JP7168274B1 - hydrogen water generator - Google Patents

hydrogen water generator Download PDF

Info

Publication number
JP7168274B1
JP7168274B1 JP2022092678A JP2022092678A JP7168274B1 JP 7168274 B1 JP7168274 B1 JP 7168274B1 JP 2022092678 A JP2022092678 A JP 2022092678A JP 2022092678 A JP2022092678 A JP 2022092678A JP 7168274 B1 JP7168274 B1 JP 7168274B1
Authority
JP
Japan
Prior art keywords
electrode
water
hydrogen water
holding
float
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022092678A
Other languages
Japanese (ja)
Other versions
JP2023179836A (en
Inventor
三夫 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMOS ENTERPRISE CO., LTD.
Original Assignee
COSMOS ENTERPRISE CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMOS ENTERPRISE CO., LTD. filed Critical COSMOS ENTERPRISE CO., LTD.
Priority to JP2022092678A priority Critical patent/JP7168274B1/en
Application granted granted Critical
Publication of JP7168274B1 publication Critical patent/JP7168274B1/en
Priority to CN202380013128.9A priority patent/CN117769527A/en
Priority to PCT/JP2023/017710 priority patent/WO2023238594A1/en
Publication of JP2023179836A publication Critical patent/JP2023179836A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/01Electrolytic cells characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Water Treatments (AREA)

Abstract

【課題】電極部材を水槽、タンク等の水中に投入して一部を浮かせて使用し、電気分解により水素水を生成する水素水生成器に関し、機器の維持、管理が容易であり併せて電極のメンテナンスが容易に行なえ、またナノバブル水素水の生成にも寄与する水素水生成器を提供することを目的とする。【解決手段】水中に投入される電極部材2と、空中に配置されリード線5により電極部材2に電力を供給する電源部材と、を有し、電極部材2は、水の電気分解を行う電極部8と、この電極部8の上部を保持する電極保持部材9と、電極部8を水中に保持するとともに、電極保持部材9を水面の上部に浮かせる浮き具10と、を具備し、水中に投入した電極部材2の一部を、浮き具10の浮力によって水面上に浮かせ、この状態で電源部材から水中に没入する電極部8に給電し、電解処理により水中に水素水を生成する構成である。【選択図】図1The present invention relates to a hydrogen water generator that generates hydrogen water by electrolysis by throwing an electrode member into water such as a water tank, a tank, etc. and partially floating the electrode member. To provide a hydrogen water generator which facilitates the maintenance of and also contributes to the generation of nanobubble hydrogen water. The electrode member has an electrode member that is put into water and a power supply member that is arranged in the air and supplies power to the electrode member through a lead wire. The electrode member is an electrode for electrolyzing water. 8, an electrode holding member 9 that holds the upper part of the electrode part 8, and a floater 10 that holds the electrode part 8 in water and floats the electrode holding member 9 above the water surface. Part of the inserted electrode member 2 is floated on the water surface by the buoyancy of the floater 10, and in this state, power is supplied from the power supply member to the electrode portion 8 submerged in water, and hydrogen water is generated in the water by electrolysis. be. [Selection drawing] Fig. 1

Description

本発明は、電極部材を水槽、タンク等の水中に投入して一部を浮かせて使用し、電気分解により水素水を生成し、これを農業用等に用いる水素水生成器に関する。 TECHNICAL FIELD The present invention relates to a hydrogen water generator in which an electrode member is put into water such as a water tank, a tank, or the like, and a part of the electrode member is floated to generate hydrogen water by electrolysis, and the hydrogen water is used for agriculture or the like.

近年、水素の農業への利用法として、水素水の活用が大学、試験農家等で試験、研究されている。例えば、水素水の散布等、水素を活用したブランド農産物の育成を行い、収穫量が5~15%増加するなど、水素を活用した農業が展開されている。また、水素ガスを利用した生産者の意見として、植物の根の張りが良く根腐れしにくい、害虫による被害が減少、堆肥つくりのときの匂いが少ない、或いは病気に強い作物となるなど、さまざまな効果があげられている。 In recent years, as a method of using hydrogen for agriculture, utilization of hydrogen water has been tested and researched at universities, experimental farms, and the like. For example, agriculture using hydrogen is being developed, such as by spraying hydrogen water and developing branded agricultural products that use hydrogen, increasing the yield by 5 to 15%. In addition, according to the opinions of producers using hydrogen gas, there are various opinions, such as that the roots of plants are well-stretched and less likely to root rot, that damage from pests is reduced, that compost has less odor, and that the crops are resistant to diseases. effect is given.

一方、現在水素水は飲料用等では市販されているが、まだ高価であるため農業用等に用いるのは経済的にも問題がある。このため、農業用等として、比較的手軽に水素水を生成でき、また、併せて電極の状態が良好に維持できるよう、その保守(メンテナンス)の容易な水素水生成器の開発が農業等に貢献できるものと期待されている。 On the other hand, although hydrogen water is commercially available for drinking and the like at present, it is still expensive, so there is an economic problem in using it for agricultural use and the like. For this reason, for agriculture, etc., the development of a hydrogen water generator that is easy to maintain so that hydrogen water can be generated relatively easily and the state of the electrodes can be maintained in good condition is being developed for agriculture. It is hoped that they will be able to contribute.

本件発明と同様に、浴槽、水槽等の水中に入れて使用する水素水発生装置は、例えば特許文献1等に開示されている。これは、図11に示すように、基部111から胴部112を立設し、胴部112の上端開口部に連通して略球状の頭部113を設け、内部を左右に二分して、左室115に通水開口部117を形成し、右室116を密閉して装置本体110を形成するもので、左室115に収納された電極コア122と、右室116に収納されたバッテリー123と、右室116に収納された制御盤124等を有し、水中において、頭部113の上部が水面から露出する浮力を与えるものである。 Similar to the present invention, a hydrogen water generator used in water such as a bathtub or a water tank is disclosed, for example, in Patent Document 1 and the like. As shown in FIG. 11, a trunk portion 112 is erected from a base portion 111, and a substantially spherical head portion 113 is provided in communication with the upper end opening of the trunk portion 112. A water passage opening 117 is formed in the chamber 115, and the right chamber 116 is sealed to form the apparatus main body 110. An electrode core 122 housed in the left chamber 115 and a battery 123 housed in the right chamber 116. , a control panel 124 and the like housed in the right chamber 116, and provides buoyancy in which the upper portion of the head 113 is exposed above the water surface.

実用新案登録第3143019号公報Utility Model Registration No. 3143019 特開2013-46936号公報JP 2013-46936 A

さて、特許文献1の水素水発生装置は、水中に入れて使用する際、制御盤及びバッテリー等も電極と共に水中に投入する形態である。このため、防水等の問題もあり、またバッテリーを使用していることから長時間の使用には不向きである。また、水素水発生装置を水中に投入して使用する場合、装置の全ての要素を一体化した形態であるため、装置全体の形状、重量等も増大し、取り扱いも容易ではないという問題がある。
また、農業用等には比較的大量の水素水を使用するため、これに対応可能な装置が求められている。
なお、本件発明に係る水素水生成器は、微小(ナノ)バブルの水素水を得る目的から、電気分解用の電源回路は特許文献2の回路をベースにしている。
Now, when the hydrogen water generator of Patent Document 1 is put into water for use, the control panel, the battery, etc. are put into the water together with the electrodes. For this reason, there are problems such as waterproofing, and since it uses a battery, it is not suitable for long-term use. In addition, when the hydrogen water generator is put into water and used, all the elements of the device are integrated, so there is a problem that the shape and weight of the entire device increases and the handling is not easy. .
In addition, since a relatively large amount of hydrogen water is used for agriculture and the like, there is a demand for a device that can handle this.
In the hydrogen water generator according to the present invention, the electrolysis power supply circuit is based on the circuit of Patent Document 2 for the purpose of obtaining hydrogen water with micro (nano) bubbles.

本発明は前記問題点に鑑みてなされたものであり、器機の維持、管理が容易であり併せて電極のメンテナンスが容易に行なえ、またナノバブル水素水の生成にも寄与する水素水生成器を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a hydrogen water generator that facilitates the maintenance and management of the equipment, facilitates the maintenance of the electrodes, and contributes to the generation of nanobubble hydrogen water. intended to

以上の技術的課題を解決するため、本発明に係る水素水生成器は図1等に示すように、水中に投入される電極部材2と、空中に配置されリード線5により前記電極部材2に電力を供給する電源部材4と、を有し、前記電極部材2は、水の電気分解を行う電極部8と、この電極部8の上部を保持する電極保持部材9と、前記電極部8を水中に保持するとともに、前記電極保持部材9を水面の上部に浮かせる浮き具10と、を具備し、前記水中に投入した前記電極部材2の一部を、前記浮き具10の浮力によって水面上に浮かせ、この状態で前記電源部材4から水中に没入する前記電極部8に給電し、電解処理により前記水中に水素水を生成する構成である。 In order to solve the above technical problems, the hydrogen water generator according to the present invention, as shown in FIG. The electrode member 2 includes an electrode portion 8 for electrolyzing water, an electrode holding member 9 for holding the upper portion of the electrode portion 8, and the electrode portion 8. and a floater 10 for holding the electrode holding member 9 in the water and floating the electrode holding member 9 above the water surface. In this state, power is supplied from the power source member 4 to the electrode portion 8 submerged in water, and hydrogen water is generated in the water by electrolysis.

本発明に係る水素水生成器は、前記電極部8として、断面L字状の4枚の電極板6からなる第一の電極14、及び棒状の第二の電極16を設け、前記電極部8の中央部位の周囲に前記電極板6をそれぞれ配置し、これら電極板6の角部が向き合う前記中央部位に前記第二の電極16を配置した構成である。 In the hydrogen water generator according to the present invention, a first electrode 14 consisting of four electrode plates 6 having an L-shaped cross section and a rod-shaped second electrode 16 are provided as the electrode portion 8, and the electrode portion 8 The electrode plates 6 are arranged around the center portions of the electrode plates 6, respectively, and the second electrodes 16 are arranged at the center portions where the corners of the electrode plates 6 face each other.

本発明に係る水素水生成器は、前記第二の電極16として、中心電極材30とこれを被うパイプ電極材32とから構成し、当該パイプ電極材32を前記中心電極材30に対して着脱自在に形成した構成である。 In the hydrogen water generator according to the present invention, the second electrode 16 is composed of a center electrode material 30 and a pipe electrode material 32 covering the center electrode material 30, and the pipe electrode material 32 is attached to the center electrode material 30. It is configured to be detachable.

本発明に係る水素水生成器として、前記電極部材2の浮き具10として、二又は三以上の複数部分からなる浮き具片10a,10bを設け、これら浮き具片10a,10bを前記電極保持部材9の周囲に配置した構成である。 In the hydrogen water generator according to the present invention, as the float 10 of the electrode member 2, float pieces 10a and 10b consisting of a plurality of parts of two or more are provided, and these float pieces 10a and 10b are attached to the electrode holding member. 9 is arranged around.

本発明に係る水素水生成器として、前記電極部材2の浮き具片10a,10bは、それぞれ浮き材66を浮きケース68に収納した形状であり、これら浮き具片10a,10bを前記電極保持部材9の周囲に配置した構成である。 In the hydrogen water generator according to the present invention, the float pieces 10a and 10b of the electrode member 2 are shaped such that a float member 66 is housed in a float case 68, and these float pieces 10a and 10b are attached to the electrode holding member. 9 is arranged around.

