JP7169508B2 - Manufacturing method of n-type Br-doped SnS semiconductor - Google Patents

Manufacturing method of n-type Br-doped SnS semiconductor Download PDF

Info

Publication number
JP7169508B2
JP7169508B2 JP2018066373A JP2018066373A JP7169508B2 JP 7169508 B2 JP7169508 B2 JP 7169508B2 JP 2018066373 A JP2018066373 A JP 2018066373A JP 2018066373 A JP2018066373 A JP 2018066373A JP 7169508 B2 JP7169508 B2 JP 7169508B2
Authority
JP
Japan
Prior art keywords
sns
type
semiconductor
added
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018066373A
Other languages
Japanese (ja)
Other versions
JP2019178012A (en
Inventor
博 柳
雄喜 井口
太樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2018066373A priority Critical patent/JP7169508B2/en
Publication of JP2019178012A publication Critical patent/JP2019178012A/en
Application granted granted Critical
Publication of JP7169508B2 publication Critical patent/JP7169508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Description

本発明は、SnS(硫化スズ)半導体に関し、特にn型の電気特性を示す半導体およびそれを用いた太陽電池に関する。 The present invention relates to a SnS (tin sulfide) semiconductor, and more particularly to a semiconductor exhibiting n-type electrical characteristics and a solar cell using the same.

太陽エネルギーを利用した太陽光発電は、クリーンかつ地球温暖化の防止に有望なため、将来のエネルギー源として大きく期待され、その研究開発が進められている。 Photovoltaic power generation using solar energy is clean and promising for prevention of global warming, so it is highly expected as a future energy source, and its research and development is proceeding.

太陽電池に使用されている半導体材料として、シリコン系半導体材料、化合物半導体材料などが挙げられる。 Semiconductor materials used in solar cells include silicon-based semiconductor materials and compound semiconductor materials.

これら太陽電池向け半導体材料として、シリコン系半導体材料は20%前後の変換効率を持つがその材料コストが高いことが問題となっている。 As semiconductor materials for these solar cells, silicon-based semiconductor materials have conversion efficiencies of around 20%, but their high material costs pose a problem.

また、化合物半導体系材料はGaAs、InPに代表されるIII-V族半導体やCIGS系やCdTe系などが挙げられる。これらの中には多接合化や集光などの技術を組み合わせることで40%近くにも及ぶ高い変換効率を持つ高性能の材料もあるが概ね高コストであり、主に宇宙用として使われている。また、CIGS、CdTe、GaAsなどの化合物半導体の中にはInやGaといった希少元素や、CdやAsといった有毒元素を含むものがその主流である。 Compound semiconductor-based materials include III-V group semiconductors represented by GaAs and InP, CIGS-based materials, and CdTe-based materials. Among these, there are high-performance materials with a high conversion efficiency of nearly 40% by combining technologies such as multi-junction and light condensing, but they are generally expensive and are mainly used for space applications. there is In addition, among compound semiconductors such as CIGS, CdTe, and GaAs, those containing rare elements such as In and Ga and toxic elements such as Cd and As are the mainstream.

太陽電池は、基本的にp型半導体とn型半導体とを接合したpn接合により構成される。pn接合には、p型半導体とn型半導体の両方に同じ物質を用いるホモ接合と、p型半導体とn型半導体がそれぞれ違う物質であるヘテロ接合がある。ヘテロ接合の場合、結晶性、格子定数の違いなどから接合界面に欠陥が生じ、光吸収により生成した電子、正孔が界面欠陥によりトラップされ、再結合が生じやすくなるという問題がある。このため、もともとの材料が持つ特性を活かすことが困難である。 A solar cell is basically composed of a pn junction in which a p-type semiconductor and an n-type semiconductor are joined. The pn junction includes a homojunction in which the same material is used for both the p-type semiconductor and the n-type semiconductor, and a heterojunction in which the p-type semiconductor and the n-type semiconductor are made of different materials. In the case of a heterojunction, there is a problem that defects occur at the junction interface due to differences in crystallinity and lattice constant, electrons and holes generated by light absorption are trapped by the interface defects, and recombination is likely to occur. Therefore, it is difficult to take advantage of the properties of the original material.

