JP7171939B2 - 調整可能なカレントミラーキュービットシステム - Google Patents

調整可能なカレントミラーキュービットシステム Download PDF

Info

Publication number
JP7171939B2
JP7171939B2 JP2021551563A JP2021551563A JP7171939B2 JP 7171939 B2 JP7171939 B2 JP 7171939B2 JP 2021551563 A JP2021551563 A JP 2021551563A JP 2021551563 A JP2021551563 A JP 2021551563A JP 7171939 B2 JP7171939 B2 JP 7171939B2
Authority
JP
Japan
Prior art keywords
flux
qubit
current mirror
input
tunable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021551563A
Other languages
English (en)
Other versions
JP2022522757A (ja
Inventor
ジョージ ファーガソン、デイビッド
ユー リー、チョン
コッホ、イェンス
シュワン カリル、モー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Systems Corp
Original Assignee
Northrop Grumman Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northrop Grumman Systems Corp filed Critical Northrop Grumman Systems Corp
Publication of JP2022522757A publication Critical patent/JP2022522757A/ja
Application granted granted Critical
Publication of JP7171939B2 publication Critical patent/JP7171939B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS
    • G01R33/0358SQUIDS coupling the flux to the SQUID
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/70Quantum error correction, detection or prevention, e.g. surface codes or magic state distillation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Description

