JP2019037664A - Living body detection device - Google Patents

Living body detection device Download PDF

Info

Publication number
JP2019037664A
JP2019037664A JP2017163771A JP2017163771A JP2019037664A JP 2019037664 A JP2019037664 A JP 2019037664A JP 2017163771 A JP2017163771 A JP 2017163771A JP 2017163771 A JP2017163771 A JP 2017163771A JP 2019037664 A JP2019037664 A JP 2019037664A
Authority
JP
Japan
Prior art keywords
evaluation value
living body
electromagnetic wave
value
csrr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017163771A
Other languages
Japanese (ja)
Other versions
JP6987380B2 (en
Inventor
前田 忠彦
Tadahiko Maeda
忠彦 前田
主匡 飯島
Kazumasa Iijima
主匡 飯島
佑磨 大矢
Yuma Oya
佑磨 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Original Assignee
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust filed Critical Ritsumeikan Trust
Priority to JP2017163771A priority Critical patent/JP6987380B2/en
Publication of JP2019037664A publication Critical patent/JP2019037664A/en
Priority to JP2021160553A priority patent/JP7168259B2/en
Application granted granted Critical
Publication of JP6987380B2 publication Critical patent/JP6987380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a living body detection device having discrimination accuracy improved as compared with conventional ones by downsizing a living body sensor and, on the other hand, introducing a new evaluation index.SOLUTION: A living body detection device comprises: a band pass filter including a split-ring resonator; a measurement unit for measuring an electromagnetic wave response characteristic; an evaluation value calculation unit for calculating an evaluation value; and a living body determination unit for performing living body determination on the basis of the evaluation value. The band pass filter has a structure in which two sets of complementary split-ring resonators, each of which includes a large and small two split-ring resonators arranged coaxially so that directions of the inside and outside resonators' split parts are opposite to each other, are arranged coaxially.SELECTED DRAWING: Figure 2

Description

本発明は、検知対象物が生体であるか否かを判定する生体検知装置に関する。   The present invention relates to a living body detection apparatus that determines whether a detection target is a living body.

指紋認証や静脈認証などの生体認証技術は、本人しか持ち得ない情報を利用するため、従来のICカードやパスワードによる認証と比較し、利便性やセキュリティが高い。しかしながら、他者の生体情報を模擬した物理的な偽装物を用いた「なりすまし」被害が懸念されるため、生体認証技術に加えて、生体と偽装物を判別するための生体検知技術を併用することが重要である。   Biometric authentication techniques such as fingerprint authentication and vein authentication use information that only the person can have, and are therefore more convenient and secure than authentication using conventional IC cards and passwords. However, since there is a concern about “spoofing” damage using physical impersonation that simulates the biometric information of another person, in addition to biometric authentication technology, biometric detection technology for discriminating between living organisms and impersonation is used in combination. This is very important.

そこで本発明の発明者の1人は、CSRR(Complementary Split-Ring Resonator:補対型(相補型)スプリットリング共振器)構造をマイクロストリップ線路の地板上に2組直列に配置したBPF(Band-pass Filter:帯域通過フィルタ)(CSRR−BPF)を生体検知センサとして用い、そのCSRR−BPFに被検体の検知対象部位を近接または当接させた際の電磁波応答特性を測定し、その測定値と生体の基準値から算出される平均差と類似度という2つの評価指標を用いて、検知対象部位が生体か偽装物かを判別する生体検知装置を既に報告している(特許文献1)。   Accordingly, one of the inventors of the present invention has made a BPF (Band-R) in which two sets of CSRR (Complementary Split-Ring Resonator) structures are arranged in series on the ground plane of a microstrip line. pass filter (bandpass filter) (CSRR-BPF) is used as a living body detection sensor, and the electromagnetic wave response characteristic when the detection target part of the subject is brought close to or in contact with the CSRR-BPF is measured. There has already been reported a living body detection apparatus that determines whether a detection target part is a living body or a fake using two evaluation indexes, that is, an average difference calculated from a reference value of a living body and a similarity (Patent Document 1).

特開2015−211798JP2015-111798

上述の生体検知装置は、一定の精度で生体か偽装物かを判定し得るものであった。しかし、人体指表面部の皮膚の電気定数を模擬した皮膚ファントムのような人体に近い特性を持つ薄い偽装物については、誤検知を完全に無くすことは出来ず、更なる誤検知の低減と検知精度の向上が必要とされていた。   The living body detection apparatus described above can determine whether a living body or a fake with a certain degree of accuracy. However, it is not possible to completely eliminate false detections for thin imitations with characteristics close to the human body, such as a skin phantom that simulates the electrical constant of the skin on the surface of the human finger, and further reduces false detection and detection. There was a need for improved accuracy.

誤検知の要因としては、上述の生体検知装置において生体検知センサとして用いていたCSRR−BPFは2組のCSRR構造が直列に配置された構造であったため、検知対象部位である指または偽装物を添付した指でCSRR−BPFの載置領域であるCSRR部を覆う際、密着性の不完全さによるばらつきが出てしまうことがその一因であると考えられた。従って、生体検知センサの検知対象部位の載置領域を削減できれば、検知対象部位と生体検知センサとの密着性を安定的に確保することができ、誤検知の低減につながることが予想されたため、生体検知センサをより小型化することが求められていた。   As a cause of erroneous detection, the CSRR-BPF used as a biological detection sensor in the above-described biological detection device has a structure in which two sets of CSRR structures are arranged in series. When covering the CSRR part which is a mounting area | region of CSRR-BPF with the attached finger | toe, it was thought that the dispersion | variation by the incompleteness of adhesiveness came out as one cause. Therefore, if the placement area of the detection target part of the biological detection sensor can be reduced, it is expected that the adhesion between the detection target part and the biological detection sensor can be stably secured, leading to a reduction in false detection. There has been a demand for further downsizing the living body detection sensor.

また一方で、上述の生体検知装置において生体と偽装物の判別に用いていた平均差と類似度という2つの評価指標についても見直す必要があった。同一検体の同一の検知対象部位であっても上述のようにCSRR部を覆う際のばらつき等により電磁波応答特性の測定値は一定の分散を持つが、類似度はこの分散を許容しない評価指標であることが上述の誤検知の一因であると考えられた。従って、類似度に代えて、偽装物の添付がない場合の電磁波応答特性の分散を許容し、一方で偽装物を添付した場合の電磁波応答特性の変化を強調抽出することができるような新たな評価指標を導入することが必要であった。また、平均差についてもより判別精度が向上するように改善することが求められていた。   On the other hand, it has been necessary to review the two evaluation indexes, that is, the average difference and the similarity, which are used in the above-described living body detection apparatus for discrimination between a living body and a fake. The measured value of the electromagnetic wave response characteristic has a certain variance due to variations in covering the CSRR portion as described above even for the same detection target part of the same specimen, but the similarity is an evaluation index that does not allow this variance. It was considered that there was a cause of the above-described false detection. Therefore, in place of the similarity, a new electromagnetic wave response characteristic can be dispersed when no fake material is attached, while a change in the electromagnetic wave response characteristic when a fake material is attached can be emphasized and extracted. It was necessary to introduce an evaluation index. Further, it has been required to improve the average difference so that the discrimination accuracy is further improved.

本発明は上記事情を鑑みてなされたものであって、測定時のばらつきを低減できるように生体検知センサをより小型化すること、また一方で、測定時のばらつきを許容できるような新たな評価指数を導入することで、従来よりも判別精度が向上した生体検知装置を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and it is possible to reduce the size of the living body detection sensor so as to reduce the variation at the time of measurement, and on the other hand, a new evaluation that can tolerate the variation at the time of measurement. It is an object of the present invention to provide a living body detection apparatus with improved discrimination accuracy by introducing an index.

本発明に係る生体検知装置は、被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する帯域通過フィルタと、電磁波を発生させ、前記検知対象部位を前記帯域通過フィルタに近接又は当接させた際の所定の周波数帯域の電磁波応答特性を測定する測定部と、前記測定部で測定された前記電磁波応答特性の測定値と、生体の電磁波応答特性の基準値とを用いて評価値を算出する評価値算出部と、前記評価値算出部で算出された前記評価値に基づいて、前記検知対象部位が生体であるか否かを判定する生体判定部と、を備える生体検知装置であって、前記帯域通過フィルタが、大小2つのスプリットリング共振器が同軸上に内側と外側とでスプリット部が逆になるように配置された補対型(相補型)スプリットリング共振器を、2組同軸上に配置した構造を有することを特徴とする。   A living body detection apparatus according to the present invention generates a band-pass filter having a split ring resonator designed to have a predetermined center frequency according to a detection target part of a subject, an electromagnetic wave, and passes the band through the detection target part. A measurement unit that measures electromagnetic wave response characteristics in a predetermined frequency band when approaching or contacting a filter, a measurement value of the electromagnetic wave response characteristic measured by the measurement unit, and a reference value of the electromagnetic wave response characteristic of a living body An evaluation value calculation unit that calculates an evaluation value by using, and a living body determination unit that determines whether or not the detection target part is a living body based on the evaluation value calculated by the evaluation value calculation unit. A biological detection apparatus comprising: a band-pass filter having a complementary (complementary) spring in which two large and small split ring resonators are arranged on the same axis so that the split portions are reversed on the inner side and the outer side. The string resonator, and having a structure disposed on 2 pairs coaxially.

本発明に係る生体検知装置は、被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する帯域通過フィルタと、電磁波を発生させ、前記検知対象部位を前記帯域通過フィルタに近接又は当接させた際の所定の周波数帯域の電磁波応答特性を測定する測定部と、前記測定部で測定された前記電磁波応答特性の測定値と、生体の電磁波応答特性の基準値とを用いて評価値を算出する評価値算出部と、前記評価値算出部で算出された前記評価値に基づいて、前記検知対象部位が生体であるか否かを判定する生体判定部と、を備える生体検知装置であって、前記評価値算出部が、前記測定部で測定された前記電磁波応答特性の測定値をS(f)、前記生体の電磁波応答特性の基準値をT(f)、T(f)の標準偏差をσ(f)、以下の式(2)で表される一致性指数をk(f)、k(f)に応じた重み関数をw(k(f))、周波数毎の重み関数をw(f)、評価に用いる周波数帯域の下限をf、上限をfとするとき、前記評価値として、以下の式(1)で表される第1の評価値αを算出することを特徴とする。 A living body detection apparatus according to the present invention generates a band-pass filter having a split ring resonator designed to have a predetermined center frequency according to a detection target part of a subject, an electromagnetic wave, and passes the band through the detection target part. A measurement unit that measures electromagnetic wave response characteristics in a predetermined frequency band when approaching or contacting a filter, a measurement value of the electromagnetic wave response characteristic measured by the measurement unit, and a reference value of the electromagnetic wave response characteristic of a living body An evaluation value calculation unit that calculates an evaluation value by using, and a living body determination unit that determines whether or not the detection target part is a living body based on the evaluation value calculated by the evaluation value calculation unit. A biological detection apparatus comprising: the evaluation value calculation unit S (f) for the measured value of the electromagnetic wave response characteristic measured by the measurement unit, T (f) for the reference value of the electromagnetic wave response characteristic of the biological body, Standard deviation of T (f) The sigma (f), the consistency index represented by the following formula (2) k (f), a weight function corresponding to k (f) w v (k (f)), the weight function for each frequency When w f (f), the lower limit of the frequency band used for evaluation is f L , and the upper limit is f H , the first evaluation value α represented by the following expression (1) is calculated as the evaluation value. It is characterized by.