化合物半導体であるSnS(硫化スズ)は非毒性元素/非希少元素のみからなり、その電子移動度は計算値で73500cm/Vs、正孔移動度が23700cm/Vsと他の半導体と比べて非常に大きな値を有している。また、光吸収係数も約104cm-1と高く、バンドギャップも約1.35eVと太陽光の吸収に最適な1.4eVと近い値である。それゆえ、SnSホモ接合太陽電池が実現すれば、理論的には20%以上の変換効率が期待される。 SnS (tin sulfide), which is a compound semiconductor, consists of only non-toxic elements/non-rare elements, and its calculated electron mobility is 73,500 cm 2 /Vs, and its hole mobility is 23,700 cm 2 /Vs, compared to other semiconductors. has a very large value. It also has a high light absorption coefficient of about 10 4 cm −1 and a bandgap of about 1.35 eV, which is close to the optimum 1.4 eV for sunlight absorption. Therefore, if a SnS homojunction solar cell is realized, a conversion efficiency of 20% or more is theoretically expected.

しかしながらが、SnSのn型化については、非特許文献1や非特許文献2などにその報告例があるに過ぎない。非特許文献1はSnSにPb添加する方法によるn型SnSの研究報告であるが、この方法の場合SnS1-xPbはx>20%でn型化を示すものであり、有毒のPbを用いるものである。一方、非特許文献2は本発明者らによるCl添加したSnSがn型伝導を示す事例である。この報告例は、ハロゲン元素をドープして作成されたn型SnS半導体のただ1つの実証例である。n型SnS半導体材料は現在このような状況にあり、SnSホモ接合型太陽電池ができていない。また、一部にSnSを用いた太陽電池では、その変換効率も5%程度に留まっていた。このような状況からホモ接合SnS太陽電池は、その作成がいまだになされていない。 However, only non-patent document 1 and non-patent document 2 report examples of making SnS n-type. Non-Patent Document 1 is a research report on n - type SnS by adding Pb to SnS. is used. On the other hand, Non-Patent Document 2 is an example of Cl-doped SnS showing n-type conduction by the present inventors. This reported example is the only demonstration of an n-type SnS semiconductor produced by doping a halogen element. The n-type SnS semiconductor materials are currently in such a situation, and SnS homojunction solar cells have not been made. Moreover, in a solar cell partially using SnS, the conversion efficiency remains at about 5%. Under these circumstances, a homojunction SnS solar cell has not yet been produced.

F.-Y. Ran, Z. Xiao, Y. Toda, H. Hiramatsu, H. Hosono, and T. Kamita,Sci. Rep. 5, 10428 (2015).F.-Y. Ran, Z. Xiao, Y. Toda, H. Hiramatsu, H. Hosono, and T. Kamita, Sci. Rep. 5, 10428 (2015). Hiroshi Yanagi, Yuki Iguchi, Taiki Sugiyama, Toshio Kamiya and HideoHosono “N-type conduction in SnS by anion substitution with Cl”, AppliedPhysics Express, 9, 051201 (2016).Hiroshi Yanagi, Yuki Iguchi, Taiki Sugiyama, Toshio Kamiya and HideoHosono “N-type conduction in SnS by anion substitution with Cl”, AppliedPhysics Express, 9, 051201 (2016).

毒性元素/希少元素を用いない、ハロゲン元素をドープして作成された新たなn型SnS半導体材料を提供する。 A new n-type SnS semiconductor material prepared by doping with a halogen element without using toxic elements/rare elements is provided.

本発明のn型BrドープSnS半導体の製造方法は、SnS(硫化スズ)にBrが添加された試料を加圧するとともに600℃に加熱することを特徴とする。
The method for producing an n-type Br-doped SnS semiconductor according to the present invention is characterized in that a sample of SnS (tin sulfide) to which Br is added is heated to 600° C. while being pressurized.

