JP7168361B2 - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP7168361B2
JP7168361B2 JP2018127907A JP2018127907A JP7168361B2 JP 7168361 B2 JP7168361 B2 JP 7168361B2 JP 2018127907 A JP2018127907 A JP 2018127907A JP 2018127907 A JP2018127907 A JP 2018127907A JP 7168361 B2 JP7168361 B2 JP 7168361B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
material layer
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018127907A
Other languages
Japanese (ja)
Other versions
JP2020009574A5 (en
JP2020009574A (en
Inventor
哲也 堀
ヘイディ ビスバル
隆行 北條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018127907A priority Critical patent/JP7168361B2/en
Publication of JP2020009574A publication Critical patent/JP2020009574A/en
Publication of JP2020009574A5 publication Critical patent/JP2020009574A5/ja
Application granted granted Critical
Publication of JP7168361B2 publication Critical patent/JP7168361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、全固体電池に関する。 The present invention relates to all-solid-state batteries.

特開2017-204377号公報には、正極集電体、正極活物質層、固体電解質層、負極活物質層、負極集電体が順に重ねられた積層体を有する全固体電池が開示されている。得られた積層体は、適当な外装体に収納されている。このような積層型の全固体電池の電極部(電極活物質層の存在領域)には、正極集電体、正極活物質層、固体電解質層、負極活物質層、負極集電体が順に重ねられた方向に圧力が加えられる。同公報では、電源として使用されるときにくわえ圧力は、1MPa以上45MPa以下であることが好ましい、とされている。 Japanese Patent Application Laid-Open No. 2017-204377 discloses an all-solid-state battery having a laminate in which a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector are stacked in this order. . The obtained laminate is housed in a suitable outer package. In the electrode part (area where the electrode active material layer exists) of such a laminated all-solid-state battery, the positive electrode current collector, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector are stacked in this order. pressure is applied in the indicated direction. The publication states that the gripping pressure is preferably 1 MPa or more and 45 MPa or less when used as a power source.

特開2017-204377号公報JP 2017-204377 A

ところで、固体電解質層および負極活物質層は、正極活物質層よりも幅が広く形成されている。固体電解質層は、負極活物質層と同じか負極活物質層よりも幅が広く形成されている。そして、重ねられた方向において、固体電解質層と負極活物質層は、正極活物質層に重なる部分と正極活物質層に重ならない部分とを有している。このような形態では、充放電が繰り返されると電極が部分的に割れる可能性がある。当該割れが生じた部位では導電パスが切断され、部分的に電池として機能しなくなり、容量や出力が低下する原因となる。 By the way, the solid electrolyte layer and the negative electrode active material layer are formed wider than the positive electrode active material layer. The solid electrolyte layer is formed to have a width equal to or wider than that of the negative electrode active material layer. In the stacking direction, the solid electrolyte layer and the negative electrode active material layer have a portion that overlaps the positive electrode active material layer and a portion that does not overlap the positive electrode active material layer. In such a form, repeated charging and discharging may cause partial cracking of the electrode. A conductive path is cut at the site where the crack occurs, and the battery partially fails to function, resulting in a decrease in capacity and output.

ここで提案される全固体電池は、正極集電箔と、正極集電箔に重ねられた、正極活物質を含む正極活物質層と、正極活物質層に重ねられた、Liイオン伝導体を含む固体電解質層と、固体電解質層に重ねられた、負極活物質を含む負極活物質層と、負極活物質層に重ねられた負極集電箔と、正極集電箔と正極活物質層と固体電解質層と負極活物質層と負極集電箔とが重ねられた方向に、正極集電箔と正極活物質層と固体電解質層と負極活物質層と負極集電箔とを拘束する拘束部材とを有している。
固体電解質層と負極活物質層は、重ねられた方向において正極活物質層に重なる部分と正極活物質層に重ならない部分とを有し、正極活物質層に重ならない部分において負極活物質層の充放電に伴う膨張収縮が制限されるように構成されている。
かかる全固体電池によれば、正極活物質層に重ならない部分において、負極活物質層の充放電に伴う膨張収縮が制限される。このため、固体電解質層および負極活物質層が割れにくい。
The all-solid-state battery proposed here includes a positive electrode current collector foil, a positive electrode active material layer containing a positive electrode active material superimposed on the positive electrode current collector foil, and a Li ion conductor superimposed on the positive electrode active material layer. a negative electrode active material layer containing a negative electrode active material overlaid on the solid electrolyte layer; a negative electrode current collector foil overlaid on the negative electrode active material layer; a positive electrode current collector foil, the positive electrode active material layer, and a solid a constraining member that constrains the positive electrode current collector foil, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector foil in the direction in which the electrolyte layer, the negative electrode active material layer, and the negative electrode current collector foil are stacked; have.
The solid electrolyte layer and the negative electrode active material layer have a portion that overlaps the positive electrode active material layer and a portion that does not overlap the positive electrode active material layer in the stacking direction, and the portion that does not overlap the positive electrode active material layer has the negative electrode active material layer. It is configured to limit expansion and contraction associated with charging and discharging.
According to such an all-solid-state battery, expansion and contraction due to charging and discharging of the negative electrode active material layer is restricted in the portion that does not overlap with the positive electrode active material layer. Therefore, the solid electrolyte layer and the negative electrode active material layer are less likely to crack.

図1は、全固体電池100Aの模式的に示す平面図である。FIG. 1 is a schematic plan view of an all-solid-state battery 100A. 図2は、全固体電池100AのII-II断面を模式的に示す模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the II-II cross section of the all-solid-state battery 100A. 図3は、他の形態にかかる全固体電池100の正極活物質層102の縁部102aを模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing edge portion 102a of positive electrode active material layer 102 of all-solid-state battery 100 according to another embodiment. 図4は、他の形態にかかる全固体電池100の正極活物質層102の縁部102aを模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing edge portion 102a of positive electrode active material layer 102 of all-solid-state battery 100 according to another embodiment. 図5は、全固体電池100Aの正極活物質層102の縁部102aを模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing edge portion 102a of positive electrode active material layer 102 of all-solid-state battery 100A. 図6は、他の形態にかかる全固体電池100Bを模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing an all-solid-state battery 100B according to another embodiment. 図7は、他の形態にかかる全固体電池100Cを模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing an all-solid-state battery 100C according to another embodiment. 図8は、他の形態にかかる全固体電池100Dを模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing an all-solid-state battery 100D according to another embodiment. 図9は、他の形態にかかる全固体電池100Eを模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing an all-solid-state battery 100E according to another embodiment.