Figure 2019037664
Figure 2019037664

Figure 2019037664
Figure 2019037664

さらに、本発明に係る生体検知装置は、前記重み関数w(k(f))が、所定のしきい値をpとするとき、以下の式(3)で表される関数であることを特徴とする。 Furthermore, in the living body detection device according to the present invention, the weight function w v (k (f)) is a function represented by the following expression (3), where p is a predetermined threshold value. Features.

Figure 2019037664
Figure 2019037664

また、本発明に係る生体検知装置は、前記評価値算出部が、前記評価値として、前記第1の評価値αに加えて、以下の式(4)で表される第2の評価値βを算出することを特徴とする。   Further, in the living body detection device according to the present invention, the evaluation value calculation unit includes the second evaluation value β represented by the following expression (4) in addition to the first evaluation value α as the evaluation value. Is calculated.

Figure 2019037664
Figure 2019037664

本発明に係る生体検知装置によれば、CSRR−BPFがCSRRを同軸上に2組配置された構造を有しているため、従来のCSRRが直列に2組配置された構造と比べ、検知対象部位によってCSRR部を覆う際の載置領域を削減できるため、電磁波応答特性を測定する際のばらつきが軽減し、それによって検知対象部位が生体か否かを判定する精度が向上する。   According to the living body detection device according to the present invention, the CSRR-BPF has a structure in which two sets of CSRRs are arranged on the same axis. Therefore, compared with a structure in which two sets of conventional CSRRs are arranged in series, Since the mounting area when covering the CSRR part with the part can be reduced, the variation in measuring the electromagnetic wave response characteristic is reduced, thereby improving the accuracy of determining whether the detection target part is a living body.

本発明に係る生体検知装置によれば、評価値算出部によって評価値として第1の評価値αを算出するが、この第1の評価値αは偽装物の添付がない生体の場合の電磁波応答特性の測定値のばらつきを許容し、一方で偽装物の添付がある場合の電磁波応答特性の測定値の変化を強調抽出する評価値であるため、従来の評価値である類似度と比べ、生体か否かを判定する精度が向上する。   According to the living body detection device of the present invention, the first evaluation value α is calculated as the evaluation value by the evaluation value calculation unit, and this first evaluation value α is an electromagnetic wave response in the case of a living body with no impersonation attached. Since this is an evaluation value that allows variation in the measured value of the characteristic, while emphasizing and extracting the change in the measured value of the electromagnetic wave response characteristic when the camouflage is attached, compared to the similarity that is the conventional evaluation value, The accuracy of determining whether or not is improved.

さらに、第1の評価値αの算出に用いる重み関数w(k(f))を適切に設定することで、生体か否かを判定する精度が向上する。 Furthermore, by appropriately setting the weighting function w v (k (f)) used for calculating the first evaluation value α, the accuracy of determining whether or not it is a living body is improved.

また、評価値算出部によって評価値として、第1の評価値αに加えて、第2の評価値βを算出するが、この第2の評価値βは、従来の評価値である平均差に周波数毎の重み関数w(f)を導入した評価値であり、想定する偽装物等によってw(f)を適切に設定することで、生体か否かを判定する精度が向上する。 In addition to the first evaluation value α, the evaluation value calculation unit calculates a second evaluation value β in addition to the first evaluation value α. The second evaluation value β is an average difference that is a conventional evaluation value. It is an evaluation value that introduces a weighting function w f (f) for each frequency, and the accuracy of determining whether or not it is a living body is improved by appropriately setting w f (f) with an assumed fake or the like.

本発明の実施形態に係る生体検知装置の一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the biometric apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るCSRR−BPFの一例を示す概略模式図であって、(a)は上面側を示しており、(b)は底面側を示している。It is a schematic diagram which shows an example of CSRR-BPF which concerns on embodiment of this invention, Comprising: (a) has shown the upper surface side, (b) has shown the bottom face side. 本発明の実施形態に係るCSRR−BPFの一部を示す拡大模式図であって、(a)は図2における二点鎖線で囲ったA部を示しており、(b)は図2における二点鎖線で囲ったB部を示している。It is an expansion schematic diagram which shows a part of CSRR-BPF which concerns on embodiment of this invention, Comprising: (a) has shown A part enclosed with the dashed-two dotted line in FIG. 2, (b) is 2 in FIG. A portion B surrounded by a dotted line is shown. 本発明の実施形態に係るCSRR−BPF及び従来の2組のCSRRが直列に配置されたCSRR−BPFの通過特性|S21|を示すグラフである。It is a graph which shows passage characteristic | S21 | of CSRR-BPF which arranged CSRR-BPF concerning the embodiment of the present invention, and two conventional CSRRs in series. 本発明の実施形態に係るCSRR−BPFと、従来の2組のCSRRが直列に配置されたCSRR−BPFを比較するために行った実験結果を示すグラフである。(a)が本発明の実施形態に係るCSRR−BPFに関するグラフであり、(b)が従来の2組のCSRRが直列に配置されたCSRR−BPFに関するグラフである。It is a graph which shows the experimental result performed in order to compare CSRR-BPF which concerns on embodiment of this invention, and CSRR-BPF by which 2 sets of conventional CSRR were arrange | positioned in series. (A) is a graph regarding CSRR-BPF according to an embodiment of the present invention, and (b) is a graph regarding CSRR-BPF in which two conventional CSRRs are arranged in series. 本発明の実施形態に係る第1の評価値αと、従来の評価値である類似度を比較するために行った実験結果を示すグラフである。(a)が本発明の実施形態に係る第1の評価値αに関するグラフであり、(b)が従来の評価値である類似度に関するグラフである。It is a graph which shows the experimental result performed in order to compare the 1st evaluation value (alpha) which concerns on embodiment of this invention, and the similarity degree which is the conventional evaluation value. (A) is a graph regarding the 1st evaluation value (alpha) which concerns on embodiment of this invention, (b) is a graph regarding the similarity which is a conventional evaluation value. 本発明の実施形態に係る第2の評価値βと、従来の評価値である平均差を比較するために行った実験結果を示すグラフである。(a)が本発明の実施形態に係る第2の評価値βに関するグラフであり、(b)が従来の評価値である平均差に関するグラフである。It is a graph which shows the experimental result performed in order to compare the 2nd evaluation value (beta) which concerns on embodiment of this invention, and the average difference which is a conventional evaluation value. (A) is a graph regarding the 2nd evaluation value (beta) which concerns on embodiment of this invention, (b) is a graph regarding the average difference which is a conventional evaluation value.

本発明に係る生体検知装置の実施形態について、以下、図面を参照しつつ説明する。上述した特許文献1と同様に、本発明に係る生体検知装置1は、偽造物による「なりすまし」行為を防止するために、被検体となる人体の検知対象部位が生体であるか否かを判定するものであって、主に指紋認証や静脈認証等の生体認証装置と併用されるものである。本発明に係る生体検知装置1は、図1に示すように、CSRR(Complementary Split Ring Resonator:補対型(相補型)スプリットリング共振器)が配置されたBPF(Band Pass Filter:帯域通過フィルタ、以下ではCSRR−BPFとする)2と、検知対象部位をCSRR−BPF2に近接または当接させた際の電磁波応答特性を測定する測定部3と、測定部3によって測定された電磁波応答特性を用いて、生体判定のための演算処理等を行うコンピュータ4とを備えている。本発明に係るCSRR−BPF2は、図2及び図3に示すように、CSRRが同軸上に2組配置された構造を有することを特徴としている。CSRRは、大小2つのスプリットリング共振器(SRR)が内側と外側とでスプリット部が逆になるように同軸上に配置されたものであって、図3に示すように、SRR21とSRR22のペアが1組のCSRR23であり、SRR24とSRR25のペアが1組のCSRR26である。各CSRRにおいては、外側と内側のSRRの幅及びその2つのSRR間の幅が等しく、また、スプリットの幅も等しくなっている。例えば、CSRR23の場合では、a13、a14及びa15の寸法が等しく、また、a9及びa12の寸法が等しい。また、本実施形態では、図1に示すようにCSRR−BPF2を1つだけ配置した例を示しているが、複数配置することで、被検体の複数の検知対象部位の電磁波応答特性を同時に測定できるようにしたり、複数の被検体の検知対象部位の電磁波応答特性を同時に測定できるようにしてもよい。   An embodiment of a living body detection device according to the present invention will be described below with reference to the drawings. Similarly to Patent Document 1 described above, the living body detection apparatus 1 according to the present invention determines whether or not the detection target part of the human body that is the subject is a living body, in order to prevent the “spoofing” action caused by counterfeits. It is mainly used in combination with biometric authentication devices such as fingerprint authentication and vein authentication. As shown in FIG. 1, the living body detection apparatus 1 according to the present invention includes a BPF (Band Pass Filter) in which CSRR (Complementary Split Ring Resonator) is arranged. (Hereinafter referred to as CSRR-BPF) 2, a measurement unit 3 that measures electromagnetic wave response characteristics when the detection target part is brought close to or in contact with CSRR-BPF 2, and an electromagnetic wave response characteristic measured by the measurement unit 3 And a computer 4 that performs arithmetic processing and the like for biometric determination. As shown in FIGS. 2 and 3, the CSRR-BPF 2 according to the present invention has a structure in which two sets of CSRRs are arranged on the same axis. In the CSRR, two large and small split ring resonators (SRR) are arranged on the same axis so that the split portion is reversed between the inside and the outside, and as shown in FIG. 3, a pair of SRR21 and SRR22 Is a set of CSRR 23, and a pair of SRR 24 and SRR 25 is a set of CSRR 26. In each CSRR, the widths of the outer and inner SRRs and the width between the two SRRs are equal, and the widths of the splits are also equal. For example, in the case of CSRR23, the dimensions of a13, a14 and a15 are equal, and the dimensions of a9 and a12 are equal. Further, in the present embodiment, an example in which only one CSRR-BPF 2 is arranged as shown in FIG. 1 is shown, but by arranging a plurality, the electromagnetic wave response characteristics of a plurality of detection target parts of the subject can be measured simultaneously. Alternatively, the electromagnetic wave response characteristics of the detection target portions of a plurality of subjects may be measured simultaneously.