Br(臭素)をドープ(添加)することにより、毒性元素/希少元素を用いないn型SnS半導体材料を提供することが可能となる。 By doping (adding) Br (bromine), it is possible to provide an n-type SnS semiconductor material that does not use toxic/rare elements.

本発明のn型SnS半導体の作成フローを示す図である。It is a figure which shows the production flow of the n-type SnS semiconductor of this invention. 放電プラズマ焼結装置の概略を示す図である。It is a figure which shows the outline of a spark plasma sintering apparatus. 本発明のn型SnS半導体のゼーベック係数を示す図である。It is a figure which shows the Seebeck coefficient of the n-type SnS semiconductor of this invention. Brを添加したSnS試料のXRDパターンを示す図である。FIG. 3 shows XRD patterns of Br-doped SnS samples; フッ素を添加したSnS試料のXRDパターンを示す図である。FIG. 4 shows XRD patterns of fluorine-doped SnS samples; ヨウ素を添加したSnS試料のXRDパターンを示す図である。FIG. 4 shows XRD patterns of iodine-doped SnS samples;

SnSにハロゲン元素をドープすることによるn型SnSの作成は、(1)ドープされるハロゲン元素と硫黄とのイオン半径の違いにより硫黄サイトへの置換の可否が変わり、ハロゲン元素の違いによりSn欠陥の生成エンタルピー(Sn欠陥のできやすさ)が変わると考えられること、(2)Sn欠陥ができるとホールが生成するためハロゲン元素により生じた電子を打ち消す働きをすると考えられることなどから、今までにあまり研究がなされていなかった。また、ハロゲン元素を実際にドープしてみないとn型となるかどうかはわからなかった。 The formation of n-type SnS by doping SnS with a halogen element is as follows. (2) When Sn defects are formed, holes are generated, which are thought to work to cancel the electrons generated by the halogen element. has not been much researched. In addition, it was not known whether the material would be n-type unless the material was actually doped with a halogen element.

上述したように非特許文献2によるCl添加したSnSがn型伝導を示す事例のみが、ハロゲン元素をドープして作成されたn型SnS半導体の実証例であり、非毒性元素や希少元素を必要としない事例であった。 As mentioned above, only the case where Cl-doped SnS shows n-type conduction according to Non-Patent Document 2 is a demonstration example of an n-type SnS semiconductor created by doping a halogen element, which requires non-toxic elements and rare elements. It was a case of not doing so.

なお、後述するようにF(フッ素)やI(ヨウ素)ではSnS結晶そのものがうまく構成できずn形SnS半導体を作成できていない。
(実施例)
本発明のn型SnS半導体の作成方法を図1に示す。
As will be described later, F (fluorine) and I (iodine) cannot form SnS crystals well, and n-type SnS semiconductors cannot be produced.
(Example)
FIG. 1 shows a method for producing an n-type SnS semiconductor according to the present invention.

試料を合成するにあたって秤量ならびに混合の際に空気中の水分や酸素などの影響を最小限にするため、作業は窒素置換グローブボックス(UNICO UN-650L)中で行った。 In order to minimize the effects of moisture and oxygen in the air during weighing and mixing, the work was carried out in a nitrogen-purged glove box (UNICO UN-650L).

まず、図1に示すように、SおよびSnをそれぞれ秤量する。SnはSnインゴットを切削して得た(ステップ1)。 First, as shown in FIG. 1, S and Sn are each weighed. Sn was obtained by cutting a Sn ingot (Step 1).

ここで、静電気などでボート型秤量皿に物質が付着してしまう分の秤量誤差を少なくするため、ボート型秤量皿をあらかじめ秤量するSおよびSnで汚したものを利用した。 Here, in order to reduce weighing errors due to substances adhering to the boat-shaped weighing dish due to static electricity, etc., the boat-shaped weighing dish was previously stained with S and Sn for weighing and used.