以下、ここで提案される全固体電池の一実施形態を説明する。ここで説明される実施形態は、当然ながら特に本発明を限定することを意図したものではない。本発明は、特に言及されない限りにおいて、ここで説明される実施形態に限定されない。また、同一の作用を奏する部材・部位には、適宜に同一の符号を付し、重複する説明を省略する。 An embodiment of the all-solid-state battery proposed here will be described below. The embodiments described herein are of course not intended to specifically limit the invention. The invention is not limited to the embodiments described herein unless specifically stated. Further, members and portions that perform the same functions are given the same reference numerals as appropriate, and overlapping descriptions are omitted.

図1は、全固体電池100Aの模式的に示す平面図である。図2は、全固体電池100AのII-II断面を模式的に示す模式的に示す断面図である。 FIG. 1 is a schematic plan view of an all-solid-state battery 100A. FIG. 2 is a cross-sectional view schematically showing the II-II cross section of the all-solid-state battery 100A.

全固体電池100Aは、正極集電箔101と、正極活物質層102と、固体電解質層103と、負極活物質層104と、負極集電箔105と、外装材106と、拘束部材107とを有している。 The all-solid-state battery 100A includes a positive electrode collector foil 101, a positive electrode active material layer 102, a solid electrolyte layer 103, a negative electrode active material layer 104, a negative electrode collector foil 105, an exterior material 106, and a binding member 107. have.

正極集電箔101は、例えば、ステンレス(SUS),Ni、Cr、Au、Pt、Al、Fe、Ti、Znなどの金属箔が用いられうる。正極集電箔101には、導電性や耐酸化性などが考慮され、適当な金属箔が採用されるとよい。この実施形態では、正極集電箔101には、厚さ10μmのアルミニウム箔が用いられている。正極集電箔101の一部には、電気の出し入れを行う端子となるタブ状のタブリード101aが設けられている。 For the positive current collecting foil 101, for example, metal foil such as stainless steel (SUS), Ni, Cr, Au, Pt, Al, Fe, Ti, and Zn can be used. For the positive electrode current collector foil 101, an appropriate metal foil may be adopted in consideration of conductivity, oxidation resistance, and the like. In this embodiment, an aluminum foil with a thickness of 10 μm is used for the positive electrode current collector foil 101 . A tab-shaped tab lead 101a is provided on a part of the positive current collector foil 101 and serves as a terminal for supplying and receiving electricity.

正極活物質層102は、正極集電箔101に重ねられた、正極活物質を含む層である。正極活物質層102には、さらに好ましくは、固体電解質、固体電解質、バインダー、及び導電材を含んでいる。正極活物質層102に含まれる正極活物質には、例えば、リチウムニッケルマンガンコバルト複合酸化物に代表される公知の正極活物質が適宜に用いられうる。 The positive electrode active material layer 102 is a layer containing a positive electrode active material, which is overlaid on the positive electrode current collector foil 101 . The positive electrode active material layer 102 more preferably contains a solid electrolyte, a solid electrolyte, a binder, and a conductive material. As the positive electrode active material contained in the positive electrode active material layer 102, for example, a known positive electrode active material typified by lithium-nickel-manganese-cobalt composite oxide can be appropriately used.

正極活物質層102に含まれる固体電解質としては、硫化物系固体電解質を好適に使用することができ、具体的には、例えば、LiSとPとの混合物(混合質量比LiS:P=50:50~100:0、特に、好ましくはLiS:P=70:30)が挙げられる。硫化物系固体電解質は、これに限定されない。
正極活物質層102におけるバインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)に代表されるフッ素原子含有樹脂を使用することができる。
正極活物質層102に含まれる導電材としては、例えば、カーボンナノファイバー(例えば、昭和電工株式会社製のVGCF)、アセチレンブラックなどの公知の導電材を挙げることができる。導電材は、正極活物質層102において、正極活物質と正極集電箔101との導電パスを形成する。
As the solid electrolyte contained in the positive electrode active material layer 102 , a sulfide - based solid electrolyte can be suitably used. 2 S:P 2 S 5 =50:50 to 100:0, particularly preferably Li 2 S:P 2 S 5 =70:30). The sulfide-based solid electrolyte is not limited to this.
As a binder in the positive electrode active material layer 102, for example, fluorine atom-containing resin represented by polyvinylidene fluoride (PVDF) can be used.
Examples of the conductive material contained in the positive electrode active material layer 102 include known conductive materials such as carbon nanofiber (eg, VGCF manufactured by Showa Denko K.K.) and acetylene black. The conductive material forms a conductive path between the positive electrode active material and the positive current collector foil 101 in the positive electrode active material layer 102 .

本実施形態では、電極ユニット120における正極活物質層102の厚さは、特に限定されない。正極活物質層102の厚さとして、例えば、150μm以下の範囲を例示することができる。この実施形態では、正極活物質層102の厚さは、50μmに設定されている。 In this embodiment, the thickness of the positive electrode active material layer 102 in the electrode unit 120 is not particularly limited. The thickness of the positive electrode active material layer 102 can be, for example, a range of 150 μm or less. In this embodiment, the thickness of the positive electrode active material layer 102 is set to 50 μm.

固体電解質層103は、正極活物質層102に重ねられ、Liイオン伝導体を含む層である。固体電解質層103は、固体電解質を含み、好ましくは更にバインダーを含有する。また、固体電解質層103は、正極活物質層102と負極活物質層104とを絶縁している。固体電解質層103には、導電材は含まれていない。固体電解質層における固体電解質としては、正極活物質層に使用できるものとして上述した材料を用いることができる。バインダーとしてはブタジエンゴム(BR)が好適である。 The solid electrolyte layer 103 is a layer overlaid on the positive electrode active material layer 102 and containing a Li ion conductor. Solid electrolyte layer 103 contains a solid electrolyte and preferably further contains a binder. Further, the solid electrolyte layer 103 insulates the positive electrode active material layer 102 and the negative electrode active material layer 104 from each other. Solid electrolyte layer 103 does not contain a conductive material. As the solid electrolyte in the solid electrolyte layer, the materials described above as usable for the positive electrode active material layer can be used. Butadiene rubber (BR) is suitable as the binder.

本実施形態では、電極ユニット120における固体電解質層103の厚さは、特に限定されない。固体電解質層103の厚さとして、例えば、10μm以上40μm以下の範囲を例示することができる。この実施形態では、固体電解質層103の厚さは、20μmに設定されている。 In this embodiment, the thickness of the solid electrolyte layer 103 in the electrode unit 120 is not particularly limited. As the thickness of the solid electrolyte layer 103, for example, a range of 10 μm or more and 40 μm or less can be exemplified. In this embodiment, the thickness of the solid electrolyte layer 103 is set to 20 μm.

