JP2019178012A - N-type SnS semiconductor and solar cell using the same - Google Patents

N-type SnS semiconductor and solar cell using the same Download PDF

Info

Publication number
JP2019178012A
JP2019178012A JP2018066373A JP2018066373A JP2019178012A JP 2019178012 A JP2019178012 A JP 2019178012A JP 2018066373 A JP2018066373 A JP 2018066373A JP 2018066373 A JP2018066373 A JP 2018066373A JP 2019178012 A JP2019178012 A JP 2019178012A
Authority
JP
Japan
Prior art keywords
sns
type
semiconductor
added
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018066373A
Other languages
Japanese (ja)
Other versions
JP7169508B2 (en
Inventor
博 柳
Hiroshi Yanagi
博 柳
雄喜 井口
Yuki Iguchi
雄喜 井口
太樹 杉山
Hiroki Sugiyama
太樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2018066373A priority Critical patent/JP7169508B2/en
Publication of JP2019178012A publication Critical patent/JP2019178012A/en
Application granted granted Critical
Publication of JP7169508B2 publication Critical patent/JP7169508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

To provide a novel n-type SnS semiconductor material that is doped with a halogen element and does not contain a toxic element/rare element under circumstances where few studies of forming SnS into n-type have been reported and the realization of homojunction-type SnS solar cells has been difficult, the homojunction-type SnS solar cells being realized by using a Br-added SnS exhibiting an n-type according to the present invention.SOLUTION: An n-type SnS semiconductor according to the present invention comprises SnS (tin sulfide) to which Br is added.SELECTED DRAWING: Figure 3

Description

本発明は、SnS(硫化スズ)半導体に関し、特にn型の電気特性を示す半導体およびそれを用いた太陽電池に関する。   The present invention relates to a SnS (tin sulfide) semiconductor, and particularly to a semiconductor exhibiting n-type electrical characteristics and a solar cell using the same.

太陽エネルギーを利用した太陽光発電は、クリーンかつ地球温暖化の防止に有望なため、将来のエネルギー源として大きく期待され、その研究開発が進められている。   Solar power generation using solar energy is promising for clean and prevention of global warming, so it is highly expected as a future energy source, and its research and development is underway.

太陽電池に使用されている半導体材料として、シリコン系半導体材料、化合物半導体材料などが挙げられる。   Examples of semiconductor materials used in solar cells include silicon-based semiconductor materials and compound semiconductor materials.

これら太陽電池向け半導体材料として、シリコン系半導体材料は20%前後の変換効率を持つがその材料コストが高いことが問題となっている。   As a semiconductor material for these solar cells, a silicon-based semiconductor material has a conversion efficiency of about 20%, but its material cost is a problem.

また、化合物半導体系材料はGaAs、InPに代表されるIII-V族半導体やCIGS系やCdTe系などが挙げられる。これらの中には多接合化や集光などの技術を組み合わせることで40%近くにも及ぶ高い変換効率を持つ高性能の材料もあるが概ね高コストであり、主に宇宙用として使われている。また、CIGS、CdTe、GaAsなどの化合物半導体の中にはInやGaといった希少元素や、CdやAsといった有毒元素を含むものがその主流である。   Examples of compound semiconductor materials include III-V group semiconductors represented by GaAs and InP, CIGS systems, and CdTe systems. Among these, there are high-performance materials with high conversion efficiency of nearly 40% by combining technologies such as multi-junction and condensing, but they are generally expensive and are mainly used for space applications. Yes. Further, among compound semiconductors such as CIGS, CdTe, and GaAs, those containing rare elements such as In and Ga and toxic elements such as Cd and As are the mainstream.

太陽電池は、基本的にp型半導体とn型半導体とを接合したpn接合により構成される。pn接合には、p型半導体とn型半導体の両方に同じ物質を用いるホモ接合と、p型半導体とn型半導体がそれぞれ違う物質であるヘテロ接合がある。ヘテロ接合の場合、結晶性、格子定数の違いなどから接合界面に欠陥が生じ、光吸収により生成した電子、正孔が界面欠陥によりトラップされ、再結合が生じやすくなるという問題がある。このため、もともとの材料が持つ特性を活かすことが困難である。   A solar cell is basically composed of a pn junction in which a p-type semiconductor and an n-type semiconductor are joined. The pn junction includes a homojunction that uses the same material for both the p-type semiconductor and the n-type semiconductor, and a heterojunction in which the p-type semiconductor and the n-type semiconductor are different materials. In the case of a heterojunction, there is a problem in that defects occur at the junction interface due to differences in crystallinity and lattice constant, and electrons and holes generated by light absorption are trapped by the interface defect and recombination easily occurs. For this reason, it is difficult to make use of the characteristics of the original material.