秤量したSおよびSnを他のボード型秤量皿に移し混合した。(ステップ2) The weighed S and Sn were transferred to another board-type weighing dish and mixed. (Step 2)

次にドーパント材料を秤量した。ここでは、Br(臭素)をドーパントとするため、安定的に所望の量を添加できるようにするためSnBrを用いた。(ステップ3) The dopant material was then weighed. Here, since Br (bromine) is used as a dopant, SnBr 2 is used in order to stably add a desired amount. (Step 3)

ステップ2で混合したSとSnと、ステップ3で秤量したSnBrとを石英管に入れ混合し、風船で封をし、窒素置換グローブボックスから取り出す(スッテプ4)。ここで窒素置換グローブボックスからこれら材料を入れた石英管を取り出す際に風船で封をするのは、なるべく大気に触れないようにするためである。したがってこの効果を奏する方法であれば、他の方法による封管でも構わない。 S and Sn mixed in step 2 and SnBr 2 weighed in step 3 are mixed in a quartz tube, sealed with a balloon, and taken out of the nitrogen-purging glove box (step 4). Here, the reason why the quartz tube containing these materials is sealed with a balloon when it is taken out from the nitrogen-purging glove box is to prevent it from coming into contact with the atmosphere as much as possible. Therefore, other methods may be used to seal the tubes as long as they can achieve this effect.

取り出した石英管を10Pa以下の真空中で封管する。(ステップ5) The quartz tube taken out is sealed in a vacuum of 10 Pa or less. (Step 5)

真空封管した石英管を電気炉にいれ、S、Sn、SnBrの混合物を加熱し、Br添加のSnSを焼成した。この時、室温から520℃まで12時間(12H)かけて温度を上昇させた後、そこから520℃の温度を保ったままさらに12時間(12H)かけて焼成した。その後さらに3時間(3H)かけて520℃から20℃まで冷却した。(ステップ6) The vacuum-sealed quartz tube was placed in an electric furnace, and a mixture of S, Sn, and SnBr2 was heated to bake the Br-added SnS. At this time, the temperature was raised from room temperature to 520° C. over 12 hours (12 hours), and then, while the temperature was kept at 520° C., firing was continued for another 12 hours (12 hours). After that, it was further cooled from 520°C to 20°C over 3 hours (3H). (Step 6)

ステップ6により得られたBr添加SnSを取り出し、粉砕し粉末にした(ステップ7)。 The Br-added SnS obtained in step 6 was taken out and pulverized into powder (step 7).

ステップ7により得られたBr添加SnSの粉末を、放電プラズマ焼結法(SPS:Spark Plasma Sintering)を用い高密度焼結体を作製した(ステップ8)。 The Br-added SnS powder obtained in step 7 was subjected to spark plasma sintering (SPS) to produce a high-density sintered body (step 8).

放電プラズマ焼結は機械的な加圧とパルス電流によるダイスへの加熱に加え、試料の自己発熱、粒子間の放電プラズマエネルギーによる加熱によって短時間で密度に偏りのない均一な焼結体の作製が可能な焼結法である。 In discharge plasma sintering, in addition to heating the die by mechanical pressure and pulse current, the self-heating of the sample and heating by discharge plasma energy between particles produce a uniform sintered body with no bias in density in a short time. is a possible sintering method.

図2は放電プラズマ装置の概略を示す図である。図2の放電プラズマ焼結装置のダイスの内側をカーボンシートで覆ってカーボンシートの筒を構成し、カーボンシートの筒の内側に高密度焼結体とする材料(試料)を投入し、筒の上下からパンチではさみ、試料を加圧するとともに試料を加熱することにより高密度焼結体を作成することができる。 FIG. 2 is a diagram showing an outline of a discharge plasma apparatus. The inside of the die of the discharge plasma sintering apparatus in FIG. A high-density sintered body can be produced by sandwiching the sample with punches from above and below, applying pressure to the sample, and heating the sample.