負極活物質層104は、固体電解質層103に重ねられた、負極活物質を含む層である。負極活物質層には、例えば、LiSi(例えば、Li4.4Si)などに代表される公知のSiを含有するSi負極材料が用いられる。Si負極材料が用いられていることによって電池の高容量化が図られる。 The negative electrode active material layer 104 is a layer containing a negative electrode active material and superimposed on the solid electrolyte layer 103 . For the negative electrode active material layer, for example, a known Si-containing negative electrode material typified by Li x Si (eg, Li 4.4 Si) is used. By using the Si negative electrode material, the capacity of the battery can be increased.

ただし、負極活物質層における負極活物質は、Si負極材料に限定されず、その他の公知の負極活物質も適宜選択して使用可能である。負極活物質層104における固体電解質及びバインダーとしては、それぞれ、正極活物質層に使用できるものとして上述した材料を適宜用いることができる。負極活物質層104における導電材としては、アセチレンブラック等の公知の導電材を挙げることができる。導電材は、負極活物質層104において、負極活物質と負極集電箔105との導電パスを形成する。 However, the negative electrode active material in the negative electrode active material layer is not limited to the Si negative electrode material, and other known negative electrode active materials can be appropriately selected and used. As the solid electrolyte and the binder in the negative electrode active material layer 104, the above materials that can be used for the positive electrode active material layer can be used as appropriate. Examples of the conductive material in the negative electrode active material layer 104 include known conductive materials such as acetylene black. The conductive material forms a conductive path between the negative electrode active material and the negative electrode current collector foil 105 in the negative electrode active material layer 104 .

本実施形態では、電極ユニット120における負極活物質層104の厚さは、特に限定されるものではない。負極活物質層104の厚さとして、例えば、8μm以上20μm以下の範囲を例示することができる。この実施形態では、負極活物質層104の厚さは、20μmに設定されている。 In this embodiment, the thickness of the negative electrode active material layer 104 in the electrode unit 120 is not particularly limited. The thickness of the negative electrode active material layer 104 can be, for example, in the range of 8 μm or more and 20 μm or less. In this embodiment, the thickness of the negative electrode active material layer 104 is set to 20 μm.

負極集電箔105は、負極活物質層104に重ねられている。負極集電箔105には、例えば、SUS、Cu、Ni、Fe、Ti、Co、Zn等の金属箔が用いられうる。この実施形態では、負極集電箔105には、厚さ20μmの銅箔が用いられている。負極集電箔105の一部には、電気の出し入れを行う端子となるタブ状のタブリードが設けられている。 The negative electrode current collector foil 105 is overlaid on the negative electrode active material layer 104 . Metal foil such as SUS, Cu, Ni, Fe, Ti, Co, and Zn can be used for the negative electrode current collector foil 105 . In this embodiment, a copper foil having a thickness of 20 μm is used as the negative electrode current collector foil 105 . A part of the negative electrode current collector foil 105 is provided with a tab-shaped tab lead that serves as a terminal for inputting and outputting electricity.

この実施形態では、正極集電箔101と負極集電箔105は、それぞれ矩形の金属箔である。正極集電箔101と負極集電箔105は、正極活物質層102と固体電解質層103と負極活物質層104を挟んで対向している。正極集電箔101に設けられたタブリード101aは、正極集電箔101の1辺から延びている。負極集電箔105に設けられたタブリード105aは、正極集電箔101にタブリード101aが設けられた側と同じ側の縁に、正極集電箔101にタブリード101aと位置をずらして設けられている。 In this embodiment, the positive current collector foil 101 and the negative current collector foil 105 are each rectangular metal foils. The positive current collector foil 101 and the negative current collector foil 105 face each other with the positive electrode active material layer 102, the solid electrolyte layer 103 and the negative electrode active material layer 104 interposed therebetween. A tab lead 101 a provided on the positive current collector foil 101 extends from one side of the positive current collector foil 101 . The tab lead 105a provided on the negative electrode current collector foil 105 is provided on the same side of the positive electrode current collector foil 101 as the tab lead 101a is provided, and is displaced from the tab lead 101a on the positive electrode current collector foil 101. .

正極集電箔101と、正極活物質層102と、固体電解質層103と、負極活物質層104と、負極集電箔105とは、図2に示されているように、順に重ねられて全固体電池100Aの電極ユニット120となる積層体が構成される。全固体電池100Aの電極ユニット120となる積層体において、正極集電箔101と、正極活物質層102と、固体電解質層103と、負極活物質層104と、負極集電箔105とは、さらに複数回、繰り返し重ねられていても良い。 As shown in FIG. 2, the positive electrode current collector foil 101, the positive electrode active material layer 102, the solid electrolyte layer 103, the negative electrode active material layer 104, and the negative electrode current collector foil 105 are all stacked in order. A laminate that becomes the electrode unit 120 of the solid-state battery 100A is constructed. In the laminate that becomes the electrode unit 120 of the all-solid-state battery 100A, the positive electrode current collector foil 101, the positive electrode active material layer 102, the solid electrolyte layer 103, the negative electrode active material layer 104, and the negative electrode current collector foil 105 are further It may be repeated multiple times.

固体電解質層103および負極活物質層104は、図2に示されているように、正極活物質層102よりも幅が広く形成されている。固体電解質層103は、負極活物質層104と同じか負極活物質層104よりも幅が広く形成されている。そして、重ねられた方向において、固体電解質層103と負極活物質層104は、正極活物質層102に重なる部分と正極活物質層102に重ならない部分とを有している。重ねられた方向において、固体電解質層103と負極活物質層104が、正極活物質層102からはみ出ていることによって、正極活物質層102の縁部に反応が集中しても、正極活物質層102の縁部102aの近傍に位置する負極活物質層104にリチウムが析出しにくい。 The solid electrolyte layer 103 and the negative electrode active material layer 104 are formed wider than the positive electrode active material layer 102 as shown in FIG. The solid electrolyte layer 103 is formed to have a width equal to or wider than that of the negative electrode active material layer 104 . In the stacking direction, the solid electrolyte layer 103 and the negative electrode active material layer 104 have a portion that overlaps the positive electrode active material layer 102 and a portion that does not overlap the positive electrode active material layer 102 . Solid electrolyte layer 103 and negative electrode active material layer 104 protrude from positive electrode active material layer 102 in the stacking direction. Lithium is less likely to deposit on the negative electrode active material layer 104 located near the edge 102a of 102 .

外装材106は、全固体電池の電極ユニット120となる積層体を収容している。外装材106は、いわゆるラミネートフィルムが用いられている。タブリード101a、105aは、図示は省略するがシーラントフィルムなどを介して気密性が確保された状態で外装材106を貫通しており、それぞれ外装材106の縁106aから外部に延びている。 The exterior material 106 accommodates a laminate that becomes the electrode unit 120 of the all-solid-state battery. A so-called laminate film is used for the exterior material 106 . Although not shown, tab leads 101a and 105a pass through exterior material 106 in an airtight state via a sealant film or the like, and extend from edge 106a of exterior material 106 to the outside.