化合物半導体であるSnS(硫化スズ)は非毒性元素/非希少元素のみからなり、その電子移動度は計算値で73500cm/Vs、正孔移動度が23700cm/Vsと他の半導体と比べて非常に大きな値を有している。また、光吸収係数も約104cm−1と高く、バンドギャップも約1.35eVと太陽光の吸収に最適な1.4eVと近い値である。それゆえ、SnSホモ接合太陽電池が実現すれば、理論的には20%以上の変換効率が期待される。 SnS (tin sulfide), which is a compound semiconductor, consists only of non-toxic elements / non-rare elements, and its electron mobility is 73500 cm 2 / Vs and hole mobility is 23700 cm 2 / Vs in comparison with other semiconductors. It has a very large value. In addition, the light absorption coefficient is as high as about 10 4 cm −1 and the band gap is about 1.35 eV, which is close to 1.4 eV which is optimal for absorption of sunlight. Therefore, if an SnS homojunction solar cell is realized, a conversion efficiency of 20% or more is theoretically expected.

しかしながらが、SnSのn型化については、非特許文献1や非特許文献2などにその報告例があるに過ぎない。非特許文献1はSnSにPb添加する方法によるn型SnSの研究報告であるが、この方法の場合SnS1−xPbはx>20%でn型化を示すものであり、有毒のPbを用いるものである。一方、非特許文献2は本発明者らによるCl添加したSnSがn型伝導を示す事例である。この報告例は、ハロゲン元素をドープして作成されたn型SnS半導体のただ1つの実証例である。n型SnS半導体材料は現在このような状況にあり、SnSホモ接合型太陽電池ができていない。また、一部にSnSを用いた太陽電池では、その変換効率も5%程度に留まっていた。このような状況からホモ接合SnS太陽電池は、その作成がいまだになされていない。 However, there are only reported examples of SnS n-type in Non-Patent Document 1, Non-Patent Document 2, and the like. Non-Patent Document 1 is a research report of n-type SnS by a method of adding Pb to SnS. In this method, SnS 1-x Pb x shows n-type conversion when x> 20%, and toxic Pb Is used. On the other hand, Non-Patent Document 2 is an example of Sn-doped SnS by the present inventors showing n-type conduction. This report is only one demonstration example of an n-type SnS semiconductor made by doping with a halogen element. The n-type SnS semiconductor material is currently in such a situation, and a SnS homojunction solar cell has not been made. Moreover, in the solar cell using SnS for a part, the conversion efficiency has been limited to about 5%. Under such circumstances, homojunction SnS solar cells have not yet been made.

F.-Y. Ran, Z. Xiao, Y. Toda, H. Hiramatsu, H. Hosono, and T. Kamita,Sci. Rep. 5, 10428 (2015).F.-Y. Ran, Z. Xiao, Y. Toda, H. Hiramatsu, H. Hosono, and T. Kamita, Sci. Rep. 5, 10428 (2015). Hiroshi Yanagi, Yuki Iguchi, Taiki Sugiyama, Toshio Kamiya and HideoHosono “N-type conduction in SnS by anion substitution with Cl”, AppliedPhysics Express, 9, 051201 (2016).Hiroshi Yanagi, Yuki Iguchi, Taiki Sugiyama, Toshio Kamiya and HideoHosono “N-type conduction in SnS by anion substitution with Cl”, AppliedPhysics Express, 9, 051201 (2016).

毒性元素/希少元素を用いない、ハロゲン元素をドープして作成された新たなn型SnS半導体材料を提供する。   Provided is a new n-type SnS semiconductor material prepared by doping a halogen element without using a toxic element / rare element.

本発明のn型SnS半導体は、SnS(硫化スズ)にBrが添加されたことを特徴とする。   The n-type SnS semiconductor of the present invention is characterized in that Br is added to SnS (tin sulfide).