本開示は、概して、量子および古典的コンピューティングシステムに関し、より具体的には、調整可能なカレントミラーキュービットシステムに関する。
量子コンピュータは、量子状態の重ね合わせなどに基づくデータの操作を提供するために、キュービットと呼ばれるデバイスを実装する。キュービットの特徴の1つは、そのコヒーレンスであり、これは、コンピュータが量子処理を実施することができる忠実度に直接影響する。キュービットのコヒーレンスは、キュービットに結合される環境ノイズの振幅、およびノイズに対するキュービットの感度など、特定の要因によって影響を受ける。一例として、ノイズに対する感度は、キュービットの電流演算子または電圧演算子がキュービットの量子状態をどのようにシフトさせたり、結合させたりするかとして定量化することができる。これらのシフトおよび結合の大きさは、量子状態に作用する3つのパウリ演算子X、Y、Zの大きさとして記述することができ、かつパウリ双極子(Pauli dipoles)と呼ばれる。例えば、固体キュービットの場合、誘電体ノイズが環境ノイズの主な原因の1つであり得る。従来のキュービット設計は、固体システムにおける別の偏在するノイズの種類であり得る誘電損失または磁束ノイズなどのデコヒーレンスチャネルの影響を受けやすい。
一例は、調整可能なカレントミラーキュービットを含む。キュービットは、回路ループに配置された複数の磁束調整可能な要素を含む。マイクロ波入力信号を介した調整可能なカレントミラーキュービットの励起または量子状態の操作を可能にするマイクロ波励起モードと、調整可能なカレントミラーキュービットの量子状態の保存を可能にするノイズ保護モードとの間で調整可能なカレントミラーキュービットのモードを制御するために、磁束調整可能な要素の第1の部分は、第1の入力磁束を受信するように構成され、磁束調整可能な要素の残りの部分は、第2の入力磁束を受信するように構成される。キュービットは、マイクロ波励起モードおよびノイズ保護モードの各々においてクーパー対励起子(Cooper-pair exciton)の形成を容易にするために、磁束調整可能な要素の個々のペアの間のノードを相互接続する少なくとも1つのコンデンサをさらに含む。
別の例は、調整可能なカレントミラーキュービットを制御する方法を含む。方法は、調整可能なカレントミラーキュービットの量子状態の操作を提供するために、調整可能なカレントミラーキュービットのマイクロ波励起モードにおいてマイクロ波信号を介して調整可能なカレントミラーキュービットに励起を与えるステップを含む。方法は、調整可能なカレントミラーキュービットの回路ループに配置された複数の磁束調整可能な要素の第1の磁束調整可能な要素に第1の入力磁束を提供するステップを含む。調整可能なカレントミラーキュービットは、回路ループの周りで非局在化するクーパー対励起子の形成を容易にするように磁束調整可能な要素の個々のペアの間のノードを相互接続する少なくとも1つのコンデンサをさらに含む。方法は、第1の入力磁束を第1の振幅に断熱的に増加させ、第2の入力磁束を複数の磁束調整可能な要素のうちの残りの少なくとも1つに提供するステップを含む。方法は、調整可能なカレントミラーキュービットの量子状態を保存するために調整可能なカレントミラーキュービットをノイズ保護モードに設定するために、第1の入力磁束を第1の振幅から第2の振幅に断熱的に増加させ、第2の入力磁束をほぼゼロの振幅から第1の振幅に断熱的に増加させるステップを含む。
別の例は、調整可能なカレントミラーキュービットシステムを含む。システムは、第1の入力磁束を提供するように制御される第1の磁束源と、第2の入力磁束を提供するように制御される第2の磁束源と、第3の入力磁束を提供するように制御される第3の磁束源とを含む。システムは、調整可能なカレントミラーキュービットも含む。キュービットは、メビウスループ(Mobius loop)として配置され、かつ第3の入力磁束を受信するように構成された回路ループに配置された複数の超伝導量子干渉デバイス(SQUID:superconducting quantum interference devices)を含み、SQUIDの第1の部分は、第1の入力磁束を受信するように構成され、SQUIDの残りの部分は、第2の入力磁束を受信するように構成され、第1、第2、および第3の入力磁束は、マイクロ波入力信号を介した調整可能なカレントミラーキュービットの励起および量子状態の操作を可能にするマイクロ波励起モードと、調整可能なカレントミラーキュービットの量子状態の保存を可能にするノイズ保護モードとの間で調整可能なカレントミラーキュービットのモードを制御するように提供される。キュービットは、マイクロ波励起モードおよびノイズ保護モードの各々において回路ループの周りに非局在化するクーパー対励起子の形成を容易にするために、SQUIDの個々のペアの間のノードを相互接続する少なくとも1つのコンデンサをも含む。
調整可能なカレントミラーキュービットシステムの一例を示す。 調整可能なカレントミラーキュービットの回路図の一例を示す。 調整可能なカレントミラーキュービットシステムの回路図の別の例を示す。 調整可能なカレントミラーキュービットを制御する方法の一例を示す。
本開示は、概して、量子および古典的コンピューティングシステムに関し、より具体的には、調整可能なカレントミラーキュービットシステムに関する。調整可能なカレントミラーキュービットシステムは、量子コンピュータシステムの量子の操作のために実装することができる。調整可能なカレントミラーキュービットシステムは、調整可能なカレントミラーキュービットと、調整可能なカレントミラーキュービットに入力磁束を提供するために独立して制御することができる複数の磁束源とを含むことができる。調整可能なカレントミラーキュービットは、複数の磁束調整可能な要素を含み、複数の磁束調整可能な要素は、回路ループの周りに配置することができ、かつ複数の入力磁束のうちの2つを受信するように構成することができる超伝導量子干渉デバイス(SQUID:superconducting quantum interference devices)として機能するように配置することができる。一例として、回路ループは、磁束調整可能な要素に関してメビウスループとして構成することができる。例えば、磁束調整可能な要素の第1の部分(例えば、単一の1つ)は、第1の入力磁束を受信するように構成することができ、一方、磁束調整可能な要素の残りの少なくとも1つは、第2の入力磁束を受信することができる。さらに、回路ループは、第3の入力磁束を受信するように構成することができる。調整可能なカレントミラーキュービットは、磁束調整可能な要素の個々のペアの間のノードを相互接続する少なくとも1つのコンデンサを含むことができ、コンデンサは、調整可能なカレントミラーキュービットの回路ループの周りのクーパー対の相関運動を可能にする。
入力磁束は、調整可能なカレントミラーキュービットが調整可能なカレントミラーキュービットの少なくとも2つのモード間で遷移できるように独立して制御することができる。調整可能なカレントミラーキュービットのマイクロ波励起モードにおいて、調整可能なカレントミラーキュービットの量子状態は、共振マイクロ波信号を介して操作することができ、従って、調整可能なカレントミラーキュービットに保存される量子重ね合わせを生成することができる。入力磁束を操作することにより、調整可能なカレントミラーキュービットをノイズ保護モードに設定することができ、このノイズ保護モードでは、量子状態を、実質的にノイズの影響を受けない方法で、調整可能なカレントミラーキュービットに保存することができる。
