JP7168259B2 - living body detector - Google Patents

living body detector Download PDF

Info

Publication number
JP7168259B2
JP7168259B2 JP2021160553A JP2021160553A JP7168259B2 JP 7168259 B2 JP7168259 B2 JP 7168259B2 JP 2021160553 A JP2021160553 A JP 2021160553A JP 2021160553 A JP2021160553 A JP 2021160553A JP 7168259 B2 JP7168259 B2 JP 7168259B2
Authority
JP
Japan
Prior art keywords
evaluation value
living body
csrr
electromagnetic wave
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021160553A
Other languages
Japanese (ja)
Other versions
JP2022002730A (en
Inventor
忠彦 前田
主匡 飯島
佑磨 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Original Assignee
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust filed Critical Ritsumeikan Trust
Priority to JP2021160553A priority Critical patent/JP7168259B2/en
Publication of JP2022002730A publication Critical patent/JP2022002730A/en
Application granted granted Critical
Publication of JP7168259B2 publication Critical patent/JP7168259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

特許法第30条第2項適用 1.刊行物(1)にて発表 ・刊行物名 2017年総合大会講演論文集(DVD論文集) ・発行者 一般社団法人 電子情報通信学会 ・発行日 2017年3月7日 Application of Article 30, Paragraph 2 of the Patent Law 1. Announced in publication (1) ・Publication name: Proceedings of the General Conference 2017 (DVD Proceedings) ・Publisher: The Institute of Electronics, Information and Communication Engineers ・Publication date: March 7, 2017

特許法第30条第2項適用 2.集会(1)にて発表 ・集会名 2017年電子情報通信学会総合大会 ・場所 名城大学 天白キャンパス(愛知県名古屋市) ・開催日 2017年3月23日 Application of Article 30, Paragraph 2 of the Patent Law 2. Presentation at meeting (1) ・Meeting name: 2017 IEICE General Conference ・Venue: Meijo University Tenpaku Campus (Nagoya City, Aichi Prefecture) ・Date: March 23, 2017

特許法第30条第2項適用 3.刊行物(2)にて発表 ・刊行物名 電子情報通信学会技術研究報告(信学技報), vol.117,No.2,AP2017-11,pp.55-58 ・発行者 一般社団法人 電子情報通信学会 ・発行日 2017年4月13日 Application of Article 30, Paragraph 2 of the Patent Law 3. Announced in publication (2) ・Publication name: The Institute of Electronics, Information and Communication Engineers Technical Research Report (IEICE Technical Report), vol. 117, No. 2, AP2017-11, pp. 55-58 ・Published by The Institute of Electronics, Information and Communication Engineers ・Published on April 13, 2017

特許法第30条第2項適用 4.集会(2)にて発表 ・集会名 電子情報通信学会 アンテナ・伝播研究会(A・P) ・場所 大阪大学 豊中キャンパス(大阪府豊中市) ・開催日 2017年4月20日Application of Article 30, Paragraph 2 of the Patent Law 4. Presentation at meeting (2) ・Meeting name: The Institute of Electronics, Information and Communication Engineers, Antenna and Propagation Study Group (AP) ・Venue: Toyonaka Campus, Osaka University (Toyonaka City, Osaka Prefecture) ・Date: April 20, 2017

本発明は、検知対象物が生体であるか否かを判定する生体検知装置に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a living body detection device that determines whether an object to be detected is a living body.

指紋認証や静脈認証などの生体認証技術は、本人しか持ち得ない情報を利用するため、従来のICカードやパスワードによる認証と比較し、利便性やセキュリティが高い。しかしながら、他者の生体情報を模擬した物理的な偽装物を用いた「なりすまし」被害が懸念されるため、生体認証技術に加えて、生体と偽装物を判別するための生体検知技術を併用することが重要である。 Biometric authentication techniques such as fingerprint authentication and vein authentication use information that only the person himself/herself can have, so they are more convenient and secure than conventional authentication using IC cards or passwords. However, since there is concern about "spoofing" damage using physical camouflage that simulates the biometric information of another person, in addition to biometric authentication technology, biometric detection technology to distinguish between biometrics and camouflage will be used. This is very important.

そこで本発明の発明者の1人は、CSRR(Complementary Split-Ring Resonator:補対型(相補型)スプリットリング共振器)構造をマイクロストリップ線路の地板上に2組直列に配置したBPF(Band-pass Filter:帯域通過フィルタ)(CSRR-BPF)を生体検知センサとして用い、そのCSRR-BPFに被検体の検知対象部位を近接または当接させた際の電磁波応答特性を測定し、その測定値と生体の基準値から算出される平均差と類似度という2つの評価指標を用いて、検知対象部位が生体か偽装物かを判別する生体検知装置を既に報告している(特許文献1)。 Accordingly, one of the inventors of the present invention proposed a BPF (band-pass filter) in which two sets of CSRR (Complementary Split-Ring Resonator) structures are arranged in series on the ground plane of a microstrip line. Pass Filter: band-pass filter) (CSRR-BPF) is used as a living body detection sensor, and the electromagnetic wave response characteristics are measured when the detection target part of the subject is brought close to or in contact with the CSRR-BPF, and the measured value and We have already reported a living body detection device that determines whether a detection target part is a living body or a camouflage by using two evaluation indices, average difference and similarity calculated from living body reference values (Patent Document 1).

特開2015-211798JP 2015-211798

上述の生体検知装置は、一定の精度で生体か偽装物かを判定し得るものであった。しかし、人体指表面部の皮膚の電気定数を模擬した皮膚ファントムのような人体に近い特性を持つ薄い偽装物については、誤検知を完全に無くすことは出来ず、更なる誤検知の低減と検知精度の向上が必要とされていた。 The living body detecting device described above was able to determine whether the living body was a living body or a camouflaged object with a certain degree of accuracy. However, it is not possible to completely eliminate false detections for thin camouflage objects that have characteristics close to the human body, such as skin phantoms that simulate the electrical constants of the skin on the surface of a human finger. There was a need for improved accuracy.

誤検知の要因としては、上述の生体検知装置において生体検知センサとして用いていたCSRR-BPFは2組のCSRR構造が直列に配置された構造であったため、検知対象部位である指または偽装物を添付した指でCSRR-BPFの載置領域であるCSRR部を覆う際、密着性の不完全さによるばらつきが出てしまうことがその一因であると考えられた。従って、生体検知センサの検知対象部位の載置領域を削減できれば、検知対象部位と生体検知センサとの密着性を安定的に確保することができ、誤検知の低減につながることが予想されたため、生体検知センサをより小型化することが求められていた。 As a factor of erroneous detection, the CSRR-BPF used as a living body detection sensor in the living body detection device described above has a structure in which two sets of CSRR structures are arranged in series. One of the reasons for this is thought to be that when the attached finger covers the CSRR portion, which is the area where the CSRR-BPF is placed, variations occur due to imperfect adhesion. Therefore, if the mounting area of the detection target part of the living body detection sensor can be reduced, it is possible to stably ensure the close contact between the detection target part and the living body detection sensor, leading to a reduction in false detection. There has been a demand for a more compact living body detection sensor.

また一方で、上述の生体検知装置において生体と偽装物の判別に用いていた平均差と類似度という2つの評価指標についても見直す必要があった。同一検体の同一の検知対象部位であっても上述のようにCSRR部を覆う際のばらつき等により電磁波応答特性の測定値は一定の分散を持つが、類似度はこの分散を許容しない評価指標であることが上述の誤検知の一因であると考えられた。従って、類似度に代えて、偽装物の添付がない場合の電磁波応答特性の分散を許容し、一方で偽装物を添付した場合の電磁波応答特性の変化を強調抽出することができるような新たな評価指標を導入することが必要であった。また、平均差についてもより判別精度が向上するように改善することが求められていた。 On the other hand, it was also necessary to reconsider the two evaluation indices, average difference and similarity, used to discriminate between a living body and a camouflaged object in the living body detecting device described above. Even with the same detection target part of the same sample, the measured values of the electromagnetic wave response characteristics have a certain amount of variance due to the variations in the CSRR section as described above, but the degree of similarity is an evaluation index that does not allow for this variance. It was thought that there was a factor in the above-mentioned false detection. Therefore, instead of the degree of similarity, a new method that allows the dispersion of the electromagnetic wave response characteristics when there is no camouflage attached and emphasizes and extracts the change in the electromagnetic wave response characteristics when the camouflage is attached It was necessary to introduce an evaluation index. In addition, it has been required to improve the average difference so as to improve the discrimination accuracy.

本発明は上記事情を鑑みてなされたものであって、測定時のばらつきを低減できるように生体検知センサをより小型化すること、また一方で、測定時のばらつきを許容できるような新たな評価指数を導入することで、従来よりも判別精度が向上した生体検知装置を提供することを目的とするものである。 The present invention has been made in view of the above circumstances. It is an object of the present invention to provide a living body detecting device with improved discrimination accuracy compared to the conventional one by introducing an index.

本発明に係る生体検知装置は、被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する帯域通過フィルタと、電磁波を発生させ、前記検知対象部位を前記帯域通過フィルタに近接又は当接させた際の所定の周波数帯域の電磁波応答特性を測定する測定部と、前記測定部で測定された前記電磁波応答特性の測定値と、生体の電磁波応答特性の基準値とを用いて評価値を算出する評価値算出部と、前記評価値算出部で算出された前記評価値に基づいて、前記検知対象部位が生体であるか否かを判定する生体判定部と、を備える生体検知装置であって、前記評価値算出部が、前記測定部で測定された前記電磁波応答特性の測定値をS(f)、前記生体の電磁波応答特性の基準値をT(f)、T(f)の標準偏差をσ(f)、以下の式(2)で表される一致性指数をk(f)、k(f)に応じた重み関数をw(k(f))、周波数毎の重み関数をw(f)、評価に用いる周波数帯域の下限をf、上限をfとするとき、前記評価値として、以下の式(1)で表される第1の評価値αを算出することを特徴とする。 A living body detection apparatus according to the present invention includes a band-pass filter having a split ring resonator designed to have a predetermined center frequency according to a detection target site of a subject, and generating an electromagnetic wave to pass the detection target site through the band-pass filter. A measurement unit for measuring electromagnetic wave response characteristics in a predetermined frequency band when brought close to or in contact with a filter, a measured value of the electromagnetic wave response characteristics measured by the measurement unit, and a reference value of the electromagnetic wave response characteristics of a living body. and an evaluation value calculation unit that calculates an evaluation value using wherein the evaluation value calculator calculates the measured value of the electromagnetic wave response characteristic measured by the measuring unit as S(f), the reference value of the electromagnetic wave response characteristic of the living body as T(f), Let σ(f) be the standard deviation of T(f), k(f) be the consistency index represented by the following equation (2), and w v (k(f)) be the weighting function corresponding to k(f). , the weight function for each frequency is w f (f), the lower limit of the frequency band used for evaluation is f L , and the upper limit is f H. It is characterized by calculating the evaluation value α.