本実施例では、ステップ7で作成したBr添加SnSの粉末を、10~12Paの真空中で加熱温度を600℃、加熱時間を12分(6分で昇温)、加圧を約3.5kNの条件で焼結させた。この結果、いずれも相対密度が80%以上の高密度焼結体試料を作製することができた。 In this example, the Br-added SnS powder prepared in step 7 was heated in a vacuum of 10 to 12 Pa at a temperature of 600 ° C. for a heating time of 12 minutes (temperature rise in 6 minutes) and a pressure of about 3.5 kN. was sintered under the conditions of As a result, a high-density sintered body sample having a relative density of 80% or more could be produced.

ステップ8により得られたBr添加SnS高密度焼結体試料でゼーベック係数測定を行った。Brの添加量を変えてこれらのBr添加SnS高密度焼結体試料のゼーベック係数の測定結果を図3に示す。図3において三角印がBr添加SnSの測定結果を示す。なお、図3では比較対象として同様に作成、測定したCl添加SnSについての結果も併記している(図3においては丸印がCl添加SnSの結果を示す)。 The Seebeck coefficient was measured for the Br-added SnS high-density sintered body sample obtained in Step 8. FIG. 3 shows the measurement results of the Seebeck coefficient of these Br-added SnS high-density sintered samples with different Br addition amounts. Triangular marks in FIG. 3 indicate the measurement results of Br-added SnS. In addition, FIG. 3 also shows the results of Cl-added SnS prepared and measured in the same manner for comparison (in FIG. 3, circles indicate the results of Cl-added SnS).

図3に示すようにBrを0.4at.%以上添加したBr添加SnSでゼーベック係数(Seebeck coefficient)がマイナスの値となっておりn型化が実現されたことがわかる。またClのケースと同じようにほぼ同じ添加量でゼーベック係数がマイナスになっていることが明らかとなった。なお、図3から明らかなようにBr添加のSnSは少なくとも0.4at.%以上~1.0at.%以下の範囲においてBr添加のSnSがn型の特性を示すことがわかる。一方、0.4at.%よりもBr添加が少ない範囲ではゼーベック係数がプラスとなっており、n型の特性を帯びないことも明らかになった。 As shown in FIG. 3, Br is 0.4 at. % or more of Br-added SnS, the Seebeck coefficient is a negative value, indicating that the n-type has been achieved. In addition, it was found that the Seebeck coefficient was negative at approximately the same amount of addition as in the case of Cl. Incidentally, as is clear from FIG. 3, the Br-added SnS is at least 0.4 at. % to 1.0 at. % or less, Br-added SnS exhibits n-type characteristics. On the other hand, 0.4 at. %, the Seebeck coefficient is positive and does not exhibit n-type characteristics.

次にBr添加SnSについて試料のXRD測定を行った。そのXRD測定結果を図4に示す。図4の上段は、単相ノンドープSnS(無添加SnS)試料の、下段はBrを0.95at.%添加した試料のXRDパターンをそれぞれ示している。なお、Br添加SnSのXRD測定は、ステップ8で得られた高密度焼結体を粉砕した粉末で行った。また、単相ノンドープSnS(無添加SnS)もBr添加SnSと同様に単相ノンドープSnSの高密度焼結体作成し、それを粉砕した粉末でXRD測定を行った。 Next, an XRD measurement was performed on a sample of Br-added SnS. FIG. 4 shows the XRD measurement results thereof. The upper part of FIG. 4 shows a single-phase non-doped SnS (undoped SnS) sample, and the lower part shows Br at 0.95 at. % added samples are shown respectively. The XRD measurement of the Br-added SnS was performed using a powder obtained by pulverizing the high-density sintered body obtained in step 8. In addition, single-phase non-doped SnS (no additive SnS) was also prepared by preparing a high-density sintered body of single-phase non-doped SnS in the same manner as for Br-added SnS, and performing XRD measurement on a powder obtained by pulverizing it.