例えば、調整可能なカレントミラーキュービットをマイクロ波励起モードから、基底状態および励起されたマイクロ波状態が調整可能なカレントミラーキュービットの周りで右回転電流状態と左回転電流状態に断熱的に変化する永続電流モードに切り替えるために、第2の入力磁束が非活性化され、かつ第3の入力磁束が(例えば、静的振幅で)提供されている間に、第1の入力磁束が提供され、かつ断熱的に増加される。別の例として、調整可能なカレントミラーキュービットを永続電流モードから、電荷変動が主にクーパー励起子として発生するノイズ保護モードに切り替えるために、第1および第2の入力磁束が断熱的に増加されている間に、第3の入力磁束が非活性化され、回路ループの周りのクーパー励起子の励起電流回転の方法は、調整可能なカレントミラーキュービットの量子状態にほぼ均等にかつ反対に(equally and oppositely)影響を与えるようにノイズに備えるため、ノイズに対するキュービット状態の感度が低下する。本明細書で説明するように、クーパー励起子は、調整可能なカレントミラーキュービットの周りのコンデンサの個々の側で等しい大きさおよび反対の電荷が発生するクーパー対電荷励起に対応することができる。従って、励起を、実質的にノイズの影響を受けない方法で、調整可能なカレントミラーキュービットに保存することができる。従って、入力磁束を逆の順序で制御して、調整可能なカレントミラーキュービットをマイクロ波励起モードに戻して、調整可能なカレントミラーキュービットの励起の読み出しを可能にすることができる。
図1は、調整可能なカレントミラーキュービットシステム10の一例を示す。調整可能なカレントミラーキュービットシステム10は、量子データを操作し、かつ量子コンピュータシステムに格納するために量子コンピュータシステムに実装することができる。
調整可能なカレントミラーキュービットシステム10は、複数の磁束源12および調整可能なカレントミラーキュービット14を含む。磁束源12は、電流搬送インダクタなど、磁束を提供することができる様々な回路デバイスおよび要素のいずれかに対応することができる。図1の例では、調整可能なカレントミラーキュービット14は、複数の磁束調整可能な要素16および少なくとも1つのコンデンサ18を含む。本明細書でより詳細に説明するように、磁束調整可能な要素16は、メビウスループとして配置することができる回路ループの周りに配置することができ、少なくとも1つのコンデンサ18は、磁束調整可能な要素16の個々のペアの間のノードを相互接続するように配置することができる。一例として、磁束調整可能な要素16は、回路ループの周りに配置された超伝導量子干渉デバイス(SQUID)として配置することができる。
磁束源12は、調整可能なカレントミラーキュービット14に入力磁束を提供するように独立して制御することができる。例えば、磁束調整可能な要素16の第1の部分(例えば、単一の1つ)は、磁束源12から提供される第1の入力磁束を受信するように構成することができ、一方、磁束調整可能な要素16の残りの少なくとも1つは、磁束源12からの第2の入力磁束を受信することができる。さらに、磁束調整可能な要素16が周りに配置されている回路ループは、磁束源12から第3の入力磁束を受信するように構成することができる。磁束源12は、調整可能なカレントミラーキュービット14が少なくとも2つのモード間で遷移することを可能にする方法で入力磁束を提供するように独立して制御することができる。状態は、クーパー対がコンデンサ(単数または複数)18の両端で相関される様々な方法に対応することができる。
第1のモードは、マイクロ波励起モードに対応し、このマイクロ波励起モードでは、調整可能なカレントミラーキュービット14の量子状態を、図1の例に信号MCWEとして示されているマイクロ波信号を介して操作することができる。従って、マイクロ波励起信号MCWEを使用して、調整可能なカレントミラーキュービット14に保存された量子重ね合わせを作成することができる。第2のモードは、ノイズ保護モードに対応し、このノイズ保護モードでは、確立された量子状態を、実質的にノイズの影響を受けない方法で調整可能なカレントミラーキュービット14に保存することができ、従って、調整可能なカレントミラーキュービット14の強いコヒーレンスを提供する。磁束源12から提供される入力磁束を操作することにより、調整可能なカレントミラーキュービット14を第1のモードと第2のモードとの間で遷移するように制御することができる。
一例として、入力磁束は、基底マイクロ波状態および励起マイクロ波状態が調整可能なミラーキュービット14の周りの回転電流状態に変化する永続電流モードに対応する中間状態を介して第1および第2のモードの間で切り替えるように磁束源12から提供される。例えば、調整可能なカレントミラーキュービット14をマイクロ波励起モードから永続電流モードに切り替えるために、第2の入力磁束が非活性化され、第3の入力磁束が提供されている(例えば、静的振幅(static amplitude)で)間に、第1の入力磁束が提供され、かつ断熱的に増加される(例えば、ほぼゼロの振幅から第1の振幅まで)。別の例として、調整可能なカレントミラーキュービット14を永続電流モードから、回路ループの周りのクーパー対励起子電流の回転により、調整可能なカレントミラーキュービット14の量子状態にほぼ均等にかつ反対に影響を与えるようにノイズに対して備えるノイズ保護モードに切り替えるために、第1および第2の入力磁束が断熱的に増加される間に、第3の入力磁束が非活性化される。例えば、第1の入力磁束は、第1の振幅から第2の振幅に断熱的に増加させることができ、第2の入力磁束は、ほぼゼロの振幅から第1の振幅に断熱的に増加させる(これは、第1の入力磁束の第1の振幅とは異なり得る)ことができる。従って、マイクロ波励起MCWEによって生成された量子状態を、実質的にノイズの影響を受けない方法で調整可能なカレントミラーキュービット14に保存することができ、従って、調整可能なカレントミラーキュービット14の強いコヒーレンスを提供する。
従って、一例として、調整可能なカレントミラーキュービット14の量子状態の読み出しを可能にするために、入力磁束を逆の順序で制御して、調整可能なカレントミラーキュービットをマイクロ波励起モードに戻することができる。例えば、調整可能なカレントミラーキュービット14をノイズ保護モードから永続電流モードに切り替えるために、第1および第2の入力磁束が断熱的に減少されている間に、第3の入力磁束が非活性化状態に維持される。例えば、第1の入力磁束は、第2の振幅から第1の振幅に断熱的に減少させることができ、第2の入力磁束は、第1の振幅からほぼゼロの振幅に減少させることができる。別の例として、調整可能なカレントミラーキュービット14を永続電流モードからマイクロ波励起モードに戻すように切り替えるために、第3の入力磁束が再活性化され、第2の入力磁束が非活性化され、第1の入力磁束が断熱的に減少される。次に、調整可能なカレントミラーキュービット14の量子状態は、読み出し共振器に分散シフトを生じさせるなどの標準的なマイクロ波読み出し技術を使用して読み出すことができる。従って、マイクロ波励起MCWEを、調整可能なカレントミラーキュービット14から読み出すことができる。調整可能なカレントミラーキュービット14が事前にノイズ保護モードに設定されていたことにより、意図された量子状態からの量子状態の忠実度の減衰を大幅に軽減することができる。従って、本明細書で説明するように、調整可能なカレントミラーキュービットシステム10は、典型的なキュービットと比較して高度にコヒーレントな方法で量子状態の保存を提供することができる。