Figure 0007168259000001
Figure 0007168259000001

Figure 0007168259000002
Figure 0007168259000002

さらに、本発明に係る生体検知装置は、前記重み関数w(k(f))が、所定のしきい値をpとするとき、以下の式(3)で表される関数であることを特徴とする。 Further, in the living body detection device according to the present invention, the weight function w v (k(f)) is a function represented by the following equation (3), where p is a predetermined threshold value. Characterized by

Figure 0007168259000003
Figure 0007168259000003

また、本発明に係る生体検知装置は、前記評価値算出部が、前記評価値として、前記第1の評価値αに加えて、以下の式(4)で表される第2の評価値βを算出することを特徴とする。 Further, in the living body detecting device according to the present invention, the evaluation value calculation unit uses a second evaluation value β represented by the following equation (4) in addition to the first evaluation value α as the evaluation value. is characterized by calculating

Figure 0007168259000004
Figure 0007168259000004

本発明に係る生体検知装置によれば、CSRR-BPFがCSRRを同軸上に2組配置された構造を有しているため、従来のCSRRが直列に2組配置された構造と比べ、検知対象部位によってCSRR部を覆う際の載置領域を削減できるため、電磁波応答特性を測定する際のばらつきが軽減し、それによって検知対象部位が生体か否かを判定する精度が向上する。 According to the living body detection device according to the present invention, since the CSRR-BPF has a structure in which two sets of CSRRs are arranged coaxially, compared with a conventional structure in which two sets of CSRRs are arranged in series, the object to be detected is Since the placement area for covering the CSRR part can be reduced depending on the part, variation in measuring the electromagnetic wave response characteristics is reduced, thereby improving the accuracy of determining whether the part to be detected is a living body or not.

本発明に係る生体検知装置によれば、評価値算出部によって評価値として第1の評価値αを算出するが、この第1の評価値αは偽装物の添付がない生体の場合の電磁波応答特性の測定値のばらつきを許容し、一方で偽装物の添付がある場合の電磁波応答特性の測定値の変化を強調抽出する評価値であるため、従来の評価値である類似度と比べ、生体か否かを判定する精度が向上する。 According to the living body detection device according to the present invention, the evaluation value calculation unit calculates the first evaluation value α as an evaluation value. This is an evaluation value that allows variations in the measured values of the characteristics, while emphasizing and extracting changes in the measured values of the electromagnetic wave response characteristics when a camouflage is attached. The accuracy of determining whether or not is improved.

さらに、第1の評価値αの算出に用いる重み関数w(k(f))を適切に設定することで、生体か否かを判定する精度が向上する。 Furthermore, by appropriately setting the weighting function w v (k(f)) used to calculate the first evaluation value α, the accuracy of determining whether the object is a living body or not can be improved.

また、評価値算出部によって評価値として、第1の評価値αに加えて、第2の評価値βを算出するが、この第2の評価値βは、従来の評価値である平均差に周波数毎の重み関数w(f)を導入した評価値であり、想定する偽装物等によってw(f)を適切に設定することで、生体か否かを判定する精度が向上する。 In addition to the first evaluation value α, a second evaluation value β is calculated as an evaluation value by the evaluation value calculation unit. It is an evaluation value obtained by introducing a weighting function w f (f) for each frequency, and by appropriately setting w f (f) according to an assumed camouflage or the like, the accuracy of determining whether or not the object is a living body can be improved.

本発明の実施形態に係る生体検知装置の一例を示す概略ブロック図である。1 is a schematic block diagram showing an example of a living body detection device according to an embodiment of the present invention; FIG. 本発明の実施形態に係るCSRR-BPFの一例を示す概略模式図であって、(a)は上面側を示しており、(b)は底面側を示している。1 is a schematic diagram showing an example of a CSRR-BPF according to an embodiment of the present invention, where (a) shows the top side and (b) shows the bottom side; FIG. 本発明の実施形態に係るCSRR-BPFの一部を示す拡大模式図であって、(a)は図2における二点鎖線で囲ったA部を示しており、(b)は図2における二点鎖線で囲ったB部を示している。FIG. 2 is an enlarged schematic diagram showing a part of the CSRR-BPF according to the embodiment of the present invention, where (a) shows part A surrounded by a two-dot chain line in FIG. A part B surrounded by a dotted chain line is shown. 本発明の実施形態に係るCSRR-BPF及び従来の2組のCSRRが直列に配置されたCSRR-BPFの通過特性|S21|を示すグラフである。5 is a graph showing pass characteristics |S21| of a CSRR-BPF according to an embodiment of the present invention and a conventional CSRR-BPF in which two sets of CSRRs are arranged in series; 本発明の実施形態に係るCSRR-BPFと、従来の2組のCSRRが直列に配置されたCSRR-BPFを比較するために行った実験結果を示すグラフである。(a)が本発明の実施形態に係るCSRR-BPFに関するグラフであり、(b)が従来の2組のCSRRが直列に配置されたCSRR-BPFに関するグラフである。5 is a graph showing the results of an experiment conducted to compare a CSRR-BPF according to an embodiment of the present invention and a conventional CSRR-BPF in which two sets of CSRRs are arranged in series; (a) is a graph regarding CSRR-BPF according to an embodiment of the present invention, and (b) is a graph regarding CSRR-BPF in which two sets of conventional CSRRs are arranged in series. 本発明の実施形態に係る第1の評価値αと、従来の評価値である類似度を比較するために行った実験結果を示すグラフである。(a)が本発明の実施形態に係る第1の評価値αに関するグラフであり、(b)が従来の評価値である類似度に関するグラフである。FIG. 10 is a graph showing experimental results for comparing a first evaluation value α according to the embodiment of the present invention and similarity, which is a conventional evaluation value; FIG. (a) is a graph related to the first evaluation value α according to the embodiment of the present invention, and (b) is a graph related to the similarity which is the conventional evaluation value. 本発明の実施形態に係る第2の評価値βと、従来の評価値である平均差を比較するために行った実験結果を示すグラフである。(a)が本発明の実施形態に係る第2の評価値βに関するグラフであり、(b)が従来の評価値である平均差に関するグラフである。7 is a graph showing results of an experiment conducted to compare a second evaluation value β according to the embodiment of the present invention and an average difference, which is a conventional evaluation value; (a) is a graph regarding the second evaluation value β according to the embodiment of the present invention, and (b) is a graph regarding the average difference which is the conventional evaluation value.

本発明に係る生体検知装置の実施形態について、以下、図面を参照しつつ説明する。上述した特許文献1と同様に、本発明に係る生体検知装置1は、偽造物による「なりすまし」行為を防止するために、被検体となる人体の検知対象部位が生体であるか否かを判定するものであって、主に指紋認証や静脈認証等の生体認証装置と併用されるものである。本発明に係る生体検知装置1は、図1に示すように、CSRR(Complementary Split Ring Resonator:補対型(相補型)スプリットリング共振器)が配置されたBPF(Band Pass Filter:帯域通過フィルタ、以下ではCSRR-BPFとする)2と、検知対象部位をCSRR-BPF2に近接または当接させた際の電磁波応答特性を測定する測定部3と、測定部3によって測定された電磁波応答特性を用いて、生体判定のための演算処理等を行うコンピュータ4とを備えている。本発明に係るCSRR-BPF2は、図2及び図3に示すように、CSRRが同軸上に2組配置された構造を有することを特徴としている。CSRRは、大小2つのスプリットリング共振器(SRR)が内側と外側とでスプリット部が逆になるように同軸上に配置されたものであって、図3に示すように、SRR21とSRR22のペアが1組のCSRR23であり、SRR24とSRR25のペアが1組のCSRR26である。各CSRRにおいては、外側と内側のSRRの幅及びその2つのSRR間の幅が等しく、また、スプリットの幅も等しくなっている。例えば、CSRR23の場合では、a13、a14及びa15の寸法が等しく、また、a9及びa12の寸法が等しい。また、本実施形態では、図1に示すようにCSRR-BPF2を1つだけ配置した例を示しているが、複数配置することで、被検体の複数の検知対象部位の電磁波応答特性を同時に測定できるようにしたり、複数の被検体の検知対象部位の電磁波応答特性を同時に測定できるようにしてもよい。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a living body detection device according to the present invention will be described below with reference to the drawings. As in Patent Document 1 described above, the living body detection device 1 according to the present invention determines whether or not the detection target part of the human body to be tested is a living body in order to prevent "spoofing" by a forgery. It is mainly used together with biometric authentication devices such as fingerprint authentication and vein authentication. As shown in FIG. 1, the living body detection device 1 according to the present invention has a BPF (Band Pass Filter) in which a CSRR (Complementary Split Ring Resonator) is arranged. hereinafter referred to as CSRR-BPF) 2, a measurement unit 3 that measures the electromagnetic wave response characteristics when the detection target part is brought close to or in contact with the CSRR-BPF 2, and the electromagnetic wave response characteristics measured by the measurement unit 3 are used. and a computer 4 that performs arithmetic processing and the like for biometric determination. The CSRR-BPF2 according to the present invention is characterized by having a structure in which two sets of CSRRs are coaxially arranged as shown in FIGS. The CSRR is composed of two large and small split ring resonators (SRR) arranged coaxially so that the inner and outer split parts are reversed, and as shown in FIG. is one set of CSRR23, and the pair of SRR24 and SRR25 is one set of CSRR26. In each CSRR, the width of the outer and inner SRRs and the width between the two SRRs are equal, and the width of the split is also equal. For example, in the case of CSRR23, the dimensions a13, a14 and a15 are equal, and the dimensions a9 and a12 are equal. In this embodiment, as shown in FIG. 1, only one CSRR-BPF 2 is arranged. Alternatively, the electromagnetic wave response characteristics of the detection target sites of a plurality of subjects may be measured simultaneously.