CSRR−BPF2は、被検体(人体)の検知対象部位の得たい情報に応じて所定の中心周波数に設計されるものであって、近接する媒質の影響を強く受けるCSRRを有している。CSRRに媒質を近接させると、その媒質の影響でCSRR−BPF2近傍の電磁界の分布が変化するため、その媒質の深さ方向に対する電磁界の応答、つまり電磁波応答特性を得ることが出来る。   The CSRR-BPF 2 is designed to have a predetermined center frequency according to information desired to be obtained from the detection target part of the subject (human body), and has a CSRR that is strongly influenced by the adjacent medium. When a medium is brought close to the CSRR, the electromagnetic field distribution in the vicinity of the CSRR-BPF 2 changes due to the influence of the medium. Therefore, an electromagnetic field response in the depth direction of the medium, that is, an electromagnetic wave response characteristic can be obtained.

検知対象部位としては、例えば、静脈認証や指紋認証を行う人体指等がある。人体指は中心である骨の周りを筋肉、脂肪、及び皮膚が層状化された構造であると考えられる。各層の体積比を用いて近似的な均一媒質となる人体指を定義することで、その比誘電率と導電率を基に人体指の表皮深さを算出すると、6GHzでは約10mm、10GHzでは約5mm、16GHzでは約2.5mmとなり、高周波になるにつれて人体指の深さ方向に浸透する電磁界は減衰する。従って、静脈認証と併用する生体検知装置1のCSRR−BPF2を設計する場合、静脈認証は3次元分布する血管パターンを認証情報とし、偽装物はその血管パターンを模した立体的な構造物であると考えられるため、人体指全体の特徴を反映した電磁波応答特性を取得できる低周波側を中心周波数とするのが有効であると考えられる。一方で、指紋認証と併用するCSRR−BPF2を設計する場合、指紋認証は人体指先端の表面の紋様を認証情報とし、偽装物はその紋様を模した薄膜で、それを人体指の表面に装着して使用すると考えられるため、人体指の表面の特徴を反映した電磁波応答特性を取得できる高周波側を中心周波数とするのが有効であると考えられる。また、検知対象部位は指だけに限らず、他の部位でもよく、その場合、その部位で適切な特性を得ることができる周波数を中心周波数としてCSRR−BPF2を設計すればよい。   Examples of the detection target part include a human finger that performs vein authentication and fingerprint authentication. The human finger is considered to be a layered structure of muscle, fat, and skin around the central bone. By defining the human finger as an approximate uniform medium using the volume ratio of each layer, and calculating the skin depth of the human finger based on its relative dielectric constant and conductivity, it is about 10 mm at 6 GHz and about 10 GHz at 10 GHz. It becomes about 2.5 mm at 5 mm and 16 GHz, and the electromagnetic field penetrating in the depth direction of the human finger attenuates as the frequency increases. Therefore, when designing the CSRR-BPF 2 of the living body detection apparatus 1 used in combination with vein authentication, vein authentication uses a three-dimensionally distributed blood vessel pattern as authentication information, and the camouflage is a three-dimensional structure imitating the blood vessel pattern. Therefore, it is considered effective to use the low frequency side that can acquire the electromagnetic wave response characteristics reflecting the characteristics of the entire human finger as the center frequency. On the other hand, when designing CSRR-BPF2 to be used in combination with fingerprint authentication, fingerprint authentication uses the pattern on the surface of the human finger tip as authentication information, and the impersonation is a thin film that mimics the pattern, which is attached to the surface of the human finger. Therefore, it is considered effective to set the high frequency side that can acquire the electromagnetic wave response characteristics reflecting the characteristics of the surface of the human finger as the center frequency. Also, the detection target part is not limited to the finger, but may be another part. In that case, the CSRR-BPF 2 may be designed with a frequency at which an appropriate characteristic can be obtained at the part as a center frequency.

本実施形態では、特許文献1と同様に、指紋認証と併用する生体検知装置1を想定し、中心周波数を10GHzとしてCSRR−BPF2を設計した。その構造を図2に示す。図2(a)は上面側から見た図であり、図2(b)は底面側から見た図である。また、図3は、図2におけるCSRR−BPF2の一部を拡大した図であって、図3(a)は図2(a)における二点鎖線で囲ったA部を示した図であり、図3(b)は図2(b)における二点鎖線で囲ったB部を示した図である。上述のように、10GHzにおける人体指の表皮深さは約5mmで、人体指の厚さを約10mmと仮定したときにその半分程度となるため、中心周波数を10GHzで設計したCSRR−BPF2では、人体指の表面から半分程度までの深さ方向の構造の影響を反映した電磁波応答特性を取得できると考えられる。人体指は層状構造であるため、人体指の半分までの深さまでの電磁波応答特性であっても、表面の皮膚から脂肪、筋肉、そして中心の骨までが含まれるため、これらの人体指特有の構造の影響が反映された電磁波応答特性が取得することが期待できる。従って、中心周波数を10GHzで設計したCSRR−BPF2は、表面部分の影響を比較的強く受けつつ、人体指特有の影響も反映した電磁波応答特性を取得できるため、指紋認証と併用するのに適する。   In the present embodiment, as in the case of Patent Document 1, the living body detection apparatus 1 used in combination with fingerprint authentication is assumed, and the CSRR-BPF 2 is designed with a center frequency of 10 GHz. The structure is shown in FIG. FIG. 2A is a view seen from the top surface side, and FIG. 2B is a view seen from the bottom surface side. Moreover, FIG. 3 is the figure which expanded a part of CSRR-BPF2 in FIG. 2, Comprising: FIG. 3 (a) is the figure which showed the A section enclosed with the dashed-two dotted line in FIG. 2 (a), FIG. 3B is a diagram showing a portion B surrounded by a two-dot chain line in FIG. As described above, the skin depth of the human finger at 10 GHz is about 5 mm, and is about half that when the thickness of the human finger is assumed to be about 10 mm. Therefore, in CSRR-BPF2 designed with a center frequency of 10 GHz, It is considered that electromagnetic wave response characteristics reflecting the influence of the structure in the depth direction from the surface of the human finger to about half can be obtained. Since the human finger has a layered structure, even the electromagnetic wave response characteristics up to half the depth of the human finger include the surface skin, fat, muscle, and central bone. It can be expected that electromagnetic wave response characteristics reflecting the influence of the structure will be obtained. Therefore, CSRR-BPF 2 designed with a center frequency of 10 GHz is suitable for use in combination with fingerprint authentication because it can acquire electromagnetic wave response characteristics reflecting the influence specific to the human finger while being relatively strongly influenced by the surface portion.

このCSRR−BPF2は、例えば、特許文献1のCSRR−BPFと同様に、基板として誘電体基板であるガラス硬化性PPO樹脂R−4726(比誘電率εγ=3.4、誘電正接tanδ=0.005、基板厚:1.0mm)を用いることが出来る。この誘電体基板の表面には両面に銅箔が張り付けられており、図2に示すように伝送線路とCSRR構造を切削することで作製できる。図2及び図3のハッチングを施している部分が銅箔である。また、本実施形態における中心周波数を10GHzとして設計したCSRR−BPF2の各部の寸法の一例は、図2及び図3において、a1=26.0mm、a2=19.5mm、a3=10.6mm、a4=4.8mm、a5=10.6mm、a6=7.35mm、a7=4.8mm、a8=7.35mm、a9=0.4mm、a10=0.2mm、a11=0.2mm、a12=0.4mm、a13=0.4mm、a14=0.4mm、a15=0.4mm、a16=0.3mm、a17=0.2mm、a18=0.2mm、a19=0.2mm、b1=11.6mm、b2=11.6mm、b3=8.55mm、b4=2.4mm、b5=8.55mm、b6=0.4mm、b7=1.2mm、b8=1.2mm、b9=1.6mm、b10=1.6mmである。電磁波応答特性を測定する際、CSRR−BPF2のCSRR部を検知対象部位で覆う必要があるが、従来の特許文献1に記載されているCSRRが2組直列に配置された構造を有するCSRR−BPFの場合は、本実施形態と同様に中心周波数が10GHzの設計では、2組のCSRRの端から端までの長さが6.3mmであるのに対して、本実施形態では、1か所の4.8mm四方の正方形の中に2組のCSRRが収まっており、従来よりもCSRR部つまり載置領域は24%の削減となっている。載置領域の削減は、CSRR−BPF2に媒質を近接させた際の影響の差異を局所的に取得することを可能とし、媒質の密着不足に起因する誤検知の低減と検知精度の向上につながる。 This CSRR-BPF2 is, for example, a glass curable PPO resin R-4726, which is a dielectric substrate, as in the case of the CSRR-BPF of Patent Document 1, (relative permittivity ε γ = 3.4, dielectric loss tangent tan δ = 0 0.005, substrate thickness: 1.0 mm) can be used. Copper foils are pasted on both surfaces of the surface of the dielectric substrate, and can be manufactured by cutting the transmission line and CSRR structure as shown in FIG. The hatched portion in FIGS. 2 and 3 is a copper foil. In addition, examples of dimensions of each part of the CSRR-BPF 2 designed with the center frequency of 10 GHz in the present embodiment are as follows: a1 = 26.0 mm, a2 = 19.5 mm, a3 = 10.6 mm, a4 in FIGS. = 4.8mm, a5 = 10.6mm, a6 = 7.35mm, a7 = 4.8mm, a8 = 7.35mm, a9 = 0.4mm, a10 = 0.2mm, a11 = 0.2mm, a12 = 0 .4 mm, a13 = 0.4 mm, a14 = 0.4 mm, a15 = 0.4 mm, a16 = 0.3 mm, a17 = 0.2 mm, a18 = 0.2 mm, a19 = 0.2 mm, b1 = 11.6 mm B2 = 11.6 mm, b3 = 8.55 mm, b4 = 2.4 mm, b5 = 8.55 mm, b6 = 0.4 mm, b7 = 1.2 mm, b8 = 1.2 mm, b9 = 1.6 mm, 10 = is 1.6mm. When measuring electromagnetic wave response characteristics, it is necessary to cover the CSRR part of CSRR-BPF2 with a detection target part, but CSRR-BPF having a structure in which two CSRRs described in Patent Document 1 are arranged in series In this case, as in the present embodiment, in the design with the center frequency of 10 GHz, the length from end to end of the two sets of CSRRs is 6.3 mm, whereas in the present embodiment, one location is provided. Two sets of CSRRs are contained in a 4.8 mm square, and the CSRR part, that is, the mounting area, is reduced by 24% compared to the conventional case. The reduction of the mounting area makes it possible to locally obtain the difference in influence when the medium is brought close to the CSRR-BPF 2, leading to reduction of false detection due to insufficient adhesion of the medium and improvement of detection accuracy. .

また、CSRR−BPF2の両端に設けられるポートP1及びP2には、コネクタ(不図示)がそれぞれ設けられており、図1に示すように、同軸ケーブル5を介して、測定部3に接続されている。また、摩耗等によるCSRRの段差の平坦化、及び銅箔の腐食防止のために、CSRR−BPF2上に厚さ0.2mm程度のポリプロピレンフィルムを設置するようにしてもよい。   The ports P1 and P2 provided at both ends of the CSRR-BPF 2 are provided with connectors (not shown), respectively, and are connected to the measuring unit 3 via the coaxial cable 5 as shown in FIG. Yes. Further, a polypropylene film having a thickness of about 0.2 mm may be installed on the CSRR-BPF 2 in order to flatten the level difference of the CSRR due to wear or the like and to prevent the copper foil from corroding.