拘束部材107は、正極集電箔101と正極活物質層102と固体電解質層103と負極活物質層104と負極集電箔105とが重ねられた方向に、正極集電箔101と正極活物質層102と固体電解質層103と負極活物質層104と負極集電箔105とを拘束する部材である。拘束部材107は、正極活物質層102と固体電解質層103と負極活物質層104とが重ねられた方向に圧縮力を付与している。 The restraint member 107 is arranged in the direction in which the positive electrode current collector foil 101, the positive electrode active material layer 102, the solid electrolyte layer 103, the negative electrode active material layer 104, and the negative electrode current collector foil 105 are stacked, and the positive electrode current collector foil 101 and the positive electrode active material. It is a member that binds the layer 102 , the solid electrolyte layer 103 , the negative electrode active material layer 104 and the negative electrode collector foil 105 . The binding member 107 applies a compressive force in the direction in which the positive electrode active material layer 102, the solid electrolyte layer 103, and the negative electrode active material layer 104 are stacked.

この実施形態では、固体電解質層103と負極活物質層104は、重ねられた方向において正極活物質層102に重なる部分103a,104aと正極活物質層102に重ならない部分103b,104bとを有している。図3および図4は、他の形態にかかる全固体電池100の正極活物質層102の縁部102aを模式的に示す断面図である。なお、図3および図4では、電極ユニット120の構造が簡素化されて図示されており、外装材106などが省略されているなど模式的に図示されている。 In this embodiment, the solid electrolyte layer 103 and the negative electrode active material layer 104 have portions 103a and 104a overlapping the positive electrode active material layer 102 and portions 103b and 104b not overlapping the positive electrode active material layer 102 in the stacking direction. ing. 3 and 4 are cross-sectional views schematically showing the edge portion 102a of the positive electrode active material layer 102 of the all-solid-state battery 100 according to another embodiment. 3 and 4, the structure of the electrode unit 120 is illustrated in a simplified manner, and the exterior material 106 and the like are omitted and schematically illustrated.

図3および図4に示された全固体電池100では、固体電解質層103や負極活物質層104の、正極活物質層102に重ならない部分103b,104bなどに、負極活物質層104の充放電に伴う膨張収縮を制限するための特段の工夫はされていない。この全固体電池100では、正極活物質層102と固体電解質層103と負極活物質層104とが重ねられた方向に拘束力が付与されている場合でも、固体電解質層103と負極活物質層104が正極活物質層102に重ならない部分では、拘束力が作用しにくい。 In the all-solid-state battery 100 shown in FIGS. 3 and 4, charging/discharging of the negative electrode active material layer 104 is performed in portions 103b and 104b of the solid electrolyte layer 103 and the negative electrode active material layer 104, which do not overlap with the positive electrode active material layer 102. No special measures have been taken to limit the expansion and contraction associated with this. In this all-solid-state battery 100, even when a constraining force is applied in the direction in which the positive electrode active material layer 102, the solid electrolyte layer 103, and the negative electrode active material layer 104 are stacked, the solid electrolyte layer 103 and the negative electrode active material layer 104 do not. In the portion where the .sup.2 does not overlap with the positive electrode active material layer 102, the binding force is less likely to act.

全固体電池100では、正極活物質層102と固体電解質層103と負極活物質層104とは、正極集電箔101あるいは負極集電箔105の上に順に塗工され、積層される。そして、積層された正極活物質層102と固体電解質層103と負極活物質層104とは、加熱され、かつ、加圧されることによって密着した一体の積層電池が製作される。硫化物系の全固体電池では、固体電解質には、ガラス系材料が用いられることが多く、上述のように積層された後でガラス転移温度以上に高温処理されることによって固体電解質が密着して電池として機能する。 In the all-solid-state battery 100, the positive electrode active material layer 102, the solid electrolyte layer 103, and the negative electrode active material layer 104 are sequentially coated and laminated on the positive electrode collector foil 101 or the negative electrode collector foil 105. FIG. Then, the positive electrode active material layer 102, the solid electrolyte layer 103, and the negative electrode active material layer 104, which are laminated, are heated and pressurized to form an integral laminated battery in close contact with each other. In a sulfide-based all-solid-state battery, a glass-based material is often used for the solid electrolyte. Acts as a battery.

負極活物質層104に含まれる負極活物質は、充電時に膨張し、放電時に収縮する。特に、負極活物質としてSi負極材料が用いられている場合には、満充電時には、負極活物質は充電前に比べて2~3倍に膨張する。この際、負極活物質の膨張と収縮による体積変化に固体電解質層103や正極活物質層102や負極活物質層104が耐えられない場合には、割れが発生する。固体電解質層103に割れが発生すると正極と負極との短絡が生じうる。また、正極活物質層102や負極活物質層104に割れが生じた場合には、当該割れが生じた部位で導電パスが切断され、部分的に電池反応に寄与しなくなる。固体電解質層103と負極活物質層104の割れは、例えば、図4に示されているように、正極活物質層102に重なる部分と正極活物質層102に重ならない部分との境界部B1で生じうる。 The negative electrode active material contained in the negative electrode active material layer 104 expands during charging and contracts during discharging. In particular, when a Si negative electrode material is used as the negative electrode active material, the negative electrode active material expands two to three times as much as before charging when fully charged. At this time, if the solid electrolyte layer 103, the positive electrode active material layer 102, or the negative electrode active material layer 104 cannot withstand the volume change due to the expansion and contraction of the negative electrode active material, cracking occurs. If the solid electrolyte layer 103 cracks, a short circuit may occur between the positive electrode and the negative electrode. Further, when cracks occur in the positive electrode active material layer 102 or the negative electrode active material layer 104, the conductive paths are cut at the cracked portions, and they partially do not contribute to the battery reaction. The cracks between the solid electrolyte layer 103 and the negative electrode active material layer 104 are, for example, as shown in FIG. can occur.

図5は、全固体電池100Aの正極活物質層102の縁部102aを模式的に示す断面図である。なお、図5では、電極ユニット120の構造が簡素化されて図示されており、外装材106などが省略されているなど模式的に図示されている。ここで提案される全固体電池100Aでは、例えば、図5に示されているように、固体電解質層103と負極活物質層104は、正極活物質層102に重ならない部分103b,104bにおいて負極活物質層104の充放電に伴う膨張収縮が制限されるように構成されている。 FIG. 5 is a cross-sectional view schematically showing edge portion 102a of positive electrode active material layer 102 of all-solid-state battery 100A. 5, the structure of the electrode unit 120 is illustrated in a simplified manner, and is schematically illustrated such that the exterior material 106 and the like are omitted. In the all-solid-state battery 100A proposed here, for example, as shown in FIG. It is configured to limit the expansion and contraction of the material layer 104 due to charging and discharging.