Br(臭素)をドープ(添加)することにより、毒性元素/希少元素を用いないn型SnS半導体材料を提供することが可能となる。   By doping (adding) Br (bromine), it is possible to provide an n-type SnS semiconductor material that does not use toxic elements / rare elements.

本発明のn型SnS半導体の作成フローを示す図である。It is a figure which shows the creation flow of the n-type SnS semiconductor of this invention. 放電プラズマ焼結装置の概略を示す図である。It is a figure which shows the outline of a discharge plasma sintering apparatus. 本発明のn型SnS半導体のゼーベック係数を示す図である。It is a figure which shows the Seebeck coefficient of the n-type SnS semiconductor of this invention. Brを添加したSnS試料のXRDパターンを示す図である。It is a figure which shows the XRD pattern of the SnS sample which added Br. フッ素を添加したSnS試料のXRDパターンを示す図である。It is a figure which shows the XRD pattern of the SnS sample which added the fluorine. ヨウ素を添加したSnS試料のXRDパターンを示す図である。It is a figure which shows the XRD pattern of the SnS sample which added the iodine.

SnSにハロゲン元素をドープすることによるn型SnSの作成は、(1)ドープされるハロゲン元素と硫黄とのイオン半径の違いにより硫黄サイトへの置換の可否が変わり、ハロゲン元素の違いによりSn欠陥の生成エンタルピー(Sn欠陥のできやすさ)が変わると考えられること、(2)Sn欠陥ができるとホールが生成するためハロゲン元素により生じた電子を打ち消す働きをすると考えられることなどから、今までにあまり研究がなされていなかった。また、ハロゲン元素を実際にドープしてみないとn型となるかどうかはわからなかった。   The creation of n-type SnS by doping halogen elements into SnS is as follows: (1) The possibility of substitution with sulfur sites varies depending on the ion radius difference between the doped halogen element and sulfur, and Sn defects depend on the difference in halogen elements. From the fact that the generation enthalpy (easiness of Sn defects) of the metal is considered to change, and (2) it is thought that when the Sn defects are formed, holes are generated, so that the electron generated by the halogen element is counteracted. There was not much research done. Moreover, it was not known whether it would be n-type without actually doping with a halogen element.

上述したように非特許文献2によるCl添加したSnSがn型伝導を示す事例のみが、ハロゲン元素をドープして作成されたn型SnS半導体の実証例であり、非毒性元素や希少元素を必要としない事例であった。   As described above, only the case where Sn-added SnS added according to Non-Patent Document 2 exhibits n-type conduction is a demonstration example of an n-type SnS semiconductor prepared by doping with a halogen element, which requires a non-toxic element or a rare element. It was a case that did not.

なお、後述するようにF(フッ素)やI(ヨウ素)ではSnS結晶そのものがうまく構成できずn形SnS半導体を作成できていない。
(実施例)
本発明のn型SnS半導体の作成方法を図1に示す。
As will be described later, Sn (SnS) crystal itself cannot be successfully constructed with F (fluorine) or I (iodine), and an n-type SnS semiconductor cannot be produced.
(Example)
A method for producing an n-type SnS semiconductor of the present invention is shown in FIG.

試料を合成するにあたって秤量ならびに混合の際に空気中の水分や酸素などの影響を最小限にするため、作業は窒素置換グローブボックス(UNICO UN-650L)中で行った。   In order to minimize the influence of moisture and oxygen in the air during weighing and mixing in synthesizing the sample, the work was performed in a nitrogen-substituted glove box (UNICO UN-650L).

まず、図1に示すように、SおよびSnをそれぞれ秤量する。SnはSnインゴットを切削して得た(ステップ1)。   First, as shown in FIG. 1, each of S and Sn is weighed. Sn was obtained by cutting a Sn ingot (step 1).

ここで、静電気などでボート型秤量皿に物質が付着してしまう分の秤量誤差を少なくするため、ボート型秤量皿をあらかじめ秤量するSおよびSnで汚したものを利用した。   Here, in order to reduce the weighing error due to the substance adhering to the boat-type weighing pan due to static electricity or the like, the boat-type weighing pan previously soiled with S and Sn was used.