CSRR-BPF2は、被検体(人体)の検知対象部位の得たい情報に応じて所定の中心周波数に設計されるものであって、近接する媒質の影響を強く受けるCSRRを有している。CSRRに媒質を近接させると、その媒質の影響でCSRR-BPF2近傍の電磁界の分布が変化するため、その媒質の深さ方向に対する電磁界の応答、つまり電磁波応答特性を得ることが出来る。 The CSRR-BPF2 is designed to have a predetermined center frequency according to the information desired to be obtained for the detection target part of the subject (human body), and has a CSRR that is strongly affected by the adjacent medium. When a medium is brought close to the CSRR, the distribution of the electromagnetic field near the CSRR-BPF2 changes due to the influence of the medium. Therefore, it is possible to obtain the response of the electromagnetic field in the depth direction of the medium, that is, the electromagnetic wave response characteristic.

検知対象部位としては、例えば、静脈認証や指紋認証を行う人体指等がある。人体指は中心である骨の周りを筋肉、脂肪、及び皮膚が層状化された構造であると考えられる。各層の体積比を用いて近似的な均一媒質となる人体指を定義することで、その比誘電率と導電率を基に人体指の表皮深さを算出すると、6GHzでは約10mm、10GHzでは約5mm、16GHzでは約2.5mmとなり、高周波になるにつれて人体指の深さ方向に浸透する電磁界は減衰する。従って、静脈認証と併用する生体検知装置1のCSRR-BPF2を設計する場合、静脈認証は3次元分布する血管パターンを認証情報とし、偽装物はその血管パターンを模した立体的な構造物であると考えられるため、人体指全体の特徴を反映した電磁波応答特性を取得できる低周波側を中心周波数とするのが有効であると考えられる。一方で、指紋認証と併用するCSRR-BPF2を設計する場合、指紋認証は人体指先端の表面の紋様を認証情報とし、偽装物はその紋様を模した薄膜で、それを人体指の表面に装着して使用すると考えられるため、人体指の表面の特徴を反映した電磁波応答特性を取得できる高周波側を中心周波数とするのが有効であると考えられる。また、検知対象部位は指だけに限らず、他の部位でもよく、その場合、その部位で適切な特性を得ることができる周波数を中心周波数としてCSRR-BPF2を設計すればよい。 A detection target part includes, for example, a human finger for vein authentication or fingerprint authentication. A human finger is considered to be a structure in which muscle, fat, and skin are layered around a central bone. By defining a human finger as an approximate uniform medium using the volume ratio of each layer, and calculating the skin depth of the human finger based on its dielectric constant and conductivity, it is about 10 mm at 6 GHz and about 10 mm at 10 GHz. At 5 mm and 16 GHz, it is about 2.5 mm, and as the frequency increases, the electromagnetic field penetrating the human finger in the depth direction attenuates. Therefore, when designing the CSRR-BPF2 of the living body detection device 1 used together with vein authentication, the vein authentication uses the three-dimensionally distributed blood vessel pattern as authentication information, and the camouflage is a three-dimensional structure that imitates the blood vessel pattern. Therefore, it is considered effective to set the center frequency to the low frequency side where the electromagnetic wave response characteristic reflecting the characteristics of the entire human finger can be obtained. On the other hand, when designing CSRR-BPF2 to be used in combination with fingerprint authentication, the fingerprint authentication uses the pattern on the surface of the tip of the human finger as authentication information, and the camouflage is a thin film that imitates the pattern and is attached to the surface of the human finger. Therefore, it is considered effective to set the center frequency to the high frequency side where electromagnetic wave response characteristics reflecting the surface characteristics of the human finger can be obtained. Further, the detection target part is not limited to the finger, and other parts may be used. In this case, the CSRR-BPF2 may be designed with a center frequency at which appropriate characteristics can be obtained for that part.

本実施形態では、特許文献1と同様に、指紋認証と併用する生体検知装置1を想定し、中心周波数を10GHzとしてCSRR-BPF2を設計した。その構造を図2に示す。図2(a)は上面側から見た図であり、図2(b)は底面側から見た図である。また、図3は、図2におけるCSRR-BPF2の一部を拡大した図であって、図3(a)は図2(a)における二点鎖線で囲ったA部を示した図であり、図3(b)は図2(b)における二点鎖線で囲ったB部を示した図である。上述のように、10GHzにおける人体指の表皮深さは約5mmで、人体指の厚さを約10mmと仮定したときにその半分程度となるため、中心周波数を10GHzで設計したCSRR-BPF2では、人体指の表面から半分程度までの深さ方向の構造の影響を反映した電磁波応答特性を取得できると考えられる。人体指は層状構造であるため、人体指の半分までの深さまでの電磁波応答特性であっても、表面の皮膚から脂肪、筋肉、そして中心の骨までが含まれるため、これらの人体指特有の構造の影響が反映された電磁波応答特性が取得することが期待できる。従って、中心周波数を10GHzで設計したCSRR-BPF2は、表面部分の影響を比較的強く受けつつ、人体指特有の影響も反映した電磁波応答特性を取得できるため、指紋認証と併用するのに適する。 In the present embodiment, as in Patent Document 1, the CSRR-BPF 2 is designed with a central frequency of 10 GHz, assuming the biometric detection device 1 used in combination with fingerprint authentication. Its structure is shown in FIG. FIG. 2(a) is a diagram viewed from the top side, and FIG. 2(b) is a diagram viewed from the bottom side. FIG. 3 is an enlarged view of a part of CSRR-BPF2 in FIG. 2, and FIG. FIG.3(b) is the figure which showed the B section enclosed with the two-dot chain line in FIG.2(b). As described above, the skin depth of a human finger at 10 GHz is about 5 mm, which is about half assuming that the thickness of a human finger is about 10 mm. It is considered that the electromagnetic wave response characteristic reflecting the influence of the structure in the depth direction from the surface to about half of the human finger can be obtained. Due to the layered structure of the human finger, even the electromagnetic wave response characteristics up to half the depth of the human finger include the surface skin, fat, muscle, and even the bone at the core. It can be expected that electromagnetic wave response characteristics that reflect the influence of the structure will be obtained. Therefore, the CSRR-BPF2, which is designed to have a center frequency of 10 GHz, can acquire electromagnetic wave response characteristics that reflect the effects unique to human fingers while being relatively strongly affected by the surface portion, and is therefore suitable for use with fingerprint authentication.

このCSRR-BPF2は、例えば、特許文献1のCSRR-BPFと同様に、基板として誘電体基板であるガラス硬化性PPO樹脂R-4726(比誘電率εγ=3.4、誘電正接tanδ=0.005、基板厚:1.0mm)を用いることが出来る。この誘電体基板の表面には両面に銅箔が張り付けられており、図2に示すように伝送線路とCSRR構造を切削することで作製できる。図2及び図3のハッチングを施している部分が銅箔である。また、本実施形態における中心周波数を10GHzとして設計したCSRR-BPF2の各部の寸法の一例は、図2及び図3において、a1=26.0mm、a2=19.5mm、a3=10.6mm、a4=4.8mm、a5=10.6mm、a6=7.35mm、a7=4.8mm、a8=7.35mm、a9=0.4mm、a10=0.2mm、a11=0.2mm、a12=0.4mm、a13=0.4mm、a14=0.4mm、a15=0.4mm、a16=0.3mm、a17=0.2mm、a18=0.2mm、a19=0.2mm、b1=11.6mm、b2=11.6mm、b3=8.55mm、b4=2.4mm、b5=8.55mm、b6=0.4mm、b7=1.2mm、b8=1.2mm、b9=1.6mm、b10=1.6mmである。電磁波応答特性を測定する際、CSRR-BPF2のCSRR部を検知対象部位で覆う必要があるが、従来の特許文献1に記載されているCSRRが2組直列に配置された構造を有するCSRR-BPFの場合は、本実施形態と同様に中心周波数が10GHzの設計では、2組のCSRRの端から端までの長さが6.3mmであるのに対して、本実施形態では、1か所の4.8mm四方の正方形の中に2組のCSRRが収まっており、従来よりもCSRR部つまり載置領域は24%の削減となっている。載置領域の削減は、CSRR-BPF2に媒質を近接させた際の影響の差異を局所的に取得することを可能とし、媒質の密着不足に起因する誤検知の低減と検知精度の向上につながる。 This CSRR-BPF2, for example, similarly to the CSRR-BPF of Patent Document 1, has a glass hardening PPO resin R-4726 (relative permittivity ε γ =3.4, dielectric loss tangent tan δ=0) which is a dielectric substrate as a substrate. .005, substrate thickness: 1.0 mm) can be used. Copper foils are attached to both surfaces of the dielectric substrate, which can be produced by cutting the transmission line and CSRR structure as shown in FIG. The hatched portions in FIGS. 2 and 3 are copper foils. An example of the dimensions of each part of CSRR-BPF2 designed with a center frequency of 10 GHz in this embodiment is a1=26.0 mm, a2=19.5 mm, a3=10.6 mm, a4 = 4.8 mm, a5 = 10.6 mm, a6 = 7.35 mm, a7 = 4.8 mm, a8 = 7.35 mm, a9 = 0.4 mm, a10 = 0.2 mm, a11 = 0.2 mm, a12 = 0 .4mm, a13 = 0.4mm, a14 = 0.4mm, a15 = 0.4mm, a16 = 0.3mm, a17 = 0.2mm, a18 = 0.2mm, a19 = 0.2mm, b1 = 11.6mm , b2 = 11.6 mm, b3 = 8.55 mm, b4 = 2.4 mm, b5 = 8.55 mm, b6 = 0.4 mm, b7 = 1.2 mm, b8 = 1.2 mm, b9 = 1.6 mm, b10 = 1.6 mm. When measuring the electromagnetic wave response characteristics, it is necessary to cover the CSRR part of the CSRR-BPF 2 with the detection target part, but the CSRR-BPF having a structure in which two sets of CSRRs described in conventional Patent Document 1 are arranged in series In the case of , the length from end to end of the two sets of CSRRs is 6.3 mm in a design with a center frequency of 10 GHz as in this embodiment, whereas in this embodiment, one Two sets of CSRRs fit in a square of 4.8 mm square, and the CSRR part, that is, the mounting area is reduced by 24% compared to the conventional case. Reducing the mounting area makes it possible to locally acquire the difference in the effect when the medium is brought close to CSRR-BPF2, leading to a reduction in false detections caused by insufficient adhesion of the medium and an improvement in detection accuracy. .