本発明に係る水素水生成器として、前記電極保持部材9は、前記電極部8の上部を保持する保持本体部50、及び当該保持本体部50の上部を閉塞する保持カバー部52を有する構成である。 As a hydrogen water generator according to the present invention, the electrode holding member 9 has a holding main body portion 50 that holds the upper portion of the electrode portion 8 and a holding cover portion 52 that closes the upper portion of the holding main body portion 50. be.

本発明に係る水素水生成器は、前記第一の電極14の4枚の電極板6をそれぞれ網体で形成し、この第一の電極14の周囲に網体からなる筒状の第三の電極18を配置し、前記第一の電極14の4枚の電極板6を、それぞれ一対の交流電極と2つの接地電極として構成し、かつ前記第二の電極16及び前記第三の電極18をそれぞれ接地電極とした構成である。 In the hydrogen water generator according to the present invention, the four electrode plates 6 of the first electrode 14 are each formed of a mesh, and the first electrode 14 is surrounded by a cylindrical third plate made of a mesh. An electrode 18 is arranged, the four electrode plates 6 of the first electrode 14 are respectively configured as a pair of AC electrodes and two ground electrodes, and the second electrode 16 and the third electrode 18 are Each is configured as a ground electrode.

本発明に係る水素水生成器は、前記第一の電極14の電極板6に係る交流電極に高周波交流を通電させるに際し、前記高周波交流として周波数5~100kHzを中心に変動幅±3~5kHzのFM変調を加えた構成である。 In the hydrogen water generator according to the present invention, when the AC electrode of the electrode plate 6 of the first electrode 14 is energized with a high-frequency alternating current, the high-frequency alternating current has a fluctuation range of ±3 to 5 kHz centered on a frequency of 5 to 100 kHz. This is a configuration with FM modulation added.

本発明に係る水素水生成器によれば、水中に投入される電極部材と、空中に配置されリード線により電極部材に電力を供給する電源部材と、を有し、水中に投入した電極部材の一部を、浮き具の浮力によって水面上に浮かせ、この状態で電源部材から水中に没入する電極部に給電し、電解処理により水中に水素水を生成する構成を採用したから、水槽等の水中に投入して使用するため特定の容器が不用であり、また電極部材と電源部材とが分離していることから、維持、管理が容易であり、且つ水量の調整等が自在であるため拡張性にもすぐれ、併せて電極のメンテナンスも容易で利便性にも富むという効果を奏する。 According to the hydrogen water generator according to the present invention, it has an electrode member that is put into water, and a power supply member that is arranged in the air and supplies power to the electrode member through a lead wire. Part of the hydrogen water is floated on the surface of the water by the buoyancy of the float, and in this state, power is supplied from the power supply member to the electrode part that is immersed in the water, and hydrogen water is generated in the water by electrolysis. No specific container is required because it is used by putting it into a container, and since the electrode member and the power source member are separated, maintenance and management are easy. In addition, the maintenance of the electrodes is easy and convenient.

本発明に係る水素水生成器によれば、電極部として、第一の電極の電極板が周囲に4枚配置される中央部に第二の電極を配置した構成により、電極部が全体的に円筒状に形成されて電極部材がバランス良く水中に浮遊し、さらに、第一の電極の中心部に棒状の第二の電極を配置したことから、この中心部に電極部の重心が位置し、電極部材の浮遊時においては安定性が確保されるという効果がある。 According to the hydrogen water generator according to the present invention, as the electrode part, the second electrode is arranged in the central part where the four electrode plates of the first electrode are arranged around, so that the electrode part is as a whole Since the electrode member is formed in a cylindrical shape and floats in the water in a well-balanced manner, and furthermore, the rod-shaped second electrode is arranged at the center of the first electrode, the center of gravity of the electrode part is located at this center, There is an effect that stability is ensured when the electrode member is floating.

本発明に係る水素水生成器によれば、第二の電極として、パイプ電極材を中心電極材に対して着脱自在に形成したから、メンテナンスの必要なパイプ電極材等の着脱が容易であり、スケール等の不純物の汚れの除去等の掃除も簡単に行えるため、保守に優れるという効果がある。 According to the hydrogen water generator of the present invention, as the second electrode, the pipe electrode material is formed detachably with respect to the center electrode material. Since cleaning such as removal of impurities such as scale can be easily performed, there is an effect of being excellent in maintenance.

本発明に係る水素水生成器によれば、電極部材の浮き具として、二又は三以上の複数部分からなる浮き具片を設け、これら浮き具片を電極保持部材の周囲に配置した構成としたから、電極保持部材への浮き具の取り付けが容易に行なえ、また電極部材の浮遊時のバランスが取り易く、安定した浮遊が保てるという効果がある。 According to the hydrogen water generator according to the present invention, as a float for the electrode member, a float piece consisting of a plurality of two or three or more parts is provided, and these float pieces are arranged around the electrode holding member. Therefore, it is possible to easily attach the floater to the electrode holding member, and it is easy to balance the electrode member when it floats, so that stable floating can be maintained.

本発明に係る水素水生成器によれば、電極部材の浮き具は、それぞれ浮き材を浮きケースに収納した構成としたから、浮き具における浮き材の交換等が容易となり、浮き具のメンテナンスが簡単であるという効果がある。 According to the hydrogen water generator according to the present invention, the floaters of the electrode members are configured such that the floaters are housed in the respective float cases. It has the advantage of being simple.

本発明に係る水素水生成器によれば、電極保持部材は、保持本体部及び当該保持本体部の上部を閉塞する保持カバー部を有する構成としたから、保持本体部と保持カバー部との間には作業領域等が確保され、リード線と電極部との接続部位の管理、及び防水等が良好に行えるという効果がある。 According to the hydrogen water generator of the present invention, since the electrode holding member is configured to have the holding body portion and the holding cover portion that closes the upper portion of the holding body portion, the space between the holding body portion and the holding cover portion , there is an effect that a working area and the like are ensured, and management of the connection portion between the lead wire and the electrode portion, and waterproofing, etc. can be performed satisfactorily.

本発明に係る水素水生成器によれば、第一の電極の4枚の電極板をそれぞれ網体で形成し、この周囲に網体からなる第三の電極を配置し、第一の電極の4枚の電極板を、一対の交流電極と2つの接地電極とし、かつ第二の電極及び第三の電極をそれぞれ接地電極とした構成としたから、第一の電極、第二の電極及び第三の電極の全ての電極が効率よく機能し、このため電気分解が良好に行えて水槽等の水中における電解処理の効果が高められ、併せて、筒状の第三の電極により電極部の浮きのバランスが保てるという効果がある。 According to the hydrogen water generator according to the present invention, the four electrode plates of the first electrode are each formed of a mesh, the third electrode made of a mesh is arranged around this, and the first electrode Since the four electrode plates are used as a pair of AC electrodes and two ground electrodes, and the second electrode and the third electrode are each used as the ground electrodes, the first electrode, the second electrode and the third All of the three electrodes function efficiently, so that electrolysis can be performed well and the effect of electrolytic treatment in water such as a water tank is enhanced. It has the effect of keeping the balance of

本発明に係る水素水生成器によれば、第一の電極の電極板に係る交流電極に高周波交流を通電させるに際し、高周波交流として周波数5~100kHzを中心に変動幅±3~5kHzのFM変調を加えた構成としたから、電気分解で生成された水は還元力が強く、含まれる水素水の多くがナノバブル化された水素水として水中に長期保存されることから、実用的にも優れた水素水が、水槽等の水中に得られるという効果がある。 According to the hydrogen water generator according to the present invention, when the AC electrode related to the electrode plate of the first electrode is energized with a high-frequency alternating current, the high-frequency alternating current is FM modulation with a fluctuation range of ±3 to 5 kHz centered on the frequency of 5 to 100 kHz. Since the water produced by electrolysis has a strong reducing power, most of the contained hydrogen water is stored in water as nanobubble hydrogen water for a long time, so it is practically excellent. There is an effect that hydrogen water is obtained in water such as a water tank.

実施の形態に係る水素水生成器の電極部材の斜視図を示す。The perspective view of the electrode member of the hydrogen water generator which concerns on embodiment is shown. 実施の形態に係る水素水生成器の電源部材(制御回路等)を示す図である。It is a figure which shows the power supply member (control circuit etc.) of the hydrogen water generator which concerns on embodiment. 実施の形態に係る電極部材等の断面図(図6(a)のB-B断面)である。FIG. 6 is a cross-sectional view (cross section taken along line BB in FIG. 6A) of an electrode member, etc., according to an embodiment; 実施の形態に係る電極部(第二の電極及び第三の電極)の分解斜視図である。3 is an exploded perspective view of an electrode section (second electrode and third electrode) according to the embodiment; FIG. 電極部材の電極保持部材に係り、(a)は保持本体部、(b)は保持カバー部を示す図である。FIG. 3A relates to an electrode holding member of an electrode member, and (a) shows a holding main body portion and (b) shows a holding cover portion. 電極部材に係り、(a)は(b)のA-A断面図、(b)は側面図、(c)は平面図を示す。Regarding the electrode member, (a) is a sectional view taken along line AA of (b), (b) is a side view, and (c) is a plan view. 電極部材に係り、(a)は浮き具の斜視図、(b)は浮き具の浮きケースの斜視図を示す。FIG. 4A is a perspective view of a float, and FIG. 4B is a perspective view of a float case of the float, relating to an electrode member. 電源部材の給電回路部に係る電気回路を示す図である。It is a figure which shows the electric circuit concerning the electric power feeding circuit part of a power supply member. 電極部材の電極部における第一の電極、第二の電極、及び第三の電極の模式図であり、(a)は各電極を、(b)は第一の電極に係る交流電極と接地電極との関係、(c)は(b)の交流電極と接地電極とを反転した関係、をそれぞれ示す図である。1 is a schematic diagram of a first electrode, a second electrode, and a third electrode in an electrode part of an electrode member, (a) is each electrode, and (b) is an AC electrode and a ground electrode related to the first electrode. , and (c) shows the relationship in which the AC electrode and the ground electrode in (b) are reversed. 試験結果のデータを示す図である。It is a figure which shows the data of a test result. 従来例に係る水素水発生装置を示す図である。It is a figure which shows the hydrogen water generator which concerns on a prior art example.

以下、本発明に係る水素水生成器の実施の形態を説明する。
図1,2、3等に示すように、この実施の形態に係る水素水生成器は、水を充填した水槽、タンク、容器等の水中に投入可能な電極部材2、及び電極部材2に電力を供給する電源部材4等を有する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a hydrogen water generator according to the present invention will be described below.
As shown in FIGS. 1, 2, 3, etc., the hydrogen water generator according to this embodiment includes an electrode member 2 that can be put into water such as a water tank, a tank, a container, etc. filled with water, and an electric power It has a power supply member 4 and the like that supplies the power.