秤量したSおよびSnを他のボード型秤量皿に移し混合した。(ステップ2)   The weighed S and Sn were transferred to another board-type weighing pan and mixed. (Step 2)

次にドーパント材料を秤量した。ここでは、Br(臭素)をドーパントとするため、安定的に所望の量を添加できるようにするためSnBrを用いた。(ステップ3) The dopant material was then weighed. Here, since Br (bromine) is used as a dopant, SnBr 2 was used so that a desired amount can be stably added. (Step 3)

ステップ2で混合したSとSnと、ステップ3で秤量したSnBrとを石英管に入れ混合し、風船で封をし、窒素置換グローブボックスから取り出す(スッテプ4)。ここで窒素置換グローブボックスからこれら材料を入れた石英管を取り出す際に風船で封をするのは、なるべく大気に触れないようにするためである。したがってこの効果を奏する方法であれば、他の方法による封管でも構わない。 S and Sn mixed in Step 2 and SnBr 2 weighed in Step 3 are mixed in a quartz tube, sealed with a balloon, and taken out from the nitrogen-substituted glove box (Step 4). Here, when the quartz tube containing these materials is taken out from the nitrogen-substituted glove box, it is sealed with a balloon in order to avoid exposure to the atmosphere as much as possible. Therefore, any other method may be used as long as it is a method that exhibits this effect.

取り出した石英管を10Pa以下の真空中で封管する。(ステップ5)   The extracted quartz tube is sealed in a vacuum of 10 Pa or less. (Step 5)

真空封管した石英管を電気炉にいれ、S、Sn、SnBrの混合物を加熱し、Br添加のSnSを焼成した。この時、室温から520℃まで12時間(12H)かけて温度を上昇させた後、そこから520℃の温度を保ったままさらに12時間(12H)かけて焼成した。その後さらに3時間(3H)かけて520℃から20℃まで冷却した。(ステップ6) The quartz tube sealed in a vacuum was placed in an electric furnace, and the mixture of S, Sn, and SnBr 2 was heated to sinter the Sn-added BrS. At this time, the temperature was raised from room temperature to 520 ° C. over 12 hours (12H), and then calcined for 12 hours (12H) while maintaining the temperature at 520 ° C. Thereafter, it was further cooled from 520 ° C. to 20 ° C. over 3 hours (3H). (Step 6)

ステップ6により得られたBr添加SnSを取り出し、粉砕し粉末にした(ステップ7)。   The Br-added SnS obtained in Step 6 was taken out and pulverized into a powder (Step 7).

ステップ7により得られたBr添加SnSの粉末を、放電プラズマ焼結法(SPS:Spark Plasma Sintering)を用い高密度焼結体を作製した(ステップ8)。   A high-density sintered body was produced from the Br-added SnS powder obtained in step 7 using a spark plasma sintering (SPS) method (step 8).

放電プラズマ焼結は機械的な加圧とパルス電流によるダイスへの加熱に加え、試料の自己発熱、粒子間の放電プラズマエネルギーによる加熱によって短時間で密度に偏りのない均一な焼結体の作製が可能な焼結法である。   In spark plasma sintering, in addition to mechanical pressurization and heating to the die by pulse current, a uniform sintered body with no bias in density is produced in a short time by self-heating of the sample and heating by discharge plasma energy between particles. This is a possible sintering method.

図2は放電プラズマ装置の概略を示す図である。図2の放電プラズマ焼結装置のダイスの内側をカーボンシートで覆ってカーボンシートの筒を構成し、カーボンシートの筒の内側に高密度焼結体とする材料(試料)を投入し、筒の上下からパンチではさみ、試料を加圧するとともに試料を加熱することにより高密度焼結体を作成することができる。   FIG. 2 is a diagram showing an outline of the discharge plasma apparatus. The inside of the die of the discharge plasma sintering apparatus of FIG. 2 is covered with a carbon sheet to form a cylinder of carbon sheet, and a material (sample) that is a high-density sintered body is placed inside the cylinder of the carbon sheet. A high-density sintered body can be produced by sandwiching with a punch from above and below, pressurizing the sample and heating the sample.

本実施例では、ステップ7で作成したBr添加SnSの粉末を、10〜12Paの真空中で加熱温度を600℃、加熱時間を12分(6分で昇温)、加圧を約3.5kNの条件で焼結させた。この結果、いずれも相対密度が80%以上の高密度焼結体試料を作製することができた。   In this example, the Br-added SnS powder prepared in Step 7 was heated in a vacuum of 10 to 12 Pa at a heating temperature of 600 ° C., a heating time of 12 minutes (heating up in 6 minutes), and a pressure of about 3.5 kN. Sintering was performed under the following conditions. As a result, a high-density sintered body sample having a relative density of 80% or more could be produced.