また、CSRR-BPF2の両端に設けられるポートP1及びP2には、コネクタ(不図示)がそれぞれ設けられており、図1に示すように、同軸ケーブル5を介して、測定部3に接続されている。また、摩耗等によるCSRRの段差の平坦化、及び銅箔の腐食防止のために、CSRR-BPF2上に厚さ0.2mm程度のポリプロピレンフィルムを設置するようにしてもよい。 Further, ports P1 and P2 provided at both ends of the CSRR-BPF 2 are provided with connectors (not shown), respectively, which are connected to the measurement unit 3 via coaxial cables 5 as shown in FIG. there is In addition, a polypropylene film having a thickness of about 0.2 mm may be placed on the CSRR-BPF 2 in order to flatten the steps of the CSRR due to abrasion or the like and to prevent corrosion of the copper foil.

測定部3は、例えば、ベクトルネットワークアナライザ等で構成されるものであって、測定のための電磁波を発生させてCSRR-BPF2に入射し、検知対象部位をCSRR-BPF2に近接または当接させた際の電磁波応答特性を測定する。電磁波応答特性としては、本実施形態のようにCSRR-BPF2の入出力端子がP1とP2の2ポートの場合、ポートP1に入射してポートP2へ通過する通過特性S21と、ポートP2に入射してポートP1へ通過する通過特性S12と、ポートP1に入射してポートP1へ反射する反射特性S11と、ポートP2に入射してポートP2へ反射する反射特性S22との4つを取得することが出来る。 The measurement unit 3 is composed of, for example, a vector network analyzer or the like, generates an electromagnetic wave for measurement, enters the CSRR-BPF 2, and brings the detection target site close to or in contact with the CSRR-BPF 2. Measure the electromagnetic wave response characteristics at the time. As the electromagnetic wave response characteristics, when the input/output terminals of the CSRR-BPF2 are two ports P1 and P2 as in this embodiment, the transmission characteristic S21 for incident light to the port P1 and passing to the port P2, and the It is possible to obtain four characteristics: a transmission characteristic S12 for passing through the port P1, a reflection characteristic S11 for incident on the port P1 and reflected to the port P1, and a reflection characteristic S22 for incident on the port P2 and reflected to the port P2. I can.

測定部3で測定される電磁波応答特性の測定値は、コンピュータ4へと入力される。コンピュータ4は、入力された電磁波応答特性の測定値を用いて、検知対象部位が生体であるか否かの生体判定のための演算処理等を行うものであり、例えば、CPU(Central Processing Unit:中央処理装置)6と、記憶部7と、演算処理部8と、表示部10と、操作部11等を備えている。またこれら各部は、図1に示すように、システムバス12に接続され、このシステムバス12を介して種々のデータ等が入出力されて、CPU6の制御の下、種々の処理が実行される。 A measured value of the electromagnetic wave response characteristic measured by the measuring unit 3 is input to the computer 4 . The computer 4 uses the input measured value of the electromagnetic wave response characteristic to perform arithmetic processing and the like for determining whether the detection target site is a living body. For example, a CPU (Central Processing Unit: It includes a central processing unit 6, a storage unit 7, an arithmetic processing unit 8, a display unit 10, an operation unit 11, and the like. These units are connected to a system bus 12 as shown in FIG.

記憶部7は、測定部3から入力される電磁波応答特性の測定値を記憶することが可能であり、また、検知対象部位が生体であるか否かの生体判定を行うための処理プログラム等を格納している。本実施形態では記憶部7を備えているが、他の外部のコンピュータ読み取り可能な記憶媒体を用いてもよい。 The storage unit 7 can store the measured values of the electromagnetic wave response characteristics input from the measurement unit 3, and stores a processing program or the like for determining whether the detection target site is a living body or not. Stored. Although the storage unit 7 is provided in this embodiment, another external computer-readable storage medium may be used.

演算処理部8は、記憶部7に格納される処理プログラムに基づいて、CPU6の制御の下、検知対象部位が生体であるか否かの判定を行うための演算処理等を行うものである。演算処理部8の評価値算出部81で、検知対象部位の電磁波応答特性の測定値と、生体の基準値とを用いて評価値を算出し、その算出された評価値に基づいて演算処理部8の生体判定部82で検知対象部位が生体であるか否かの判定を行う。 Based on the processing program stored in the storage unit 7, the arithmetic processing unit 8 performs arithmetic processing and the like for determining whether or not the detection target site is a living body under the control of the CPU 6. FIG. The evaluation value calculation unit 81 of the calculation processing unit 8 calculates an evaluation value using the measured value of the electromagnetic wave response characteristic of the detection target site and the reference value of the living body, and based on the calculated evaluation value, the calculation processing unit 8 determines whether or not the part to be detected is a living body.

表示部10は、例えば、液晶ディスプレイ等から構成されるものであって、生体判定結果等を表示するものである。表示部10の代わりに、または、表示部10と共に音声により生体判定結果を知らせるようにしてもよい。操作部11は、マウスやキーボード等で構成されており、操作者が種々のデータ及び操作指令等の入力を行うために使用されるものである。尚、表示部10と操作部11をタッチパネルとして一体的に構成してもよい。 The display unit 10 is composed of, for example, a liquid crystal display or the like, and displays the result of living body determination or the like. Instead of the display unit 10, or together with the display unit 10, the result of the biometric determination may be notified by voice. The operation unit 11 is composed of a mouse, a keyboard, and the like, and is used by an operator to input various data, operation commands, and the like. Note that the display unit 10 and the operation unit 11 may be integrated as a touch panel.

以下、この生体検知装置1による生体検知処理の流れについて説明する。まず、検知対象となる被検体が検知対象部位をCSRR-BPF2に近接または当接させる。その際、CSRR-BPF2のCSRR部を検知対象部位で覆うようにする。そして測定部3によって所定の周波数帯域における電磁波応答特性S(f)を測定する。本実施形態では、指紋認証用に中心周波数を10GHzで設計したCSRR-BPF2を用い、検知対象部位は右手人差し指の第1関節から先の部分とし、電磁波応答特性には3GHz~16GHzにおける通過特性S21の絶対値|S21|を用いる。ただそれに限らず検知対象部位にはどの指を用いてもよいし、指紋認証用でなければ指でない部分でもよい。その場合は得たい情報に応じた中心周波数でCSRR-BPF2を設計すればよい。また、電磁波応答特性は通過特性|S21|に限らず、他の通過特性|S12|、反射特性|S11|または反射特性|S22|を用いるようにしてもよい。また、これらの複数を用いるようにしてもよい。また、電磁波応答特性を測定する周波数帯域についても、設計したCSRR-BPF2の特性に応じて変更してもよい。 The flow of living body detection processing by this living body detection device 1 will be described below. First, the subject to be detected brings the detection target region close to or in contact with the CSRR-BPF2. At that time, the CSRR part of CSRR-BPF2 is covered with the detection target part. Then, the measurement unit 3 measures the electromagnetic wave response characteristic S(f) in a predetermined frequency band. In this embodiment, CSRR-BPF2 designed with a center frequency of 10 GHz for fingerprint authentication is used, the detection target part is the part from the first joint of the right index finger, and the electromagnetic wave response characteristic is the pass characteristic S21 in 3 GHz to 16 GHz. The absolute value |S21| of is used. However, not limited to this, any finger may be used as a detection target portion, and a portion other than a finger may be used if not for fingerprint authentication. In that case, CSRR-BPF2 should be designed with a center frequency according to the information to be obtained. Further, the electromagnetic wave response characteristic is not limited to the transmission characteristic |S21|, and other transmission characteristic |S12|, reflection characteristic |S11|, or reflection characteristic |S22| may be used. Also, a plurality of these may be used. Also, the frequency band for measuring the electromagnetic wave response characteristics may be changed according to the characteristics of the designed CSRR-BPF2.

測定部3によって測定された電磁波応答特性の測定値S(f)は、コンピュータ4へと入力される。コンピュータ4の演算処理部8の評価値算出部81では、入力された測定値S(f)と、生体の電磁波応答特性の基準値T(f)とを用いて評価値を算出する。 A measured value S(f) of the electromagnetic wave response characteristic measured by the measuring unit 3 is input to the computer 4 . The evaluation value calculation unit 81 of the arithmetic processing unit 8 of the computer 4 calculates an evaluation value using the input measurement value S(f) and the reference value T(f) of the electromagnetic wave response characteristics of the living body.