図5に示された形態では、正極活物質層102に重ならない部分103bにおいて固体電解質層103は、正極活物質層102の縁部102aを覆っており、拘束部材107による拘束圧が、固体電解質層103を通じて負極活物質層104に伝えられている。かかる構成によって、正極活物質層102に重ならない部分104bにおいて負極活物質層104に拘束圧が作用し、当該部分104bにおいて負極活物質層104の充放電に伴う膨張収縮が制限される。このため、固体電解質層103および負極活物質層104が割れにくい。図5に示された形態について、本発明者が実施した試験では、固体電解質層103および負極活物質層104の割れや、正極活物質層102と負極活物質層104との短絡などは確認されなかった。なお、この実施形態では、正極活物質層102の縁部102aが固体電解質層103で覆われているので、正極活物質層102の縁部102aの近傍に位置する負極活物質層104にリチウムが析出しにくい。 In the form shown in FIG. 5, the solid electrolyte layer 103 covers the edge 102a of the positive electrode active material layer 102 in the portion 103b that does not overlap with the positive electrode active material layer 102. It is transmitted to the negative electrode active material layer 104 through the layer 103 . With such a structure, a confining pressure acts on the negative electrode active material layer 104 in the portion 104b that does not overlap with the positive electrode active material layer 102, and the expansion and contraction of the negative electrode active material layer 104 due to charging and discharging is restricted in the portion 104b. Therefore, the solid electrolyte layer 103 and the negative electrode active material layer 104 are less likely to crack. In tests conducted by the inventors of the embodiment shown in FIG. 5, cracks in the solid electrolyte layer 103 and the negative electrode active material layer 104, short circuits between the positive electrode active material layer 102 and the negative electrode active material layer 104, and the like were confirmed. I didn't. In this embodiment, since the edge 102a of the positive electrode active material layer 102 is covered with the solid electrolyte layer 103, lithium is present in the negative electrode active material layer 104 located near the edge 102a of the positive electrode active material layer 102. Hard to precipitate.

また、図5に示されているように、拘束部材107は、正極活物質層102と固体電解質層103と負極活物質層104が重ねられた方向において、固体電解質層103と負極活物質層104が正極活物質層102に重ならない部分103b,104bを挟むように突起107aが設けられている。これにより、正極活物質層102に重ならない部分104bにおいて負極活物質層104により高い拘束圧が作用するように構成されている。 In addition, as shown in FIG. 5, the restraining member 107 is arranged so that the solid electrolyte layer 103 and the negative electrode active material layer 104 are aligned in the direction in which the positive electrode active material layer 102, the solid electrolyte layer 103, and the negative electrode active material layer 104 are stacked. The protrusions 107a are provided so as to sandwich the portions 103b and 104b that do not overlap the positive electrode active material layer 102 . As a result, a higher confining pressure acts on the negative electrode active material layer 104 in the portion 104 b that does not overlap with the positive electrode active material layer 102 .

このように、拘束部材107は、正極活物質層102に重ならない部分104bに拘束圧を作用させる。この場合、正極活物質層102に重なる部分104aと正極活物質層102に重ならない部分104bとの境界に割れが生じにくくなる。本発明者は、かかる事象が生じる理由について、以下のように推察している。正極活物質層102に重ならない部分104bが積層方向に拘束されていると、正極活物質層102に重なる部分104aは、正極活物質層102と固体電解質層103と負極活物質層104とが重ねられた方向に膨張しやすくなる。このため、正極活物質層102に重なる部分104aと正極活物質層102に重ならない部分104bとの境界に割れが生じにくくなる。 Thus, the restraining member 107 applies a restraining pressure to the portion 104 b that does not overlap the positive electrode active material layer 102 . In this case, cracks are less likely to occur at the boundary between the portion 104a that overlaps with the positive electrode active material layer 102 and the portion 104b that does not overlap with the positive electrode active material layer 102 . The inventor of the present invention speculates as follows about the reason why such an event occurs. If the portion 104b that does not overlap with the positive electrode active material layer 102 is restrained in the stacking direction, the portion 104a that overlaps with the positive electrode active material layer 102 is formed by overlapping the positive electrode active material layer 102, the solid electrolyte layer 103, and the negative electrode active material layer 104. It becomes easy to expand in the direction it was drawn. Therefore, cracks are less likely to occur at the boundary between the portion 104a that overlaps with the positive electrode active material layer 102 and the portion 104b that does not overlap with the positive electrode active material layer 102 .

図6は、他の形態にかかる全固体電池100Bを模式的に示す断面図である。図6に示されているように、固体電解質層103と負極活物質層104は、正極活物質層102に重ならない部分103b,104bの密度が、正極活物質層102に重なる部分103a,104aよりも高く形成されているとよい。この場合も、正極活物質層102に重ならない部分104bにおいて、負極活物質層104の充放電に伴う膨張収縮が制限される。このため、固体電解質層103および負極活物質層104が割れにくい。図6に示された形態について、本発明者が実施した試験では、固体電解質層103および負極活物質層104に微小な割れが確認されたものの、正極活物質層102と負極活物質層104との短絡などは確認されなかった。 FIG. 6 is a cross-sectional view schematically showing an all-solid-state battery 100B according to another embodiment. As shown in FIG. 6, in the solid electrolyte layer 103 and the negative electrode active material layer 104, the densities of the portions 103b and 104b that do not overlap the positive electrode active material layer 102 are higher than the densities of the portions 103a and 104a that overlap the positive electrode active material layer 102. should be formed high. In this case as well, the expansion and contraction of the negative electrode active material layer 104 due to charging and discharging are restricted in the portion 104b that does not overlap with the positive electrode active material layer 102 . Therefore, the solid electrolyte layer 103 and the negative electrode active material layer 104 are less likely to crack. In a test conducted by the present inventors with respect to the embodiment shown in FIG. No short circuit was found.

なお、固体電解質層103と負極活物質層104が作製される際に、例えば、正極活物質層102に重ならない部分103b,104bでは重なる部分103a,104aよりも固体電解質層103と負極活物質層104が厚く塗られるとよい。これによって、正極活物質層102に重ならない部分103b,104bでは、固体電解質層103と負極活物質層104の密度が、重なる部分103a,104aよりも、それぞれ高く形成される。 When the solid electrolyte layer 103 and the negative electrode active material layer 104 are formed, for example, the portions 103b and 104b that do not overlap the positive electrode active material layer 102 are more solid electrolyte layer 103 and the negative electrode active material layer than the overlapping portions 103a and 104a. 104 should be applied thickly. As a result, the solid electrolyte layer 103 and the negative electrode active material layer 104 have higher densities in the portions 103b and 104b that do not overlap the positive electrode active material layer 102 than in the overlapping portions 103a and 104a.