ステップ8により得られたBr添加SnS高密度焼結体試料でゼーベック係数測定を行った。Brの添加量を変えてこれらのBr添加SnS高密度焼結体試料のゼーベック係数の測定結果を図3に示す。図3において三角印がBr添加SnSの測定結果を示す。なお、図3では比較対象として同様に作成、測定したCl添加SnSについての結果も併記している(図3においては丸印がCl添加SnSの結果を示す)。   The Seebeck coefficient was measured on the Br-added SnS high-density sintered body sample obtained in Step 8. FIG. 3 shows the measurement results of the Seebeck coefficient of these Br-added SnS high-density sintered compact samples while changing the amount of Br added. In FIG. 3, the triangle marks indicate the measurement results of Br-added SnS. FIG. 3 also shows the results of Cl addition SnS prepared and measured in the same manner as a comparison target (in FIG. 3, circles indicate the results of Cl addition SnS).

図3に示すようにBrを0.4at.%以上添加したBr添加SnSでゼーベック係数(Seebeck coefficient)がマイナスの値となっておりn型化が実現されたことがわかる。またClのケースと同じようにほぼ同じ添加量でゼーベック係数がマイナスになっていることが明らかとなった。なお、図3から明らかなようにBr添加のSnSは少なくとも0.4at.%以上〜1.0at.%以下の範囲においてBr添加のSnSがn型の特性を示すことがわかる。一方、0.4at.%よりもBr添加が少ない範囲ではゼーベック係数がプラスとなっており、n型の特性を帯びないことも明らかになった。   As shown in FIG. It can be seen that n-type conversion was realized because the Seebeck coefficient was negative for Br-added SnS added in an amount of at least%. It was also found that the Seebeck coefficient was negative at almost the same addition amount as in the case of Cl. As is apparent from FIG. 3, the Sn addition with Br added is at least 0.4 at. % To 1.0 at. It can be seen that Sn-added SnS exhibits n-type characteristics in the range of not more than%. On the other hand, 0.4 at. It has also been clarified that the Seebeck coefficient is positive in a range where Br addition is less than% and does not have n-type characteristics.

次にBr添加SnSについて試料のXRD測定を行った。そのXRD測定結果を図4に示す。図4の上段は、単相ノンドープSnS(無添加SnS)試料の、下段はBrを0.95at.%添加した試料のXRDパターンをそれぞれ示している。なお、Br添加SnSのXRD測定は、ステップ8で得られた高密度焼結体を粉砕した粉末で行った。また、単相ノンドープSnS(無添加SnS)もBr添加SnSと同様に単相ノンドープSnSの高密度焼結体作成し、それを粉砕した粉末でXRD測定を行った。   Next, the XRD measurement of the sample was performed for Br-added SnS. The XRD measurement results are shown in FIG. 4 shows a single-phase non-doped SnS (non-added SnS) sample, and the bottom shows Br of 0.95 at. The XRD pattern of the sample to which% is added is shown. Note that the XRD measurement of Br-added SnS was performed using a powder obtained by pulverizing the high-density sintered body obtained in Step 8. In addition, single-phase non-doped SnS (non-added SnS) was prepared as a high-density sintered body of single-phase non-doped SnS in the same manner as Br-added SnS, and XRD measurement was performed on the pulverized powder.

ここで、図4上段の無添加SnS(純粋なSnS)のXRDパターンに記載している3ケタの数字はSnSの面指数を示している。図4上段のXRDパターンの全てのピークがSnSのそれぞれの面に帰属できることから、単相ができていることが明らかである。図4上段および下段を比較すると同じ位置にのみピークがあり、余計なピークが無いため、Br0.95at.%添加した試料(図4下段)も単相の試料が得られていることが明らかである。なお、このXRDパターンの縦軸は対数スケール(a.u.)である。   Here, the 3-digit number described in the XRD pattern of additive-free SnS (pure SnS) in the upper part of FIG. 4 indicates the SnS surface index. Since all the peaks of the XRD pattern in the upper part of FIG. 4 can be attributed to the respective surfaces of SnS, it is clear that a single phase is formed. 4 has a peak only at the same position and no extra peak, therefore, Br0.95 at. It is clear that a single-phase sample is obtained from the sample to which% is added (lower part of FIG. 4). The vertical axis of this XRD pattern is a logarithmic scale (au).