生体の電磁波応答特性の基準値T(f)は、評価値算出部81で算出され、本実施形態では、測定値S(f)と同様の測定条件で事前に複数回測定して記憶部7に記憶させておいた被検体の検知対象部位の電磁波応答特性の測定値を用いて、それらを周波数毎に平均化したものを基準値T(f)として算出する。この時、基準値T(f)の標準偏差σ(f)も同時に算出する。基準値T(f)の算出には、決まった一定回数の電磁波応答特性の測定値を用いてもよいが、用いる測定値の数が増えるほど基準値T(f)の信頼性が上がって誤検知の低減につながると考えられるので、生体判定を行う毎に、生体判定後に生体であると判定された場合、その測定値S(f)を記憶部7に記憶させて、次回以降の基準値T(f)の算出に用いる測定値に加えていってもよい。その際、例えば、指紋認証と併用する場合、指紋認証で指紋が一致したと判定された後に生体検知装置1によって生体であるか否かの判定が行われると考えられるので、その指紋データに電磁波応答特性の測定値を紐づけして記憶部7に記憶させる等しておいてもよい。また、ここでは基準値T(f)は電磁波応答特性の測定値を平均値化したものを用いているが、それに限定されず、中央値等の他の統計値を用いてもよい。また、ここでは基準値T(f)の算出に、事前に測定しておいた被検体の検知対象部位の測定値を用いているが、検知対象部位以外の部位、例えば検知対象部位が右手人差し指であれば、その他の中指や薬指等の電磁波応答特性の測定値を用いてもよい。この場合は、記憶部7に基準値T(f)算出のための測定値を記憶させておかずに、CSRR-BPF2を複数配置して、検知対象部位の電磁波応答特性S(f)の測定と同時に、基準値T(f)に用いる非検知対象部位の電磁波応答特性を測定できるようにして基準値T(f)を算出するようにしてもよい。また、被検体とは異なる複数人の検知対象部位の電磁波応答特性を事前に測定して測定値を記憶部7に記憶させておき、それらの測定値を用いて基準値T(f)を算出してもよい。ただ、判別精度を向上させるためには、本実施形態のように同一被検体の同一検知対象部位の電磁波応答特性の測定値を用いて基準値T(f)を算出することが好ましい。 The reference value T(f) of the electromagnetic wave response characteristic of the living body is calculated by the evaluation value calculation unit 81, and in the present embodiment, is measured a plurality of times in advance under the same measurement conditions as the measurement value S(f), and stored in the storage unit 7. Using the measured values of the electromagnetic wave response characteristics of the detection target portion of the subject stored in , the standard value T(f) is calculated by averaging them for each frequency. At this time, the standard deviation σ(f) of the reference value T(f) is also calculated at the same time. A fixed number of measurements of the electromagnetic wave response characteristics may be used to calculate the reference value T(f). Since it is considered to lead to a reduction in detection, every time a living body determination is performed, if it is determined to be a living body after the living body determination, the measured value S(f) is stored in the storage unit 7, and the reference value from the next time onwards. It may be added to the measured value used to calculate T(f). At that time, for example, when fingerprint authentication is used together, it is considered that the living body detecting device 1 determines whether or not the body is a living body after it is determined that the fingerprints match in the fingerprint authentication. The measured values of the response characteristics may be linked and stored in the storage unit 7, for example. Also, here, the reference value T(f) is obtained by averaging the measured values of the electromagnetic wave response characteristics, but it is not limited to this, and other statistical values such as the median value may be used. In addition, here, the reference value T(f) is calculated using the measurement value of the detection target region of the subject that has been measured in advance. If so, measured values of electromagnetic wave response characteristics of other fingers such as the middle finger and the ring finger may be used. In this case, without storing the measured value for calculating the reference value T(f) in the storage unit 7, a plurality of CSRR-BPFs 2 are arranged to measure the electromagnetic wave response characteristic S(f) of the detection target site. At the same time, the reference value T(f) may be calculated by measuring the electromagnetic wave response characteristics of the non-detection target portion used for the reference value T(f). In addition, the electromagnetic wave response characteristics of the detection target parts of a plurality of persons different from the subject are measured in advance, the measured values are stored in the storage unit 7, and the reference value T(f) is calculated using these measured values. You may However, in order to improve the discrimination accuracy, it is preferable to calculate the reference value T(f) using the measured values of the electromagnetic wave response characteristics of the same detection target portion of the same subject as in the present embodiment.

評価値算出部81では、評価値として下記の式(1)で表される第1の評価値αを算出する。ここで、k(f)は式(2)で表される基準値T(f)と測定値S(f)の差を基準値T(f)の標準偏差σ(f)で割った一致性指数であり、w(k(f))は式(3)で表される一致性指数k(f)に応じた重み付けを行う重み関数であり、pは所定のしきい値であり、w(f)は周波数毎の重み付けを行う重み関数であり、fは使用する周波数帯域における下限、fは上限である。まず、式(2)及び式(3)によって一致性の重みw(k(f))が算出される。一致性の重み関数w(k(f))は0から1までの値をとり、1に近いほど測定値S(f)が基準値T(f)に近いことを示す関数であって、測定値S(f)と基準値T(f)との差が、基準値T(f)の標準偏差σ(f)のp倍の範囲内であれば、一致性があるとして一致性の重みw(k(f))=1とし、それを超えると一致性がないとしてw(k(f))=0とする。同一被検体の同一検知対象部位であっても電磁波応答特性の測定値は完全に一致することはなく、測定時の発汗状態等の被検体のコンディションや検知対象部位のCSRR-BPF2への近接のさせ方等によって一定の分散を持つ。従って、測定値S(f)が、基準値T(f)と同一の被検体の同一の検知対象部位によるものであったとしても、基準値T(f)から離れた値となることがあり、どの程度離れた範囲までの値を基準値T(f)と同一であるとみなすかを決めるのがしきい値pである。本実施形態においてはp=2.7を用いる。この値は、基準値T(f)の算出に用いる複数回の被検体の検知対象部位の電磁波応答特性の測定値が正規分布に従うとした場合、測定値S(f)が基準値T(f)と同一の被検体及び検知対象部位であれば、その測定値S(f)は99.3%の確率でw(k(f))=1となる範囲に入ることを意味する。このしきい値pの値は、大きくしすぎた場合は偽装物の測定値S(f)を基準値T(f)と一致しているとみなしてしまう確率が上がり、小さくしすぎた場合は生体の測定値S(f)を基準値T(f)と不一致であるとみなしてしまう確率が上がるので、p=2.0から3.0までの値にするのが好ましい。また、本実施形態では一致性の重み関数w(k(f))の算出に式(3)を用いたが、それに限らず想定される偽装物の種類や厚さ等によって適切に設定することで判別精度の向上を図ることができる。そして式(1)によって、一致性の重みw(k(f))に周波数毎の重みw(f)を乗じて使用する周波数帯域で相加平均した値を第1の評価値αとして算出する。ここで、周波数毎の重み付けを行う重み関数w(f)は、生体と偽装物とで電磁波応答特性の差異があまり見られない周波数帯において評価値に与える影響を軽減して偽装物による差異を強調するために用いられ、想定される偽装物の種類や厚さ等によって適切に設定することで判別精度の向上を図ることができる。w(f)は0から1までの値をとり、例えば、差異を強調したい周波数帯ではw(f)=1、差異が小さく評価値に対する影響を無くしたい周波数帯ではw(f)=0のようにすればよい。一致性の重み関数w(k(f))及び周波数毎の重み関数w(f)は共に0から1までの値をとる関数であるため、第1の評価値αも0から1までの値をとる評価値であり、1に近い値となるほど測定値S(f)が生体によるものである可能性が高いことを示す。 The evaluation value calculator 81 calculates a first evaluation value α represented by the following equation (1) as an evaluation value. Here, k(f) is the consistency obtained by dividing the difference between the reference value T(f) and the measured value S(f) expressed by Equation (2) by the standard deviation σ(f) of the reference value T(f) is an index, w v (k(f)) is a weighting function that performs weighting according to the consistency index k(f) represented by Equation (3), p is a predetermined threshold, and w f (f) is a weighting function that weights each frequency, f L is the lower limit in the frequency band to be used, and f H is the upper limit. First, the matching weight w v (k(f)) is calculated by equations (2) and (3). The consistency weighting function w v (k(f)) takes a value from 0 to 1, and the closer to 1, the closer the measured value S(f) is to the reference value T(f), If the difference between the measured value S(f) and the reference value T(f) is within the range of p times the standard deviation σ(f) of the reference value T(f), it is determined that there is agreement, and the agreement weight It is assumed that w v (k(f))=1, and if it is exceeded, w v (k(f))=0 as there is no match. Even if it is the same detection target part of the same subject, the measured values of the electromagnetic wave response characteristics do not match completely, and the condition of the subject such as the sweating state at the time of measurement and the proximity of the detection target part to CSRR-BPF2 It has a certain variance depending on how it is made. Therefore, even if the measured value S(f) is obtained from the same detection target site of the same subject as the reference value T(f), the value may deviate from the reference value T(f). , the threshold value p determines how far apart the value is considered to be the same as the reference value T(f). In this embodiment, p=2.7 is used. This value is such that when the measured values of the electromagnetic wave response characteristics of the detection target part of the subject used for calculation of the reference value T(f) follow a normal distribution, the measured value S(f) is the reference value T(f ), the measured value S(f) falls within the range of w v (k(f))=1 with a probability of 99.3%. If the value of the threshold p is too large, the probability that the measured value S(f) of the counterfeit object is considered to match the reference value T(f) increases. A value between p=2.0 and 3.0 is preferable because the probability that the measured value S(f) of the living body is considered to be inconsistent with the reference value T(f) increases. In addition, in the present embodiment, equation (3) is used to calculate the matching weight function w v (k(f)). By doing so, it is possible to improve the discrimination accuracy. Then, according to the equation (1), the weight w v (k(f)) of consistency is multiplied by the weight w f (f) for each frequency, and the arithmetic mean value in the frequency band used is set as the first evaluation value α calculate. Here, the weighting function w f (f) that performs weighting for each frequency reduces the influence on the evaluation value in the frequency band where the difference in electromagnetic wave response characteristics between the living body and the camouflage is not seen so much that the difference due to the camouflage is reduced. It is used for emphasizing , and it is possible to improve the discrimination accuracy by setting appropriately according to the type and thickness of the assumed camouflage. w f (f) takes a value from 0 to 1. For example, w f (f)=1 in the frequency band where the difference is desired to be emphasized, and w f (f)=1 in the frequency band where the difference is small and the effect on the evaluation value is to be eliminated. =0. Since both the matching weight function w v (k(f)) and the weight function w f (f) for each frequency are functions taking values from 0 to 1, the first evaluation value α also ranges from 0 to 1. The closer the value is to 1, the higher the possibility that the measured value S(f) is caused by the living body.

Figure 0007168259000005
Figure 0007168259000005

Figure 0007168259000006
Figure 0007168259000006

Figure 0007168259000007
Figure 0007168259000007

一方、従来は特許文献1に記載されているように、評価値として類似度を算出して用いていた。類似度(Similarity)は、下記の式(5)によって算出される。ここでS(f)は測定部3で測定した電磁波応答特性の測定値、T(f)は基準値、fは使用する周波数帯域の上限、fは下限であり、上述の第1の評価値αで用いたものと同様である。Snorm(f)は、式(6)で表され、Snorm(f)の最小値と基準値T(f)の最小値が一致するように測定値S(f)を正規化した値であり、Dは、式(7)で表され、測定値S(f)と基準値T(f)との使用する周波数帯域における最小値の差である。これらの式からも分かるように、類似度は、基準値T(f)の算出に用いる電磁波応答特性の測定値のばらつきが考慮されていないため、極めて薄い偽装物の場合、生体との差異が現れにくい評価値であった。それに対して本発明で算出する第1の評価値αは、上述のように、偽装物の添付がない生体の場合の電磁波応答特性の測定値のばらつきを許容し、一方で偽装物の添付がある場合の電磁波応答特性の測定値の変化を強調抽出する評価値となっているため、極めて薄い偽装物に対しても判別精度が向上している。 On the other hand, conventionally, as described in Patent Literature 1, similarity is calculated and used as an evaluation value. Similarity is calculated by the following formula (5). Here, S(f) is the measured value of the electromagnetic wave response characteristic measured by the measuring unit 3, T(f) is the reference value, fH is the upper limit of the frequency band to be used, and fL is the lower limit. It is the same as that used for the evaluation value α. S norm (f) is represented by Equation (6), and is a value obtained by normalizing the measured value S (f) so that the minimum value of S norm (f) and the minimum value of the reference value T (f) match. D n is expressed by Equation (7) and is the minimum difference between the measured value S(f) and the reference value T(f) in the frequency band used. As can be seen from these formulas, the degree of similarity does not take into account variations in the measured values of the electromagnetic wave response characteristics used to calculate the reference value T(f). It was an evaluation value that was difficult to appear. On the other hand, the first evaluation value α calculated in the present invention allows for variations in the measured values of the electromagnetic wave response characteristics in the case of a living body without a camouflage attached, as described above. Since the evaluation value emphasizes and extracts the change in the measured value of the electromagnetic wave response characteristics in a certain case, the discrimination accuracy is improved even for extremely thin camouflage objects.