測定部3は、例えば、ベクトルネットワークアナライザ等で構成されるものであって、測定のための電磁波を発生させてCSRR−BPF2に入射し、検知対象部位をCSRR−BPF2に近接または当接させた際の電磁波応答特性を測定する。電磁波応答特性としては、本実施形態のようにCSRR−BPF2の入出力端子がP1とP2の2ポートの場合、ポートP1に入射してポートP2へ通過する通過特性S21と、ポートP2に入射してポートP1へ通過する通過特性S12と、ポートP1に入射してポートP1へ反射する反射特性S11と、ポートP2に入射してポートP2へ反射する反射特性S22との4つを取得することが出来る。   The measurement unit 3 is configured by, for example, a vector network analyzer or the like, and generates an electromagnetic wave for measurement, enters the CSRR-BPF2, and brings the detection target part close to or in contact with the CSRR-BPF2. Measure the electromagnetic wave response characteristics. As the electromagnetic wave response characteristics, when the input / output terminals of the CSRR-BPF 2 are two ports P1 and P2 as in this embodiment, the transmission characteristics S21 that enters the port P1 and passes through the port P2 and the port P2 enter. The transmission characteristic S12 passing through the port P1, the reflection characteristic S11 incident on the port P1 and reflected on the port P1, and the reflection characteristic S22 incident on the port P2 and reflected on the port P2 are acquired. I can do it.

測定部3で測定される電磁波応答特性の測定値は、コンピュータ4へと入力される。コンピュータ4は、入力された電磁波応答特性の測定値を用いて、検知対象部位が生体であるか否かの生体判定のための演算処理等を行うものであり、例えば、CPU(Central Processing Unit:中央処理装置)6と、記憶部7と、演算処理部8と、表示部10と、操作部11等を備えている。またこれら各部は、図1に示すように、システムバス12に接続され、このシステムバス12を介して種々のデータ等が入出力されて、CPU6の制御の下、種々の処理が実行される。   The measured value of the electromagnetic wave response characteristic measured by the measurement unit 3 is input to the computer 4. The computer 4 performs arithmetic processing or the like for biometric determination of whether or not the detection target site is a living body using the input measurement value of the electromagnetic wave response characteristics. For example, a CPU (Central Processing Unit: CPU) A central processing unit 6, a storage unit 7, an arithmetic processing unit 8, a display unit 10, an operation unit 11, and the like. As shown in FIG. 1, these units are connected to a system bus 12, and various data and the like are input / output via the system bus 12, and various processes are executed under the control of the CPU 6.

記憶部7は、測定部3から入力される電磁波応答特性の測定値を記憶することが可能であり、また、検知対象部位が生体であるか否かの生体判定を行うための処理プログラム等を格納している。本実施形態では記憶部7を備えているが、他の外部のコンピュータ読み取り可能な記憶媒体を用いてもよい。   The storage unit 7 can store the measurement value of the electromagnetic wave response characteristic input from the measurement unit 3, and a processing program for performing a living body determination as to whether or not the detection target site is a living body. Storing. Although the storage unit 7 is provided in this embodiment, other external computer-readable storage media may be used.

演算処理部8は、記憶部7に格納される処理プログラムに基づいて、CPU6の制御の下、検知対象部位が生体であるか否かの判定を行うための演算処理等を行うものである。演算処理部8の評価値算出部81で、検知対象部位の電磁波応答特性の測定値と、生体の基準値とを用いて評価値を算出し、その算出された評価値に基づいて演算処理部8の生体判定部82で検知対象部位が生体であるか否かの判定を行う。   The arithmetic processing unit 8 performs arithmetic processing for determining whether or not the detection target part is a living body under the control of the CPU 6 based on a processing program stored in the storage unit 7. The evaluation value calculation unit 81 of the calculation processing unit 8 calculates an evaluation value by using the measured value of the electromagnetic wave response characteristic of the detection target part and the reference value of the living body, and the calculation processing unit based on the calculated evaluation value The living body determination unit 82 determines whether the detection target part is a living body.

表示部10は、例えば、液晶ディスプレイ等から構成されるものであって、生体判定結果等を表示するものである。表示部10の代わりに、または、表示部10と共に音声により生体判定結果を知らせるようにしてもよい。操作部11は、マウスやキーボード等で構成されており、操作者が種々のデータ及び操作指令等の入力を行うために使用されるものである。尚、表示部10と操作部11をタッチパネルとして一体的に構成してもよい。   The display unit 10 is composed of, for example, a liquid crystal display or the like, and displays a biological determination result or the like. The living body determination result may be notified by voice instead of the display unit 10 or together with the display unit 10. The operation unit 11 includes a mouse, a keyboard, and the like, and is used by an operator to input various data and operation commands. The display unit 10 and the operation unit 11 may be integrally configured as a touch panel.

以下、この生体検知装置1による生体検知処理の流れについて説明する。まず、検知対象となる被検体が検知対象部位をCSRR−BPF2に近接または当接させる。その際、CSRR−BPF2のCSRR部を検知対象部位で覆うようにする。そして測定部3によって所定の周波数帯域における電磁波応答特性S(f)を測定する。本実施形態では、指紋認証用に中心周波数を10GHzで設計したCSRR−BPF2を用い、検知対象部位は右手人差し指の第1関節から先の部分とし、電磁波応答特性には3GHz〜16GHzにおける通過特性S21の絶対値|S21|を用いる。ただそれに限らず検知対象部位にはどの指を用いてもよいし、指紋認証用でなければ指でない部分でもよい。その場合は得たい情報に応じた中心周波数でCSRR−BPF2を設計すればよい。また、電磁波応答特性は通過特性|S21|に限らず、他の通過特性|S12|、反射特性|S11|または反射特性|S22|を用いるようにしてもよい。また、これらの複数を用いるようにしてもよい。また、電磁波応答特性を測定する周波数帯域についても、設計したCSRR−BPF2の特性に応じて変更してもよい。   Hereinafter, the flow of the living body detection process by the living body detection apparatus 1 will be described. First, the subject to be detected brings the detection target part close to or in contact with CSRR-BPF2. At that time, the CSRR part of CSRR-BPF2 is covered with the detection target part. Then, the electromagnetic wave response characteristic S (f) in a predetermined frequency band is measured by the measuring unit 3. In the present embodiment, the CSRR-BPF 2 designed with a center frequency of 10 GHz for fingerprint authentication is used, the detection target part is the part from the first joint of the right index finger, and the electromagnetic wave response characteristic is a pass characteristic S21 at 3 GHz to 16 GHz. The absolute value of | S21 | is used. However, the present invention is not limited to this, and any finger may be used as the detection target part, or a part other than the finger may be used for fingerprint authentication. In that case, the CSRR-BPF 2 may be designed with a center frequency corresponding to the information desired to be obtained. Further, the electromagnetic wave response characteristic is not limited to the transmission characteristic | S21 |, but other transmission characteristics | S12 |, reflection characteristics | S11 |, or reflection characteristics | S22 | may be used. A plurality of these may be used. Moreover, you may change also about the frequency band which measures electromagnetic wave response characteristics according to the characteristic of designed CSRR-BPF2.

測定部3によって測定された電磁波応答特性の測定値S(f)は、コンピュータ4へと入力される。コンピュータ4の演算処理部8の評価値算出部81では、入力された測定値S(f)と、生体の電磁波応答特性の基準値T(f)とを用いて評価値を算出する。   The measured value S (f) of the electromagnetic wave response characteristic measured by the measuring unit 3 is input to the computer 4. The evaluation value calculation unit 81 of the arithmetic processing unit 8 of the computer 4 calculates an evaluation value using the input measurement value S (f) and the reference value T (f) of the electromagnetic wave response characteristic of the living body.

生体の電磁波応答特性の基準値T(f)は、評価値算出部81で算出され、本実施形態では、測定値S(f)と同様の測定条件で事前に複数回測定して記憶部7に記憶させておいた被検体の検知対象部位の電磁波応答特性の測定値を用いて、それらを周波数毎に平均化したものを基準値T(f)として算出する。この時、基準値T(f)の標準偏差σ(f)も同時に算出する。基準値T(f)の算出には、決まった一定回数の電磁波応答特性の測定値を用いてもよいが、用いる測定値の数が増えるほど基準値T(f)の信頼性が上がって誤検知の低減につながると考えられるので、生体判定を行う毎に、生体判定後に生体であると判定された場合、その測定値S(f)を記憶部7に記憶させて、次回以降の基準値T(f)の算出に用いる測定値に加えていってもよい。その際、例えば、指紋認証と併用する場合、指紋認証で指紋が一致したと判定された後に生体検知装置1によって生体であるか否かの判定が行われると考えられるので、その指紋データに電磁波応答特性の測定値を紐づけして記憶部7に記憶させる等しておいてもよい。また、ここでは基準値T(f)は電磁波応答特性の測定値を平均値化したものを用いているが、それに限定されず、中央値等の他の統計値を用いてもよい。また、ここでは基準値T(f)の算出に、事前に測定しておいた被検体の検知対象部位の測定値を用いているが、検知対象部位以外の部位、例えば検知対象部位が右手人差し指であれば、その他の中指や薬指等の電磁波応答特性の測定値を用いてもよい。この場合は、記憶部7に基準値T(f)算出のための測定値を記憶させておかずに、CSRR−BPF2を複数配置して、検知対象部位の電磁波応答特性S(f)の測定と同時に、基準値T(f)に用いる非検知対象部位の電磁波応答特性を測定できるようにして基準値T(f)を算出するようにしてもよい。また、被検体とは異なる複数人の検知対象部位の電磁波応答特性を事前に測定して測定値を記憶部7に記憶させておき、それらの測定値を用いて基準値T(f)を算出してもよい。ただ、判別精度を向上させるためには、本実施形態のように同一被検体の同一検知対象部位の電磁波応答特性の測定値を用いて基準値T(f)を算出することが好ましい。   The reference value T (f) of the electromagnetic wave response characteristic of the living body is calculated by the evaluation value calculation unit 81. In the present embodiment, the storage unit 7 performs measurement a plurality of times in advance under the same measurement conditions as the measurement value S (f). Using the measured values of the electromagnetic wave response characteristics of the detection target part of the subject stored in the above, the average of these values for each frequency is calculated as the reference value T (f). At this time, the standard deviation σ (f) of the reference value T (f) is also calculated at the same time. For calculation of the reference value T (f), a fixed number of measured values of the electromagnetic wave response characteristics may be used. However, as the number of measured values used increases, the reliability of the reference value T (f) increases and the error is increased. Since it is thought to lead to a reduction in detection, whenever it is determined that it is a living body after the living body determination, the measured value S (f) is stored in the storage unit 7 every time the living body is determined, You may add to the measured value used for calculation of T (f). In this case, for example, when used in combination with fingerprint authentication, it is considered that the biometric detection device 1 determines whether or not it is a living body after it is determined that the fingerprints match in the fingerprint authentication. The measurement value of the response characteristic may be associated and stored in the storage unit 7. Here, the reference value T (f) is obtained by averaging the measured values of the electromagnetic wave response characteristics, but is not limited thereto, and other statistical values such as a median value may be used. Here, the measurement value of the detection target part of the subject that has been measured in advance is used to calculate the reference value T (f). However, a part other than the detection target part, for example, the detection target part is the right index finger. If so, other measured values of electromagnetic wave response characteristics such as the middle finger and ring finger may be used. In this case, the measurement value for calculating the reference value T (f) is not stored in the storage unit 7, and a plurality of CSRR-BPFs 2 are arranged to measure the electromagnetic wave response characteristic S (f) of the detection target part. At the same time, the reference value T (f) may be calculated such that the electromagnetic wave response characteristics of the non-detection target part used for the reference value T (f) can be measured. In addition, the electromagnetic wave response characteristics of a plurality of detection target parts different from the subject are measured in advance, and the measurement values are stored in the storage unit 7, and the reference value T (f) is calculated using these measurement values. May be. However, in order to improve the discrimination accuracy, it is preferable to calculate the reference value T (f) using the measured value of the electromagnetic wave response characteristics of the same detection target part of the same subject as in this embodiment.