電極部材2は、水の電気分解処理を行う電極板6等が取り付けられた電極部8、この電極部8の上部を保持する電極保持部材9,電極部8に浮力を与える浮き具10等を有する。電極部材2は、水槽内等(水中)で使用され、また電源部材4は地上(空中)で使用される。電源部材4は、例えばケース等に収納された状態で管理され、ここからリード線5を用いて電力を電極部材2に供給する。
電極部材2と電源部材4は、それぞれ独立した形態であるため、大きさ、重量も分割され、これらの維持管理も独立して行え、また電極部材2の電極部8等のメンテナンスも容易に行える。
The electrode member 2 includes an electrode portion 8 to which an electrode plate 6 for electrolyzing water is attached, an electrode holding member 9 for holding the upper portion of the electrode portion 8, a float 10 for giving buoyancy to the electrode portion 8, and the like. have. The electrode member 2 is used in a water tank or the like (underwater), and the power supply member 4 is used on the ground (in the air). The power supply member 4 is managed in a state of being housed in a case or the like, for example, and power is supplied to the electrode member 2 from there using lead wires 5 .
Since the electrode member 2 and the power source member 4 are formed independently of each other, their sizes and weights are divided, and maintenance and management of them can be performed independently, and maintenance of the electrode portion 8 of the electrode member 2 and the like can be easily performed. .

図2は、電源部材4の構成を示すもので、器機を管理する制御部11、給電回路部12、及び直流電源部13等を有する。給電回路部12は、リード線5により電極部材2の電極板6等に電解処理用の電力を供給する。直流電源部13は、給電回路部12に直流(DC)電源を供給するもので、給電回路部12に対する電極ドライブ用(24V~48V)の電源部13a、制御部11に対する制御基板用(12V)の電源部13b等を有する。 FIG. 2 shows the configuration of the power supply member 4, which includes a control section 11 for managing equipment, a feeder circuit section 12, a DC power supply section 13, and the like. The power supply circuit unit 12 supplies electric power for electrolytic treatment to the electrode plate 6 of the electrode member 2 and the like through the lead wire 5 . The DC power supply unit 13 supplies direct current (DC) power to the power supply circuit unit 12, and includes a power supply unit 13a for electrode driving (24 V to 48 V) for the power supply circuit unit 12, and a control substrate (12 V) for the control unit 11. power supply unit 13b and the like.

電極部材2の電極部8は、断面L形の4枚の電極板6からなる第一の電極14、第一の電極14の中央部に配置される棒状の第二の電極16、及び第一の電極14の周囲を被う網体からなる第三の電極18を有する。第一の電極14は、断面L字状の4枚の電極板6が中央部位の周囲に配置され、各電極板6の電極面15は網体からなる。 The electrode portion 8 of the electrode member 2 includes a first electrode 14 composed of four electrode plates 6 having an L-shaped cross section, a rod-shaped second electrode 16 arranged in the center of the first electrode 14, and a first It has a third electrode 18 made of a mesh that covers the periphery of the electrode 14 of the second electrode. In the first electrode 14, four electrode plates 6 having an L-shaped cross section are arranged around the central portion, and the electrode surface 15 of each electrode plate 6 is made of a mesh.

電極部材2は、水面に浮いた状態で使用される。このため、電極部8は全体的に円形の筒状に形成し、バランス良く水中に浮遊するようにした。そして、第一の電極14は中心部位の周囲に均等に4枚の各電極板6を配置し、さらに、第一の電極14の前記中心部位には棒状の第二の電極16を配置し、電極部8の重量をその中心部に集中させ、この中心部に電極部8の重心が位置するようにして浮遊時の安定性を向上させた。 The electrode member 2 is used while floating on the water surface. For this reason, the electrode part 8 is formed in a circular cylindrical shape as a whole so as to float in the water in a well-balanced manner. The first electrode 14 has four electrode plates 6 arranged evenly around the center portion, and a rod-shaped second electrode 16 is arranged at the center portion of the first electrode 14, The weight of the electrode part 8 is concentrated at the center, and the center of gravity of the electrode part 8 is positioned at the center to improve the stability during floating.

電極部8の各電極には導電材が用いられ、ここでは第一の電極14として、例えばチタン(Ti)にプラチナ(Pt)をメッキしたものを用いる。また、第二の電極16及び第三の電極18として、ステンレス材(SUS316)を用いている。このように、何れの電極についても、材料はステンレス、チタン等、耐久性があり錆にくい材料が用いられ、或いはこれらにプラチナ等のメッキ加工を施した金属材料が用いられる。 A conductive material is used for each electrode of the electrode section 8, and as the first electrode 14, for example, titanium (Ti) plated with platinum (Pt) is used. A stainless material (SUS316) is used as the second electrode 16 and the third electrode 18 . As described above, any electrode is made of a durable and rust-resistant material such as stainless steel or titanium, or a metal material plated with platinum or the like.

浮き具10は、水面下に投入した電極部材2が水中に沈まないよう保持し、その一部を水面上に浮かせるものである。このため、浮き具10としては、電極部材2を水中に保持した状態で水面上に浮かせる浮袋的な物であればよく、適切に材料、形態等を選択する。
浮き具10は、電極保持部材9の周囲部に取り付けて使用する。
The floating device 10 holds the electrode member 2 thrown under the water surface so that it does not sink in the water, and floats a part of it on the water surface. For this reason, the floater 10 may be a floater-like device that floats on the water surface while holding the electrode member 2 in water.
The float 10 is attached to the periphery of the electrode holding member 9 for use.

図3は、電極部材2の断面(水平)を示したものである。第一の電極14の電極板6は、直角に配置された一対の電極面15からなり、これら電極面15は網目が形成された長方形(縦に長い)の板状である。第一の電極14は、断面L形の電極板6を4枚用いており、各電極板6の上部の中央部には、それぞれ上方に突出した端子棒13が形成されている。電極板6を網目状に形成したのは、表面積を大きくし又表裏の両側で化学反応を生じさせ、電気分解の効果を高めるためである。 FIG. 3 shows a cross section (horizontal) of the electrode member 2 . The electrode plate 6 of the first electrode 14 is composed of a pair of electrode surfaces 15 arranged at right angles. The first electrode 14 uses four electrode plates 6 each having an L-shaped cross section, and each electrode plate 6 has a terminal rod 13 projecting upward from the central portion of the upper portion thereof. The reason why the electrode plate 6 is formed in a mesh shape is to increase the surface area and cause a chemical reaction on both the front and back sides to enhance the effect of electrolysis.

そして、中央部に棒状の第二の電極16を配置し、その周囲に一定間隔(90度間隔)で、第一の電極14に係る4枚の電極板6が配置されている。さらに、第一の電極14の周囲を囲む状態で円筒状の第三の電極18が配置されている。 A rod-shaped second electrode 16 is placed in the center, and four electrode plates 6 related to the first electrode 14 are placed around it at regular intervals (90 degree intervals). Further, a cylindrical third electrode 18 is arranged so as to surround the first electrode 14 .

なお、必要に応じて、第一の電極14の特定の電極板6の断面L形の凹部を利用して、ミネラル材を収納したミネラルケースを配置し、また上下向に銅製の棒材を配置しても良い。ミネラル材は、例えばマグネシウムと亜鉛の合金板からなり、これにより水中にミネラル物質を含有させることができ、また銅製の棒材は殺菌のために用いる。 If necessary, a recessed portion having an L-shaped cross section in a specific electrode plate 6 of the first electrode 14 is used to arrange a mineral case containing a mineral material, and a copper rod is arranged vertically. You can Mineral materials consist, for example, of magnesium-zinc alloy plates, which allow mineral substances to be contained in the water, and copper rods are used for sterilization.

第一の電極14に、断面L形の4枚の電極板6を用いたのは、上部を一部浮かせた状態で電極部8を水中に没入させた場合、全体のバランスが良く安定した状態で電極部8を水中に保持できるためであり、併せて電極を増やして水の電解処理の能力を高めるためである。また、電極板6を断面L形とすることで、各電極板6の電極面15同士の向かい合う面積を広くすることができ、効率よく電気分解が行える。 The reason why four electrode plates 6 having an L-shaped cross section are used for the first electrode 14 is that when the electrode part 8 is immersed in water with the upper part partially floated, the overall balance is good and stable. This is because the electrode portion 8 can be held in water with a large number of electrodes, and the number of electrodes is increased to improve the ability of electrolytic treatment of water. Further, by forming the electrode plates 6 to have an L-shaped cross section, the area where the electrode surfaces 15 of the electrode plates 6 face each other can be widened, and electrolysis can be performed efficiently.

電極板6の電極面15は、網目状に形成した平坦な矩形形状である。各電極板6は、平坦な矩形状の網材の中心部をL状に屈曲成型したものである。これにより電極板6は、平坦な電極面15が直角の形状をなす形状である。電極面15を網目状にすることで、表面積が増えて電解処理の効率が高められ、また水の流通が良くなり電解処理にも寄与する。 The electrode surface 15 of the electrode plate 6 has a flat rectangular shape formed in a mesh shape. Each electrode plate 6 is formed by bending the central portion of a flat rectangular mesh material into an L shape. As a result, the electrode plate 6 has a shape in which the flat electrode surface 15 forms a right angle. By making the electrode surface 15 mesh-like, the surface area is increased, the efficiency of the electrolytic treatment is enhanced, and the circulation of water is improved, which contributes to the electrolytic treatment.

第一の電極14は、断面L字状の電極板6が周囲に配置される中央部位に、各電極板6の角部をそれぞれ前記中央部位に向けて配置している。また各電極板6同士は、前記中央部位の周囲4か所に90度間隔で配置され、隣接する電極面15同士は一定の間隔を隔てて平行に向き合うように配置されている。 The first electrode 14 is arranged at a central portion around which the electrode plates 6 having an L-shaped cross section are arranged, with the corners of the respective electrode plates 6 directed toward the central portion. The electrode plates 6 are arranged at four locations around the central portion at intervals of 90 degrees, and the adjacent electrode surfaces 15 are arranged to face each other in parallel with a constant interval.

このように、第一の電極14の各電極板6の配置は、中央部位に位置する第二の電極16の近傍であって、かつ第二の電極16の中心対称位置にそれぞれ向かい合う形態で配置される。これにより、棒状の第二の電極16に対して、各電極板6との間の距離的なバランスがとれ、電気分解も良好に行われる。
電極板6は、チタンをメッシュ加工、又はエキスパンドメタル加工などにより網状に成型したものである。電極板6にプラチナメッキを施せば、耐久性も高まり処理効率アップにもなる。
In this way, the electrode plates 6 of the first electrode 14 are arranged in the vicinity of the second electrode 16 located in the central portion and facing each other at positions symmetrical with respect to the center of the second electrode 16. be done. As a result, the distance between the rod-shaped second electrode 16 and each electrode plate 6 is balanced, and the electrolysis is performed satisfactorily.
The electrode plate 6 is formed by molding titanium into a net shape by mesh processing, expanded metal processing, or the like. If the electrode plate 6 is plated with platinum, the durability is enhanced and the processing efficiency is improved.

第一の電極14は、各電極板6の隣接する電極面15同士の間隔は、ここでは10mmとしており、これは5mm~12mmの範囲が電気分解には良好である。
また、第一の電極14の各電極板6は、それぞれ角部から上方に向けて端子棒13が取り付けられており、この端子棒13を介して第一の電極14の上部が電極保持部材9に固定される。また、端子棒13はリード線5と電気的に接続されている。
In the first electrode 14, the interval between the adjacent electrode surfaces 15 of each electrode plate 6 is set to 10 mm here, and this range is good for electrolysis in the range of 5 mm to 12 mm.
Each electrode plate 6 of the first electrode 14 is attached with a terminal bar 13 directed upward from the corner, and the upper part of the first electrode 14 is connected to the electrode holding member 9 via the terminal bar 13 . fixed to Also, the terminal rod 13 is electrically connected to the lead wire 5 .