Brに代えてフッ素を用いて本実施例と同様の実験を行った場合の試料のXRDパターンを図5に示す。フッ素添加した場合、SnSのピークの他に、SnS、SnSnのピークも見えている。このことは、SnSの多結晶がそもそも作成困難であることを示している。なお、図5におけるXRD測定は、Br添加SnSと同様にフッ素添加SnSの高密度焼結体作成し、それを粉砕した粉末で行った。 FIG. 5 shows an XRD pattern of a sample in the case where the same experiment as in this example was performed using fluorine instead of Br. When fluorine is added, in addition to the SnS peak, peaks of SnS 2 and Sn 2 Sn 3 are also visible. This indicates that SnS polycrystals are difficult to produce in the first place. In addition, the XRD measurement in FIG. 5 was performed with the powder which made the high density sintered compact of the fluorine addition SnS similarly to Br addition SnS, and grind | pulverized it.

また、Brに代えてヨウ素を用いて本実施例と同様の実験を行った場合の試料のXRDパターンを図6に示す。ヨウ素2乃至3%添加の場合は、SnSlのピークが見えており、SnSの多結晶そのものでさえも作成が困難であることがわかる。また、ヨウ素1%添加のXRDパターンでは異相は見受けられないものの実際の実験では石英管での加熱後、管内に析出物が認められるため単相が得られたとは判断できなかった。なお、図6におけるXRD測定は、Br添加SnS試料と同様にヨウ素添加SnSの高密度焼結体作成し、それを粉砕した粉末で行った。 Further, FIG. 6 shows an XRD pattern of a sample in the case where an experiment similar to that of the present example was performed using iodine instead of Br. When 2 to 3% of iodine is added, the SnSl 2 peak is visible, and it is found that even the SnS polycrystal itself is difficult to prepare. Further, although no heterogeneous phase was observed in the XRD pattern with 1% iodine added, it was not possible to judge that a single phase was obtained in the actual experiment because precipitates were observed in the tube after heating in the quartz tube. In addition, the XRD measurement in FIG. 6 was performed with the powder which made the high density sintered compact of the iodine addition SnS similarly to the Br addition SnS sample, and grind | pulverized it.

以上のことからも、本発明のBr添加SnS半導体は、数少ないn型SnS半導体となる半導体材料であることがわかる。   From the above, it can be seen that the Br-added SnS semiconductor of the present invention is a semiconductor material that becomes a few n-type SnS semiconductors.

ノンドープのSnS半導体は一般にp型を示すことから、n型を示す本発明のBr添加SnSを用いれば、ホモ接合型SnS太陽電池を実現が可能となる。p型のノンドープのSnS半導体と本実施例に示すBr添加n型SnS半導体とがpn接合するように構成にされ、このpn接合を備えた太陽電池を構成することにより、ホモ接合型SnS太陽電池とすることが可能となる。   Since non-doped SnS semiconductors are generally p-type, a homojunction SnS solar cell can be realized by using the Br-doped SnS of the present invention showing n-type. The p-type non-doped SnS semiconductor and the Br-doped n-type SnS semiconductor shown in the present embodiment are configured to be pn-junction, and by forming a solar cell including this pn-junction, a homojunction-type SnS solar cell It becomes possible.

Claims (5)