評価値算出部81では、評価値として下記の式(1)で表される第1の評価値αを算出する。ここで、k(f)は式(2)で表される基準値T(f)と測定値S(f)の差を基準値T(f)の標準偏差σ(f)で割った一致性指数であり、w(k(f))は式(3)で表される一致性指数k(f)に応じた重み付けを行う重み関数であり、pは所定のしきい値であり、w(f)は周波数毎の重み付けを行う重み関数であり、fは使用する周波数帯域における下限、fは上限である。まず、式(2)及び式(3)によって一致性の重みw(k(f))が算出される。一致性の重み関数w(k(f))は0から1までの値をとり、1に近いほど測定値S(f)が基準値T(f)に近いことを示す関数であって、測定値S(f)と基準値T(f)との差が、基準値T(f)の標準偏差σ(f)のp倍の範囲内であれば、一致性があるとして一致性の重みw(k(f))=1とし、それを超えると一致性がないとしてw(k(f))=0とする。同一被検体の同一検知対象部位であっても電磁波応答特性の測定値は完全に一致することはなく、測定時の発汗状態等の被検体のコンディションや検知対象部位のCSRR−BPF2への近接のさせ方等によって一定の分散を持つ。従って、測定値S(f)が、基準値T(f)と同一の被検体の同一の検知対象部位によるものであったとしても、基準値T(f)から離れた値となることがあり、どの程度離れた範囲までの値を基準値T(f)と同一であるとみなすかを決めるのがしきい値pである。本実施形態においてはp=2.7を用いる。この値は、基準値T(f)の算出に用いる複数回の被検体の検知対象部位の電磁波応答特性の測定値が正規分布に従うとした場合、測定値S(f)が基準値T(f)と同一の被検体及び検知対象部位であれば、その測定値S(f)は99.3%の確率でw(k(f))=1となる範囲に入ることを意味する。このしきい値pの値は、大きくしすぎた場合は偽装物の測定値S(f)を基準値T(f)と一致しているとみなしてしまう確率が上がり、小さくしすぎた場合は生体の測定値S(f)を基準値T(f)と不一致であるとみなしてしまう確率が上がるので、p=2.0から3.0までの値にするのが好ましい。また、本実施形態では一致性の重み関数w(k(f))の算出に式(3)を用いたが、それに限らず想定される偽装物の種類や厚さ等によって適切に設定することで判別精度の向上を図ることができる。そして式(1)によって、一致性の重みw(k(f))に周波数毎の重みw(f)を乗じて使用する周波数帯域で相加平均した値を第1の評価値αとして算出する。ここで、周波数毎の重み付けを行う重み関数w(f)は、生体と偽装物とで電磁波応答特性の差異があまり見られない周波数帯において評価値に与える影響を軽減して偽装物による差異を強調するために用いられ、想定される偽装物の種類や厚さ等によって適切に設定することで判別精度の向上を図ることができる。w(f)は0から1までの値をとり、例えば、差異を強調したい周波数帯ではw(f)=1、差異が小さく評価値に対する影響を無くしたい周波数帯ではw(f)=0のようにすればよい。一致性の重み関数w(k(f))及び周波数毎の重み関数w(f)は共に0から1までの値をとる関数であるため、第1の評価値αも0から1までの値をとる評価値であり、1に近い値となるほど測定値S(f)が生体によるものである可能性が高いことを示す。 The evaluation value calculation unit 81 calculates a first evaluation value α represented by the following formula (1) as an evaluation value. Here, k (f) is the coincidence obtained by dividing the difference between the reference value T (f) represented by the equation (2) and the measured value S (f) by the standard deviation σ (f) of the reference value T (f). Is an index, w v (k (f)) is a weighting function that performs weighting according to the coincidence index k (f) expressed by Equation (3), p is a predetermined threshold value, and w f (f) is a weighting function for weighting of each frequency, the lower limit of the frequency band is f L used, the f H is the upper limit. First, the consistency weight w v (k (f)) is calculated by the equations (2) and (3). The consistency weight function w v (k (f)) takes a value from 0 to 1, and the closer to 1, the closer the measured value S (f) is to the reference value T (f). If the difference between the measured value S (f) and the reference value T (f) is within a range of p times the standard deviation σ (f) of the reference value T (f), it is determined that there is consistency and the consistency weight w v (k (f)) = 1, and if it exceeds that, it is assumed that there is no match and w v (k (f)) = 0. The measured values of the electromagnetic wave response characteristics do not completely match even in the same detection target part of the same subject, the condition of the subject such as the sweating state at the time of measurement, and the proximity of the detection target part to the CSRR-BPF 2 It has a certain variance depending on how it is applied. Therefore, even if the measured value S (f) is from the same detection target part of the same subject as the reference value T (f), the measured value S (f) may be a value that is far from the reference value T (f). The threshold value p determines how far away the values are regarded as being equal to the reference value T (f). In this embodiment, p = 2.7 is used. This value is obtained when the measured value of the electromagnetic wave response characteristic of the detection target part of the subject for a plurality of times used for calculating the reference value T (f) follows a normal distribution, the measured value S (f) is the reference value T (f ) Means that the measured value S (f) falls within a range where w v (k (f)) = 1 at a probability of 99.3%. If the threshold value p is too large, the probability that the measured value S (f) of the camouflage will be regarded as coincident with the reference value T (f) is increased. If the threshold value p is too small, Since the probability that the measured value S (f) of the living body is regarded as inconsistent with the reference value T (f) increases, it is preferable to set the value from p = 2.0 to 3.0. In the present embodiment, the expression (3) is used to calculate the consistency weight function w v (k (f)). However, the present invention is not limited thereto, and is appropriately set depending on the type and thickness of the assumed disguise. Thus, the discrimination accuracy can be improved. A value obtained by multiplying the consistency weight w v (k (f)) by the weight w f (f) for each frequency and using the arithmetic frequency in the frequency band to be used by the expression (1) is set as the first evaluation value α. calculate. Here, the weighting function w f (f) for performing weighting for each frequency reduces the influence on the evaluation value in a frequency band in which a difference in electromagnetic wave response characteristics between the living body and the camouflage is not so much, and the difference due to the camouflage. It is possible to improve the discrimination accuracy by appropriately setting depending on the type and thickness of the assumed fake material. w f (f) has a value of from 0 to 1, for example, in the frequency band that you want to emphasize the difference w f (f) = 1, in the frequency band you want to eliminate the influence on the difference is small evaluation value w f (f) = 0. Since the consistency weight function w v (k (f)) and the frequency-specific weight function w f (f) both take values from 0 to 1, the first evaluation value α is also from 0 to 1. The evaluation value is a value closer to 1, and the closer the value is to 1, the higher the possibility that the measured value S (f) is due to a living body.

Figure 2019037664
Figure 2019037664

Figure 2019037664
Figure 2019037664

Figure 2019037664
Figure 2019037664

一方、従来は特許文献1に記載されているように、評価値として類似度を算出して用いていた。類似度(Similarity)は、下記の式(5)によって算出される。ここでS(f)は測定部3で測定した電磁波応答特性の測定値、T(f)は基準値、fは使用する周波数帯域の上限、fは下限であり、上述の第1の評価値αで用いたものと同様である。Snorm(f)は、式(6)で表され、Snorm(f)の最小値と基準値T(f)の最小値が一致するように測定値S(f)を正規化した値であり、Dは、式(7)で表され、測定値S(f)と基準値T(f)との使用する周波数帯域における最小値の差である。これらの式からも分かるように、類似度は、基準値T(f)の算出に用いる電磁波応答特性の測定値のばらつきが考慮されていないため、極めて薄い偽装物の場合、生体との差異が現れにくい評価値であった。それに対して本発明で算出する第1の評価値αは、上述のように、偽装物の添付がない生体の場合の電磁波応答特性の測定値のばらつきを許容し、一方で偽装物の添付がある場合の電磁波応答特性の測定値の変化を強調抽出する評価値となっているため、極めて薄い偽装物に対しても判別精度が向上している。 On the other hand, as described in Patent Document 1, conventionally, the similarity is calculated and used as the evaluation value. Similarity (Similarity) is calculated by the following formula (5). Here S (f) is the measured value of the electromagnetic response characteristics measured by the measurement unit 3, T (f) is the reference value, f H is the upper limit of the frequency band used, f L is the lower limit, the first of the above mentioned The same as that used for the evaluation value α. S norm (f) is expressed by equation (6), and is a value obtained by normalizing the measured value S (f) so that the minimum value of S norm (f) matches the minimum value of the reference value T (f). Yes, D n is expressed by equation (7), and is the difference between the minimum value in the frequency band to be used between the measured value S (f) and the reference value T (f). As can be seen from these equations, the similarity does not take into account variations in the measured value of the electromagnetic wave response characteristic used to calculate the reference value T (f). The evaluation value was difficult to appear. On the other hand, the first evaluation value α calculated by the present invention allows variation in the measured value of the electromagnetic wave response characteristics in the case of a living body without attachment of a camouflage as described above. Since the evaluation value emphasizes and extracts the change in the measured value of the electromagnetic wave response characteristic in a certain case, the discrimination accuracy is improved even for an extremely thin camouflage.