各電極板6は、それぞれ電極面15同士が一定間隔を維持できるよう、電極押え材20を用いている。電極押え材20は、非導電性の材料、例えばPP(ポリプロピレン)からなる。
また、電極押え材20は、断面円形状の押え材(A)、押え材(B)及び押え材(C)の3種類の部品からなる。各押え材同士は、中心部に設けた一方が凹状、他方が凸の部位を、これらの間に電極面15を介在させて篏合し互いに連結させている。そして、両側に電極押え材(A)及び電極押え材(B)を配置し、中央部に電極押え材(C)を配置し、この電極押え材(C)の幅により、隣り合う電極面15同士の間隔を一定に確保している。
電極押え材20は、第一の電極14の上部近傍及び下部近傍の上下二箇所に配置し、電極面15同士の間隔維持の安定化を図っている。
Each electrode plate 6 uses an electrode pressing member 20 so that the electrode surfaces 15 can maintain a constant interval. The electrode pressing member 20 is made of a non-conductive material such as PP (polypropylene).
The electrode pressing member 20 is composed of three types of parts, a pressing member (A), a pressing member (B), and a pressing member (C) having a circular cross section. The pressing members are connected to each other by interposing electrode surfaces 15 interposed therebetween at concave portions on one side and convex portions on the other provided at the center. Then, the electrode holding material (A) and the electrode holding material (B) are arranged on both sides, and the electrode holding material (C) is arranged in the center. A constant distance is maintained between them.
The electrode pressing members 20 are arranged at two positions above and below the first electrode 14 in the vicinity of the upper portion and in the vicinity of the lower portion to stabilize the spacing between the electrode surfaces 15 .

図4に示すように、第二の電極16は棒状であり、断面円形状の中心電極材30に、これを被うようにパイプ電極材32が嵌装された形態である。パイプ電極材32は、円筒状のパイプ材からなる。このように、第二の電極16は、その中心部の中心電極材30、およびこの周囲を被い、この中心電極材30に着脱自在に嵌装される円筒状等のパイプ電極材32を有する。パイプ電極材32は導電性を有し、中心電極材30とは互いに電気的に接触し導通している。 As shown in FIG. 4, the second electrode 16 is rod-shaped and has a form in which a pipe electrode member 32 is fitted to cover a center electrode member 30 having a circular cross section. The pipe electrode material 32 is made of a cylindrical pipe material. Thus, the second electrode 16 has a center electrode material 30 at its center and a cylindrical pipe electrode material 32 that covers the periphery of the center electrode material 30 and is detachably fitted to the center electrode material 30 . . The pipe electrode material 32 has electrical conductivity, and is in electrical contact with the center electrode material 30 for electrical continuity.

また、中心電極材30の上端部には電極端子34が形成され、中心電極材30の下端部にはネジ溝が刻設されたネジ部36が突出形成されている。第二の電極16の上部は、電極端子34を介して電極保持部材9に固定される。
第二の電極16では、構造的にシリカ等のスケールは中心電極材30には付着せずパイプ電極材32に付着するため、電極のメンテナンス(クリーニング等)はパイプ電極材32についてのみ行えばよい。
Further, an electrode terminal 34 is formed on the upper end of the center electrode member 30, and a threaded portion 36 having a screw groove is formed on the lower end of the center electrode member 30 so as to protrude. An upper portion of the second electrode 16 is fixed to the electrode holding member 9 via an electrode terminal 34 .
In the second electrode 16, scale such as silica does not adhere to the center electrode material 30 but adheres to the pipe electrode material 32 structurally. .

第三の電極18は、筒部40と底面部42からなる有底筒状の形状であり、材料はステンレス製で縦横の網目等が形成された網材が用いられている。
第三の電極18は、例えばステンレス製の針金をメッシュ状に織った網材を円筒状に丸め、筒状に成型したものである。このメッシュの目の粗さは、#2.5、或いは#5等があるが、ここでは目の粗い#2.5(メッシュ)を採用している。
The third electrode 18 has a cylindrical shape with a bottom and is composed of a cylindrical portion 40 and a bottom portion 42, and is made of stainless steel and is made of a mesh material formed with vertical and horizontal meshes.
The third electrode 18 is, for example, formed by rolling a mesh material made of stainless steel wire into a mesh shape and rolling it into a cylindrical shape. The coarseness of this mesh is #2.5, #5, etc., and #2.5 (mesh), which is coarser, is adopted here.

第三の電極18の筒部40は、円筒形状であり、筒部40の上下部の各周囲部には、それぞれ上カバー材、下カバー材が取り付けられている。筒部40の中間部には、補強用の環状線材45が取り付けられている。また、底面部42は、筒部40と同様の網目が形成された平坦な形状であり、その中央部には挿通孔部44が設けられたリング材46が取り付けられている。 The cylindrical portion 40 of the third electrode 18 has a cylindrical shape, and an upper cover member and a lower cover member are attached to upper and lower peripheral portions of the cylindrical portion 40, respectively. An annular wire rod 45 for reinforcement is attached to an intermediate portion of the tubular portion 40 . The bottom surface portion 42 has a flat shape with meshes formed in the same manner as the tubular portion 40, and a ring member 46 having an insertion hole portion 44 is attached to the central portion thereof.

第三の電極18は、内部の中心位置に配置した第二の電極16の下端部を止着した状態で、この第二の電極16に保持され取り付けられる。第二の電極16に係る中心電極材30のネジ部36にナット部材48を螺着し固定することで、パイプ電極材32及び第三の電極18等が保持され、これらが中心電極材30に固定される形態となる。また、パイプ電極材32は予め中心電極材30に嵌めておき、この嵌めた状態で保持固定される。
ナット部材48を、中心電極材30のネジ部36にねじ込むことで、中心電極材30が第三の電極18の底面部42に接触し、第二の電極16と第三の電極18とは導通状態となる。第二の電極16と第三の電極18とは、共に接地(グランド)電極である。
The third electrode 18 is held and attached to the second electrode 16 with the lower end portion of the second electrode 16 arranged at the center of the inside being fixed. By screwing and fixing the nut member 48 to the screw portion 36 of the center electrode member 30 related to the second electrode 16, the pipe electrode member 32, the third electrode 18, etc. are held, and these are attached to the center electrode member 30. It becomes a fixed form. Further, the pipe electrode member 32 is previously fitted to the center electrode member 30, and is held and fixed in this fitted state.
By screwing the nut member 48 onto the screw portion 36 of the center electrode member 30, the center electrode member 30 contacts the bottom surface portion 42 of the third electrode 18, and the second electrode 16 and the third electrode 18 are electrically connected. state. Both the second electrode 16 and the third electrode 18 are ground electrodes.

第二の電極16において、パイプ電極材32を脱着する際には、ナット部材48を緩めて取り外し、中心電極材30からパイプ電極材32を引き抜けば簡単に外すことができる。そして、パイプ電極材32に付着したスケール等の異物を除去し、また必要により第三の電極18の掃除等を行う。第二の電極16に係るパイプ電極材32、及び第三の電極18については、これら電極の装着及び脱着は容易であり、メンテナンスも簡単に行える。
円筒状の第三の電極18により、電極部材2の浮き状態では電極部8のバランスが保て、また電極部材2を扱う際、電極部8の保護にも寄与する。
In the second electrode 16 , the pipe electrode material 32 can be easily removed by loosening and removing the nut member 48 and pulling out the pipe electrode material 32 from the center electrode material 30 . Then, foreign matter such as scale adhering to the pipe electrode material 32 is removed, and the third electrode 18 is cleaned as necessary. Regarding the pipe electrode material 32 related to the second electrode 16 and the third electrode 18, these electrodes can be easily attached and detached, and maintenance can also be performed easily.
The cylindrical third electrode 18 maintains the balance of the electrode portion 8 when the electrode member 2 is floating, and also contributes to the protection of the electrode portion 8 when the electrode member 2 is handled.

図5に示すように、電極保持部材9は、電極部材2の上部を保持する保持本体部50、及び保持本体部50の上部を閉塞する保持カバー部52を有する。電極保持部材9は、合成樹脂材等の非導電性(絶縁)の材料を用いる。ここでは、電極保持部材9としての保持本体部50及び保持カバー部52に、耐衝撃性などに優れたABS樹脂材(アクリロニトリル・ブタジエン・スチレン共重合合成樹脂)を用いている。
電極保持部材9を保持本体部50と保持カバー部52に分けることで、両者間には作業領域が確保され、またリード線5と電極部8との接続部位等の管理及び防水が良好に行える。
As shown in FIG. 5 , the electrode holding member 9 has a holding body portion 50 that holds the upper portion of the electrode member 2 and a holding cover portion 52 that closes the upper portion of the holding body portion 50 . A non-conductive (insulating) material such as a synthetic resin material is used for the electrode holding member 9 . Here, the holding main body portion 50 and the holding cover portion 52 as the electrode holding member 9 are made of ABS resin material (acrylonitrile-butadiene-styrene copolymer synthetic resin) excellent in impact resistance.
By dividing the electrode holding member 9 into the holding main body portion 50 and the holding cover portion 52, a working area is secured between the two, and the connecting portion between the lead wire 5 and the electrode portion 8 can be well managed and waterproofed. .

保持本体部50は、表面部54と裏面部55を有する円形の部材である。表面部54は蓋状で、周囲4か所には、浮き具10を取り付けるための係止突起56が形成されている。また、保持本体部50の一か所に係止用のフック57が設けられている。
また、裏面部55は円板状で、中央部には第二の電極16の端子棒34を保持する中央孔部58、その周囲の4か所には第一の電極14の各電極板6を保持する保持孔部59が設けられている。裏面部55の周辺の6か所には、表面部54をネジ等の止着具で固定するための孔部60が設けられている。
The holding body portion 50 is a circular member having a surface portion 54 and a back surface portion 55 . The surface portion 54 is lid-shaped, and locking projections 56 for attaching the float 10 are formed at four locations around the surface portion 54 . A hook 57 for locking is provided at one place of the holding body portion 50 .
The back surface portion 55 is disc-shaped, and has a central hole portion 58 for holding the terminal rod 34 of the second electrode 16 in the center portion, and four electrode plates 6 of the first electrode 14 around it. A holding hole portion 59 for holding is provided. Holes 60 for fixing the surface portion 54 with fasteners such as screws are provided at six locations around the back surface portion 55 .

第一の電極14の各電極板6の上部の端子棒13は、それぞれ保持本体部50の保持孔部59に嵌入可能であり、その上部側から端子棒13をナット等で止着する。この際、リード線5の端子を端子棒13に取り付け、リード線5と第一の電極14の各電極板6とを接続する。このように、電極板6の端子棒13を介して、リード線5を電気的に接続する。
第二の電極16についても、中心電極材30の上端部に形成された電極端子34を保持本体部50の中央孔部58に嵌入し、その上部側から電極端子34をナット等で止着し、この電極端子34にリード線5の端子を接続する。
The terminal rod 13 on the upper portion of each electrode plate 6 of the first electrode 14 can be fitted into the holding hole portion 59 of the holding main body portion 50, and the terminal rod 13 is fixed with a nut or the like from the upper side thereof. At this time, the terminal of the lead wire 5 is attached to the terminal rod 13, and the lead wire 5 and each electrode plate 6 of the first electrode 14 are connected. In this manner, the lead wires 5 are electrically connected via the terminal rods 13 of the electrode plate 6 .
For the second electrode 16 as well, the electrode terminal 34 formed on the upper end of the center electrode member 30 is inserted into the central hole 58 of the holding body 50, and the electrode terminal 34 is secured from above with a nut or the like. , the terminal of the lead wire 5 is connected to the electrode terminal 34 .