図7は、他の形態にかかる全固体電池100Cを模式的に示す断面図である。図7に示された形態では、固体電解質層103と負極活物質層104は、正極活物質層102の縁部102aおよび正極活物質層102に重ならない部分103b,104bが、電極ユニット120の周縁部が充填剤108で覆われている。充填剤108は、例えば、固体電解質層103に用いられている固体電解質である。なお、充填剤108は、固体電解質に限らず、絶縁が確保できるセラミックス材料や樹脂材料が採用されうる。この場合も、正極活物質層102に重ならない部分104bにおいて、負極活物質層104の充放電に伴う膨張収縮が制限される。このため、固体電解質層103および負極活物質層104が割れにくい。図7に示された形態について、本発明者が実施した試験では、固体電解質層103および負極活物質層104の割れや、正極活物質層102と負極活物質層104との短絡などは確認されなかった。 FIG. 7 is a cross-sectional view schematically showing an all-solid-state battery 100C according to another embodiment. In the form shown in FIG. 7 , the solid electrolyte layer 103 and the negative electrode active material layer 104 are configured so that the edge portion 102 a of the positive electrode active material layer 102 and the portions 103 b and 104 b that do not overlap with the positive electrode active material layer 102 are the peripheral edges of the electrode unit 120 . The part is covered with filler 108 . Filler 108 is, for example, a solid electrolyte used in solid electrolyte layer 103 . Note that the filler 108 is not limited to a solid electrolyte, and a ceramic material or a resin material that can ensure insulation can be adopted. In this case as well, the expansion and contraction of the negative electrode active material layer 104 due to charging and discharging are restricted in the portion 104b that does not overlap with the positive electrode active material layer 102 . Therefore, the solid electrolyte layer 103 and the negative electrode active material layer 104 are less likely to crack. In tests conducted by the inventors of the embodiment shown in FIG. 7, cracks in the solid electrolyte layer 103 and the negative electrode active material layer 104, short circuits between the positive electrode active material layer 102 and the negative electrode active material layer 104, and the like were confirmed. I didn't.

図8は、他の形態にかかる全固体電池100Dを模式的に示す断面図である。図8に示された形態では、固体電解質層103と負極活物質層104は、正極活物質層102に重ならない部分103b,104bにおいて、重なる部分103a,104aよりも厚くなるように形成されている。これにより、正極活物質層102に重ならない部分103b,104bにでは、重なる部分103a,104aよりも高い圧力が、拘束部材107によって固体電解質層103と負極活物質層104に加えられる。この場合も、正極活物質層102に重ならない部分104bにおいて、負極活物質層104の充放電に伴う膨張収縮が制限される。このため、固体電解質層103および負極活物質層104が割れにくい。図8に示された形態について、本発明者が実施した試験では、固体電解質層103および負極活物質層104の割れや、正極活物質層102と負極活物質層104との短絡などは確認されなかった。 FIG. 8 is a cross-sectional view schematically showing an all-solid-state battery 100D according to another embodiment. In the embodiment shown in FIG. 8, solid electrolyte layer 103 and negative electrode active material layer 104 are formed so that portions 103b and 104b that do not overlap positive electrode active material layer 102 are thicker than portions 103a and 104a that overlap. . As a result, higher pressure is applied to the solid electrolyte layer 103 and the negative electrode active material layer 104 by the restraining member 107 in the portions 103b and 104b that do not overlap the positive electrode active material layer 102 than in the overlapping portions 103a and 104a. In this case as well, the expansion and contraction of the negative electrode active material layer 104 due to charging and discharging are restricted in the portion 104b that does not overlap with the positive electrode active material layer 102 . Therefore, the solid electrolyte layer 103 and the negative electrode active material layer 104 are less likely to crack. In tests conducted by the inventors of the embodiment shown in FIG. 8, cracks in the solid electrolyte layer 103 and the negative electrode active material layer 104, short circuits between the positive electrode active material layer 102 and the negative electrode active material layer 104, and the like were confirmed. I didn't.

図9は、他の形態にかかる全固体電池100Eを模式的に示す断面図である。図9に示された形態では、固体電解質層103と負極活物質層104の、正極活物質層102に重ならない部分103b,104bに、拘束圧が高くなるように、外装材106の内部に内部拘束部材130が設けられた形態である。この実施形態では、外装材106の内部に設けられた内部拘束部材130は、固体電解質層103と負極活物質層104の、正極活物質層102に重ならない部分103b,104bに当たる位置に突起130aが設けられている。外装材106の外側に配置された拘束部材107は、外装材106の外側から内部に配置された内部拘束部材130を押す。この際、内部拘束部材130の突起130aが、固体電解質層103と負極活物質層104の、正極活物質層102に重ならない部分103b,104bに当たる位置に圧縮力を作用させる。これにより、正極活物質層102に重ならない部分104bにおいて、負極活物質層104の充放電に伴う膨張収縮が制限される。このため、固体電解質層103および負極活物質層104が割れにくい。図9に示された形態について、本発明者が実施した試験では、固体電解質層103および負極活物質層104の割れや、正極活物質層102と負極活物質層104との短絡などは確認されなかった。 FIG. 9 is a cross-sectional view schematically showing an all-solid-state battery 100E according to another embodiment. In the form shown in FIG. 9, the solid electrolyte layer 103 and the negative electrode active material layer 104 are placed inside the exterior material 106 so that the confining pressure is high in the portions 103b and 104b that do not overlap the positive electrode active material layer 102. This is a form in which a restraining member 130 is provided. In this embodiment, the inner restraining member 130 provided inside the exterior material 106 has protrusions 130a at positions corresponding to the portions 103b and 104b of the solid electrolyte layer 103 and the negative electrode active material layer 104 that do not overlap the positive electrode active material layer 102. is provided. The restraining member 107 arranged outside the exterior material 106 pushes the inner restraining member 130 arranged inside from the outside of the exterior material 106 . At this time, the protrusion 130 a of the internal restraint member 130 applies a compressive force to the portions 103 b and 104 b of the solid electrolyte layer 103 and the negative electrode active material layer 104 that do not overlap with the positive electrode active material layer 102 . As a result, the expansion and contraction of the negative electrode active material layer 104 due to charging and discharging are restricted in the portion 104 b that does not overlap with the positive electrode active material layer 102 . Therefore, the solid electrolyte layer 103 and the negative electrode active material layer 104 are less likely to crack. In tests conducted by the inventors of the embodiment shown in FIG. 9, cracks in the solid electrolyte layer 103 and the negative electrode active material layer 104, short circuits between the positive electrode active material layer 102 and the negative electrode active material layer 104, and the like were confirmed. I didn't.