図2は、調整可能なカレントミラーキュービット50の例を示す。調整可能なカレントミラーキュービット50は、量子コンピュータシステムにおいて量子データを操作するために、量子コンピュータシステムに実装することができる。例えば、調整可能なカレントミラーキュービット50は、図1の例の調整可能なカレントミラーキュービット14に対応することができる。従って、以下の図2の例の説明では、図1の例が参照される。
図2の例では、調整可能なカレントミラーキュービット50は、回路ループ54の周りに配置された8個の数を有するものとして示されている複数のSQUID52を含む。SQUIDはそれぞれ、並列ジョセフソン接合JおよびJのペアを含むものとして示されている。さらに、調整可能なカレントミラーキュービット50は、図2の例においてC、C、C、およびCとして示される、SQUID52のそれぞれのペアの間のノードを相互接続する複数のコンデンサを含む。特に、図2の例では、コンデンサCはノード56および58を相互接続し、コンデンサCはノード60および62を相互接続し、コンデンサCはノード64および66を相互接続し、コンデンサCはノード68および70を相互接続する。図2の例では、コンデンサC、C、C、およびCは互いに結合されていない。従って、SQUID52およびコンデンサC1、C2、C3、およびC4の配置は、クーパー対の運動に関してメビウスループに対応することができ、従って、回路ループ52の周り、および個々のコンデンサC、C、C、およびCの両端の周りのクーパー励起子に対応することができる。一例として、コンデンサC、C、C、およびCは、ジョセフソン接合の静電容量に比べて比較的大きな静電容量(例えば、少なくとも50フェムトファラド)を有することができる。
図2の例では、72で示されるSQUID52の第1のSQUIDは、第1の入力磁束αを受信するように構成され、残りのSQUID52は、第2の入力磁束γを受信するように構成される。例えば、入力磁束αおよびγは、図1の例では、別々の磁束源12から提供することができる。さらに、図2の例では、回路ループ54には、別の磁束源(例えば、別の磁束源12)からの第3の入力磁束Δが提供される。入力磁束α、γ、およびΔは、調整可能なカレントミラーキュービット50が本明細書で説明するように少なくとも2つのモード間で遷移できるようにするなどのために、調整可能なカレントミラーキュービット50のモードを制御するように独立して制御することができる。状態は、クーパー対がコンデンサC、C、C、およびCの両端で相関するような様々な方法に対応することができる。
第1のモードは、マイクロ波励起モードに対応し、このマイクロ波励起モードでは、調整可能なカレントミラーキュービット50の量子状態を、図2の例において、ノード56に提供される信号MCWEとして示されているマイクロ波信号を介して操作することができる。従って、マイクロ波励起信号MCWEは、調整可能なカレントミラーキュービット50の遷移周波数と共鳴することができ、従って、調整可能なカレントミラーキュービット50に保存された量子重ね合わせを作成することができる。第2のモードは、ノイズ保護モードに対応し、このノイズ保護モードでは、量子状態を、実質的にノイズの影響を受けない方法で調整可能なカレントミラーキュービット50に保存することができ、従って、調整可能なカレントミラーキュービット50の強いコヒーレンスを提供する。磁束源52から提供される入力磁束を操作することにより、調整可能なカレントミラーキュービット50を、図1の例で前述したように、永続電流モードに対応する中間モードを介するなどして、第1のモードと第2のモードとの間で遷移するように制御することができる。
例えば、調整可能なカレントミラーキュービット50をマイクロ波励起モードから永続電流モードに切り替えるために、入力磁束γが非活性化され、かつ第3の入力磁束Δが提供されている(例えば、静的振幅で)間に、第1の入力磁束αが提供され、かつ断熱的に増加される(例えば、ほぼゼロの振幅から第1の振幅まで)。別の例として、調整可能なカレントミラーキュービット50を永続電流モードからノイズ保護モードに切り替えるために、第1および第2の入力磁束αおよびγが断熱的に増加される間に、第3の入力磁束Δが非活性化されて、ノイズ保護モード中に、回路ループの周りのクーパー励起子電流の回転により、調整可能なカレントミラーキュービット50の状態にほぼ均等にかつ反対に影響を与えるようにノイズに備える。例えば、入力磁束αは、第1の振幅から第2の振幅に断熱的に増加させることができ、入力磁束γは、ほぼゼロの振幅から第1の振幅に断熱的に増加させることができる(これは、入力磁束αの第1の振幅とは異なり得る)。従って、量子状態を、実質的にノイズの影響を受けない方法で、調整可能なカレントミラーキュービット50に保存して、調整可能なカレントミラーキュービット50の強いコヒーレンスを提供することができる。
従って、一例として、調整可能なカレントミラーキュービット50の量子状態の読み出しを可能にするために、入力磁束を逆の順序で制御して、調整可能なカレントミラーキュービットをマイクロ波励起モードに戻すことができる。例えば、調整可能なカレントミラーキュービット50をノイズ保護モードから永続電流モードに切り替えるために、第1および第2の入力磁束αおよびγが断熱的に減少されている間に、第3の入力磁束Δは非活性化状態に維持される。例えば、入力磁束αは、第2の振幅から第1の振幅に断熱的に減少させることができ、入力磁束γは、第1の振幅からほぼゼロの振幅に減少させることができる。別の例として、調整可能なカレントミラーキュービット50を永続電流モードからマイクロ波励起モードに戻すように切り替えるために、第3の入力磁束Δが再活性化され、入力磁束γが非活性化され、入力磁束αが断熱的に減少される。従って、量子状態を、調整可能なカレントミラーキュービット50から読み出すことができる。調整可能なカレントミラーキュービット50が事前にノイズ保護モードに設定されていたことにより、量子状態の減衰を大幅に軽減することができる。従って、本明細書で説明するように、調整可能なカレントミラーキュービット50は、典型的なキュービットと比較して高度にコヒーレントな方法で量子状態の保存を提供することができる。
例えば、従来のジョセフソン回路の場合、低エネルギーの電荷励起は「電荷2e」クーパー対である。そのような電荷励起(例えば、ノード56、58、60、62、64、66、68、および70に対応する各超伝導リード上のクーパー対の正味の数)は、調整可能なカレントミラーキュービット50の量子状態に関する基底(basis)を記述するために利用することができる。クーパー対が回路ループ54の周りを移動すると、ノード56、58、60、62、64、66、68、および70の周りを移動することができるが、クーパー対の総数は保存される。調整可能なカレントミラーキュービット50の顕著な特徴の1つは、コンデンサC、C、C、およびCの静電容量(概して、Cとして説明される)がジョセフソン接合JおよびJの接合容量(概して、Cとして説明される)よりもはるかに大きく、かつノード56、58、60、62、64、66、68、および70の浮遊基底容量(概して、Cとして説明される)よりもはるかに大きい領域で動作することができることである。この領域では、最低エネルギーの電荷励起は「クーパー対励起子」であり、これは、コンデンサC、C、C、およびCの任意の1のついずれかの側にあるクーパー対とクーパー対の正孔で構成される電荷励起である。このようなクーパー対励起子の励起は、全ての可能性のある電荷励起のサブセットにすぎない。クーパー対励起子の観点で説明される低エネルギー領域を持つ能力は、調整可能なカレントミラーキュービット50の従来の超伝導回路との基本的な相違点であり、本明細書で説明する調整可能なカレントミラーキュービット50の独自のノイズ耐性を可能にする本質的な特性である。