保持カバー部52は円板状で、中央部から少し変位した箇所を膨出させ、ここにリード線5を挿通させるケーブル孔部61が設けられている。また、保持カバー部52の周辺の6か所には止着具を取り付けるための孔部62が設けられている。 The holding cover portion 52 is disk-shaped, and has a cable hole portion 61 which bulges out at a position slightly displaced from the central portion, and through which the lead wire 5 is inserted. In addition, holes 62 for attaching fasteners are provided at six locations around the holding cover portion 52 .

図6は、電極部材2に係り、電極部8に電極保持部材9を取り付けた状態を示すものである。同図(a)は同図(b)に示すA-A線断面、同図(b)は側面図、同図(c)は平面図をそれぞれ示している。
なお、図3は、図6(a)に示すB-B線断面図である。
FIG. 6 relates to the electrode member 2 and shows a state in which the electrode holding member 9 is attached to the electrode portion 8 . FIG. 1(a) shows a cross section taken along the line AA shown in FIG. 1(b), FIG. 1(b) shows a side view, and FIG. 1(c) shows a plan view.
3 is a cross-sectional view taken along the line BB shown in FIG. 6(a).

図7(a)(b)は浮き具10を示したものである。ここで用いた浮き具10は、浮き材66及びこれを収納し或いは保持する浮きケース68等を有する。浮き材66としては、発泡スチロール等の気泡(独立気泡)を含ませた合成樹脂材などが用いられる。また、浮き具10として、内部に空気が充填された密閉状の容器を用いても良い。浮きケース68は、格子状に形成され、材料としてはPP(ポリプロピレン)等が用いられている。 7(a) and 7(b) show the float 10. FIG. The floater 10 used here has a floater 66 and a floater case 68 for accommodating or holding the same. As the floating material 66, a synthetic resin material containing air bubbles (closed air bubbles) such as expanded polystyrene is used. Also, as the floater 10, a sealed container filled with air may be used. The floating case 68 is formed in a lattice shape and is made of PP (polypropylene) or the like.

浮き具10は、ここでは左右に配置された一対の浮き具片10a,10bからなる。また、浮き材66も同様に一対の浮き材片、浮きケース68も同様に一対のケース片からなる。各浮き具片10a,10bは、それぞれ平面が円弧状かつ断面が矩形状であり、互いに凹状の部位を向い合せにして、電極保持部材9の周囲に取り付ける。また、各浮き具片10a,10b同士は、少しの隙間(S)を設けて配置する。保持本体部50のフック57は、前記隙間(S)の箇所に位置するように配置する。 The float 10 here consists of a pair of float pieces 10a, 10b arranged on the left and right. Similarly, the float member 66 is formed of a pair of float member pieces, and the float case 68 is similarly formed of a pair of case pieces. Each of the float pieces 10a and 10b has an arcuate plane and a rectangular cross section, and is mounted around the electrode holding member 9 with the recessed portions facing each other. Also, the float pieces 10a and 10b are arranged with a small gap (S) between them. The hook 57 of the holding body portion 50 is arranged so as to be positioned at the space (S).

浮きケース68の各ケース片68a(68b)は、それぞれ円弧状の格子及び中心方向に向かう格子が形成されている。また、ケース片68a(68b)には、それぞれ内側に2か所、係止部70が形成され、またそれぞれ内側及び外側に浮き材66を保持するための保持片72が設けられている。 Each case piece 68a (68b) of the floating case 68 is formed with an arc-shaped grid and a grid extending toward the center. In addition, the case pieces 68a (68b) are formed with two engaging portions 70 inside each, and holding pieces 72 for holding the floating member 66 are provided inside and outside, respectively.

各浮き具片10a(10b)は、電極保持部材9の左右の周囲部に、それぞれ向かい合せて対称な状態で取り付ける。この場合、保持本体部50の2箇所に設けた係止突起56を、それぞれ浮き具片10aの係止部70に係止させて取り付け、保持本体部50の他方側の2箇所についても同様に係止させる。こうして、電極保持部材9の周囲部の左右対称箇所にそれぞれ浮き具片10a(10b)を配置する。 The float pieces 10a (10b) are attached to the left and right peripheral portions of the electrode holding member 9 so as to face each other in a symmetrical manner. In this case, the locking projections 56 provided at two locations on the holding body portion 50 are engaged with and attached to the locking portions 70 of the float pieces 10a, respectively, and the two locations on the other side of the holding body portion 50 are similarly attached. lock it. In this way, the float pieces 10a (10b) are arranged at symmetrical positions on the periphery of the electrode holding member 9, respectively.

浮き具10を浮き具片10a,10bに分割したのは、浮き具10を電極保持部材9に取り付けるのが比較的容易に行え、また浮きのバランスもよいためである。浮き具10は、ここでは一対の浮き具片を用いているが、他に複数対の浮き具片を用いる形態としてもよい。浮き具片は、全体のバランスをとるため左右対称或いは均等な間隔で配置する。また、浮き具10として全体が円環状の形態としてもよい。
浮き具10の浮き材66を浮きケース68に収納、保持したことから、浮き材66の交換等が容易となり、メンテナンスも簡単に行える。
The reason why the floater 10 is divided into the floater pieces 10a and 10b is that the floater 10 can be attached to the electrode holding member 9 relatively easily and the float is well balanced. The floater 10 uses a pair of floater pieces here, but may be configured to use a plurality of pairs of floater pieces. The flotation pieces are arranged symmetrically or evenly spaced to balance the whole. Further, the float 10 may be formed in a ring shape as a whole.
Since the float member 66 of the float device 10 is housed and held in the float case 68, replacement of the float member 66 and the like can be facilitated, and maintenance can be easily performed.

なお、電極保持部材9のフック57は、例えば、水槽等の投入口が狭い場合等、浮き具10が邪魔になって電極部材2を水槽等に投入できないときに使用する。この場合、電極部材2の電極保持部材9から浮き具10を外し、電極保持部材9と電極部8のみの電極部材(2)とする。浮き具10は、各浮き具片10aの係止部70を電極保持部材9の係止突起56から外せば、脱着できる。 The hook 57 of the electrode holding member 9 is used when the electrode member 2 cannot be put into the water tank or the like because the float 10 is in the way, such as when the opening for the water tank or the like is narrow. In this case, the float 10 is removed from the electrode holding member 9 of the electrode member 2, and the electrode member (2) consisting of only the electrode holding member 9 and the electrode portion 8 is obtained. The float 10 can be attached and detached by removing the locking portion 70 of each float piece 10 a from the locking projection 56 of the electrode holding member 9 .

そして浮き具10に代え、フック57を用いて、電極部材(2)を上方の吊り具等に係止させて吊り下げ、或いは水槽の縁等にフック57を係止させ、電極保持部材9の一部を残して電極部8を水中に没入させる。つまり、フック57の係止等により、電極部材(2)を、浮き具10を用いた場合と同様に、浮いた状態に保持する。これにより、電極部材(2)を水槽等に投入することが可能となり、水槽等の投入口が狭い場合であっても、水素水生成器の利用が可能となる。
なおこの場合、水槽等の水量を適宜な状態に調整してもよい。
Then, instead of the floating device 10, the electrode member (2) is suspended by hooking it to a hanging tool or the like by using the hook 57, or by hooking the hook 57 to the edge of the water tank or the like, and the electrode holding member 9 is attached. Leaving a part, the electrode part 8 is immersed in water. That is, the electrode member (2) is held in a floating state by locking the hooks 57 or the like, as in the case of using the float 10. FIG. As a result, the electrode member (2) can be put into a water tank or the like, and even if the inlet of the water tank or the like is narrow, the hydrogen water generator can be used.
In this case, the amount of water in the water tank or the like may be adjusted appropriately.

図8は、電源部材4における給電回路部12の電気回路図であり、図9は電極部8の模式図である。
電極部8の電極板6と直流電源部13との間には、可変抵抗74を介して、直流電源からの直流電流を高周波の交流に変換して電極板6(A)、6(B)、6(C)、6(D)の2つに交流電圧を与え、残りの2つは接地電極としている。
FIG. 8 is an electric circuit diagram of the power supply circuit portion 12 in the power supply member 4, and FIG. 9 is a schematic diagram of the electrode portion 8. As shown in FIG.
A variable resistor 74 is provided between the electrode plate 6 of the electrode unit 8 and the DC power supply unit 13 to convert the DC current from the DC power supply into a high-frequency AC current to generate the electrode plates 6(A) and 6(B). , 6(C) and 6(D) are supplied with an AC voltage, and the remaining two are ground electrodes.

高周波スイッチ75A,75Bには、データセレクタ78より高周波交流2本と直流1本が接続されている。そして、カウンタ分周器73によりデータセレクタ78の出力切替を行い、接地電極と交流電極とを交換し接地電極を交流電極に切り換えることにより、電極に付着したスケールを取り払っている。
このため、第一の電極14に付着するシリカ等のスケールのクリーニング(メンテナンス)は、接地電極と交流電極との切り換えによって行える。
Two high frequency alternating currents and one high frequency direct current are connected to the high frequency switches 75A and 75B from a data selector 78 . Then, the output of the data selector 78 is switched by the counter frequency divider 73, the ground electrode is exchanged with the AC electrode, and the ground electrode is switched to the AC electrode, thereby removing the scale adhering to the electrode.
Therefore, cleaning (maintenance) of scale such as silica adhering to the first electrode 14 can be performed by switching between the ground electrode and the AC electrode.

高周波スイッチ76A,76Bと高周波スイッチ77A,77Bは、抵抗79A,79Bをそれぞれ介して、データセレクタ78を経て高周波切換指令を与えるFF回路よりなる高周波切換回路80が接続されている。この高周波切換回路80には、制御信号に応動して発振周波数が変化する電圧制御発信器(VCO)からなる高周波発振回路81が接続されている。この高周波発振回路81には、ランダム電圧発生器を内蔵した制御回路82が接続されている。 The high frequency switches 76A, 76B and the high frequency switches 77A, 77B are connected to a high frequency switching circuit 80 comprising an FF circuit for giving a high frequency switching command via a data selector 78 via resistors 79A, 79B. The high frequency switching circuit 80 is connected to a high frequency oscillation circuit 81 comprising a voltage controlled oscillator (VCO) whose oscillation frequency changes in response to a control signal. A control circuit 82 containing a random voltage generator is connected to the high-frequency oscillator circuit 81 .

