含有化合物の量が前記設定上限値より高くなった場合、あるいは、前記通路の前記塩化水素の量が減少した場合に、前記硫黄元素含有化合物の導入量を減少させる、
請求項記載の循環流動層ボイラの運転方法。
When the amount of hydrogen chloride in the passage reaches equilibrium while the introduction amount of the sulfur element-containing compound is increasing, or when the amount of the sulfur element-containing compound in the passage is changed from a preset lower limit value to a preset upper limit value maintaining the introduction amount of the sulfur element-containing compound when it is between
increasing the introduction amount of the sulfur element-containing compound when the amount of the sulfur element-containing compound in the passage becomes lower than the set lower limit;
When the amount of the sulfur element-containing compound in the passage becomes higher than the set upper limit value, or when the amount of the hydrogen chloride in the passage decreases, reducing the introduction amount of the sulfur element-containing compound.
A method for operating a circulating fluidized bed boiler according to claim 5 .
JP2019551047A 2017-10-25 2018-10-17 Circulating fluidized bed boiler and its operation method Active JP7173981B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017205754 2017-10-25
JP2017205754 2017-10-25
PCT/JP2018/038623 WO2019082756A1 (en) 2017-10-25 2018-10-17 Circulating fluidized bed boiler and operating method of same

Publications (2)

Publication Number Publication Date
JPWO2019082756A1 JPWO2019082756A1 (en) 2020-11-12
JP7173981B2 true JP7173981B2 (en) 2022-11-17

Family

ID=66246497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019551047A Active JP7173981B2 (en) 2017-10-25 2018-10-17 Circulating fluidized bed boiler and its operation method

Country Status (4)

Country Link
JP (1) JP7173981B2 (en)
KR (1) KR102489144B1 (en)
PH (1) PH12020500492A1 (en)
WO (1) WO2019082756A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6916854B2 (en) * 2019-10-29 2021-08-11 川崎重工業株式会社 Denitration and corrosion reduction methods for waste incinerators

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291931A (en) 1999-04-05 2000-10-20 Nkk Corp Method and apparatus for treating waste
JP2004523348A (en) 2001-01-26 2004-08-05 バーターンファール・アクチボラゲット・(パブル) Method for operating a heat generation plant for burning chlorine-containing fuels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3833489A1 (en) * 1988-10-01 1990-04-05 Ver Kesselwerke Ag METHOD AND DEVICE FOR COMPLYING WITH A CONSTANT CONTROL SIZE IN A FLUIDIZED BURNING PLANT
JP2747673B2 (en) 1996-05-15 1998-05-06 川崎重工業株式会社 Operating method of combustion furnace
JPH10300059A (en) * 1997-04-25 1998-11-13 Hitachi Ltd Power generating system and its control method
FI117631B (en) 2005-06-16 2006-12-29 Valtion Teknillinen A method of preventing the deposition of chlorine on the heating surfaces of a boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291931A (en) 1999-04-05 2000-10-20 Nkk Corp Method and apparatus for treating waste
JP2004523348A (en) 2001-01-26 2004-08-05 バーターンファール・アクチボラゲット・(パブル) Method for operating a heat generation plant for burning chlorine-containing fuels

Also Published As

Publication number Publication date
WO2019082756A1 (en) 2019-05-02
KR20200071719A (en) 2020-06-19
PH12020500492A1 (en) 2021-03-01
JPWO2019082756A1 (en) 2020-11-12
KR102489144B1 (en) 2023-01-13

Similar Documents

Publication Publication Date Title
Arias et al. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot
JP6254012B2 (en) Exhaust gas treatment system and exhaust gas treatment method
De Greef et al. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants
JP4028801B2 (en) Method for operating a heat generation plant for burning chlorine-containing fuels
DK1271053T3 (en) Process for combustion of high-halogenated waste with reduced emissions and corrosion
US20120053720A1 (en) Method and a system for optimization of parameters for a recovery boiler
Mujumdar et al. CFD modeling of rotary cement kilns
JP7173981B2 (en) Circulating fluidized bed boiler and its operation method
JP7261100B2 (en) ADDITIVE SUPPLY QUANTITY DETERMINATION DEVICE, COMBUSTION EQUIPMENT INCLUDING THE SAME, AND COMBUSTION EQUIPMENT OPERATION METHOD
CN106796027B (en) System and method for reducing the liquid discharge from one or more devices
CN109099442B (en) Method for controlling a recovery boiler
CN110292848B (en) CFD-based garbage incinerator deacidification equipment and method
JP2012223668A (en) Process and apparatus for dry desulfurization
JP2011149658A (en) Operation control method for circulating fluidized bed boiler
CN214233498U (en) SNCR control system of double-PID (proportion integration differentiation) circulating fluidized bed boiler
JP5398973B2 (en) Placing slurry of gypsum slurry and limestone slurry in exhaust gas desulfurization equipment
Lundqvist Mass and energy balances over the lime kiln in a kraft pulp mill
JP2980317B1 (en) Circulating fluidized bed boiler characteristics analysis method
Parker et al. CPFD modeling of industrial-scale dry flue gas desulfurization systems
WO2021210311A1 (en) Exhaust gas treatment system and exhaust gas treatment method
JP6695391B2 (en) Denitration and corrosion reduction methods for waste incineration equipment
Vandevelde et al. Simulation of a “Walking Column” in a Waste Layer on a Combustion Grate: a Multiphase Reactor Network Modelling Approach
Sun et al. Research on mercury re-release model in wet flue gas desulfurization (WFGD) in coal-fired power plants
JP2021188829A (en) Aggregate production determining method and combustion system
CN203744239U (en) Low-temperature cooling and dedusting flue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221104

R150 Certificate of patent or registration of utility model

Ref document number: 7173981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150