マイクロ波励起モードでは、調整可能なカレントミラーキュービット50のリード間のジョセフソン結合(Josephson coupling)エネルギーは、各SQUID52のジョセフソン接合JおよびJの充電エネルギーよりも大きくなるように調整され、これは、調整可能なカレントミラーキュービット50のデフォルトのほぼゼロの振幅場の状態である。マイクロ波励起モードおよび永続電流モードでは、クーパー対は、回路ループ54全体の周りで非局在化する(delocalize)。マイクロ波励起モードでは、調整可能なカレントミラーキュービット50は、回路ループ54全体の最低周波数のマイクロ波モードの基底状態および第1の励起状態でエンコードされる(encoded)。マイクロ波モードにおける量子状態の操作(例えば、マイクロ波励起MCWEによって提供される)は、キュービットの電圧演算子に結合することによって実施されるとともに、調整可能なカレントミラーキュービット50を準備して読み出すために利用することができる(例えば、コヒーレントマイクロ波駆動および分散読み出しによって)。調整可能なカレントミラーキュービット50には多くのモードがあるが、マイクロ波励起モードでは、第1の入力磁束αを受信するCJJ52の実効臨界電流を適度に減少させるなどにより、電圧および電流の変動のモード構造が明確に定義された周波数でキュービットモードを分離することができる。
永続電流モードでは、調整可能なカレントミラーキュービット50は、回路ループ54の循環電流状態でエンコードされる。永続電流モードに関連する2つの循環電流状態は、各CJJ52にわたる超伝導相δθの異なる変化によって区別することができる。例えば、各CJJ52の2つの循環電流状態間の差δθは、π/Nにほぼ等しくすることができ、ここで、Nは、コンデンサの数に対応する(例えば、図2の例では4個)。循環電流状態は、|0〉および|π〉としてラベル付けすることができる。複数のSQUID52にわたる相変化の差は、回路ループを流れる電流を記述する電流演算子に関するパウリ双極子につながる。例えば、1つの基底の選択に関して、2つのキュービット状態は、2つのキュービット状態の各々について、回路ループを流れる電荷電流に対する量子期待値に差を有することとなる。
ノイズ保護モードでは、キュービットのエンコーディングはマイクロ波励起モードまたは永続電流モードのいずれとも異なる。ノイズ保護モードでは、リード間のジョセフソン結合は、ジョセフソン接合JおよびJの充電エネルギー未満に低減される。結果として、クーパー励起子のみが回路ループ54の周りで実質的に非局在化する。クーパー対のジョセフソン接合の結合は、2次プロセスを介して、コンデンサC、C、C、およびCの隣接するコンデンサ上のクーパー対励起子間の結合を生成する。コンデンサC、C、C、およびCは、そのような大きな静電容量を有するため、クーパー励起子のホッピングエネルギーは励起子充電エネルギーよりも大きく、クーパー励起子は回路ループ54の周りで非局在化する。
クーパー対励起子は、ループの周りを移動するときに、調整可能なカレントミラーキュービット50のメビウスのトポロジー構成に基づいて、負に帯電したバージョンとして戻ることができるという点で、クーパー対とは根本的に異なる。クーパー対と同様に、クーパー対励起子の数は、コンデンサC、C、C、およびCのコンデンサからコンデンサに移動するときに局所的に保存される。しかしながら、クーパー励起子が回路ループ54のメビウスループ構造の周りを移動して、負の励起子として戻ってくると、クーパー対励起子の総数が効果的に事実上2つに変化することになる。従って、調整可能なカレントミラーキュービット50は、キュービット状態を、偶数または奇数のクーパー対励起子にそれぞれ対応する|+〉および|-〉としてエンコードする。これらの状態の対称的および反対称的な量子重ね合わせは、それぞれ|0〉∝|+〉+|-〉状態および|π〉∝|+〉-|-〉状態と呼ばれる。
コンデンサの充電エネルギーに対してクーパー対励起子のホッピングが大きいノイズ保護モードでは、クーパー対励起子の数の変動が大きくなり、|+〉状態および|-〉状態(ひいては0状態およびπ状態)のエネルギーはほぼ縮退する(degenerate)。この領域では、電圧演算子および電流演算子のパウリ双極子の大きさが大幅に抑制されるため、調整可能なカレントミラーキュービット50が環境ノイズから保護されることになる。従って、クーパー対励起子が回路ループ54のメビウス配置の周りで非局在化して単一の非局在化量子状態になると、電圧演算子または電流演算子に結合する局所ノイズ源は、キュービットの量子状態をシフトまたは結合しない。
例えば、マイクロ波励起モードと永続電流モードとの間で遷移するために、第1の入力磁束αは、ほぼゼロの振幅よりもわずかに大きい値(周波数の最も低いモードを他のモードから分離するために)から、超伝導磁束量子に対応する第1の振幅Φにほぼ等しい値に調整される。これは、第3の磁束に関して、Δが一定で、かつほぼゼロの振幅よりわずかに大きい間に実施される。制御磁束のこれらの値に関して、基底状態は低エネルギーの電流状態に断熱的に変換され、励起状態は高エネルギーの電流状態に断熱的に変換される。永続電流モードとノイズ保護モードの間で遷移するために、第2の入力磁束γおよび第1の磁束αの両方を、約Φ/2磁束の大きさだけ断熱的に増加させる。これらの制御磁束の値に関して、永続電流モードの|0〉状態および|π〉状態は、ノイズ保護モードの|0〉状態および|π〉状態に断熱的に変換される。
これらの断熱的な遷移により、電圧演算子および電流演算子のパウリ双極子を、マイクロ波モードと電流モードとの間で変換することができるか、あるいは調整可能なカレントミラーキュービット50がノイズ保護モードに遷移する際に大幅に抑制することができる。これらの遷移を使用して、以前に説明したのと同様に、調整可能なカレントミラーキュービット50を読み出すこともできる。一例として、調整可能なカレントミラーキュービット50は、ノイズ保護モードから永続電流モードに移行することができ、電流の値を直接感知することができる。従って、|0〉状態および|π〉状態にある調整可能なカレントミラーキュービット50から電流を読み出すことができる。|+〉状態および|-〉状態にあるキュービットを読み出すために、調整可能なカレントミラーキュービット50は、調整可能なカレントミラーキュービット50が分散的に読み取られる前に、(例えば、X90マイクロ波ゲートを介して)読み出しを実行するために、ノイズ保護モードから永続電流モードに遷移された後、マイクロ波励起モードに遷移される。
調整可能なカレントミラーキュービット50の準備および読み出しのための方法は、本明細書に記載されるものに限定されず、例えば、キュービットの状態に作用する物理的電圧演算子または電流演算子に基づくものとして理解され得る他の可能な方法が存在する。さらに、調整可能なカレントミラーキュービット50の他の物理的配置も可能であり、調整可能なカレントミラーキュービット50は、任意の数の磁束調整可能な要素および関連するコンデンサの配置を含むようにスケーリングすることができる。