Figure 2019037664
Figure 2019037664

Figure 2019037664
Figure 2019037664

Figure 2019037664
Figure 2019037664

また、評価値算出部81は、第1の評価値αに加えて、下記の式(4)で表される第2の評価値βを評価値として算出する。第2の評価値βは、特許文献1に記載のように従来評価値として用いられていた下記の式(8)で表される平均差(Mean Difference, MD)に周波数毎の重み関数w(f)を導入したものである。平均差は、測定値S(f)と基準値T(f)におけるグラフ曲線の差異を平均的に判定する評価値であり、0に近い値であるほど測定値S(f)は生体によるものである可能性が高く、大きな値であるほど測定値S(f)は偽装物によるものである可能性が高いことを示す。 In addition to the first evaluation value α, the evaluation value calculation unit 81 calculates a second evaluation value β expressed by the following formula (4) as an evaluation value. The second evaluation value β is obtained by adding a weight function w f for each frequency to an average difference (Mean Difference, MD) represented by the following formula (8) used as a conventional evaluation value as described in Patent Document 1. (F) is introduced. The average difference is an evaluation value that averages the difference between the graph curves of the measured value S (f) and the reference value T (f). The closer the value is to 0, the more the measured value S (f) is from the living body. The higher the value, the higher the possibility that the measured value S (f) is due to the camouflage.

Figure 2019037664
Figure 2019037664

Figure 2019037664
Figure 2019037664

生体判定部82では、評価値算出部81で算出された第1の評価値αと、第2の評価値βとの2つの評価値に基づいて、検知対象部位が生体であるか否かの判定を行う。生体判定部82では、例えば、第1の評価値α及び第2の評価値βに対して、それぞれしきい値を設定しておき、それぞれのしきい値内に第1の評価値αと第2の評価値βが入っているか否かを判定することにより生体であるか否かを判定する。つまり、評価値算出部81で算出された第1の評価値αと第2の評価値βが共にしきい値内にある場合には、検知対象部位が生体であると判定し、それ以外の場合には、検知対象部位が生体でないと判定する。尚、第1の評価値αと第2の評価値βの一方だけを用いて生体判定を行うようにしてもよいが、より判別精度を向上させるためには、第1の評価値αと第2の評価値β等の2つの評価値を用いることが好ましい。   In the living body determination unit 82, based on the two evaluation values of the first evaluation value α and the second evaluation value β calculated by the evaluation value calculation unit 81, whether or not the detection target site is a living body is determined. Make a decision. In the living body determination unit 82, for example, threshold values are set for the first evaluation value α and the second evaluation value β, respectively, and the first evaluation value α and the first evaluation value are within the respective threshold values. It is determined whether or not it is a living body by determining whether or not the evaluation value β of 2 is included. That is, when the first evaluation value α and the second evaluation value β calculated by the evaluation value calculation unit 81 are both within the threshold value, it is determined that the detection target part is a living body, and other than that In this case, it is determined that the detection target part is not a living body. Note that the living body determination may be performed using only one of the first evaluation value α and the second evaluation value β, but in order to further improve the discrimination accuracy, the first evaluation value α and the first evaluation value α It is preferable to use two evaluation values such as an evaluation value β of 2.

以上が本実施形態に係る生体検知装置1による生体検知処理の流れであるが、以下、従来の特許文献1に記載の生体検知装置からの改良点である、本発明に係る生体検知装置1のCSRR−BPF2、及び評価値算出部81で算出する第1の評価値αと第2の評価値βによって、従来と比べてどれだけ判別精度が向上するか評価するための実験を行ったのでその結果を示す。   The above is the flow of the biological detection processing by the biological detection device 1 according to the present embodiment. Hereinafter, the biological detection device 1 according to the present invention, which is an improvement from the conventional biological detection device described in Patent Document 1, will be described. An experiment for evaluating how much the discrimination accuracy is improved by the CSRR-BPF2 and the first evaluation value α and the second evaluation value β calculated by the evaluation value calculation unit 81 is performed. Results are shown.

まず、本発明に係るCSRRが2組同軸上に配置された構造を有するCSRR−BPF2についての実験結果を示す。本発明のCSRR−BPF2の構造は図2及び図3に示す通りである。従来のCSRRが2組直列に配置された構造を有するCSRR−BPFでは、検知対象部位の電磁波応答特性を測定する際に、直列に並んだ2組のCSRRの両方を検知対象部位で覆うようにしなければならなかったが、本発明に係るCSRR−BPF2では2組のCSRRが1か所に配置されているため、検知対象部位で覆いやすくなっている。また、上述したように、本発明の中心周波数を10GHzで設計したCSRRが2組同軸上に配置された構造を有するCSRR−BPF2(同軸型10GHzCSRR−BPF2)のCSRR部の寸法は4.8mm四方であるのに対して、従来の中心周波数を10GHzで設計したCSRRが2組直列に配置された構造を有するCSRR−BPF(直列型10GHzCSRR−BPF)では2組のCSRR部の端から端までの寸法は6.3mmであり、検知対象部位の載置領域は約24%の削減となった。   First, the experimental result about CSRR-BPF2 which has a structure where two CSRRs according to the present invention are arranged on the same axis is shown. The structure of CSRR-BPF2 of the present invention is as shown in FIGS. In the CSRR-BPF having a structure in which two sets of conventional CSRRs are arranged in series, when measuring the electromagnetic wave response characteristics of the detection target part, both the two sets of CSRRs arranged in series are covered with the detection target part. Although it was necessary, in the CSRR-BPF 2 according to the present invention, two sets of CSRRs are arranged in one place, so that it is easy to cover the detection target part. As described above, the CSRR portion of the CSRR-BPF2 (coaxial type 10 GHz CSRR-BPF2) having a structure in which two sets of CSRRs designed with a center frequency of 10 GHz according to the present invention are arranged on the same axis is 4.8 mm square. On the other hand, in the CSRR-BPF (series type 10 GHz CSRR-BPF) having a structure in which two sets of CSRRs designed at a center frequency of 10 GHz are arranged in series, the two sets of CSRR sections are connected from end to end. The dimension was 6.3 mm, and the placement area of the detection target part was reduced by about 24%.

また、本発明の同軸型10GHzCSRR−BPF2と従来の直列型10GHzCSRR−BPFの通過特性|S21|の測定結果を図4に示す。実線が本発明の同軸型10GHzCSRR−BPF2の測定結果であり、帯域幅はおおよそ4GHz〜16GHzの12GHzである。点線が従来の直列型10GHzCSRR−BPFの測定結果であり、帯域幅はおおよそ8GHz〜12GHzの4GHzである。動作周波数帯が広域化していることが分かる。   FIG. 4 shows the measurement results of the pass characteristic | S21 | of the coaxial 10 GHz CSRR-BPF 2 of the present invention and the conventional serial 10 GHz CSRR-BPF. A solid line is a measurement result of the coaxial 10 GHz CSRR-BPF 2 of the present invention, and a bandwidth is approximately 12 GHz from 4 GHz to 16 GHz. A dotted line is the measurement result of the conventional serial type 10 GHz CSRR-BPF, and the bandwidth is about 4 GHz from 8 GHz to 12 GHz. It can be seen that the operating frequency band is widespread.

さらに、本発明の同軸型10GHzCSRR−BPF2及び従来の直列型10GHzCSRR−BPFを用いた生体検知実験の結果を図5に示す。20名の被検体に対して、人体指として偽装物の添付のない右手人差し指を用いて1名につき10回ずつ測定し、偽装指として偽装物である人体指表面部の皮膚の電気定数を模擬した厚さ0.3mmの皮膚ファントムをシート状に加工したものを右手人差し指に貼り付けて1名につき5回ずつ測定した。ここで、評価値算出部81で算出する評価値には、従来の類似度と平均差を用いた。これは本発明によるCSRR−BPF2によってどれだけ判別精度が向上するかを従来のものと比較評価するためである。また基準値T(f)には全被検体の人体指の5回の測定値を平均化した値を用い、検知対象の測定値S(f)には基準値T(f)の算出に用いなかった5回の人体指の測定値と偽装指の測定値を使用した。また、図4より本発明の同軸型10GHzCSRR−BPF2は16GHzにおいて通過特性|S21|が最小であったため、類似度の算出に使用する最小値を検索する周波数帯域を5〜16GHzとして計算した。本発明及び従来のどちらもCSRR−BPFの表面に厚さ0.2mmのポリプロピレンフィルムを配置して測定を行った。図5(a)が本発明の同軸型10GHzCSRR−BPF2による結果であり、縦軸に類似度、横軸に平均差をとり、中抜きのプロットが人体指、黒塗りのプロットが偽装指を示す。図5(b)が従来の直列型10GHzCSRR−BPFによる結果であり、縦軸に類似度、横軸に平均差をとり、中抜きのプロットが人体指、黒塗りのプロットが偽装指を示す。図5を見ると、本発明の同軸型10GHzCSRR−BPF2の方が、従来の直列型10GHzCSRR−BPFよりも人体指と偽装指のプロットが分離されていることが分かるが、より定量的に評価を行うため、偽装物を生体と判定する割合(False Acceptance Rate, FAR)を0%とした際の生体を偽装物と判定する割合(False Rejection Rate, FRR)と、FRRを0%とした際のFARと、FARとFRRが等しくなる値(Equal Error Rate, EER)を用いて評価した。その結果を以下の表1に示す。ここで、FARを0%とした際のFRRというのは、測定に用いた偽装指を全て受け入れないしきい値を設けた際に、人体指が受け入れられない割合を示す。具体的には、偽装指の平均差の最小値及び類似度の最大値をしきい値とし、偽装指の平均値の最小値以下かつ類似度の最大値以上の領域に入らない人体指の割合である。また、FRRを0%とした際のFARというのは、測定に用いた人体指を全て受け入れるしきい値を設けた際に、偽装指を受け入れてしまう割合を示す。具体的には、人体指の平均差の最大値及び類似度の最小値をしきい値として、人体指の平均差の最大値以下かつ類似度の最小値以上の領域に入ってしまう偽装物の割合である。これらの指標は低ければ低いほど判別精度が高いことを示す。表1より、本発明による同軸型10GHzCSRR−BPF2の方が従来の直列型10GHzCSRR−BPFよりもFRR(FAR=0%)、FAR(FRR=0%)、EERの全てにおいて有意性のある結果が得られ、判別精度が向上していることが分かる。   Furthermore, the result of the living body detection experiment using the coaxial 10 GHz CSRR-BPF 2 of the present invention and the conventional serial 10 GHz CSRR-BPF is shown in FIG. 20 subjects were measured 10 times per person using the right index finger without a fake attachment as a human finger, and the electrical constant of the skin on the surface of the human finger, which is a fake finger, was simulated. The processed 0.3 mm-thick skin phantom was processed into a sheet shape and attached to the right index finger, and measurement was performed 5 times per person. Here, the conventional similarity and average difference were used for the evaluation value calculated by the evaluation value calculation unit 81. This is to compare and evaluate how much the discrimination accuracy is improved by the CSRR-BPF 2 according to the present invention. In addition, a value obtained by averaging five measurement values of human fingers of all subjects is used as the reference value T (f), and a measurement value S (f) to be detected is used to calculate the reference value T (f). Five human finger measurements and fake finger measurements were used. Further, from FIG. 4, the coaxial type 10 GHz CSRR-BPF 2 of the present invention has the minimum pass characteristic | S21 | at 16 GHz, so the frequency band for searching the minimum value used for calculating the similarity is calculated as 5 to 16 GHz. In both the present invention and the conventional method, measurement was performed by placing a polypropylene film having a thickness of 0.2 mm on the surface of CSRR-BPF. FIG. 5A shows the result of the coaxial 10 GHz CSRR-BPF 2 according to the present invention. The vertical axis indicates similarity, the horizontal axis indicates the average difference, the hollow plot indicates a human finger, and the black plot indicates a camouflaged finger. . FIG. 5B shows the result of the conventional serial 10 GHz CSRR-BPF. The vertical axis represents the similarity, the horizontal axis represents the average difference, the hollow plot indicates the human finger, and the black plot indicates the fake finger. FIG. 5 shows that the coaxial type 10 GHz CSRR-BPF 2 of the present invention separates the plots of the human finger and the camouflaged finger from the conventional series type 10 GHz CSRR-BPF, but the evaluation is more quantitative. In order to do this, the rate at which the rate at which a fake is determined to be a living body (False Acceptance Rate, FAR) is 0%, and the rate at which the body is determined to be a fake (False Rejection Rate, FRR). Evaluation was made using FAR and a value (Equal Error Rate, EER) at which FAR and FRR are equal. The results are shown in Table 1 below. Here, the FRR when the FAR is set to 0% indicates a ratio at which a human finger is not accepted when a threshold value is set that does not accept all the fake fingers used for measurement. Specifically, the percentage of human fingers that do not enter the area below the minimum value of the average value of the fake fingers and above the maximum value of the similarity, with the minimum value of the average difference of the fake fingers and the maximum value of the similarity as threshold values It is. The FAR when the FRR is set to 0% indicates the ratio of accepting a fake finger when a threshold value for accepting all human fingers used for measurement is provided. Specifically, with the maximum value of the average difference of the human fingers and the minimum value of the similarity as threshold values, the impersonator that enters the area below the maximum value of the average difference of the human fingers and above the minimum value of the similarity. It is a ratio. The lower these indices are, the higher the discrimination accuracy is. Table 1 shows that the coaxial type 10 GHz CSRR-BPF 2 according to the present invention has more significant results in all of FRR (FAR = 0%), FAR (FRR = 0%), and EER than the conventional serial type 10 GHz CSRR-BPF. It can be seen that the discrimination accuracy is improved.