Figure 0007168259000008
Figure 0007168259000008

Figure 0007168259000009
Figure 0007168259000009

Figure 0007168259000010
Figure 0007168259000010

また、評価値算出部81は、第1の評価値αに加えて、下記の式(4)で表される第2の評価値βを評価値として算出する。第2の評価値βは、特許文献1に記載のように従来評価値として用いられていた下記の式(8)で表される平均差(Mean Difference, MD)に周波数毎の重み関数w(f)を導入したものである。平均差は、測定値S(f)と基準値T(f)におけるグラフ曲線の差異を平均的に判定する評価値であり、0に近い値であるほど測定値S(f)は生体によるものである可能性が高く、大きな値であるほど測定値S(f)は偽装物によるものである可能性が高いことを示す。 In addition to the first evaluation value α, the evaluation value calculation unit 81 also calculates a second evaluation value β represented by the following equation (4) as an evaluation value. The second evaluation value β is a weighting function w f (f) is introduced. The average difference is an evaluation value that averagely determines the difference in the graph curve between the measured value S (f) and the reference value T (f). , and the larger the value, the higher the possibility that the measured value S(f) is due to a counterfeit.

Figure 0007168259000011
Figure 0007168259000011

Figure 0007168259000012
Figure 0007168259000012

生体判定部82では、評価値算出部81で算出された第1の評価値αと、第2の評価値βとの2つの評価値に基づいて、検知対象部位が生体であるか否かの判定を行う。生体判定部82では、例えば、第1の評価値α及び第2の評価値βに対して、それぞれしきい値を設定しておき、それぞれのしきい値内に第1の評価値αと第2の評価値βが入っているか否かを判定することにより生体であるか否かを判定する。つまり、評価値算出部81で算出された第1の評価値αと第2の評価値βが共にしきい値内にある場合には、検知対象部位が生体であると判定し、それ以外の場合には、検知対象部位が生体でないと判定する。尚、第1の評価値αと第2の評価値βの一方だけを用いて生体判定を行うようにしてもよいが、より判別精度を向上させるためには、第1の評価値αと第2の評価値β等の2つの評価値を用いることが好ましい。 Based on two evaluation values, the first evaluation value α and the second evaluation value β calculated by the evaluation value calculation unit 81, the living body determination unit 82 determines whether or not the detection target site is a living body. make a judgment. In the living body determination unit 82, for example, threshold values are set for the first evaluation value α and the second evaluation value β, respectively, and the first evaluation value α and the second evaluation value β are within each threshold value. By determining whether or not the evaluation value β of 2 is included, it is determined whether or not the object is a living body. That is, when both the first evaluation value α and the second evaluation value β calculated by the evaluation value calculation unit 81 are within the threshold value, it is determined that the detection target site is a living body. In this case, it is determined that the detection target site is not a living body. It should be noted that the living body determination may be performed using only one of the first evaluation value α and the second evaluation value β. It is preferable to use two evaluation values, such as an evaluation value β of two.

以上が本実施形態に係る生体検知装置1による生体検知処理の流れであるが、以下、従来の特許文献1に記載の生体検知装置からの改良点である、本発明に係る生体検知装置1のCSRR-BPF2、及び評価値算出部81で算出する第1の評価値αと第2の評価値βによって、従来と比べてどれだけ判別精度が向上するか評価するための実験を行ったのでその結果を示す。 The flow of the living body detection processing by the living body detection device 1 according to the present embodiment has been described above. An experiment was conducted to evaluate how much the discrimination accuracy is improved compared to the conventional method by using the CSRR-BPF 2 and the first evaluation value α and the second evaluation value β calculated by the evaluation value calculation unit 81. Show the results.

まず、本発明に係るCSRRが2組同軸上に配置された構造を有するCSRR-BPF2についての実験結果を示す。本発明のCSRR-BPF2の構造は図2及び図3に示す通りである。従来のCSRRが2組直列に配置された構造を有するCSRR-BPFでは、検知対象部位の電磁波応答特性を測定する際に、直列に並んだ2組のCSRRの両方を検知対象部位で覆うようにしなければならなかったが、本発明に係るCSRR-BPF2では2組のCSRRが1か所に配置されているため、検知対象部位で覆いやすくなっている。また、上述したように、本発明の中心周波数を10GHzで設計したCSRRが2組同軸上に配置された構造を有するCSRR-BPF2(同軸型10GHzCSRR-BPF2)のCSRR部の寸法は4.8mm四方であるのに対して、従来の中心周波数を10GHzで設計したCSRRが2組直列に配置された構造を有するCSRR-BPF(直列型10GHzCSRR-BPF)では2組のCSRR部の端から端までの寸法は6.3mmであり、検知対象部位の載置領域は約24%の削減となった。 First, experimental results for CSRR-BPF2 having a structure in which two pairs of CSRRs according to the present invention are coaxially arranged are shown. The structure of CSRR-BPF2 of the present invention is shown in FIGS. 2 and 3. FIG. In the conventional CSRR-BPF, which has a structure in which two sets of CSRRs are arranged in series, when measuring the electromagnetic wave response characteristics of the detection target part, both of the two sets of CSRRs arranged in series are covered with the detection target part. However, in the CSRR-BPF2 according to the present invention, two sets of CSRRs are arranged in one place, so that it is easy to cover them with the part to be detected. Further, as described above, the size of the CSRR portion of the CSRR-BPF2 (coaxial type 10 GHz CSRR-BPF2) having a structure in which two sets of CSRRs designed with a center frequency of 10 GHz according to the present invention are arranged on the same axis is 4.8 mm square. On the other hand, in the conventional CSRR-BPF (series type 10 GHz CSRR-BPF) having a structure in which two sets of CSRRs designed with a center frequency of 10 GHz are arranged in series, the length from end to end of the two sets of CSRR parts is The dimension is 6.3 mm, and the placement area of the part to be detected is reduced by about 24%.

また、本発明の同軸型10GHzCSRR-BPF2と従来の直列型10GHzCSRR-BPFの通過特性|S21|の測定結果を図4に示す。実線が本発明の同軸型10GHzCSRR-BPF2の測定結果であり、帯域幅はおおよそ4GHz~16GHzの12GHzである。点線が従来の直列型10GHzCSRR-BPFの測定結果であり、帯域幅はおおよそ8GHz~12GHzの4GHzである。動作周波数帯が広域化していることが分かる。 FIG. 4 shows measurement results of pass characteristics |S21| of the coaxial 10 GHz CSRR-BPF2 of the present invention and the conventional series 10 GHz CSRR-BPF. The solid line is the measurement result of the coaxial 10 GHz CSRR-BPF2 of the present invention, and the bandwidth is approximately 12 GHz from 4 GHz to 16 GHz. The dotted line is the measurement result of the conventional series type 10 GHz CSRR-BPF, and the bandwidth is approximately 4 GHz from 8 GHz to 12 GHz. It can be seen that the operating frequency band is widened.