以上、ここで提案される全固体電池について、種々説明した。特に言及されない限りにおいて、ここで挙げられた全固体電池の実施形態などは、本発明を限定しない。 Various descriptions have been given above of the all-solid-state battery proposed here. Unless otherwise specified, the embodiments of all-solid-state batteries and the like cited here do not limit the present invention.

なお、ここでは、正極活物質にリチウムニッケルマンガンコバルト複合酸化物が用いられ、負極活物質にSi負極材料が用いられ、固体電解質に硫化物系固体電解質が用いられた例を例示した。特段の言及がない限りにおいて、正極活物質、負極活物質および固体電解質に用いられる材料に限定されない。また、負極活物質層104の充放電に伴う膨張収縮が大きいが、固体電解質層103や負極活物質層104などに割れが生じにくいとの観点において、特に、負極活物質にSi負極材料が用いられ、かつ、硫化物系固体電解質が用いられている場合に好適である。 Here, an example in which a lithium-nickel-manganese-cobalt composite oxide is used as the positive electrode active material, a Si negative electrode material is used as the negative electrode active material, and a sulfide-based solid electrolyte is used as the solid electrolyte is exemplified. Materials used for the positive electrode active material, the negative electrode active material, and the solid electrolyte are not limited unless otherwise specified. In addition, although the expansion and contraction of the negative electrode active material layer 104 due to charging and discharging are large, the solid electrolyte layer 103, the negative electrode active material layer 104, and the like are not easily cracked. and a sulfide-based solid electrolyte is used.

100,100A~100E 全固体電池
101 正極集電箔
101a 正極集電箔に設けられたタブリード
102 正極活物質層
102a 正極活物質層の縁部
103 固体電解質層
103a 固体電解質層103の正極活物質層102に重なる部分
103b 固体電解質層103の正極活物質層102に重ならない部分
104 負極活物質層
104a 負極活物質層104の正極活物質層102に重なる部分
104b 負極活物質層104の正極活物質層102に重ならない部分
105 負極集電箔
105a 負極集電箔105に設けられたタブリード
106 外装材
106a 外装材106の縁
107 拘束部材
107a 突起
108 充填剤
120 電極ユニット
130 内部拘束部材
130a 突起
B1 境界部
100, 100A to 100E All-solid battery 101 Positive electrode current collector foil 101a Tab lead 102 provided on positive electrode current collector foil Positive electrode active material layer 102a Edge portion 103 of positive electrode active material layer Solid electrolyte layer 103a Positive electrode active material layer of solid electrolyte layer 103 Portion 103b overlapping with 102 Portion 104 of solid electrolyte layer 103 not overlapping with positive electrode active material layer 102 Negative electrode active material layer 104a Portion 104b of negative electrode active material layer 104 overlapping with positive electrode active material layer 102 Positive electrode active material layer of negative electrode active material layer 104 Portion 105 that does not overlap with 102 Negative collector foil 105a Tab lead 106 provided on negative collector foil 105 Exterior material 106a Edge 107 of exterior material 106 Restricting member 107a Projection 108 Filler 120 Electrode unit 130 Internal restraining member 130a Projection B1 Boundary portion

Claims (4)

正極集電箔と、
前記正極集電箔に重ねられた、正極活物質を含む正極活物質層と、
前記正極活物質層に重ねられた、Liイオン伝導体を含む固体電解質層と、
前記固体電解質層に重ねられた、負極活物質を含む負極活物質層と、
前記負極活物質層に重ねられた負極集電箔と、
前記正極集電箔と前記正極活物質層と前記固体電解質層と前記負極活物質層と前記負極集電箔とが重ねられた方向に、前記正極集電箔と前記正極活物質層と前記固体電解質層と前記負極活物質層と前記負極集電箔とを拘束する拘束部材と
を有し、
前記固体電解質層と前記負極活物質層は、前記重ねられた方向において前記正極活物質層に重なる部分と前記正極活物質層に重ならない部分とを有し、
前記固体電解質層と前記負極活物質層とのうち前記正極活物質層に重ならない部分の密度が、前記正極活物質層に重なる部分よりも高く形成され、
前記正極活物質層に重ならない部分において前記負極活物質層の充放電に伴う膨張収縮が制限されるように構成された、
全固体電池。
a positive electrode current collector foil;
a positive electrode active material layer containing a positive electrode active material, superimposed on the positive electrode current collecting foil;
a solid electrolyte layer containing a Li ion conductor superimposed on the positive electrode active material layer;
a negative electrode active material layer containing a negative electrode active material and superimposed on the solid electrolyte layer;
a negative electrode current collector foil superimposed on the negative electrode active material layer;
The positive electrode current collector foil, the positive electrode active material layer, and the solid electrolyte layer are stacked in the direction in which the positive electrode current collector foil, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector foil are stacked. having a binding member that binds the electrolyte layer, the negative electrode active material layer, and the negative electrode current collector foil;
The solid electrolyte layer and the negative electrode active material layer have a portion that overlaps the positive electrode active material layer and a portion that does not overlap the positive electrode active material layer in the overlapping direction,
A portion of the solid electrolyte layer and the negative electrode active material layer that does not overlap the positive electrode active material layer has a higher density than a portion that overlaps the positive electrode active material layer,
In a portion that does not overlap with the positive electrode active material layer, expansion and contraction due to charging and discharging of the negative electrode active material layer are restricted.
All-solid battery.
前記正極活物質層に重ならない部分において前記固体電解質層が、前記正極活物質層の縁部を覆っており、前記拘束部材による拘束圧が、前記固体電解質層を通じて前記負極活物質層に伝えられるように構成された、請求項1に記載された全固体電池。 The solid electrolyte layer covers the edge of the positive electrode active material layer in a portion that does not overlap with the positive electrode active material layer, and the restraining pressure by the restraining member is transmitted to the negative electrode active material layer through the solid electrolyte layer. The all-solid-state battery according to claim 1, configured to: 前記固体電解質層と前記負極活物質層とのうち、前記正極活物質層の縁部および前記正極活物質層に重ならない部分が充填剤で覆われた、請求項1に記載された全固体電池。 2. The all-solid-state battery according to claim 1, wherein, of said solid electrolyte layer and said negative electrode active material layer, an edge portion of said positive electrode active material layer and a portion not overlapping with said positive electrode active material layer are covered with a filler. . 正極集電箔と、
前記正極集電箔に重ねられた、正極活物質を含む正極活物質層と、
前記正極活物質層に重ねられた、Liイオン伝導体を含む固体電解質層と、
前記固体電解質層に重ねられた、負極活物質を含む負極活物質層と、
前記負極活物質層に重ねられた負極集電箔と、
前記正極集電箔と前記正極活物質層と前記固体電解質層と前記負極活物質層と前記負極集電箔とが重ねられた方向に、前記正極集電箔と前記正極活物質層と前記固体電解質層と前記負極活物質層と前記負極集電箔とを拘束する拘束部材と
外装材と
を有し、
前記固体電解質層と前記負極活物質層は、前記重ねられた方向において前記正極活物質層に重なる部分と前記正極活物質層に重ならない部分とを有し、
前記外装材は、 前記正極集電箔と、前記正極活物質層と、前記固体電解質層と、前記負極活物質層と、前記負極集電箔とが重ねられた積層体からなる電極ユニットを収容しており、
前記電極ユニットの積層方向において、前記電極ユニットのうち前記正極活物質層に重ならない部分に当たる突起が設けられた内部拘束部材が、前記外装材の内部に設けられており、
前記外装材の外側に配置された拘束部材が、前記外装材の外側から前記内部拘束部材を押すように構成され、
前記正極活物質層に重ならない部分において前記負極活物質層の充放電に伴う膨張収縮が制限されるように構成された、
全固体電池。
a positive electrode current collector foil;
a positive electrode active material layer containing a positive electrode active material, superimposed on the positive electrode current collecting foil;
a solid electrolyte layer containing a Li ion conductor superimposed on the positive electrode active material layer;
a negative electrode active material layer containing a negative electrode active material and superimposed on the solid electrolyte layer;
a negative electrode current collector foil superimposed on the negative electrode active material layer;
The positive electrode current collector foil, the positive electrode active material layer, and the solid electrolyte layer are stacked in the direction in which the positive electrode current collector foil, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector foil are stacked. a binding member that binds the electrolyte layer, the negative electrode active material layer, and the negative electrode current collector foil ;
exterior material and
has
The solid electrolyte layer and the negative electrode active material layer have a portion that overlaps the positive electrode active material layer and a portion that does not overlap the positive electrode active material layer in the overlapping direction,
The exterior material accommodates an electrode unit composed of a laminate in which the positive electrode current collector foil, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector foil are stacked. and
An internal restraining member provided with a protrusion corresponding to a portion of the electrode unit that does not overlap the positive electrode active material layer in the stacking direction of the electrode unit is provided inside the exterior material,
a restraining member disposed outside the exterior material is configured to push the internal restraining member from the outside of the exterior material;
In a portion that does not overlap with the positive electrode active material layer, expansion and contraction due to charging and discharging of the negative electrode active material layer are restricted.
All-solid battery.
JP2018127907A 2018-07-04 2018-07-04 All-solid battery Active JP7168361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018127907A JP7168361B2 (en) 2018-07-04 2018-07-04 All-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018127907A JP7168361B2 (en) 2018-07-04 2018-07-04 All-solid battery