高周波発振回路81は可変周波数の発振回路であって、電圧制御発信器(VCO)に与えられる制御信号の電圧値によってその発振周波数が制御される。このとき、交流の発振周波数約5~100kHzを中心に変動幅±3~5kHzのFM変調をかける。ここでは、周波数の変動幅は、例えば、中心周波数(30KHz)の上下に3~5KHzとしている。 High-frequency oscillator circuit 81 is a variable-frequency oscillator circuit whose oscillation frequency is controlled by the voltage value of a control signal applied to a voltage controlled oscillator (VCO). At this time, FM modulation is applied with a fluctuation range of ±3 to 5 kHz centering on an AC oscillation frequency of about 5 to 100 kHz. Here, the fluctuation range of the frequency is, for example, 3 to 5 KHz above and below the center frequency (30 KHz).

制御回路82は、高周波発振回路81へその発振周波数を制御するための制御電圧を供給する。この制御回路82はランダム信号発生器を内蔵し、それが発生するランダム信号に応じて電圧値の変化する制御信号を出力する。シストレジスタ(SFR)83は16ステージ構成のものであり、その蓄積情報は端子Q0~Q15より並列に読み取ることが出来るように構成されている。このシフトレジスタ83のシフト動作は、シフトレジスタ83の端子CKにパルス発生器(PG)84より供給されるシフトパルスによって制御される。パルス発生器84が反転動作を行い、反転する毎に急激な周波数変動を行っている。 The control circuit 82 supplies a control voltage to the high frequency oscillation circuit 81 for controlling its oscillation frequency. This control circuit 82 incorporates a random signal generator and outputs a control signal whose voltage value changes according to the random signal generated by the generator. The sist register (SFR) 83 has a 16-stage structure, and its accumulated information can be read in parallel from terminals Q0 to Q15. The shift operation of this shift register 83 is controlled by a shift pulse supplied from a pulse generator (PG) 84 to terminal CK of shift register 83 . The pulse generator 84 performs an inversion operation, and each time the pulse generator 84 inverts, the frequency fluctuates sharply.

ゲートGTは、排他的論理和動作を行うゲートであり、一致検出回路として作用する。このゲートGTの入力端子の一方には前期シフトレジスタSFRの偶数ステージ、例えば、第6ステージの端子Q6より出力される信号が、また、他方には奇数ステージ、例えば、第9ステージの端子Q9より出力される信号が各々入力される。このゲートGTによる一致検出の結果は、シフトレジスタSFRの端子Dより最下位の第0ステージへ入力される。この情報を逐次上位へシフトして行くことによってシフトレジスタ83内に乱数情報が蓄えられる。 The gate GT is a gate that performs an exclusive OR operation and acts as a match detection circuit. One of the input terminals of this gate GT receives the signal output from the even-numbered stage of the shift register SFR, for example, the terminal Q6 of the sixth stage, and the other terminal receives the signal output from the terminal Q6 of the ninth stage, for example, the odd-numbered stage. Each output signal is input. The result of match detection by this gate GT is input from the terminal D of the shift register SFR to the lowest 0th stage. Random number information is stored in the shift register 83 by sequentially shifting this information upward.

シフトレジスタ83内に蓄えられた乱数情報は、適当に選択された約半数のステージから抵抗器によって取り出される。ここでは、第1、第3、第8、第10、第12~15の各ステージから信号を取り出している。抵抗器rは、これら各ステージの端子Q1、Q3、Q8、Q10、Q12~Q15を共通の接続点Aに接続している。この接続点Aは、高周波発振回路81を構成する電圧制御発振器(VCO)に接続されている。また一方、電圧制御発振器(VCO)はパルス発生器(PG)84に接続されている。 The random number information stored in shift register 83 is tapped by resistors from approximately half of the appropriately selected stages. Here, signals are extracted from the first, third, eighth, tenth, and 12th to 15th stages. A resistor r connects the terminals Q1, Q3, Q8, Q10, Q12-Q15 of each of these stages to a common node A. This connection point A is connected to a voltage controlled oscillator (VCO) that constitutes a high frequency oscillator circuit 81 . A voltage controlled oscillator (VCO) is also connected to a pulse generator (PG) 84 .

従って、これら各ステージに蓄積された乱数情報のパターンが変化すると、高レベルと低レベルとに接続される抵抗器rの合成値が夫々変化するため、接続点Aの電圧がこれに応じて変動してランダム信号が作成される。接続点Aの電圧は抵抗R1とコンデンサC1によりゆるやかな変動になるが、パルス発生器84からの信号により急激な上下変動が起こる。 Accordingly, when the pattern of random number information stored in each stage changes, the combined value of the resistors r connected to the high level and the low level changes, so that the voltage at the connection point A fluctuates accordingly. to create a random signal. The voltage at the connection point A gradually fluctuates due to the resistor R1 and the capacitor C1, but the signal from the pulse generator 84 causes a sudden up-and-down fluctuation.

パルス発生器84は、例えば5Hzを中心周波数とする連続パルスを送出するパルス発生器であって、電圧制御発振器(VCO)に入力される信号の電圧値に従って繰返しパルスの周期が変化するように構成されている。この周波数の変動範囲は、中心周波数の上下に夫々数kHz程度のものとなっている。 The pulse generator 84 is a pulse generator that emits continuous pulses with a center frequency of, for example, 5 Hz, and is configured so that the period of repetitive pulses changes according to the voltage value of the signal that is input to the voltage controlled oscillator (VCO). It is The fluctuation range of this frequency is about several kHz above and below the center frequency.

このパルス発生器84の端子には、前記接続点Aの電圧が抵抗器R5を介して与えられる。従って、このパルス発生器84はシフトレジスタSFRによるランダム信号に応じてそのパルス繰返し周期が変動することになる。シフトレジスタSFRは、パルス発生器84の出力をシフトパルスとして用いている。従って、電圧制御発振器(VCO)に出力される制御信号はその電圧値、変動周期共に全くランダムに変化することになるとともに、抵抗R5とコンデンサC4により、接続点Aの出力が急激な周波数変動を作り出している。 A terminal of the pulse generator 84 is supplied with the voltage at the connection point A through a resistor R5. Therefore, the pulse generator 84 varies its pulse repetition period according to the random signal from the shift register SFR. The shift register SFR uses the output of the pulse generator 84 as a shift pulse. Therefore, the control signal output to the voltage-controlled oscillator (VCO) changes completely at random in both its voltage value and fluctuation period. are producing.

制御回路82に於いては、制御信号をシフトレジスタ83の約半数のステージに蓄積された乱数情報のパターンを利用して作成している。更に前述のようにシフトレジスタ83の入力情報として、偶数、奇数の各々から1ステージずつ選ばれた情報の一致検出結果を用いているため、ゆるやかな変動電圧値が急上昇して急降下するような極めて変動の激しい部分が頻繁に現れ、この時に衝撃波が発生する。 In the control circuit 82, the control signal is generated using patterns of random number information stored in about half of the stages of the shift register 83. FIG. Furthermore, as described above, as the input information of the shift register 83, the match detection result of the information selected one stage each from the even number and the odd number is used. Areas of intense fluctuation appear frequently, and shock waves are generated at this time.

ここで、電源部材4の給電回路部12と、電極部8との電気的接続について説明する。
図9(a)は、電極部8における第一の電極14の各電極板6、第二の電極16、及び第三の電極18の配置形態を示している。
また、同図(b)に示すように、給電回路部12と電極部8との接続形態として、電極部8の第一の電極14の4枚の電極板6の内、対角方向に向い合う一対の電極板6を交流が流れるメイン電極(M)とし、他の一対の電極板6を接地電極(G)としている。
Here, the electrical connection between the power supply circuit portion 12 of the power supply member 4 and the electrode portion 8 will be described.
FIG. 9A shows the arrangement of the electrode plates 6 of the first electrode 14, the second electrode 16, and the third electrode 18 in the electrode section 8. FIG.
Further, as shown in FIG. 4(b), as a connection form between the power supply circuit portion 12 and the electrode portion 8, one of the four electrode plates 6 of the first electrode 14 of the electrode portion 8 is oriented diagonally. A matching pair of electrode plates 6 is used as a main electrode (M) through which alternating current flows, and the other pair of electrode plates 6 is used as a ground electrode (G).

たとえば、第一の電極14の4つの電極板6は、対角方向に向かう2つの電極(電極板6(A),(C))がメイン電極(M)となり、他の2つの電極(電極板6(B),(D))が接地電極(G)となるようにしている。これらの電極は、第一の電極14に係る電極板6の電極面15のクリーニングのために、例えば3分~15分毎にメイン電極(M)と接地電極(G)とが切り換えられるようになっている(左右矢印)。 For example, of the four electrode plates 6 of the first electrode 14, two electrodes facing diagonally (electrode plates 6 (A) and (C)) serve as main electrodes (M), and the other two electrodes (electrodes The plates 6 (B), (D)) serve as the ground electrode (G). These electrodes are switched between the main electrode (M) and the ground electrode (G) every 3 to 15 minutes, for example, in order to clean the electrode surface 15 of the electrode plate 6 associated with the first electrode 14. (left and right arrows).

また、第二の電極16は接地電極の状態であるため、前記第一の電極14に係る接地電極(G)と同様な電気的機能を発揮する。この場合、第一の電極14がメイン電極(M)となった場合、これから第二の電極16に対しても電流の流れが発生する。
第二の電極16は、第一の電極14に係る電気分解の効果を高めるために設けた接地電極(G)であり、これにより電気分解の能力が高められる(数%程度)ことが確認されている。
Also, since the second electrode 16 is in the state of a ground electrode, it exhibits the same electrical function as the ground electrode (G) related to the first electrode 14 . In this case, when the first electrode 14 becomes the main electrode (M), a current also flows to the second electrode 16 from this.
The second electrode 16 is a ground electrode (G) provided to enhance the electrolysis effect of the first electrode 14, and it has been confirmed that this enhances the electrolysis ability (about several percent). ing.

次に、水素水生成器の稼働について説明する。
図2に示す電源部材4は、給電回路部12及び直流電源部13等の他、電源スイッチ85、タイマー部86、中継端子台87,88、表示部89、運転表示ランプ90、電流計92,電流調整器94,漏電遮断器96、ファン98等を有する。
この電源部材4は、交流(AC100V)を電源としている。
Next, operation of the hydrogen water generator will be described.
The power source member 4 shown in FIG. 2 includes a power supply circuit portion 12, a DC power source portion 13, etc., a power switch 85, a timer portion 86, relay terminal blocks 87 and 88, a display portion 89, an operation display lamp 90, an ammeter 92, It has a current regulator 94, an earth leakage circuit breaker 96, a fan 98, and the like.
The power supply member 4 is powered by an alternating current (AC100V).

そして、電源部材4の給電回路部12からは、電気の中継端子台87及びリード線5を介して電極部材2に電力が供給される。中継端子台87は、第一の電極14の各電極板6、第二の電極16及び第三の電極18と電気的に接続されている。
水素水生成器において、電極部材2は水槽内等に投入し、一部を水面に浮かせ電極部8は水中で使用し、また電源部材4は地上(空中)に配置して使用する。
Electric power is supplied to the electrode member 2 from the power supply circuit portion 12 of the power source member 4 via the electrical relay terminal block 87 and the lead wire 5 . The relay terminal block 87 is electrically connected to each electrode plate 6 of the first electrode 14 , the second electrode 16 and the third electrode 18 .
In the hydrogen water generator, the electrode member 2 is placed in a water tank or the like, and the electrode part 8 is partially floated on the surface of the water and used underwater, and the power supply member 4 is placed on the ground (in the air) and used.