図3は、調整可能なカレントミラーキュービット100の一例を示す。調整可能なカレントミラーキュービット100は、量子コンピュータシステム内の量子データを操作するために、量子コンピュータシステムに実装することができる。例えば、調整可能なカレントミラーキュービット100は、図1の例の調整可能なカレントミラーキュービット14に対応することができる。従って、以下の図3の例の説明では、図1の例が参照される。
図3の例では、調整可能なカレントミラーキュービット100は、回路ループの周りに配置されるものとして示されている複数のN個のSQUID102を含み、ここで、Nは、1より大きい正の整数である。SQUID102はそれぞれ、並列ジョセフソン接合JおよびJのペアを含むものとして示されている。さらに、調整可能なカレントミラーキュービット100は、SQUID102の個々のペアの間のノードを相互接続する複数のX個のコンデンサを含み、ここで、Xは、1より大きい正の整数であり、かつN/2に等しい。従って、SQUID102およびコンデンサCからCの配置は、104におけるねじれセクションに基づいて示されるようなメビウスループに対応することができる。一例として、コンデンサC~Cは、比較的大きな静電容量(例えば、少なくとも50フェムトファラド)を有することができる。
従って、調整可能なカレントミラーキュービット100は、図2の例の調整可能なカレントミラーキュービット50と実質的に同様に動作することができるが、潜在的にはるかに大量の磁束調整可能な要素を有するものとして示されている。特に、例えば、SQUID102の個々の1つは、第1の入力磁束αを受信することができ、残りのSQUID102は、第2の入力磁束γを受信するように構成され、SQUID102の回路ループ構成は、第3の入力磁束Δを受信することができる。従って、入力磁束α、γ、およびΔは、調整可能なカレントミラーキュービット100が本明細書で説明するように少なくとも2つのモード間で遷移できるようにするなどのために、調整可能なカレントミラーキュービット100のモードを制御するように独立して制御することができる。
上記した構造的および機能的な特徴を考慮して、本発明の様々な態様による方法は、図4を参照することにより、よりよく理解されるであろう。説明を簡単にするために、図4の方法は、連続して実行するものとして示され、説明されているが、本発明によれば、いくつかの態様が、本明細書に示され、説明されているものとは異なる順序で、および/または他の態様と同時に発生する可能性があるため、本発明は、図示された順序に限定されないことが理解され、かつ評価されるべきである。さらに、本発明の一態様による方法を実施するために、図示された全ての特徴が必要とされるわけではない。
図4は、調整可能なカレントミラーキュービット(例えば、調整可能なカレントミラーキュービット14)を制御するための方法150の例を示す。152において、調整可能なカレントミラーキュービットのマイクロ波励起モードにおいて、マイクロ波信号(例えば、マイクロ波励起MCWE)を介して調整可能なカレントミラーキュービットに励起が与えられる。154において、調整可能なカレントミラーキュービットの回路ループ(例えば、回路ループ54)に配置された複数の磁束調整可能な要素(例えば、磁束調整可能な要素16)の第1の磁束調整可能な要素への第1の入力磁束(例えば、第1の入力磁束α)。調整可能なカレントミラーキュービットは、クーパー対の相関を可能にするために、磁束調整可能な要素の個々のペアの間のノードを相互接続する複数のコンデンサ(例えば、コンデンサ18)をさらに含むことができる。156において、第1の入力磁束が断熱的に第1の振幅に増加される。158において、第2の入力磁束(例えば、第2の入力磁束γ)が、複数の磁束調整可能な要素のうちの残りの少なくとも1つに提供される。160において、調整可能なカレントミラーキュービットをノイズ保護モードに設定して、調整可能なカレントミラーキュービットの量子状態を保存するために、第1の入力磁束が第1の振幅から第2の振幅に断熱的に増加され、第2の入力磁束がほぼゼロの振幅から第1の振幅に断熱的に増加される。
上記に記載されている内容は、本開示の例である。当然ながら、本開示を説明する目的で、構成要素または方法の考えられる全ての組み合わせを説明することは不可能であるが、当業者であれば、本開示のさらに多くの組み合わせおよび順列が可能であることを認識するであろう。従って、本開示は、添付の特許請求の範囲を含む、本出願の範囲内にあるそのような全ての変更、修正、および変形を包含することを意図している。
以下に、上記実施形態から把握できる技術思想を付記として記載する。
[付記1]
調整可能なカレントミラーキュービットシステムであって、
第1の入力磁束を提供するように制御される第1の磁束源と、
第2の入力磁束を提供するように制御される第2の磁束源と、
第3の入力磁束を提供するように制御される第3の磁束源と、
調整可能なカレントミラーキュービットと、を備え、前記調整可能なカレントミラーキュービットは、
メビウスループとして配置され、かつ前記第3の入力磁束を受信するように構成された回路ループに配置された複数の超伝導量子干渉デバイス(SQUID)と、前記SQUIDの第1の部分は、前記第1の入力磁束を受信するように構成され、前記SQUIDの残りの部分は、前記第2の入力磁束を受信するように構成され、前記第1、第2、および第3の入力磁束は、マイクロ波入力信号を介した前記調整可能なカレントミラーキュービットの励起および量子状態の操作を可能にするマイクロ波励起モードと、前記調整可能なカレントミラーキュービットの量子状態の保存を可能にするノイズ保護モードとの間で前記調整可能なカレントミラーキュービットのモードを制御するように提供され、
前記マイクロ波励起モードおよび前記ノイズ保護モードの各々において前記回路ループの周りに非局在化するクーパー対励起子の形成を可能にするために、前記SQUIDの個々のペアの間のノードを相互接続する少なくとも1つのコンデンサと、を含む、調整可能なカレントミラーキュービットシステム。
[付記2]
前記調整可能なカレントミラーキュービットを前記マイクロ波励起モードから、励起が前記回路ループの周りの循環電流に変換される永続電流モードに切り替えるために、前記第2の入力磁束が非活性化されている間に、前記第1の入力磁束が断熱的に増加され、前記調整可能なカレントミラーキュービットを永続充電モード状態から前記ノイズ保護モードに切り替えるために、前記第3の入力磁束が非活性化され、かつ前記第1および第2の入力磁束が断熱的に増加される、付記1に記載の調整可能なカレントミラーキュービットシステム。
[付記3]
前記調整可能なカレントミラーキュービットを前記ノイズ保護モードから前記永続電流モードに切り替えるために、前記第1および第2の入力磁束が断熱的に減少され、前記調整可能なカレントミラーキュービットの読み出しを可能にするために前記調整可能なカレントミラーキュービットを前記永続電流モードから前記マイクロ波励起モードに切り替えるために、前記第2の入力磁束が非活性化されている間に、前記第3の入力磁束が活性化され、前記第1の入力磁束が断熱的に減少される、付記2に記載の調整可能なカレントミラーキュービットシステム。
[付記4]
前記調整可能なカレントミラーキュービットは、前記ノイズ保護モードにおいて前記回路ループの周りに非局在化するクーパー励起子の形成を実行する、付記1に記載の調整可能なカレントミラーキュービットシステム。