Figure 2019037664
Figure 2019037664

次に、本発明に係る評価値算出部81で算出する第1の評価値αを評価するための実験の結果を図6に示す。ここでは本発明の第1の評価値αと、従来の評価値である類似度の比較を行い、第1の評価値αによってどれだけ判別精度が向上するか評価するため、CSRR−BPF2には従来と同様の直列型10GHzCSRR−BPFを用いた。第1の評価値αは上述のように式(1)から式(3)によって算出され、ここではしきい値pはp=2.7、周波数毎の重みw(f)は使用する周波数帯域全域においてw(f)=1とした。人体指に装着する偽装物としては、22.0mm×14.0mmの寸法に加工した0.5mm厚の皮膚ファントムを使用した。図6(a)が本発明の第1の評価値αを用いた結果であり、縦軸に第1の評価値αを、横軸に平均差をとった。図6(b)が従来の評価値である類似度を用いた結果であり、縦軸に類似度、横軸に平均差をとった。図6の中抜きのプロットは人体指、黒塗りのプロットは偽装指を示す。図6より、従来の評価値である類似度では、人体指はほぼ1に近い値であるのに対して、偽装指は最大値が0.988で、さらにほとんどが0.9以上の値になっているが、本発明の第1の評価値αでは、人体指はほぼ1に近い値であるのに対して、偽装指は最大値でも0.692となり、非常によく人体指と偽装指の区別が出来ており、判別精度が向上していることが分かる。 Next, FIG. 6 shows a result of an experiment for evaluating the first evaluation value α calculated by the evaluation value calculation unit 81 according to the present invention. Here, the first evaluation value α of the present invention is compared with the similarity that is the conventional evaluation value, and in order to evaluate how much the discrimination accuracy is improved by the first evaluation value α, the CSRR-BPF 2 includes A serial 10 GHz CSRR-BPF similar to the conventional one was used. As described above, the first evaluation value α is calculated by the equations (1) to (3). Here, the threshold value p is p = 2.7, and the weight w f (f) for each frequency is the frequency to be used. W f (f) = 1 in the entire band. As a camouflage worn on the human finger, a 0.5 mm thick skin phantom processed to a size of 22.0 mm × 14.0 mm was used. FIG. 6A shows the result of using the first evaluation value α of the present invention. The vertical axis represents the first evaluation value α, and the horizontal axis represents the average difference. FIG. 6B shows the result of using the similarity that is a conventional evaluation value, where the vertical axis represents the similarity and the horizontal axis represents the average difference. A hollow plot in FIG. 6 indicates a human finger, and a black plot indicates a fake finger. As shown in FIG. 6, in the similarity that is the conventional evaluation value, the human finger is a value close to 1, whereas the fake finger has a maximum value of 0.988, and most of the values are 0.9 or more. However, in the first evaluation value α of the present invention, the human finger is a value close to 1, whereas the fake finger has a maximum value of 0.692, which is very good. It can be seen that the discrimination accuracy is improved.

次に、本発明に係る評価値算出部81で算出する第2の評価値βを評価するための実験の結果を図7に示す。こちらもCSRR−BPF2には従来の直列型10GHzCSRR−BPFを用いて測定した。上述したように、第2の評価値βは式(4)によって算出され、従来の評価値である平均差に、周波数毎の重みw(f)を導入した評価値である。人体指に装着する偽装物としては、22.0mm×14.0mmの寸法に加工したシリコンゴムを使用した。特に0.1mm厚のシリコンゴムを偽装物として用いる場合は、通過特性|S21|の高域において人体指との差異が小さくなる。このため12GHz以下の周波数帯域での偽装物による差異を強調するために、12−16GHzにおいてw(f)=0とし、5−12GHzにおいてw(f)=1とした。図7(a)が本発明の第2の評価値βを用いた結果であり、横軸に第2の評価値βを、縦軸には第1の評価値αをとった。図7(b)が従来の評価値である平均差を用いた結果であり、横軸に平均差を、縦軸には第1の評価値αをとった。図7を見ただけでは一見差異が分かりづらいので、定量的な評価を行うため、上述したFRRを0%とした際のFAR、及びFARを0%とした際のFRRを用いて評価した。その結果を以下の表2に示す。本発明による第2の評価値βを用いて適切な重みw(f)を導入することで、FRR(FAR=0%)が5.2%から1.7%まで改善し、判別精度が向上していることが分かる。 Next, FIG. 7 shows the result of an experiment for evaluating the second evaluation value β calculated by the evaluation value calculation unit 81 according to the present invention. This was also measured using a conventional series 10 GHz CSRR-BPF for CSRR-BPF2. As described above, the second evaluation value β is calculated by the equation (4), and is an evaluation value in which the weight w f (f) for each frequency is introduced into the average difference that is the conventional evaluation value. As a camouflage worn on the human finger, silicon rubber processed to a size of 22.0 mm × 14.0 mm was used. In particular, when using 0.1 mm-thick silicon rubber as a camouflage, the difference from the human finger becomes small in the high range of the passing characteristic | S21 |. For this reason, in order to emphasize the difference due to the camouflage in the frequency band of 12 GHz or less, w f (f) = 0 was set at 12-16 GHz and w f (f) = 1 was set at 5-12 GHz. FIG. 7A shows the result of using the second evaluation value β of the present invention. The horizontal axis represents the second evaluation value β, and the vertical axis represents the first evaluation value α. FIG. 7B shows the result of using the average difference, which is a conventional evaluation value. The horizontal axis represents the average difference, and the vertical axis represents the first evaluation value α. Since it is difficult to understand the difference at first glance simply by looking at FIG. 7, in order to perform quantitative evaluation, evaluation was performed using the FAR when the FRR was set to 0% and the FRR when the FAR was set to 0%. The results are shown in Table 2 below. By introducing an appropriate weight w f (f) using the second evaluation value β according to the present invention, FRR (FAR = 0%) is improved from 5.2% to 1.7%, and the discrimination accuracy is improved. It can be seen that it has improved.

Figure 2019037664
Figure 2019037664

以上より、本発明に係る生体検知装置1のCSRR−BPF2、及び評価値算出部81で算出する第1の評価値αと第2の評価値βの全てにおいてそれぞれが、従来の特許文献1に記載の生体検知装置で用いられていたものよりも判別精度の向上に寄与しており、本発明に係る生体検知装置1を用いることで判別精度の高い生体検知を行うことができる。   As described above, the CSRR-BPF 2 of the living body detection apparatus 1 according to the present invention and the first evaluation value α and the second evaluation value β calculated by the evaluation value calculation unit 81 are respectively described in the conventional Patent Document 1. It contributes to the improvement of discrimination accuracy than that used in the described living body detection device, and by using the living body detection device 1 according to the present invention, living body detection with high discrimination accuracy can be performed.

尚、本発明の実施の形態は上述のものに限らず、本発明の思想の範囲を逸脱しない範囲で適宜変更することが出来る。   The embodiment of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the idea of the present invention.

本発明に係る生体検知装置は、例えば、指紋認証や静脈認証等の個人生体認証技術に組み合わせて用いることで、信頼性の高い情報セキュリティ技術として有効に利用することができる。   The biometric detection apparatus according to the present invention can be effectively used as a highly reliable information security technique by using it in combination with personal biometric authentication techniques such as fingerprint authentication and vein authentication.