Publications (3)

Publication Number Publication Date
JP2020009574A JP2020009574A (en) 2020-01-16
JP2020009574A5 JP2020009574A5 (en) 2021-07-29
JP7168361B2 true JP7168361B2 (en) 2022-11-09

Family

ID=69152054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018127907A Active JP7168361B2 (en) 2018-07-04 2018-07-04 All-solid battery

Country Status (1)

Country Link
JP (1) JP7168361B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437301A (en) * 2021-06-03 2021-09-24 浙江南都电源动力股份有限公司 Composite pole piece, solid-state lithium ion battery pack and battery production process
CN113437302A (en) * 2021-06-03 2021-09-24 浙江南都电源动力股份有限公司 Composite pole piece and lithium ion battery pack
JP2024066622A (en) * 2022-11-02 2024-05-16 日立造船株式会社 All-solid-state battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180039A (en) 2007-01-30 2007-07-12 Sony Corp Method of manufacturing solid electrolyte battery
JP2007273349A (en) 2006-03-31 2007-10-18 Toyota Motor Corp Stacked battery and manufacturing method therefor
JP2013243004A (en) 2012-05-18 2013-12-05 Toyota Motor Corp Solid battery, and solid battery manufacturing method
JP2014120199A (en) 2012-12-12 2014-06-30 Samsung R&D Institute Japan Co Ltd Solid-state battery
JP2015162353A (en) 2014-02-27 2015-09-07 トヨタ自動車株式会社 Method for manufacturing all-solid battery
JP2019021428A (en) 2017-07-12 2019-02-07 日立造船株式会社 Coin type battery and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273349A (en) 2006-03-31 2007-10-18 Toyota Motor Corp Stacked battery and manufacturing method therefor
JP2007180039A (en) 2007-01-30 2007-07-12 Sony Corp Method of manufacturing solid electrolyte battery
JP2013243004A (en) 2012-05-18 2013-12-05 Toyota Motor Corp Solid battery, and solid battery manufacturing method
JP2014120199A (en) 2012-12-12 2014-06-30 Samsung R&D Institute Japan Co Ltd Solid-state battery
JP2015162353A (en) 2014-02-27 2015-09-07 トヨタ自動車株式会社 Method for manufacturing all-solid battery
JP2019021428A (en) 2017-07-12 2019-02-07 日立造船株式会社 Coin type battery and method for manufacturing the same

Also Published As

Publication number Publication date
JP2020009574A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6319335B2 (en) Manufacturing method of all solid state battery
JP4770489B2 (en) Electrode laminate and bipolar secondary battery
CN106099169B (en) Battery with a battery cell
JP7168361B2 (en) All-solid battery
JP4720384B2 (en) Bipolar battery
JP2007273350A (en) Stacked battery and manufacturing method therefor
KR101375398B1 (en) Pouch type secondary battery having enhanced electrical insulation and wetting properties
CN106469826B (en) Battery with a battery cell
KR20180113910A (en) Stacked battery
KR20160010501A (en) Secondary battery
JP2019121532A (en) All-solid battery
CN113316859A (en) Laminated battery
CN112868125A (en) Battery with a battery cell
JP2020087710A (en) All-solid battery
JP7236036B2 (en) secondary battery
KR102515412B1 (en) All solid state battery
JP7167447B2 (en) laminated battery
CN109155442B (en) Secondary battery
JP2019029339A (en) battery
JP5664068B2 (en) Multilayer battery and method of manufacturing multilayer battery
JP2007234453A (en) Secondary battery and its vehicle mounting structure
JP2019160659A (en) Electrochemical element
JP7312969B2 (en) battery
CN112599718A (en) Laminated battery
JP2007073485A (en) Battery and battery pack

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221027

R150 Certificate of patent or registration of utility model

Ref document number: 7168361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150