ここで、図4上段の無添加SnS(純粋なSnS)のXRDパターンに記載している3ケタの数字はSnSの面指数を示している。図4上段のXRDパターンの全てのピークがSnSのそれぞれの面に帰属できることから、単相ができていることが明らかである。図4上段および下段を比較すると同じ位置にのみピークがあり、余計なピークが無いため、Br0.95at.%添加した試料(図4下段)も単相の試料が得られていることが明らかである。なお、このXRDパターンの縦軸は対数スケール(a.u.)である。 Here, the three-digit number described in the XRD pattern of undoped SnS (pure SnS) in the upper part of FIG. 4 indicates the surface index of SnS. Since all the peaks in the XRD pattern in the upper part of FIG. 4 can be attributed to respective planes of SnS, it is clear that a single phase is formed. Comparing the upper and lower parts of FIG. 4, there are peaks only at the same positions, and there are no unnecessary peaks, so Br 0.95 at. % added (bottom of FIG. 4) is also a single-phase sample. Note that the vertical axis of this XRD pattern is a logarithmic scale (a.u.).

Brに代えてフッ素を用いて本実施例と同様の実験を行った場合の試料のXRDパターンを図5に示す。フッ素添加した場合、SnSのピークの他に、SnS、SnSnのピークも見えている。このことは、SnSの多結晶がそもそも作成困難であることを示している。なお、図5におけるXRD測定は、Br添加SnSと同様にフッ素添加SnSの高密度焼結体作成し、それを粉砕した粉末で行った。 FIG. 5 shows the XRD pattern of a sample when the same experiment as in this example was performed using fluorine instead of Br. When fluorine was added, peaks of SnS 2 and Sn 2 Sn 3 were also observed in addition to the peak of SnS. This indicates that it is difficult to produce polycrystals of SnS in the first place. The XRD measurement in FIG. 5 was performed on a powder obtained by pulverizing a high-density sintered compact of fluorine-added SnS in the same manner as the Br-added SnS.

また、Brに代えてヨウ素を用いて本実施例と同様の実験を行った場合の試料のXRDパターンを図6に示す。ヨウ素2乃至3%添加の場合は、SnSlのピークが見えており、SnSの多結晶そのものでさえも作成が困難であることがわかる。また、ヨウ素1%添加のXRDパターンでは異相は見受けられないものの実際の実験では石英管での加熱後、管内に析出物が認められるため単相が得られたとは判断できなかった。なお、図6におけるXRD測定は、Br添加SnS試料と同様にヨウ素添加SnSの高密度焼結体作成し、それを粉砕した粉末で行った。 Also, FIG. 6 shows the XRD pattern of a sample when the same experiment as in this example was performed using iodine instead of Br. In the case of adding 2 to 3% of iodine, the peak of SnSl 2 is visible, and it is understood that it is difficult to prepare even the polycrystal of SnS itself. In addition, although no heterogeneous phase was observed in the XRD pattern with 1% iodine added, in the actual experiment, after heating in the quartz tube, precipitates were observed in the tube, so it could not be determined that a single phase was obtained. The XRD measurement in FIG. 6 was performed on a powder obtained by pulverizing a high-density sintered body of iodine-added SnS similarly to the Br-added SnS sample.

以上のことからも、本発明のBr添加SnS半導体は、数少ないn型SnS半導体となる半導体材料であることがわかる。 From the above, it can be seen that the Br-added SnS semiconductor of the present invention is one of the few semiconductor materials that can be used as an n-type SnS semiconductor.