このため、稼働に際しては先ず電極部材2を水中に投入する。このときの電極部材2は、電極部8が水中に没入された状態となり、また浮き具10により、電極保持部材9及び浮き具10の一部(又は半分)は水面に浮遊した状態となる。このように、電極部材2は一部が水面に浮いた状態となる。この状態で、水素水生成器に係る電源部材4及び電極部材2の稼働が開始継続される。 For this reason, the electrode member 2 is first put into water when operating. At this time, the electrode part 8 of the electrode member 2 is immersed in the water, and the floater 10 causes the electrode holding member 9 and part (or half) of the floater 10 to float on the water surface. In this manner, the electrode member 2 is partially floating on the water surface. In this state, the operation of the power supply member 4 and the electrode member 2 relating to the hydrogen water generator is started and continued.

さて、地上に配置された電源部材4の電源スイッチ85がオンされると、電気分解に係る電力が給電回路部12から電極部材2の電極板6等に供給される。
給電回路部12では、制御回路82からランダム信号に対応した制御信号が高周波発振回路81に送出され、発振周波数が制御されてランダムに変化する。そして高周波発信回路から高周波切換回路80にランダムに変化する高周波信号が与えられる。
Now, when the power switch 85 of the power source member 4 placed on the ground is turned on, electric power for electrolysis is supplied from the power supply circuit section 12 to the electrode plate 6 of the electrode member 2 and the like.
In the power supply circuit section 12, a control signal corresponding to the random signal is sent from the control circuit 82 to the high-frequency oscillation circuit 81, and the oscillation frequency is controlled and changed randomly. A randomly varying high-frequency signal is applied to the high-frequency switching circuit 80 from the high-frequency transmission circuit.

高周波切換回路80にランダムな高周波信号が与えられると、ここから高周波の切換指令が出され、第1、第2と1つの接地信号が高周波スイッチ75A、75Bに与えられ一対の交流信号が高周波スイッチでON、OFFされる。これにより、ランダムに変化する高周波交流が形成され、水中に配置されている4枚の電極板6の内の一対にこれを印加し、他の一対の電極板6は接地する。 When a random high-frequency signal is given to the high-frequency switching circuit 80, a high-frequency switching command is issued from here. is turned ON and OFF with . As a result, a randomly varying high-frequency alternating current is formed, which is applied to one pair of the four electrode plates 6 placed in the water, and the other pair of electrode plates 6 are grounded.

ここで、高周波発振回路81から送出される発振周波数は、その電圧値及びその電圧値の持続時間が全くランダムに変化するとともに、電圧値が急上昇してから急降下する極めて激しく変動する部分を頻繁に含んでいる。
これにより、給電回路部12からの給電による電解処理により発生した水素、酸素のバブル(泡)は、高周波と衝撃波により小さいナノサイズの微小バブル(ナノバブル)までになり水中に溶存する。このナノバブルの水素水の発生は、検査機関の検査により確認されている。
Here, the oscillation frequency sent out from the high-frequency oscillation circuit 81 has a voltage value and a duration of the voltage value that vary completely randomly, and frequently has an extremely violently fluctuating portion in which the voltage value rises sharply and then drops sharply. contains.
As a result, the hydrogen and oxygen bubbles generated by the electrolysis treatment by the power supply from the power supply circuit section 12 become smaller nano-sized bubbles (nanobubbles) due to the high frequency and the shock wave, and are dissolved in the water. The generation of this nanobubble hydrogen water has been confirmed by an inspection by an inspection agency.

電源部材4における給電回路部12では、電源スイッチ85のON及びOFFの制御、ランプ等の点灯、消灯、及びタイマーの管理等が行われる。ここでは、タイマー部86に設けた24時間タイマーにより、電解処理の時間を、24時間内において自在にОN、ОFF指定することができる。また漏電遮断器96は、通電時に電極部材2等が水中から引き上げられた場合、あるいは電極同士が接触(ショート)した場合等には、自動的に通電が停止するよう制御している。 In the power supply circuit unit 12 in the power source member 4, ON/OFF control of the power switch 85, lighting and extinguishing of lamps and the like, management of timers, and the like are performed. Here, a 24-hour timer provided in the timer section 86 can freely designate ON/OFF of the electrolysis treatment time within 24 hours. Further, the earth leakage circuit breaker 96 controls to automatically stop the energization when the electrode member 2 or the like is lifted out of the water during the energization, or when the electrodes contact each other (short circuit).

水素水生成器を用いて水を電気分解した場合、特に、第一の電極14に係る接地電極等にスケール(シリカ等の不純物)が付着する。スケールの付着により、各電極に係る電流値が低下し、処理効率が悪化する。
このため、第一の電極14に係る電極板6は、接地電極と交流電極との切り換え(例えば12分毎)により、電極板6の電極面15におけるスケールのクリーニングを行うことができる。
When water is electrolyzed using a hydrogen water generator, scale (impurities such as silica) adheres particularly to the ground electrode and the like related to the first electrode 14 . Due to the adhesion of scale, the current value related to each electrode is lowered, and the treatment efficiency is deteriorated.
Therefore, the electrode plate 6 associated with the first electrode 14 can be cleaned of scales on the electrode surface 15 of the electrode plate 6 by switching between the ground electrode and the AC electrode (for example, every 12 minutes).

一方、第二の電極16についても、パイプ電極材32にスケールが付着するためスケールの除去等、電極の保守(メンテナンス)を行う。この場合、第二の電極16に係る中心電極材30にはスケールが付着しないため、実質的にはメンテナンスの必要はない。
第三の電極18についても、スケールが多少付着する場合があり、この場合も同様のメンテナンスを行う。メンテナンスは、装置の使用時間にもよるが、スケール(不純物)の付着の程度により定期的或いは適宜行う。
On the other hand, for the second electrode 16 as well, since scale adheres to the pipe electrode material 32, electrode maintenance (maintenance) such as removal of scale is performed. In this case, scale does not adhere to the center electrode material 30 associated with the second electrode 16, so maintenance is not substantially required.
As for the third electrode 18, some scale may adhere to it, and in this case also, similar maintenance is performed. Maintenance is performed regularly or as needed depending on the degree of scale (impurity) adherence, although it depends on how long the device has been used.

第二の電極16及び第三の電極18のメンテナンスでは、第二の電極16(及び第三の電極18)の下部に螺着されたナット部材48を取り外す。この取り外しにより、第三の電極18及び第二の電極16に係るパイプ電極材32は外すことができる。パイプ電極材32は、中心電極材30から引き抜けば簡単に外れる。 For maintenance of the second electrode 16 and the third electrode 18, the nut member 48 screwed to the bottom of the second electrode 16 (and the third electrode 18) is removed. By this removal, the pipe electrode material 32 associated with the third electrode 18 and the second electrode 16 can be removed. The pipe electrode material 32 can be easily removed by pulling it out from the center electrode material 30 .

そして、ブラシ、洗剤材等を用いて、パイプ電極材32に付着したスケールを除去し掃除する。併せて、第三の電極18の筒部、底面部等についても、スケール等の付着があればこれを除去する。
電極部材2の電極部8は露出した形態であるため、第一の電極14、第二の電極16及び第三の電極18の何れについてもメンテナンスは容易であり耐久性、作業性にも寄与する。
Then, the pipe electrode material 32 is cleaned by removing the scale adhering to it using a brush, a detergent material, or the like. At the same time, the cylindrical portion, bottom portion, etc. of the third electrode 18 are also removed, if any scale or the like adheres thereto.
Since the electrode part 8 of the electrode member 2 is exposed, maintenance of the first electrode 14, the second electrode 16, and the third electrode 18 is easy, contributing to durability and workability. .

この水素水生成器の電源部材4で用いた給電回路部12は、これから供給される高周波交流による電気分解により、微細なバブルによる高い濃度のナノバブル水素水が生成されることが確認されている。
また、ここでは電源部材4から電力(高周波交流等)を供給し、水槽内に電極部材2を投入して水素水生成器を稼働させ、試験を行ったのでその結果を示す。
It has been confirmed that the power supply circuit unit 12 used in the power supply member 4 of this hydrogen water generator generates high-concentration nano-bubble hydrogen water by fine bubbles through electrolysis by high-frequency alternating current supplied from it.
Also, here, electric power (high-frequency alternating current, etc.) was supplied from the power supply member 4, the electrode member 2 was put into the water tank, and the hydrogen water generator was operated, and the test was conducted, and the results are shown.

図10は、試験結果を示す表であり、原水からの導電率(μs/cm)、ORP(mV)、水素濃度(ppb)、遊離塩素(mg/L)、総塩素(mg/L)等の変化を測定した。なお、水槽内の水量は500リットル、水温は26.4℃である。また、電極ドライブ用電圧は24Vとし、また12分毎に第一の電極14に係るメイン電極(M)と接地電極(G)とを切り換えた。
そして、原水の状態から、水素水生成器の稼働時間の経過につき、1時間後、2時間後、~8時間後について測定した。
FIG. 10 is a table showing the test results, conductivity from raw water (μs / cm), ORP (mV), hydrogen concentration (ppb), free chlorine (mg / L), total chlorine (mg / L), etc. was measured. The amount of water in the water tank is 500 liters, and the water temperature is 26.4°C. Further, the electrode driving voltage was set to 24 V, and the main electrode (M) and the ground electrode (G) relating to the first electrode 14 were switched every 12 minutes.
Measurements were then taken after 1 hour, 2 hours, and up to 8 hours after the operating time of the hydrogen water generator from the state of the raw water.

前記表によれば、1時間後にはORP値がマイナスとなり、また8時間後には-343mvと目標とした数値(-300mv)はクリアした。ORP値は、酸化力・還元力を示すものであり、これがマイナスに大きいほど還元力が強いことになる。水素水として、ORP値が-300mvでは、高濃度の水素水が発生していることが示されている。また、多少ではあるが塩素の量の減少がみられた。
なお、他に第三の電極18のメッシュの目の粗さが#5及び#2.5のものについて、同様の試験を行った。その結果、ORP値の下がりは目の粗い#2.5の方が、ОRP値が早く下がっていることが確認され、これは水の流れが改善されたためと思われる。
According to the above table, the ORP value became negative after 1 hour, and -343 mv after 8 hours, clearing the target value (-300 mv). The ORP value indicates the oxidizing power/reducing power, and the larger the negative value, the stronger the reducing power. As hydrogen water, at an ORP value of −300 mv, it is shown that high-concentration hydrogen water is generated. In addition, a decrease in the amount of chlorine was observed, albeit to some extent.
In addition, similar tests were carried out on other third electrodes 18 having mesh coarseness of #5 and #2.5. As a result, it was confirmed that #2.5, which has a coarser mesh, decreased the ORP value more quickly, and this is considered to be due to the improvement of water flow.

通常、水中に溶け込んだ水素(バブル等)は時間の経過とともに多くが空気中に放出され、通常数日しか溶存しない。しかし、ナノバブル化された水素は長時間水中に溶存されることが知られている。前記水素水生成器による電気分解で生成された水素水は、その多くがナノバブル化されたナノバブル水素水として水中に溶存しており、このため、長期保存可能な水素水としてその効果が持続することから、安心して保存及び管理が行え、実用的にも優れた水素水としての効果が期待できる。 Most of the hydrogen dissolved in water (bubbles, etc.) is usually released into the air over time, and usually remains dissolved for only a few days. However, nanobubbled hydrogen is known to be dissolved in water for a long time. Most of the hydrogen water generated by electrolysis by the hydrogen water generator is dissolved in water as nanobubble hydrogen water, and therefore, the effect of hydrogen water that can be stored for a long time is maintained. Therefore, it can be stored and managed with confidence, and it can be expected to have an excellent practical effect as hydrogen water.