さらに、本発明の同軸型10GHzCSRR-BPF2及び従来の直列型10GHzCSRR-BPFを用いた生体検知実験の結果を図5に示す。20名の被検体に対して、人体指として偽装物の添付のない右手人差し指を用いて1名につき10回ずつ測定し、偽装指として偽装物である人体指表面部の皮膚の電気定数を模擬した厚さ0.3mmの皮膚ファントムをシート状に加工したものを右手人差し指に貼り付けて1名につき5回ずつ測定した。ここで、評価値算出部81で算出する評価値には、従来の類似度と平均差を用いた。これは本発明によるCSRR-BPF2によってどれだけ判別精度が向上するかを従来のものと比較評価するためである。また基準値T(f)には全被検体の人体指の5回の測定値を平均化した値を用い、検知対象の測定値S(f)には基準値T(f)の算出に用いなかった5回の人体指の測定値と偽装指の測定値を使用した。また、図4より本発明の同軸型10GHzCSRR-BPF2は16GHzにおいて通過特性|S21|が最小であったため、類似度の算出に使用する最小値を検索する周波数帯域を5~16GHzとして計算した。本発明及び従来のどちらもCSRR-BPFの表面に厚さ0.2mmのポリプロピレンフィルムを配置して測定を行った。図5(a)が本発明の同軸型10GHzCSRR-BPF2による結果であり、縦軸に類似度、横軸に平均差をとり、中抜きのプロットが人体指、黒塗りのプロットが偽装指を示す。図5(b)が従来の直列型10GHzCSRR-BPFによる結果であり、縦軸に類似度、横軸に平均差をとり、中抜きのプロットが人体指、黒塗りのプロットが偽装指を示す。図5を見ると、本発明の同軸型10GHzCSRR-BPF2の方が、従来の直列型10GHzCSRR-BPFよりも人体指と偽装指のプロットが分離されていることが分かるが、より定量的に評価を行うため、偽装物を生体と判定する割合(False Acceptance Rate, FAR)を0%とした際の生体を偽装物と判定する割合(False Rejection Rate, FRR)と、FRRを0%とした際のFARと、FARとFRRが等しくなる値(Equal Error Rate, EER)を用いて評価した。その結果を以下の表1に示す。ここで、FARを0%とした際のFRRというのは、測定に用いた偽装指を全て受け入れないしきい値を設けた際に、人体指が受け入れられない割合を示す。具体的には、偽装指の平均差の最小値及び類似度の最大値をしきい値とし、偽装指の平均値の最小値以下かつ類似度の最大値以上の領域に入らない人体指の割合である。また、FRRを0%とした際のFARというのは、測定に用いた人体指を全て受け入れるしきい値を設けた際に、偽装指を受け入れてしまう割合を示す。具体的には、人体指の平均差の最大値及び類似度の最小値をしきい値として、人体指の平均差の最大値以下かつ類似度の最小値以上の領域に入ってしまう偽装物の割合である。これらの指標は低ければ低いほど判別精度が高いことを示す。表1より、本発明による同軸型10GHzCSRR-BPF2の方が従来の直列型10GHzCSRR-BPFよりもFRR(FAR=0%)、FAR(FRR=0%)、EERの全てにおいて有意性のある結果が得られ、判別精度が向上していることが分かる。 Furthermore, FIG. 5 shows the results of living body detection experiments using the coaxial 10 GHz CSRR-BPF2 of the present invention and the conventional series 10 GHz CSRR-BPF. For 20 subjects, measurements were made 10 times for each person using the right index finger without a camouflage attached as a human finger, and the electrical constant of the skin on the surface of the human finger, which is a camouflage, was simulated as a camouflage finger. A skin phantom having a thickness of 0.3 mm was processed into a sheet, which was attached to the index finger of the right hand and measured five times for each person. Here, the conventional similarity and average difference are used for the evaluation value calculated by the evaluation value calculation unit 81 . This is to compare and evaluate how much the discrimination accuracy is improved by the CSRR-BPF2 according to the present invention and the conventional one. The reference value T(f) is obtained by averaging five measurements of the human finger of all subjects, and the measurement value S(f) of the detection target is used to calculate the reference value T(f). Five human finger measurements and sham finger measurements were used. Also, from FIG. 4, the coaxial 10 GHz CSRR-BPF2 of the present invention had the minimum pass characteristic |S21| at 16 GHz, so the frequency band for searching the minimum value used for similarity calculation was calculated with 5 to 16 GHz. Both the present invention and the conventional method were measured by placing a polypropylene film with a thickness of 0.2 mm on the surface of the CSRR-BPF. FIG. 5(a) shows the results of the coaxial 10 GHz CSRR-BPF2 of the present invention, where the vertical axis represents the degree of similarity and the horizontal axis represents the average difference. . FIG. 5(b) shows the result of the conventional serial type 10 GHz CSRR-BPF, where the vertical axis represents the similarity and the horizontal axis represents the average difference. Looking at FIG. 5, it can be seen that the coaxial type 10 GHz CSRR-BPF2 of the present invention separates the plots of the human finger and the fake finger more than the conventional serial type 10 GHz CSRR-BPF. In order to do so, the false acceptance rate (FRR) when the false acceptance rate (FAR) for judging a fake as a living body is set to 0%, and the false rejection rate (FRR) for when the FRR is set to 0%. Evaluation was made using FAR and a value (Equal Error Rate, EER) at which FAR and FRR are equal. The results are shown in Table 1 below. Here, the FRR when the FAR is set to 0% indicates the rate at which the human finger is not accepted when a threshold is set to reject all the fake fingers used in the measurement. Specifically, the minimum value of the average difference and the maximum value of similarity of the fake finger are used as thresholds, and the ratio of human fingers that do not fall within the region below the minimum value of the average value of fake fingers and above the maximum value of similarity is. Further, the FAR when the FRR is 0% indicates the rate at which the fake finger is accepted when a threshold value is set to accept all the human fingers used in the measurement. Specifically, using the maximum value of the average difference and the minimum value of the similarity of human fingers as thresholds, the camouflaged object that falls within the region below the maximum value of the average difference between human fingers and above the minimum value of similarity percentage. The lower these indexes, the higher the discrimination accuracy. From Table 1, the coaxial 10 GHz CSRR-BPF2 according to the present invention is more significant than the conventional series 10 GHz CSRR-BPF in terms of FRR (FAR = 0%), FAR (FRR = 0%), and EER. It can be seen that the discrimination accuracy is improved.

Figure 0007168259000013
Figure 0007168259000013

次に、本発明に係る評価値算出部81で算出する第1の評価値αを評価するための実験の結果を図6に示す。ここでは本発明の第1の評価値αと、従来の評価値である類似度の比較を行い、第1の評価値αによってどれだけ判別精度が向上するか評価するため、CSRR-BPF2には従来と同様の直列型10GHzCSRR-BPFを用いた。第1の評価値αは上述のように式(1)から式(3)によって算出され、ここではしきい値pはp=2.7、周波数毎の重みw(f)は使用する周波数帯域全域においてw(f)=1とした。人体指に装着する偽装物としては、22.0mm×14.0mmの寸法に加工した0.5mm厚の皮膚ファントムを使用した。図6(a)が本発明の第1の評価値αを用いた結果であり、縦軸に第1の評価値αを、横軸に平均差をとった。図6(b)が従来の評価値である類似度を用いた結果であり、縦軸に類似度、横軸に平均差をとった。図6の中抜きのプロットは人体指、黒塗りのプロットは偽装指を示す。図6より、従来の評価値である類似度では、人体指はほぼ1に近い値であるのに対して、偽装指は最大値が0.988で、さらにほとんどが0.9以上の値になっているが、本発明の第1の評価値αでは、人体指はほぼ1に近い値であるのに対して、偽装指は最大値でも0.692となり、非常によく人体指と偽装指の区別が出来ており、判別精度が向上していることが分かる。 Next, FIG. 6 shows the results of an experiment for evaluating the first evaluation value α calculated by the evaluation value calculation section 81 according to the present invention. Here, the first evaluation value α of the present invention is compared with the similarity, which is the conventional evaluation value, to evaluate how much the discrimination accuracy is improved by the first evaluation value α. A series type 10 GHz CSRR-BPF similar to the conventional one was used. The first evaluation value α is calculated by equations (1) to (3) as described above, where the threshold value p is p=2.7 and the weight for each frequency w f (f) is the frequency to be used w f (f)=1 over the entire band. A skin phantom with a thickness of 0.5 mm processed to dimensions of 22.0 mm×14.0 mm was used as a camouflage to be worn on a human finger. FIG. 6A shows the result of using the first evaluation value α of the present invention, where the vertical axis represents the first evaluation value α and the horizontal axis represents the average difference. FIG. 6B shows the result of using similarity, which is a conventional evaluation value, where the vertical axis represents the similarity and the horizontal axis represents the average difference. In FIG. 6, the open plots indicate human fingers, and the black plots indicate fake fingers. As shown in FIG. 6, the similarity, which is the conventional evaluation value, is close to 1 for the human finger, while the maximum value for the fake finger is 0.988, and most of the values are 0.9 or higher. However, with the first evaluation value α of the present invention, the human finger has a value close to 1, while the fake finger has a maximum value of 0.692, indicating that the human finger and the fake finger are very well matched. can be distinguished, and it can be seen that the discrimination accuracy is improved.

次に、本発明に係る評価値算出部81で算出する第2の評価値βを評価するための実験の結果を図7に示す。こちらもCSRR-BPF2には従来の直列型10GHzCSRR-BPFを用いて測定した。上述したように、第2の評価値βは式(4)によって算出され、従来の評価値である平均差に、周波数毎の重みw(f)を導入した評価値である。人体指に装着する偽装物としては、22.0mm×14.0mmの寸法に加工したシリコンゴムを使用した。特に0.1mm厚のシリコンゴムを偽装物として用いる場合は、通過特性|S21|の高域において人体指との差異が小さくなる。このため12GHz以下の周波数帯域での偽装物による差異を強調するために、12-16GHzにおいてw(f)=0とし、5-12GHzにおいてw(f)=1とした。図7(a)が本発明の第2の評価値βを用いた結果であり、横軸に第2の評価値βを、縦軸には第1の評価値αをとった。図7(b)が従来の評価値である平均差を用いた結果であり、横軸に平均差を、縦軸には第1の評価値αをとった。図7を見ただけでは一見差異が分かりづらいので、定量的な評価を行うため、上述したFRRを0%とした際のFAR、及びFARを0%とした際のFRRを用いて評価した。その結果を以下の表2に示す。本発明による第2の評価値βを用いて適切な重みw(f)を導入することで、FRR(FAR=0%)が5.2%から1.7%まで改善し、判別精度が向上していることが分かる。 Next, FIG. 7 shows the results of an experiment for evaluating the second evaluation value β calculated by the evaluation value calculation section 81 according to the present invention. In this case, CSRR-BPF2 was also measured using a conventional series type 10 GHz CSRR-BPF. As described above, the second evaluation value β is calculated by Equation (4), and is an evaluation value obtained by introducing the weight w f (f) for each frequency into the average difference, which is the conventional evaluation value. Silicon rubber processed to a size of 22.0 mm×14.0 mm was used as the camouflage to be worn on the finger of the human body. In particular, when a 0.1 mm thick silicon rubber is used as the camouflage, the difference from the human finger becomes small in the high range of the pass characteristics |S21|. Therefore, w f (f)=0 at 12-16 GHz and w f (f)=1 at 5-12 GHz to emphasize the difference due to the impersonator in the frequency band below 12 GHz. FIG. 7A shows the result of using the second evaluation value β of the present invention, with the second evaluation value β on the horizontal axis and the first evaluation value α on the vertical axis. FIG. 7B shows the result of using the average difference, which is the conventional evaluation value, with the average difference on the horizontal axis and the first evaluation value α on the vertical axis. Since it is difficult to see the difference just by looking at FIG. 7, in order to perform a quantitative evaluation, the above-described FAR when the FRR is set to 0% and the FRR when the FAR is set to 0% were used for evaluation. The results are shown in Table 2 below. By introducing an appropriate weight w f (f) using the second evaluation value β according to the present invention, the FRR (FAR = 0%) is improved from 5.2% to 1.7%, and the discrimination accuracy is I can see that it is improving.