ノンドープのSnS半導体は一般にp型を示すことから、n型を示す本発明のBr添加SnSを用いれば、ホモ接合型SnS太陽電池を実現が可能となる。p型のノンドープのSnS半導体と本実施例に示すBr添加n型SnS半導体とがpn接合するように構成にされ、このpn接合を備えた太陽電池を構成することにより、ホモ接合型SnS太陽電池とすることが可能となる。 Since non-doped SnS semiconductors generally exhibit p-type, if the Br-added SnS of the present invention exhibiting n-type is used, a homojunction SnS solar cell can be realized. A p-type non-doped SnS semiconductor and a Br-added n-type SnS semiconductor shown in this embodiment are configured to form a pn junction, and a homojunction SnS solar cell is obtained by constructing a solar cell having this pn junction. It becomes possible to

Claims (4)

高密度焼結体であるn型BrドープSnS半導体の製造方法であって、SnS(硫化スズ)にBrが添加された試料を加圧するとともに600℃に加熱することを特徴とするn型BrドープSnS半導体の製造方法 A method for producing an n-type Br-doped SnS semiconductor, which is a high-density sintered body, wherein a sample of SnS (tin sulfide) to which Br is added is pressurized and heated to 600° C. n-type Br A method for producing a doped SnS semiconductor. 前記加圧の圧力は3.5kNであることを特徴とする請求項1に記載のn型BrドープSnS半導体の製造方法。 2. The method for manufacturing an n-type Br-doped SnS semiconductor according to claim 1, wherein said pressure is 3.5 kN. 前記Brの含有量は前記SnSに対し0.4at.%以上であることを特徴とする請求項1または2に記載のn型BrドープSnS半導体の製造方法。 The Br content is 0.4 at. % or more . 前記Brの含有量は前記SnSに対し0.4at.%以上かつ1.0at.%以下であることを特徴とする請求項1乃至3のいずれか1つに記載のn型BrドープSnS半導体の製造方法。
The Br content is 0.4 at. % or more and 1.0 at. % or less , the method for producing an n-type Br-doped SnS semiconductor according to claim 1.
JP2018066373A 2018-03-30 2018-03-30 Manufacturing method of n-type Br-doped SnS semiconductor Active JP7169508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018066373A JP7169508B2 (en) 2018-03-30 2018-03-30 Manufacturing method of n-type Br-doped SnS semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018066373A JP7169508B2 (en) 2018-03-30 2018-03-30 Manufacturing method of n-type Br-doped SnS semiconductor

Publications (2)

Publication Number Publication Date
JP2019178012A JP2019178012A (en) 2019-10-17
JP7169508B2 true JP7169508B2 (en) 2022-11-11

Family

ID=68277726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018066373A Active JP7169508B2 (en) 2018-03-30 2018-03-30 Manufacturing method of n-type Br-doped SnS semiconductor

Country Status (1)

Country Link
JP (1) JP7169508B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022003675A (en) * 2020-06-23 2022-01-11 国立大学法人東北大学 N type sns thin film, photoelectric conversion element, solar cell, method for manufacturing n type sns thin film and n type sns thin film manufacturing apparatus
CN112234110B (en) * 2020-10-16 2022-07-19 重庆大学 Sandwich-shaped PN junction and accurate construction method thereof
WO2023286691A1 (en) * 2021-07-12 2023-01-19 国立研究開発法人物質・材料研究機構 Compound semiconductor composition, thin film, solar battery, and thermoelectric material using said compound semiconductor composition, and method for producing said compound semiconductor composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197981A (en) 2001-12-26 2003-07-11 Kyocera Corp Thermoelectric module
JP2008518449A (en) 2004-10-26 2008-05-29 ビーエーエスエフ ソシエタス・ヨーロピア Photovoltaic cell having photovoltaic active semiconductor material
JP2010519732A (en) 2007-02-15 2010-06-03 マサチューセッツ インスティテュート オブ テクノロジー Solar cell with uneven surface
JP2012514867A (en) 2009-01-09 2012-06-28 ダイヤモンド イノベイションズ インコーポレーテッド Influence of thermoelectric figure of merit (ZT) by high pressure and high temperature sintering
JP2013089719A (en) 2011-10-17 2013-05-13 Toyota Industries Corp Thermoelectric conversion element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321538A (en) * 1993-05-19 1994-11-22 Nisshin Steel Co Ltd Production of sns semiconductor sintered film
JP3519543B2 (en) * 1995-06-08 2004-04-19 松下電器産業株式会社 Precursor for forming semiconductor thin film and method for producing semiconductor thin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197981A (en) 2001-12-26 2003-07-11 Kyocera Corp Thermoelectric module
JP2008518449A (en) 2004-10-26 2008-05-29 ビーエーエスエフ ソシエタス・ヨーロピア Photovoltaic cell having photovoltaic active semiconductor material
JP2010519732A (en) 2007-02-15 2010-06-03 マサチューセッツ インスティテュート オブ テクノロジー Solar cell with uneven surface
JP2012514867A (en) 2009-01-09 2012-06-28 ダイヤモンド イノベイションズ インコーポレーテッド Influence of thermoelectric figure of merit (ZT) by high pressure and high temperature sintering
JP2013089719A (en) 2011-10-17 2013-05-13 Toyota Industries Corp Thermoelectric conversion element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANAGI Hiroshi et al.,Applied Physics Express,2016年,9,p.05121-1~p.05121-3,http://doi.org/10.7567/APEX.9.051201