Claims (15)

  1. 調整可能なカレントミラーキュービットであって、
    回路ループに配置された複数の磁束調整可能な要素であって、マイクロ波入力信号を介した前記調整可能なカレントミラーキュービットの励起または量子状態の操作を可能にするマイクロ波励起モードと、前記調整可能なカレントミラーキュービットの量子状態の保存を可能にするノイズ保護モードとの間で前記調整可能なカレントミラーキュービットのモードを制御するために、前記複数の磁束調整可能な要素の第1の部分が、第1の入力磁束を受信するように構成され、前記複数の磁束調整可能な要素の残りの部分が、第2の入力磁束を受信するように構成されている、前記複数の磁束調整可能な要素と、
    前記マイクロ波励起モードおよび前記ノイズ保護モードの各々においてクーパー対励起子の形成を可能にするために、前記複数の磁束調整可能な要素の個々のペアの間のノードを相互接続する少なくとも1つのコンデンサと、を備えるキュービット。
  2. 前記複数の磁束調整可能な要素の各々が、超伝導量子干渉デバイス(SQUID)として機能する、請求項1に記載のキュービット。
  3. 前記複数の磁束調整可能な要素の前記第1の部分は、第1の入力磁束源からの前記第1の入力磁束が提供される前記複数の磁束調整可能な要素の最初の1つに対応し、前記複数の磁束調整可能な要素の第2の部分は、第2の入力磁束源からの前記第2の入力磁束が提供される前記複数の磁束調整可能な要素の残りの少なくとも1つに対応する、請求項1に記載のキュービット。
  4. 前記回路ループは、第3の入力磁束を受信するように構成され、前記第3の入力磁束は、前記マイクロ波励起モードにおいて静的バイアス磁束として提供され、かつ前記ノイズ保護モードにおいて非活性化される、請求項1に記載のキュービット。
  5. 前記複数の磁束調整可能な要素は、メビウスループを形成するように前記回路ループの周りに配置されている、請求項1に記載のキュービット。
  6. 前記第1および第2の入力磁束は、調整可能なカレントミラー磁束キュービットを前記マイクロ波励起モードと前記ノイズ保護モードとの間で遷移させるように独立して制御されるように提供される、請求項1に記載のキュービット。
  7. 前記調整可能なカレントミラーキュービットを前記マイクロ波励起モードから、量子状態が前記回路ループの周りの循環電流に関連する永続電流モードに切り替えるために、前記第2の入力磁束が非活性化されている間に、前記第1の入力磁束が断熱的に増加され、前記調整可能なカレントミラーキュービットを前記永続電流モードから前記ノイズ保護モードに切り替えるために、前記第1および第2の入力磁束が断熱的に増加され、
    前記調整可能なカレントミラーキュービットを前記ノイズ保護モードから前記永続電流モードに切り替えるために、前記第1および第2の入力磁束が断熱的に減少され、前記調整可能なカレントミラーキュービットの読み出しが可能となるように前記調整可能なカレントミラーキュービットを前記永続電流モードから前記マイクロ波励起モードに切り替えるために、前記第2の入力磁束が非活性化されている間に、前記第1の入力磁束が断熱的に減少される、請求項6に記載のキュービット。
  8. 前記調整可能なカレントミラーキュービットは、前記ノイズ保護モードにおいて前記回路ループの周りに非局在化するクーパー対励起子の形成を実行する、請求項1に記載のキュービット。
  9. 請求項1に記載の前記調整可能なカレントミラーキュービットを備えるキュービットシステムであって、前記第1の入力磁束を提供するように構成された第1の磁束源と、前記第2の入力磁束を提供するように構成された第2の磁束源とをさらに備え、前記第1および第2の入力磁束は、独立して制御される、キュービットシステム。
  10. 調整可能なカレントミラーキュービットを制御する方法であって、
    前記調整可能なカレントミラーキュービットの量子状態の操作を提供するために、前記調整可能なカレントミラーキュービットのマイクロ波励起モードにおいてマイクロ波信号を介して前記調整可能なカレントミラーキュービットに励起を与えるステップと、
    前記調整可能なカレントミラーキュービットの回路ループに配置された複数の磁束調整可能な要素の第1の磁束調整可能な要素に第1の入力磁束を提供するステップと、前記調整可能なカレントミラーキュービットは、前記回路ループの周りで非局在化するクーパー対励起子の形成を可能にするように前記複数の磁束調整可能な要素の個々のペアの間のノードを相互接続する少なくとも1つのコンデンサをさらに備えており、
    前記第1の入力磁束を第1の振幅に断熱的に増加させるステップと、
    前記複数の磁束調整可能な要素の残りの少なくとも1つに第2の入力磁束を提供するステップと、
    前記調整可能なカレントミラーキュービットの量子状態を保存するために前記調整可能なカレントミラーキュービットをノイズ保護モードに設定するために、前記第1の入力磁束を第1の振幅から第2の振幅に断熱的に増加させ、前記第2の入力磁束をほぼゼロの振幅から第1の振幅に断熱的に増加させるステップと、を含む方法。
  11. 前記複数の磁束調整可能な要素の各々が超伝導量子干渉デバイス(SQUID)として機能する、請求項10に記載の方法。
  12. 第3の入力磁束を提供するステップをさらに含み、前記第3の入力磁束は、前記マイクロ波励起モードにおいて静的バイアス磁束として提供され、前記ノイズ保護モードにおいて非活性化され、前記第1および第2の入力磁束を断熱的に増加させることは、前記調整可能なカレントミラーキュービットの量子状態を保存するために前記調整可能なカレントミラーキュービットを前記ノイズ保護モードに設定するために前記第3の入力磁束を非活性化することを含む、請求項10に記載の方法。
  13. 前記複数の磁束調整可能な要素は、メビウスループを形成するように前記回路ループの周りに配置されている、請求項10に記載の方法。
  14. 前記第1の入力磁束をほぼゼロの振幅から第1の振幅に断熱的に増加させることは、前記調整可能なカレントミラーキュービットを前記マイクロ波励起モードから、基底状態および第1の励起状態が前記回路ループの周りの循環電流に関連する永続電流モードに設定するために、前記第1の入力磁束をほぼゼロの振幅から第1の振幅に断熱的に増加させることを含み、前記第1および第2の入力磁束を断熱的に増加させることは、前記調整可能なカレントミラーキュービットを前記永続電流モードから前記ノイズ保護モードに設定するために、前記第1および第2の入力磁束を断熱的に増加させることを含む、請求項10に記載の方法。
  15. 前記第1の入力磁束を第2の振幅から第1の振幅に断熱的に減少させ、前記第2の入力磁束を第1の振幅からほぼゼロの振幅に断熱的に減少させるステップと、
    前記調整可能なカレントミラーキュービットの量子状態を読み出すために前記調整可能なカレントミラーキュービットを前記マイクロ波励起モードに設定するために、前記第1の入力磁束を第1の振幅からほぼゼロの振幅に断熱的に減少させ、前記第2の入力磁束を非活性化させるステップと、をさらに含む、請求項10に記載の方法。
JP2021551563A 2019-03-01 2020-02-04 調整可能なカレントミラーキュービットシステム Active JP7171939B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/290,324 US11429887B2 (en) 2019-03-01 2019-03-01 Tunable current-mirror qubit system
US16/290,324 2019-03-01
PCT/US2020/016620 WO2020180442A1 (en) 2019-03-01 2020-02-04 Tunable current-mirror qubit system