また、前記水素水生成器によって生成した水素水は、人の健康維持管理、美容等幅広く効果が確認されており、他には家畜の病気、臭気の軽減、植物の生育、成長促進に寄与すること等についても期待されている。
なお、水の電気分解の際には、陽極から酸素ガスが発生して酸素水が一部生成されるが、酸素水についても一定の効果が確認されており、水素水と同様に飲料等も可能である。
In addition, the hydrogen water generated by the hydrogen water generator has been confirmed to have a wide range of effects such as human health maintenance and beauty care, and also contributes to livestock diseases, odor reduction, and plant growth and growth promotion. It is also expected that
In the electrolysis of water, oxygen gas is generated from the anode and a part of oxygen water is produced. It is possible.

以上説明したように、この実施の形態に係る水素水生成器によれば、電極部材と電源部材とを分けたことから取り扱い、維持管理が容易となり、また水素水生成に係る容器として、水槽等、身近にある水をためておく容器が利用できて維持、管理が容易となり、また容器の容量また水の量も調節できて汎用性にも優れ、併せて電極の管理も容易である。また、水素水の長期保存が可能となり実用的にも大きく寄与する。 As described above, according to the hydrogen water generator according to this embodiment, since the electrode member and the power source member are separated, handling and maintenance are facilitated. , maintenance and management can be facilitated by using a nearby container for storing water, the capacity of the container and the amount of water can be adjusted, and versatility is excellent, and electrode management is also easy. In addition, hydrogen water can be stored for a long period of time, which greatly contributes to practical use.

併せて、この水素水生成器によれば、電極部材に係る各電極のメンテナンスが容易で、特にメンテナンスの必要なパイプ電極材等の着脱が容易に行えて、電極におけるスケール等の不純物の汚れの除去等の掃除も簡単に行えて保守性が改善され、これにより電極の電気伝導特性も良好な状態が維持され電気分解にも寄与し、水素水の大量生成にもつながる。 In addition, according to this hydrogen water generator, the maintenance of each electrode related to the electrode member is easy, especially the pipe electrode material that requires maintenance can be easily attached and detached, and impurities such as scale on the electrode can be removed. Cleaning such as removal can be easily performed, improving maintainability, thereby maintaining good electrical conduction characteristics of the electrodes, contributing to electrolysis, and leading to the production of large amounts of hydrogen water.

2 電極部材
4 電源部材
5 リード線
6 電極板
8 電極部
9 電極保持部材
10 浮き具
10a,10b 浮き具片
12 給電回路部
14 第一の電極
16 第二の電極
18 第三の電極
30 中心電極材
32 パイプ電極材
50 保持本体部
52 保持カバー部
66 浮き材
68 浮きケース
2 electrode member 4 power supply member 5 lead wire 6 electrode plate 8 electrode section 9 electrode holding member 10 float 10a, 10b float piece 12 feed circuit section 14 first electrode 16 second electrode 18 third electrode 30 center electrode Material 32 Pipe electrode material 50 Holding body 52 Holding cover 66 Floating material 68 Floating case

Claims (7)

水中に投入される電極部材と、空中に配置されリード線により前記電極部材に電力を供給する電源部材と、を有し、
前記電極部材は、水の電気分解を行う電極部と、この電極部の上部を保持する電極保持部材と、前記電極部を水中に保持するとともに、前記電極保持部材を水面の上部に浮かせる浮き具と、を具備し、
前記電極部として、断面L字状の4枚の電極板からなる第一の電極、及び棒状の第二の電極を設け、前記電極部の中央部位の周囲に前記電極板をそれぞれ配置し、これら電極板の角部が向き合う前記中央部位に前記第二の電極を配置し、
前記水中に投入した前記電極部材の一部を、前記浮き具の浮力によって水面上に浮かせ、この状態で前記電源部材から水中に没入する前記電極部に給電し、電解処理により前記水中に水素水を生成することを特徴とする水素水生成器。
an electrode member that is put into water; and a power supply member that is arranged in the air and supplies power to the electrode member through a lead wire,
The electrode member includes an electrode portion for electrolyzing water, an electrode holding member for holding an upper portion of the electrode portion, and a float for holding the electrode portion in water and floating the electrode holding member above the water surface. and
As the electrode portion, a first electrode consisting of four electrode plates having an L-shaped cross section and a rod-shaped second electrode are provided, and the electrode plates are arranged around the central portion of the electrode portion. disposing the second electrode at the central portion where the corners of the electrode plate face each other;
A portion of the electrode member put into the water is floated on the surface of the water by the buoyancy of the floater, and in this state, power is supplied from the power source member to the electrode portion immersed in the water, and hydrogen water is immersed in the water by electrolysis. A hydrogen water generator characterized by generating
前記第二の電極として、中心電極材とこれを被うパイプ電極材とから構成し、当該パイプ電極材を前記中心電極材に対して着脱自在に形成したことを特徴とする請求項に記載の水素水生成器。 2. The second electrode according to claim 1 , wherein the second electrode comprises a center electrode material and a pipe electrode material covering the center electrode material, and the pipe electrode material is detachably attached to the center electrode material. hydrogen water generator. 前記電極部材の浮き具として、二又は三以上の複数部分からなる浮き具片を設け、これら浮き具片を前記電極保持部材の周囲に配置したことを特徴とする請求項1又は2に記載の水素水生成器。 3. The floater piece according to claim 1 or 2 , wherein a floater piece consisting of a plurality of two or more parts is provided as a floater for said electrode member, and these floater pieces are arranged around said electrode holding member. Hydrogen water generator. 前記浮き具の浮き具片は、それぞれ浮き材を浮きケースに収納した形状であり、これら浮き具片を前記電極保持部材の周囲に配置したことを特徴とする請求項に記載の水素水生成器。 4. The hydrogen water generator according to claim 3 , wherein the float pieces of the float are in a shape in which the float material is housed in a float case, and these float pieces are arranged around the electrode holding member. vessel. 前記電極保持部材は、前記電極部の上部を保持する保持本体部、及び当該保持本体部の上部を閉塞する保持カバー部を有することを特徴とする請求項に記載の水素水生成器。 4. The hydrogen water generator according to claim 3 , wherein the electrode holding member has a holding body portion that holds an upper portion of the electrode portion, and a holding cover portion that closes the upper portion of the holding body portion. 前記第一の電極の4枚の電極板をそれぞれ網体で形成し、この第一の電極の周囲に網体からなる筒状の第三の電極を配置し、
前記第一の電極の4枚の電極板を、それぞれ一対の交流電極と2つの接地電極として構成し、かつ前記第二の電極及び前記第三の電極をそれぞれ接地電極としたことを特徴とする請求項に記載の水素水生成器。
each of the four electrode plates of the first electrode is formed of a mesh, and a cylindrical third electrode made of a mesh is arranged around the first electrode;
The four electrode plates of the first electrode are configured as a pair of AC electrodes and two ground electrodes, respectively, and the second electrode and the third electrode are ground electrodes, respectively. The hydrogen water generator according to claim 1 .
前記第一の電極の電極板に係る交流電極に高周波交流を通電させるに際し、前記高周波交流として周波数5~100kHzを中心に変動幅±3~5kHzのFM変調を加えたことを特徴とする請求項に記載の水素水生成器。 FM modulation with a fluctuation range of ±3 to 5 kHz centered on a frequency of 5 to 100 kHz is added as the high frequency alternating current when the alternating current electrode associated with the electrode plate of the first electrode is energized with the high frequency alternating current. 6. The hydrogen water generator according to 6.
JP2022092678A 2022-06-08 2022-06-08 hydrogen water generator Active JP7168274B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022092678A JP7168274B1 (en) 2022-06-08 2022-06-08 hydrogen water generator
CN202380013128.9A CN117769527A (en) 2022-06-08 2023-05-11 Hydrogen water generator
PCT/JP2023/017710 WO2023238594A1 (en) 2022-06-08 2023-05-11 Hydrogen water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022092678A JP7168274B1 (en) 2022-06-08 2022-06-08 hydrogen water generator

Publications (2)

Publication Number Publication Date
JP7168274B1 true JP7168274B1 (en) 2022-11-09
JP2023179836A JP2023179836A (en) 2023-12-20

Family

ID=83977442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022092678A Active JP7168274B1 (en) 2022-06-08 2022-06-08 hydrogen water generator

Country Status (3)

Country Link
JP (1) JP7168274B1 (en)
CN (1) CN117769527A (en)
WO (1) WO2023238594A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021037468A (en) 2019-09-03 2021-03-11 株式会社コスモスエンタープライズ Hydrogen water generator
JP2021166954A (en) 2020-04-10 2021-10-21 マルホン工業株式会社 Electrolytic water generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420870B1 (en) * 2017-06-08 2018-11-07 株式会社日本トリム Electrolyzed water generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021037468A (en) 2019-09-03 2021-03-11 株式会社コスモスエンタープライズ Hydrogen water generator
JP2021166954A (en) 2020-04-10 2021-10-21 マルホン工業株式会社 Electrolytic water generator

Also Published As

Publication number Publication date
WO2023238594A1 (en) 2023-12-14
CN117769527A (en) 2024-03-26
JP2023179836A (en) 2023-12-20

Similar Documents

Publication Publication Date Title
AU692871B2 (en) Ionized water, and method and apparatus for manufacturing the same
US5034110A (en) Pool chlorinators
USRE45415E1 (en) Flow-through oxygenator
JP2008544837A (en) Water treatment equipment
EP1476400A4 (en) Microbubbles of oxygen
KR100597503B1 (en) Silver ion water generating apparatus
KR101270555B1 (en) Sterilizer system with ozone
JP2012040489A (en) Method and device for generating electrolytic ion water
KR101964791B1 (en) Apparatus for generating hypochlorous acid
KR20210058725A (en) Apparatus having bio film removing or suppressing function
EP2394965B1 (en) Electrode block and fluid reformer using the electrode block
JP7168274B1 (en) hydrogen water generator
CN205933340U (en) Circulating water low frequency electric field sterilizing equipment
CN210341086U (en) Sodium hypochlorite generator electrolytic cell with store up dirty function
CN1287010C (en) Ozone producing electrolyzer
JP6707241B1 (en) Hydrogen water generator
KR101647282B1 (en) marine organism adhesion prevening device of marine intake pipe
JP6341410B2 (en) Gas dissolved water generator
JP2006205103A (en) Apparatus for improving quality of water in closed water zone
JP6906255B1 (en) Hydrogen water generator
JP4761686B2 (en) Water treatment equipment
CN210262025U (en) Electrolytic ozone water module device
CN209300923U (en) Domestic cleaning machine
IL34091A (en) An apparatus for the electrolysis of sea water or other saline solutions,especially for their sterilization
KR100634447B1 (en) Device for removing using treatment by bipolar packed bed electrode cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220608

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221020

R150 Certificate of patent or registration of utility model

Ref document number: 7168274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150