SnS(硫化スズ)にBr添加が添加されたことを特徴とするn型SnS半導体。   An n-type SnS semiconductor, wherein Br is added to SnS (tin sulfide). 前記Brは前記SnSに対し0.4at.%以上含有させたことを特徴とする請求項1に記載のn型SnS半導体。   The Br is 0.4 at. The n-type SnS semiconductor according to claim 1, wherein the n-type SnS semiconductor is contained in an amount of at least%. 前記Brは前記SnSに対し0.4at.%以上かつ1.0at.%以下含有させたことを特徴とする請求項1乃至2のいずれか1つに記載のn型SnS半導体。   The Br is 0.4 at. % Or more and 1.0 at. The n-type SnS semiconductor according to claim 1, wherein the n-type SnS semiconductor is contained. 請求項1乃至3のいずれかのn型SnS半導体を有する太陽電池。   A solar cell comprising the n-type SnS semiconductor according to claim 1. ノンドープSnS半導体を備え、前記ノンドープSnS半導体と前記n型SnS半導体とがpn接合するように構成され、前記pn接合を備えた請求項4に記載の太陽電池。
The solar cell according to claim 4, comprising a non-doped SnS semiconductor, wherein the non-doped SnS semiconductor and the n-type SnS semiconductor are configured to form a pn junction, and the pn junction is provided.
JP2018066373A 2018-03-30 2018-03-30 Manufacturing method of n-type Br-doped SnS semiconductor Active JP7169508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018066373A JP7169508B2 (en) 2018-03-30 2018-03-30 Manufacturing method of n-type Br-doped SnS semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018066373A JP7169508B2 (en) 2018-03-30 2018-03-30 Manufacturing method of n-type Br-doped SnS semiconductor

Publications (2)

Publication Number Publication Date
JP2019178012A true JP2019178012A (en) 2019-10-17
JP7169508B2 JP7169508B2 (en) 2022-11-11

Family

ID=68277726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018066373A Active JP7169508B2 (en) 2018-03-30 2018-03-30 Manufacturing method of n-type Br-doped SnS semiconductor

Country Status (1)

Country Link
JP (1) JP7169508B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234110A (en) * 2020-10-16 2021-01-15 重庆大学 Sandwich-shaped PN junction and accurate construction method thereof
WO2021261089A1 (en) * 2020-06-23 2021-12-30 国立大学法人東北大学 N-type sns thin-film, photoelectric transducer, solar cell, n-type sns thin-film production method, and n-type sns thin-film production device
WO2023286691A1 (en) * 2021-07-12 2023-01-19 国立研究開発法人物質・材料研究機構 Compound semiconductor composition, thin film, solar battery, and thermoelectric material using said compound semiconductor composition, and method for producing said compound semiconductor composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321538A (en) * 1993-05-19 1994-11-22 Nisshin Steel Co Ltd Production of sns semiconductor sintered film
JPH0955378A (en) * 1995-06-08 1997-02-25 Matsushita Electric Ind Co Ltd Precursor for forming semiconductor thin film and manufacture of semiconductor thin film
JP2003197981A (en) * 2001-12-26 2003-07-11 Kyocera Corp Thermoelectric module
JP2008518449A (en) * 2004-10-26 2008-05-29 ビーエーエスエフ ソシエタス・ヨーロピア Photovoltaic cell having photovoltaic active semiconductor material
JP2010519732A (en) * 2007-02-15 2010-06-03 マサチューセッツ インスティテュート オブ テクノロジー Solar cell with uneven surface
JP2012514867A (en) * 2009-01-09 2012-06-28 ダイヤモンド イノベイションズ インコーポレーテッド Influence of thermoelectric figure of merit (ZT) by high pressure and high temperature sintering
JP2013089719A (en) * 2011-10-17 2013-05-13 Toyota Industries Corp Thermoelectric conversion element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321538A (en) * 1993-05-19 1994-11-22 Nisshin Steel Co Ltd Production of sns semiconductor sintered film
JPH0955378A (en) * 1995-06-08 1997-02-25 Matsushita Electric Ind Co Ltd Precursor for forming semiconductor thin film and manufacture of semiconductor thin film
JP2003197981A (en) * 2001-12-26 2003-07-11 Kyocera Corp Thermoelectric module
JP2008518449A (en) * 2004-10-26 2008-05-29 ビーエーエスエフ ソシエタス・ヨーロピア Photovoltaic cell having photovoltaic active semiconductor material
JP2010519732A (en) * 2007-02-15 2010-06-03 マサチューセッツ インスティテュート オブ テクノロジー Solar cell with uneven surface
JP2012514867A (en) * 2009-01-09 2012-06-28 ダイヤモンド イノベイションズ インコーポレーテッド Influence of thermoelectric figure of merit (ZT) by high pressure and high temperature sintering
JP2013089719A (en) * 2011-10-17 2013-05-13 Toyota Industries Corp Thermoelectric conversion element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANAGI HIROSHI ET AL., APPLIED PHYSICS EXPRESS, vol. 9, JPN7021005682, 2016, pages 05121 - 1, ISSN: 0004688944 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261089A1 (en) * 2020-06-23 2021-12-30 国立大学法人東北大学 N-type sns thin-film, photoelectric transducer, solar cell, n-type sns thin-film production method, and n-type sns thin-film production device
CN115702118A (en) * 2020-06-23 2023-02-14 国立大学法人东北大学 N-type SnS thin film, photoelectric conversion element, solar cell, method for producing n-type SnS thin film, and apparatus for producing n-type SnS thin film
DE112021002298T5 (en) 2020-06-23 2023-03-16 Tohoku University N-TYPE SNS FILM, PHOTOELECTRIC CONVERSION ELEMENT, SOLAR CELL, METHOD FOR MANUFACTURING N-TYPE SNS FILM AND MANUFACTURING DEVICE OF N-TYPE SNS FILM
CN115702118B (en) * 2020-06-23 2024-05-07 国立大学法人东北大学 N-type SnS thin film, photoelectric conversion element, solar cell, method for producing n-type SnS thin film, and device for producing n-type SnS thin film
CN112234110A (en) * 2020-10-16 2021-01-15 重庆大学 Sandwich-shaped PN junction and accurate construction method thereof
CN112234110B (en) * 2020-10-16 2022-07-19 重庆大学 Sandwich-shaped PN junction and accurate construction method thereof
WO2023286691A1 (en) * 2021-07-12 2023-01-19 国立研究開発法人物質・材料研究機構 Compound semiconductor composition, thin film, solar battery, and thermoelectric material using said compound semiconductor composition, and method for producing said compound semiconductor composition