1 生体検知装置
2 CSRR−BPF
3 測定部
7 記憶部
81 評価値算出部
82 生体判定部
1 Living body detection device 2 CSRR-BPF
3 Measurement Unit 7 Storage Unit 81 Evaluation Value Calculation Unit 82 Biological Determination Unit

Claims (4)

被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する帯域通過フィルタと、
電磁波を発生させ、前記検知対象部位を前記帯域通過フィルタに近接又は当接させた際の所定の周波数帯域の電磁波応答特性を測定する測定部と、
前記測定部で測定された前記電磁波応答特性の測定値と、生体の電磁波応答特性の基準値とを用いて評価値を算出する評価値算出部と、
前記評価値算出部で算出された前記評価値に基づいて、前記検知対象部位が生体であるか否かを判定する生体判定部と、を備える生体検知装置であって、
前記帯域通過フィルタが、
大小2つのスプリットリング共振器が同軸上に内側と外側とでスプリット部が逆になるように配置された補対型(相補型)スプリットリング共振器を、2組同軸上に配置した構造を有することを特徴とする生体検知装置。
A band-pass filter having a split ring resonator designed at a predetermined center frequency according to the detection target part of the subject;
A measuring unit that generates an electromagnetic wave and measures an electromagnetic wave response characteristic of a predetermined frequency band when the detection target part is brought close to or in contact with the band pass filter;
An evaluation value calculation unit that calculates an evaluation value using the measurement value of the electromagnetic wave response characteristic measured by the measurement unit and the reference value of the electromagnetic wave response characteristic of the living body,
A living body detection device comprising: a living body determination unit that determines whether or not the detection target site is a living body based on the evaluation value calculated by the evaluation value calculation unit;
The band pass filter is
Two pairs of large and small split ring resonators are coaxially arranged so that the split portions are reversed on the inner side and the outer side, and two sets of complementary split ring resonators are arranged on the same axis. The living body detection apparatus characterized by the above-mentioned.
被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する帯域通過フィルタと、
電磁波を発生させ、前記検知対象部位を前記帯域通過フィルタに近接又は当接させた際の所定の周波数帯域の電磁波応答特性を測定する測定部と、
前記測定部で測定された前記電磁波応答特性の測定値と、生体の電磁波応答特性の基準値とを用いて評価値を算出する評価値算出部と、
前記評価値算出部で算出された前記評価値に基づいて、前記検知対象部位が生体であるか否かを判定する生体判定部と、を備える生体検知装置であって、
前記評価値算出部が、
前記測定部で測定された前記電磁波応答特性の測定値をS(f)、前記生体の電磁波応答特性の基準値をT(f)、T(f)の標準偏差をσ(f)、以下の式(2)で表される一致性指数をk(f)、k(f)に応じた重み関数をw(k(f))、周波数毎の重み関数をw(f)、評価に用いる周波数帯域の下限をf、上限をfとするとき、
前記評価値として、以下の式(1)で表される第1の評価値αを算出することを特徴とする生体検知装置。
Figure 2019037664
Figure 2019037664
A band-pass filter having a split ring resonator designed at a predetermined center frequency according to the detection target part of the subject;
A measuring unit that generates an electromagnetic wave and measures an electromagnetic wave response characteristic of a predetermined frequency band when the detection target part is brought close to or in contact with the band pass filter;
An evaluation value calculation unit that calculates an evaluation value using the measurement value of the electromagnetic wave response characteristic measured by the measurement unit and the reference value of the electromagnetic wave response characteristic of the living body,
A living body detection device comprising: a living body determination unit that determines whether or not the detection target site is a living body based on the evaluation value calculated by the evaluation value calculation unit;
The evaluation value calculation unit
The measured value of the electromagnetic wave response characteristic measured by the measurement unit is S (f), the reference value of the electromagnetic wave response characteristic of the living body is T (f), the standard deviation of T (f) is σ (f), and The consistency index represented by the equation (2) is k (f), the weight function corresponding to k (f) is w v (k (f)), the weight function for each frequency is w f (f), When the lower limit of the frequency band to be used is f L and the upper limit is f H ,
A living body detection apparatus that calculates a first evaluation value α represented by the following expression (1) as the evaluation value.
Figure 2019037664
Figure 2019037664
前記重み関数w(k(f))が、
所定のしきい値をpとするとき、
以下の式(3)で表される関数であることを特徴とする請求項2に記載の生体検知装置。
Figure 2019037664

The weight function w v (k (f)) is
When the predetermined threshold value is p,
The living body detection apparatus according to claim 2, wherein the living body detection apparatus is a function represented by the following expression (3).
Figure 2019037664

前記評価値算出部が、
前記評価値として、前記第1の評価値αに加えて、以下の式(4)で表される第2の評価値βを算出することを特徴とする請求項2または3に記載の生体検知装置。
Figure 2019037664
The evaluation value calculation unit
The biological detection according to claim 2, wherein a second evaluation value β represented by the following expression (4) is calculated as the evaluation value in addition to the first evaluation value α. apparatus.
Figure 2019037664
JP2017163771A 2017-08-28 2017-08-28 Biological detector Active JP6987380B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017163771A JP6987380B2 (en) 2017-08-28 2017-08-28 Biological detector
JP2021160553A JP7168259B2 (en) 2017-08-28 2021-09-30 living body detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017163771A JP6987380B2 (en) 2017-08-28 2017-08-28 Biological detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021160553A Division JP7168259B2 (en) 2017-08-28 2021-09-30 living body detector

Publications (2)

Publication Number Publication Date
JP2019037664A true JP2019037664A (en) 2019-03-14
JP6987380B2 JP6987380B2 (en) 2021-12-22

Family

ID=65727290

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017163771A Active JP6987380B2 (en) 2017-08-28 2017-08-28 Biological detector
JP2021160553A Active JP7168259B2 (en) 2017-08-28 2021-09-30 living body detector

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021160553A Active JP7168259B2 (en) 2017-08-28 2021-09-30 living body detector

Country Status (1)

Country Link
JP (2) JP6987380B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501355A (en) * 2019-10-08 2019-11-26 大连理工大学 Plane microwave cavity dropping type liquid dielectric value detection sensor
CN112966557A (en) * 2021-02-03 2021-06-15 南京信息工程大学 Metamaterial sensor for organism detection and detection method thereof
TWI750582B (en) * 2020-02-10 2021-12-21 國立臺灣科技大學 Perturbation-injection-locked physiological siganal sensor
CN114660365A (en) * 2020-12-23 2022-06-24 安徽师范大学 5G dual-band dielectric constant nondestructive measurement method of surface sensor based on double complementary open loops

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345774A (en) * 2001-05-29 2002-12-03 Tanita Corp Biological measuring device equipped with measuring person judgment function
JP2003111749A (en) * 2001-10-09 2003-04-15 Bmf:Kk Device for discriminating human
JP2004221623A (en) * 2001-12-18 2004-08-05 Murata Mfg Co Ltd Resonator, filter, duplexer, and communication apparatus
JP2009160274A (en) * 2008-01-08 2009-07-23 Sharp Corp Biological information measuring apparatus, method for measuring biological information, biological information measuring program, and recording medium
JP2010057838A (en) * 2008-09-05 2010-03-18 Fujitsu Ltd Biometric authentication apparatus, biometric determination apparatus, biometric authentication method, and biometric authentication program
US20120086463A1 (en) * 2010-10-12 2012-04-12 Boybay Muhammed S Metamaterial Particles for Near-Field Sensing Applications
JP2015211798A (en) * 2014-05-07 2015-11-26 学校法人立命館 Living body detection device and living body detection method
JP2017513407A (en) * 2014-04-07 2017-05-25 シナジー マイクロウェーブ コーポレーションSynergy Microwave Corporation Devices using metamaterial resonators

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143804A (en) 2003-11-14 2005-06-09 Glory Ltd Apparatus and method for detecting living body, and fingerprint authentication apparatus
EP1855348A1 (en) 2006-05-11 2007-11-14 Seiko Epson Corporation Split ring resonator bandpass filter, electronic device including said bandpass filter, and method of producing said bandpass filter
US11083388B2 (en) 2015-11-16 2021-08-10 Jun-Chau Chien Gigahertz frequency fringing near-field cardiovascular sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345774A (en) * 2001-05-29 2002-12-03 Tanita Corp Biological measuring device equipped with measuring person judgment function
JP2003111749A (en) * 2001-10-09 2003-04-15 Bmf:Kk Device for discriminating human
JP2004221623A (en) * 2001-12-18 2004-08-05 Murata Mfg Co Ltd Resonator, filter, duplexer, and communication apparatus
JP2009160274A (en) * 2008-01-08 2009-07-23 Sharp Corp Biological information measuring apparatus, method for measuring biological information, biological information measuring program, and recording medium
JP2010057838A (en) * 2008-09-05 2010-03-18 Fujitsu Ltd Biometric authentication apparatus, biometric determination apparatus, biometric authentication method, and biometric authentication program
US20120086463A1 (en) * 2010-10-12 2012-04-12 Boybay Muhammed S Metamaterial Particles for Near-Field Sensing Applications
JP2017513407A (en) * 2014-04-07 2017-05-25 シナジー マイクロウェーブ コーポレーションSynergy Microwave Corporation Devices using metamaterial resonators
JP2015211798A (en) * 2014-05-07 2015-11-26 学校法人立命館 Living body detection device and living body detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501355A (en) * 2019-10-08 2019-11-26 大连理工大学 Plane microwave cavity dropping type liquid dielectric value detection sensor
TWI750582B (en) * 2020-02-10 2021-12-21 國立臺灣科技大學 Perturbation-injection-locked physiological siganal sensor
CN114660365A (en) * 2020-12-23 2022-06-24 安徽师范大学 5G dual-band dielectric constant nondestructive measurement method of surface sensor based on double complementary open loops
CN112966557A (en) * 2021-02-03 2021-06-15 南京信息工程大学 Metamaterial sensor for organism detection and detection method thereof
CN112966557B (en) * 2021-02-03 2023-06-27 南京信息工程大学 Metamaterial sensor for organism detection and detection method thereof

Also Published As

Publication number Publication date
JP2022002730A (en) 2022-01-11
JP6987380B2 (en) 2021-12-22
JP7168259B2 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
JP7168259B2 (en) living body detector
CN107495929B (en) Wearable device and state detection method
KR101019844B1 (en) Method and apparatus for electro-biometric identity recognition
Marasco et al. Combining perspiration-and morphology-based static features for fingerprint liveness detection
Acharya et al. An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images
JP5521276B2 (en) Authentication apparatus, authentication method, and authentication program
CA2930745A1 (en) System and method for asset authentication and management
Manju et al. Efficient multi-level lung cancer prediction model using support vector machine classifier
US7627144B2 (en) Method and apparatus for performing identity authentication
US11304610B2 (en) Body state classification
WO2018032599A1 (en) Identity authentication method and device for wearable intelligent device
Paula Rocha et al. Beyond long memory in heart rate variability: an approach based on fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity
Grewal et al. Pilot study: electrical impedance based tissue classification using support vector machine classifier
Miah et al. Non-invasive bilirubin level quantification and jaundice detection by sclera image processing
Sharma et al. Sex estimation from fingerprint ridge density. A review of literature
US7657066B2 (en) Method of determining the living character of an element carrying a fingerprint
JP6347349B2 (en) Biological detection device and biological detection method
CN105555188A (en) Method for diagnosing a malignant lung tumor
Ceder et al. Evaluation of electrical impedance spectroscopy as an adjunct to dermoscopy in short-term monitoring of atypical melanocytic lesions
KR102588694B1 (en) Method of Determining Respiration Rate and Method and Apparatus for Determining Respiration State
Crisan et al. Multimodal liveness detection system for hand vein biometrics
Islam et al. Detection of some major heart diseases using fractal analysis
Khatun et al. Mathematical Models for Extracellular Fluid Measurement to Detect Hydration Level Based on Bioelectrical Impedance Analysis
CN108304746A (en) Method and apparatus of the update for the certification reference information of electrocardio authentication
Ogoke et al. A comparative study of foot measurements using Receiver Operating Characteristics (ROC) approach

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210930

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211011

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211124

R150 Certificate of patent or registration of utility model

Ref document number: 6987380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150