Also Published As

Publication number Publication date
JP2019178012A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
Saikia et al. Performance evaluation of an all inorganic CsGeI3 based perovskite solar cell by numerical simulation
Baig et al. Efficiency enhancement of CH 3 NH 3 SnI 3 solar cells by device modeling
Sinsermsuksakul et al. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer
Feng et al. Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of pin InGaN single homojunction solar cells
JP7169508B2 (en) Manufacturing method of n-type Br-doped SnS semiconductor
Zhang et al. Optimal design and simulation of high-performance organic-metal halide perovskite solar cells
Kanoun et al. Device design optimization with interface engineering for highly efficient mixed cations and halides perovskite solar cells
Konan et al. Numerical simulations of highly efficient Cu2FeSnS4 (CFTS)-based solar cells
Chabri et al. SCAPS device simulation study of formamidinium Tin-Based perovskite solar Cells: Investigating the influence of absorber parameters and transport layers on device performance
Wu et al. A beyond near-infrared response in a wide-bandgap ZnO/ZnSe coaxial nanowire solar cell by pseudomorphic layers
JP2014220351A (en) Multi-junction solar cell
Hao et al. Large Voc improvement and 9.2% efficient pure sulfide Cu 2 ZnSnS 4 solar cells by heterojunction interface engineering
KR101415251B1 (en) Multiple-Layered Buffer, and Its Fabrication Method, and Solor Cell with Multiple-Layered Buffer.
Tang et al. Suppression of the surface “dead region” for fabrication of GaInAsSb thermophotovoltaic cells
Dang Nanostructured semiconductor device design in solar cells
Fu et al. Synthesis, crystal structure and optical properties of Ce doped CuInSe2 powders prepared by mechanically alloying
Islam et al. Lead-free organic inorganic halide perovskite solar cell with over 30% efficiency.
CN206992124U (en) A kind of multijunction solar cell containing embedded aluminum back surface field
Bharam et al. Advantages and challenges of silicon in the photovoltaic cells
Khelifi et al. The effect of thickness on the performance of an intermediate band solar cell based on ZnTe: O
KR101686478B1 (en) CIGSSe Thin film for solar cell and the preparation method and its application to thin film solar cell
WO2023286691A1 (en) Compound semiconductor composition, thin film, solar battery, and thermoelectric material using said compound semiconductor composition, and method for producing said compound semiconductor composition
Chowdhury et al. Enhancement of device performance with optimized absorber layer in CIGS solar cell
Jimoh et al. Investigating the Performance of Perovskite Solar Cells Using Nickel Oxide and Copper Iodide as P-type Inorganic layers by SCAPS-1D Simulation
CN112563118B (en) In-doped CdS film, preparation method and CIGS cell prepared by same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221011

R150 Certificate of patent or registration of utility model

Ref document number: 7169508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150