Also Published As

Publication number Publication date
JP7169508B2 (en) 2022-11-11

Similar Documents

Publication Publication Date Title
Shi et al. Effects of organic cations on the defect physics of tin halide perovskites
Feng et al. Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of pin InGaN single homojunction solar cells
Zhang et al. Optimal design and simulation of high-performance organic-metal halide perovskite solar cells
Cheng et al. Demonstration of a high open-circuit voltage GaN betavoltaic microbattery
JP2019178012A (en) N-type SnS semiconductor and solar cell using the same
Akari et al. ZnSnP2 solar cell with (Cd, Zn) S buffer layer: Analysis of recombination rates
KR20150035398A (en) New compound semiconductors and their application
JP2014220351A (en) Multi-junction solar cell
Tang et al. Suppression of the surface “dead region” for fabrication of GaInAsSb thermophotovoltaic cells
Hao et al. Large Voc improvement and 9.2% efficient pure sulfide Cu 2 ZnSnS 4 solar cells by heterojunction interface engineering
Fu et al. Synthesis, crystal structure and optical properties of Ce doped CuInSe2 powders prepared by mechanically alloying
Zhao et al. Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy
Thamri et al. Study of the performance of a ZnO-NiO/Si nanocomposite-based solar cell
US11072530B2 (en) Compound semiconductor and use thereof
Tenailleau et al. Heterojunction p-Cu 2 O/ZnO-n solar cell fabricated by spark plasma sintering
Liu et al. Ultrahigh Gain of a Vacuum-Ultraviolet Photodetector Based on a Heterojunction Structure of Al N Nanowires and Ni O Quantum Dots
KR101717750B1 (en) Compound semiconductors comprising hetero metal and oxide and method for fabricating the same
Das Growth, fabrication and characterization of Cu 2 ZnSn (S x Se 1-x) 4 photovoltaic absorber and thin-film heterojunction solar cells
KR101812271B1 (en) Method for fabricating thermoelectric material and method for fabricating thermoelectric module using the same
JP2012235019A (en) Photoelectric conversion element and solar cell
WO2023286691A1 (en) Compound semiconductor composition, thin film, solar battery, and thermoelectric material using said compound semiconductor composition, and method for producing said compound semiconductor composition
US20230261130A1 (en) N-type sns thin film, photoelectric conversion element, solar cell, method for manufacturing n-type sns thin film, and manufacturing apparatus of n-type sns thin film
Nakatsuka et al. Influence of hetero-interfaces on photovoltaic performance in solar cells based on ZnSnP 2 bulk crystal
EP3454387B1 (en) Novel compound semiconductor and use thereof
KR101711527B1 (en) Compound Semiconductors and their manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221011

R150 Certificate of patent or registration of utility model

Ref document number: 7169508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150