Publications (2)

Publication Number Publication Date
JP2022522757A JP2022522757A (ja) 2022-04-20
JP7171939B2 true JP7171939B2 (ja) 2022-11-15

Family

ID=69771095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021551563A Active JP7171939B2 (ja) 2019-03-01 2020-02-04 調整可能なカレントミラーキュービットシステム

Country Status (6)

Country Link
US (1) US11429887B2 (ja)
EP (1) EP3931765A1 (ja)
JP (1) JP7171939B2 (ja)
KR (1) KR20210125035A (ja)
CA (1) CA3132152C (ja)
WO (1) WO2020180442A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11392848B2 (en) * 2019-06-19 2022-07-19 Northrop Grumman Systems Corporation Qubit assembly having adjustable current operators
CN111967603B (zh) 2020-09-01 2022-04-08 腾讯科技(深圳)有限公司 量子芯片、量子处理器及量子计算机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858966B2 (en) 2006-11-21 2010-12-28 Microsoft Corporation Protected qubit based on superconducting current mirror
WO2018164784A1 (en) 2017-03-10 2018-09-13 Northrop Grumman Systems Corporation Zzz coupler for superconducting qubits

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758795A (en) 1972-06-30 1973-09-11 Ibm Superconductive circuitry using josephson tunneling devices
US6803599B2 (en) 2001-06-01 2004-10-12 D-Wave Systems, Inc. Quantum processing system for a superconducting phase qubit
US6900454B2 (en) 2002-04-20 2005-05-31 D-Wave Systems, Inc. Resonant controlled qubit system
FR2839389B1 (fr) 2002-05-03 2005-08-05 Commissariat Energie Atomique Dispositif de bit quantique supraconducteur a jonctions josephson
US7619437B2 (en) 2004-12-30 2009-11-17 D-Wave Systems, Inc. Coupling methods and architectures for information processing
US7932514B2 (en) 2008-05-23 2011-04-26 International Business Machines Corporation Microwave readout for flux-biased qubits

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858966B2 (en) 2006-11-21 2010-12-28 Microsoft Corporation Protected qubit based on superconducting current mirror
WO2018164784A1 (en) 2017-03-10 2018-09-13 Northrop Grumman Systems Corporation Zzz coupler for superconducting qubits

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Alexei Kitaev,Protected qubit based on a superconducting current mirror,arXiv,2006年09月19日,<URL: https://arxiv.org/abs/cond-mat/0609441v2>
G. S. Paraoanu,Microwave-induced coupling of superconducting qubits,PHYSICAL REVIEW B,American Physical Society,2006年10月31日,74,p. 140504-1 - 140504-4,<DOI: 10.1103/PhysRevB.74.140504>
Kitaev's scheme for a protected qubit in a circuit,2008年,<URL: http://theory.caltech.edu/~preskill/papers/Kitaev-superconducting-qubit.pdf>

Also Published As

Publication number Publication date
WO2020180442A1 (en) 2020-09-10
US11429887B2 (en) 2022-08-30
CA3132152C (en) 2023-12-12
EP3931765A1 (en) 2022-01-05
US20200279186A1 (en) 2020-09-03
CA3132152A1 (en) 2020-09-10
JP2022522757A (ja) 2022-04-20
KR20210125035A (ko) 2021-10-15

Similar Documents

Publication Publication Date Title
US10943180B2 (en) Capacitively-shunted asymmetric DC-SQUID for qubit readout and reset
US10833680B2 (en) Tunable microwave resonator for qubit circuits
JP6219446B2 (ja) 量子プロセッサ
CN110383303B (zh) 量子位设备和量子位系统
US9369133B2 (en) Hybrid quantum circuit assembly
US20190188597A1 (en) Magnetic Flux Control in Superconducting Device
US7898282B2 (en) Systems, devices, and methods for controllably coupling qubits
CA3010355A1 (en) Tunable bus-mediated coupling between remote qubits
CN113206364B (zh) 一种量子信号环形器和量子芯片
JP7171939B2 (ja) 調整可能なカレントミラーキュービットシステム
US10622998B1 (en) Qubit circuit and method for topological protection
Moskalenko et al. Tunable coupling scheme for implementing two-qubit gates on fluxonium qubits
JP2009194646A (ja) マイクロ波スイッチ回路
US20210390442A1 (en) Three qubit entangling gate through two-local hamiltonian control
Sandberg et al. Efficient quantum state transfer in an engineered chain of quantum bits
JP4913501B2 (ja) 量子計算装置および量子もつれ制御方法
Recher et al. Spintronics and Quantum Computing with Quantum Dots

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7171939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150