Figure 0007168259000014
Figure 0007168259000014

以上より、本発明に係る生体検知装置1のCSRR-BPF2、及び評価値算出部81で算出する第1の評価値αと第2の評価値βの全てにおいてそれぞれが、従来の特許文献1に記載の生体検知装置で用いられていたものよりも判別精度の向上に寄与しており、本発明に係る生体検知装置1を用いることで判別精度の高い生体検知を行うことができる。 As described above, in the CSRR-BPF 2 of the living body detection device 1 according to the present invention, and in all of the first evaluation value α and the second evaluation value β calculated by the evaluation value calculation unit 81, each of the conventional Patent Document 1 It contributes to the improvement of discrimination accuracy compared to that used in the described living body detection device, and by using the living body detection device 1 according to the present invention, living body detection with high discrimination accuracy can be performed.

尚、本発明の実施の形態は上述のものに限らず、本発明の思想の範囲を逸脱しない範囲で適宜変更することが出来る。 The embodiments of the present invention are not limited to those described above, and can be modified as appropriate without departing from the spirit of the present invention.

本発明に係る生体検知装置は、例えば、指紋認証や静脈認証等の個人生体認証技術に組み合わせて用いることで、信頼性の高い情報セキュリティ技術として有効に利用することができる。 INDUSTRIAL APPLICABILITY The biometric detection device according to the present invention can be effectively used as highly reliable information security technology by combining it with personal biometric authentication technology such as fingerprint authentication and vein authentication.

1 生体検知装置
2 CSRR-BPF
3 測定部
7 記憶部
81 評価値算出部
82 生体判定部
1 living body detection device 2 CSRR-BPF
3 measurement unit 7 storage unit 81 evaluation value calculation unit 82 biological determination unit

Claims (3)

被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する帯域通過フィルタと、
電磁波を発生させ、前記検知対象部位を前記帯域通過フィルタに近接又は当接させた際の所定の周波数帯域の電磁波応答特性を測定する測定部と、
前記測定部で測定された前記電磁波応答特性の測定値と、生体の電磁波応答特性の基準値とを用いて評価値を算出する評価値算出部と、
前記評価値算出部で算出された前記評価値に基づいて、前記検知対象部位が生体であるか否かを判定する生体判定部と、を備える生体検知装置であって、
前記評価値算出部が、
前記測定部で測定された前記電磁波応答特性の測定値をS(f)、前記生体の電磁波応答特性の基準値をT(f)、T(f)の標準偏差をσ(f)、以下の式(2)で表される一致性指数をk(f)、k(f)に応じた重み関数をw(k(f))、周波数毎の重み関数をw(f)、評価に用いる周波数帯域の下限をf、上限をfとするとき、
前記評価値として、以下の式(1)で表される第1の評価値αを算出することを特徴とする生体検知装置。
Figure 0007168259000015
Figure 0007168259000016
a band-pass filter having a split-ring resonator designed to have a predetermined center frequency according to the detection target site of the subject;
a measurement unit that generates an electromagnetic wave and measures an electromagnetic wave response characteristic in a predetermined frequency band when the detection target portion is brought close to or in contact with the band-pass filter;
an evaluation value calculation unit that calculates an evaluation value using the measured value of the electromagnetic wave response characteristic measured by the measurement unit and a reference value of the electromagnetic wave response characteristic of a living body;
a living body determination unit that determines whether the detection target part is a living body based on the evaluation value calculated by the evaluation value calculation unit,
The evaluation value calculation unit
S(f) is the measured value of the electromagnetic wave response characteristic measured by the measuring unit, T(f) is the reference value of the electromagnetic wave response characteristic of the living body, σ(f) is the standard deviation of T(f), and the following Let k(f) be the consistency index represented by Equation (2), w v (k(f)) be the weighting function corresponding to k(f), w f (f) be the weighting function for each frequency, and When the lower limit of the frequency band to be used is f L and the upper limit is f H ,
A living body detecting device, wherein a first evaluation value α represented by the following equation (1) is calculated as the evaluation value.
Figure 0007168259000015
Figure 0007168259000016
前記重み関数w(k(f))が、
所定のしきい値をpとするとき、
以下の式(3)で表される関数であることを特徴とする請求項1に記載の生体検知装置。
Figure 0007168259000017
The weight function w v (k(f)) is
When p is a predetermined threshold,
2. The living body detecting device according to claim 1 , wherein the function is represented by the following formula (3).
Figure 0007168259000017
前記評価値算出部が、
前記評価値として、前記第1の評価値αに加えて、以下の式(4)で表される第2の評価値βを算出することを特徴とする請求項1または2に記載の生体検知装置。
Figure 0007168259000018
The evaluation value calculation unit
3. The living body detection according to claim 1 , wherein as the evaluation value, in addition to the first evaluation value α, a second evaluation value β represented by the following equation (4) is calculated. Device.
Figure 0007168259000018
JP2021160553A 2017-08-28 2021-09-30 living body detector Active JP7168259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021160553A JP7168259B2 (en) 2017-08-28 2021-09-30 living body detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017163771A JP6987380B2 (en) 2017-08-28 2017-08-28 Biological detector
JP2021160553A JP7168259B2 (en) 2017-08-28 2021-09-30 living body detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017163771A Division JP6987380B2 (en) 2017-08-28 2017-08-28 Biological detector

Publications (2)

Publication Number Publication Date
JP2022002730A JP2022002730A (en) 2022-01-11
JP7168259B2 true JP7168259B2 (en) 2022-11-09

Family

ID=65727290

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017163771A Active JP6987380B2 (en) 2017-08-28 2017-08-28 Biological detector
JP2021160553A Active JP7168259B2 (en) 2017-08-28 2021-09-30 living body detector

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017163771A Active JP6987380B2 (en) 2017-08-28 2017-08-28 Biological detector

Country Status (1)

Country Link
JP (2) JP6987380B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501355B (en) * 2019-10-08 2021-12-03 大连理工大学 Plane microwave cavity dropping type liquid dielectric substance value detection sensor
TWI750582B (en) * 2020-02-10 2021-12-21 國立臺灣科技大學 Perturbation-injection-locked physiological siganal sensor
CN114660365A (en) * 2020-12-23 2022-06-24 安徽师范大学 5G dual-band dielectric constant nondestructive measurement method of surface sensor based on double complementary open loops
CN112966557B (en) * 2021-02-03 2023-06-27 南京信息工程大学 Metamaterial sensor for organism detection and detection method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111749A (en) 2001-10-09 2003-04-15 Bmf:Kk Device for discriminating human
JP2005143804A (en) 2003-11-14 2005-06-09 Glory Ltd Apparatus and method for detecting living body, and fingerprint authentication apparatus
JP2007306563A (en) 2006-05-11 2007-11-22 Seiko Epson Corp Bandpass filter, electronic device having bandpass filter, and manufacturing method of bandpass filter
JP2015211798A (en) 2014-05-07 2015-11-26 学校法人立命館 Living body detection device and living body detection method
US20170135600A1 (en) 2015-11-16 2017-05-18 Jun-Chau Chien Gigahertz frequency fringing near-field cardiovascular sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3943863B2 (en) * 2001-05-29 2007-07-11 株式会社タニタ Biometric device with measurer judgment function
JP3861806B2 (en) * 2001-12-18 2006-12-27 株式会社村田製作所 Resonator, filter, duplexer, and communication device
JP5079528B2 (en) * 2008-01-08 2012-11-21 シャープ株式会社 Biological information measuring device, biological information measuring method, biological information measuring program, and recording medium
JP5560547B2 (en) * 2008-09-05 2014-07-30 富士通株式会社 Biometric authentication device
US20120086463A1 (en) * 2010-10-12 2012-04-12 Boybay Muhammed S Metamaterial Particles for Near-Field Sensing Applications
JP6440738B2 (en) * 2014-04-07 2018-12-19 シナジー マイクロウェーブ コーポレーションSynergy Microwave Corporation Devices using metamaterial resonators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111749A (en) 2001-10-09 2003-04-15 Bmf:Kk Device for discriminating human
JP2005143804A (en) 2003-11-14 2005-06-09 Glory Ltd Apparatus and method for detecting living body, and fingerprint authentication apparatus
JP2007306563A (en) 2006-05-11 2007-11-22 Seiko Epson Corp Bandpass filter, electronic device having bandpass filter, and manufacturing method of bandpass filter
JP2015211798A (en) 2014-05-07 2015-11-26 学校法人立命館 Living body detection device and living body detection method
US20170135600A1 (en) 2015-11-16 2017-05-18 Jun-Chau Chien Gigahertz frequency fringing near-field cardiovascular sensor

Also Published As

Publication number Publication date
JP2022002730A (en) 2022-01-11
JP2019037664A (en) 2019-03-14
JP6987380B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
JP7168259B2 (en) living body detector
Akindele et al. The relationship between body fat percentage and body mass index in overweight and obese individuals in an urban African setting
US9615767B2 (en) Fluid level indicator determination
KR101019844B1 (en) Method and apparatus for electro-biometric identity recognition
Moqadam et al. Cancer detection based on electrical impedance spectroscopy: A clinical study
UA49997C2 (en) Method for recognizing surface of skin as part of living tissue
US8520914B2 (en) Authentication apparatus and authentication method
CA2930745A1 (en) System and method for asset authentication and management
Dylke et al. Three decades of bioelectrical impedance spectroscopy in lymphedema assessment: an historical perspective
Sung et al. The effect of subcutaneous fat on electrical impedance myography when using a handheld electrode array: the case for measuring reactance
WO2008102291A2 (en) Method and system for identifying a subject
RU2637468C1 (en) Method of recognizing living tissue and relevant device (versions)
JP6347349B2 (en) Biological detection device and biological detection method
JP2019502931A5 (en)
Noh et al. Ratiometric impedance sensing of fingers for Robust identity Authentication
Kang et al. Measurement and analysis of human body channel response for biometric recognition
CN105555188A (en) Method for diagnosing a malignant lung tumor
Ward et al. Staging breast cancer-related lymphedema with bioimpedance spectroscopy
Ceder et al. Evaluation of electrical impedance spectroscopy as an adjunct to dermoscopy in short-term monitoring of atypical melanocytic lesions
CN104424488B (en) A kind of method and system for extracting BCG signal characteristics
Ibrahim et al. Skin layer classification by feedforward neural network in bioelectrical impedance spectroscopy
Meaney et al. A coaxial dielectric probe technique for distinguishing tooth enamel from dental resin
Kim et al. A new method for non-invasive measurement of skin in the low frequency range
Crisan et al. Multimodal liveness detection system for hand vein biometrics
Dutra et al. Extracting parasite effects of electrical bioimpedance measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221020

R150 Certificate of patent or registration of utility model

Ref document number: 7168259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150